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Abstract

This paper elicits an additively separable representation of preferences in the
Savage framework (where the objects of choice are acts: measurable functions
from an infinite set of states to a potentially finite set of consequences). A prefer-
ence relation over acts is represented by the integral over the subset of the product
of the state space and the consequence space which corresponds to the act, where
this integral is calculated with respect to a “state-dependent utility” measure on
this space. The result applies at the stage prior to the separation of probabilities
and utilities, and requires neither Savage’s P3 (monotonicity) nor his P4 (likeli-
hood ordering). It may thus prove useful for the development of state-dependent
utility representation theorems in the Savage framework.
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1 Introduction
Among the many challenges to the theory of decision under uncertainty proposed by
Savage (1954) are worries regarding the state-independence of utilities. Karni (1985);
Drèze (1987); Karni and Mongin (2000) have argued that in many applications, and in-
deed as regards several methodological issues, such as the measurement of subjective
probabilities, state-dependent utilities should be used; accordingly, representation the-
orems have been proposed to elicit (suitably unique) probabilities and state-dependent
utilities from preferences.

Simply put, one might think that the elicitation of state-dependent utilities would
operate in two stages: firstly, elicit a representation of preferences by a single real-
valued function of both states and consequences; then use some mechanism to separate
the probability and utility factors of this function – that is, to write it as a product of a
(unique) probability function and a (suitably unique) state-dependent utility function.
However, so far, such a technique has had differing degrees of success and popularity
depending on whether one uses Savage’s original framework or the framework pro-
posed by Anscombe and Aumann (1963).

The latter framework employs a (possibly) finite state space with a rich conse-
quence space: traditionally, the consequence space is the set of lotteries over a finite
set of outcomes. The set of acts (functions from states to consequences) taking val-
ues in such a consequence space is a mixture set:1 it follows that the von Neumann
Morgenstern theorem can be directly applied to obtain an additive representation of
preferences by a single function of states and consequences (Fishburn, 1970, p146).
This function is sometimes called a “state-dependent utility” (Kreps, 1988, p108),2

although it is not to be confused with the state-dependent utility function the state-
dependent utility theorists aim to elicit (Karni et al., 1983; Karni, 1985; Drèze, 1987):
the latter is obtained after appropriate decomposition of the former into the probability
and utility factors. To avoid confusion, in this paper, the following terminology will be
adopted: the utility function which, along with a (suitably unique) probability function,
represents the preferences, will be called the state-dependent utility, whereas the func-
tion of state–consequence pairs which, taken alone, represents the preference relation
will be called “state-dependent utility” (with scare quotes); finally, this latter function
will be said to yield a additively separable representation (here we follow the terminol-
ogy suggested by Kreps (1988, p108)). The representation theorem in Anscombe and
Aumann (1963) operates by adding a monotonicity axiom, allowing one to decompose
the “state-dependent utility” into a probability and state-independent utility function.
Several representation theorems for state-dependent utility begin with the additively
separable representation obtained by the application of the von-Neumann Morgenstern
theorem, and employ a different mechanism from Anscombe and Aumann (1963) to
separate the “state-dependent utility” into a probability and a state-dependent utility
(Karni et al., 1983; Karni and Mongin, 2000).3 It is thus clear that the Aumann &

1Throughout this discussion, the “Reversal of Order” axiom shall be assumed.
2Karni et al. (1983, p1022) call this function “NM utility” because of the use of the von Neumann Mor-

genstern result in its elicitation. The use of this terminology in the Savage framework might however cause
confusion.

3Drèze (1987) also begins from the application of the von-Neumann Morgenstern theorem, but weakens
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Anscombe supports the sort of strategy described above.
By contrast, such a technique is not readily available in the Savage framework,

because an additively separable representation of the sort provided by the application
of the von-Neumann Morgenstern result is much less simple to obtain. In the Savage
(1954) framework, there is a rich (infinite) set of states and a poor (possibly finite) set
of consequences. The technique used to elicit probabilities and state-independent utili-
ties proceeds firstly by eliciting probabilities, relying crucially on the axioms ensuring
state-independence of utilities, and only then eliciting utilities, by the application of the
von-Neumann Morgenstern result. There is thus no intermediate stage of the process
at which one has constructed a representation of the preferences by a single function
of states and consequences (a “state-dependent utility”), but not separated this function
into probability and utility components. Accordingly, the main state-dependent utility
results which are formulated in the Savage framework do not pass through an interme-
diate stage where an additively separable representation has been obtained but not yet
decomposed; Karni and Schmeidler (1993) and Karni (1993) are examples of such a
results.

This fact may be related to a further interesting difference between the two frame-
works: namely that, whereas in the Aumann & Anscombe framework there is one
axiom for state-independence4 – Monotonicity – in the Savage framework there are
two – P3 and P4. As Karni (1993) has argued, P3, whose statement is similar to the
Monotonicity axiom of Anscombe & Aumann, guarantees ordinal state independence,
whereas P4 is required for cardinal state independence.5 Indeed, a significant num-
ber of state-dependent theories developed in the Savage framework only weaken P4
without touching P3: Karni and Schmeidler (1993) is an example. So they provide
representations of preferences by state-dependent utilities, relying on the supposition
that the preferences are ordinally state independent.

The goal of this paper is to provide an equivalent in the Savage framework to the
additively separable representation of preferences that is obtained in the Anscombe &
Aumann framework by the application of the von Neumann-Morgenstern result. The
paper proposes a set of axioms on a preference relation such that, if they are satis-
fied, there is a suitably unique function of states and consequences representing the
preference relation (a “state-dependent utility”). Intuitively, one might expect the rel-
evant axioms to be more or less the same as the Savage axioms except that the state-
independence axioms P3 and P4 are excluded; indeed, as suggested above, the interest
of such a result would lie in its use as a first stage in state-dependent utility results
which do not assume P3 and P4 but employ other means for separating the probability
from the utility. In fact, neither P3 (monotonicity) nor P4 shall figure among the ax-
ioms proposed here. Moreover, apart from some technical modifications relating to the
Savage’s P6, the axioms will correspond rather directly to those proposed in Savage
(1954).

Apart from the technical difficulty of showing that the sort of additively separa-

the Reversal of Order axiom, rather than just Monotonicity.
4See footnote 1.
5In the Anscombe and Aumann (1963) setting, because of the linear structure on the consequence space,

the difference between ordinal and cardinal state independence collapses. See Karni (1993); Wakker and
Zank (1999).
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ble representation obtained in the Anscombe & Aumann framework also holds in the
Savage framework, there is a conceptual difficulty: namely, that of finding the correct
analogy to the Anscombe & Aumann representation. At the appropriate stage of the
Anscombe & Aumann elicitation, one obtains a “state-dependent utility” function from
state–consequence pairs to the real numbers such that the preference relation is repre-
sented by the sum of the values of this function on the state–consequence pairs realised
by the acts.6 However, as Wakker and Zank (1999) note, in the Savage case, where
the state space is infinite, the difficulty is that of finding an equivalent to this sum. The
solution to the problem adopted here is as follows: take the “state-dependent utility” to
be a measure on the product of the state space (which is a measure space in the Sav-
age framework) and the consequence space (since no measure structure is assumed on
the set of consequences, this is taken to be the measure space generated by the single-
ton sets of consequences). As in the Anscombe & Aumann case, the “state-dependent
utility” is a function from state–consequence pairs to the real numbers; the difference,
given that we are now working in the infinite case, is that the measure structure needs
to be respected. Finally, note that acts are measurable subsets of the product space: in
particular, an act is the subset of state–consequence pairs it realises. So the expected
utility of the act is just the integral of the “state-dependent utility” measure over this
set. The result in this paper (Theorem 1 in Section 2) will yield measure of this sort, in
such a way that it has appropriate uniqueness properties.

In Section 2, the technical notions shall be introduced and the theorem shall be
stated. Section 3 will contain a discussion of the result and comparison with relevant
literature. The proofs are to be found in the Appendix.

2 Axioms and theorem
Let S be a set of states, with a σ-algebra of events FS , and let C be a set of conse-
quences. Note that there is a naturally defined σ-algebra in the algebra generated by
S×C: namely the product of the σ-algebra of events FS with the “discrete” σ-algebra
on C, containing all singletons of C. Let this σ-algebra on S × C be FSC . Let A be
the set of measurable functions from S to C: they are called the acts. Each act may
also be thought of as a subset of S×C: namely the set {(s, f(s))| s ∈ S}. This subset
shall also be called f . Since an act is a measurable function, the subset of S×C is also
measurable (it belongs to FSC). Finally, let � be a binary relation on A; ≺, ∼, � and
� are defined from � in the usual way.

Notation. Let Ap be the set of partial (measurable) functions7 from S to C. Write fA
for the partial function which is defined on A ⊆ S and agrees with f on this domain.
Note, there exist f , f ′, A with fA = f ′A. As for acts, to each partial function fA there
corresponds a subset of S × C, which shall also be denoted fA.

For A and B disjoint, fAgB is the partial function taking the values of f on A and
the values of g on B.

6An act realises a state–consequence pair if and only if it is a function taking the state in the pair to the
consequence in the pair.

7Henceforth all functions, partial functions and sets of states shall be assumed to be measurable.
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Given an event A, Ac is the set S \A; since it is measurable, it is also an event.
As is standard, �A will denote the order � on acts, given the event A. This can

also be thought of as an order on the partial functions with domain A: indeed, it is the
natural order derived from�. � will be extended to partial acts with common domains
in this way: for partial acts fA and gA defined on an event A, fA � gA iff, for any act
e, fAeAc �A gAeAc . Axiom A2 below assures that this extension is not trivial.

Finally, the traditional notion of null event shall be employed: an event A is null
iff, for any pair of acts f, g ∈ A, f ∼A g.

We assume three of the basic axioms of Savagean decision theory.

Axiom A1 (Weak order). � is a weak order: (a) For all f , g in A, f � g or g � f . (b)
For all f , g and h in A, if f � g and g � h, then f � h.

Axiom A2 (Sure-thing principle). For any acts f , g, h, h′ in A and any non-null event
A, fAhAc � gAhAc iff fAh′Ac � gAh′Ac

Axiom A3 (Non-triviality). There are acts f , g in A such that f � g.

Following Abdellaoui and Wakker (2005) and Gilboa (1987), we shall factorise
Savage’s P6 axiom into two elements: solvability (which differs slightly from the solv-
ability axioms proposed in the articles mentioned, in so far as they suppose monotonic-
ity and thus at least ordinal state independence, and this is not to be assumed here) and
the standard Archimedean axiom.

Axiom A4 (Solvability). For acts f , g, h inA, f ≺ g ≺ h, there exists an eventA ⊆ S
such that fAhAc ∼ g.

Axiom A5 (Archimedean). There is no infinite sequence of disjoint non-null eventsEi
such that there exists a pair of acts f and g with f ≺Ei g for all i.

Remark 1. The solvability axiom (in tandem with non-triviality) implies that all atoms
are null.8 To see why, consider an non-null atom a and two consequences such that
c1 ≺a c2: any two acts identical except on a, and taking values c1 and c2 on a re-
spectively, form a counterexample to Solvability. It follows that the state space is
non-atomic, for if not, the preference relation would be trivial. Since all atoms are null,
they will be treated under the consideration of null events in subsequent argument;
henceforth, no special consideration shall be given to any atoms in the state space.

Theorem 1. For S, C,� satisfying (A1-A5), there exists a measure U on (S×C,FSC)
such that, for every f, g ∈ A,

(1) f � g iff
∫
f

dU 6
∫
g

dU

Furthemore, let U ′ be any other measure satisfying this equation. Then there exists
a > 0 and a measurable function b : S → < such that U ′ = aU + b.

8An atom is an event such that, for every sub-event, either it or its complement is null.
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3 Discussion
In order the bring out the relevant points regarding the result in the previous section, it
is perhaps instructive to compare it with another result in the literature which deals with
essentially the same problem; namely, that proposed by Wakker and Zank (1999). That
paper differs from the current one firstly in its presentation of the result, and secondly,
and more importantly, in the content of the result (axioms and techniques used). Let
us first of all consider the differences in presentation, before turning to the axioms
involved and techniques used.

Wakker and Zank (1999) are interested in the stage prior to the separation of prob-
ability and utility, or as they put it, to the “identifiability of probability”. They are
thus dealing with the same question as has been posed above; the reader is referred to
that paper for an extended discussion of the importance of the sort of result obtained
in Wakker and Zank (1999) and here. The result obtained in their paper is presented
in two forms (Theorems 11 and 12). Firstly, they elicit a functional from the set of
acts to the reals which represents the preference relation and which, amongst its other
properties, is additive: for any finite partition of the state space, there is a set of func-
tionals, one for each element of the partition, which sum to give the original functional.
The second form of the result, which, as they emphasise, does not add any empirical
content to the first, is in the form of a measure on the state space and a state-dependent
utility function such that the preference relation is represented by the integral of the
state-dependent utility function over the measure. Although the state-dependent util-
ity function involved in the representation does resemble those discussed by Karni
et al. (1983); Karni and Mongin (2000), insofar as it represents the preference relation
in tandem with another function (a probability function, or in the Wakker and Zank
(1999) case, a countably additive measure on the state space), by contrast to the cases
discussed by those theorists, there is no unique separation of probabilities and utili-
ties here (that was not the goal), and so the function can be altered given appropriate
modifications of the measure.

The result presented in this paper takes a slightly different form. It proposes a rep-
resentation of the preference relation by a single (“state-dependent utility”) measure on
the product of the state space and the consequence space. Since an act is a measurable
function, it corresponds to a measurable subset of the product space; namely, the set
of state–consequence pairs realised by the act. The expected utility of the act is just
integral of the measure over this set, just as, in the Anscombe & Aumann case, it was
the sum over the state-consequence pairs realised by the act.

The difference in formulation between this paper and Wakker and Zank (1999) is
of no deep significance. In particular, it is possible to retrieve one formulation from the
others. For the case of the additive functional, the “state-dependent utility” measure
is naturally considered as an additive functional, with the functionals for elements of
a partition just being the integrals with respect to the measure over these partitions.
For the case of the state-dependent utility and the measure on the state space, it is
simple to decompose the “state-dependent utility” measure on the product of the state
space and the consequence space into a measure component on the state space and a
set of state-dependent utility functions, one for each state: this decomposition is rather
arbitrary, hence the weak uniqueness properties of the measure and state-dependent
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utilities obtained. On the other hand, it should also be possible, by reversing these
steps, to retrieve the “state-dependent utility” measure from additive functionals or
measure-state-dependent-utility pairs.

It should however be noted that the measure proposed here is a measure on the en-
tire product space, and thus will measure subsets of that space which do not correspond
to acts or partial acts; for example it will measure the union of two event–consequence
pairs, even when the events are not disjoint and the consequences are not equal. This
“extension” is generally unproblematic, because it is entirely determined by the ex-
pected utilities of acts or partial acts.9

Beyond the differences in presentation, there is a difference in the axioms proposed
and the techniques used in this paper and in that of Wakker and Zank (1999).

The major difference in the axioms lies in the use of a monotonicity axiom (closely
related to Savage’s P3): Wakker and Zank (1999) require such an axiom (precisely, they
require “strict monotonicity”), whereas no such axiom is demanded here. As noted in
the Introduction, the avoidance of this axiom is attractive given the role that this result
is intended to play in state-dependent utility results; nevertheless, as Wakker and Zank
point out, this axiom is widely assumed in economics.

Another central difference is the structure of the consequence space. Wakker and
Zank (1999) consider only the case where the consequence space is the set of real num-
bers (in the appendix, they extend the result to connected topological spaces), whereas
no particular structure is demanded on the consequence space in this paper. In particu-
lar, the result proved here applies to finite, as well as infinite, consequence spaces. This
is closer to Savage’s original theory, where the structural burden is borne by the state
space, allowing very weak constraints on the consequence space. Once again, the use
of the real numbers as a consequence space in economics is widespread, although there
are certainly cases where one would like to be able to relieve oneself of this assumption.

The difference in consequence spaces is related to a third difference between the
two papers: namely, the axioms used to play the role of Savage’s P6. Wakker and Zank
(1999) use a selection of fairly weak but closely related conditions on the preference
relation, which differ between the different theorems. Two of these (“simple continu-
ity” and “supnorm continuity”) are defined with reference to the topological structure
on the consequence space, and thus cannot be defined in the framework treated in this
paper. The third (“pointwise continuity”) does not make reference to this structure,
but its use in the proof essentially consists in showing that it implies one of the other
notions of continuity (Lemma 20), and so it is not clear to what extent it can be applied
in the framework assumed here.

Instead of applying continuity constraints of this sort, the current paper borrows a
factorisation of Savage’s P6 from Abdellaoui and Wakker (2005) and Gilboa (1987).
There are two axioms: solvability, which does not quite correspond to the solvability in
Abdellaoui and Wakker (2005) and Gilboa (1987) (their definitions rely on monotonic-
ity), and the Archimedean axiom. The latter is as standard; the former is a richness
axiom stating that, for any triplet of acts with strict preferences between them, one can
obtain an act indifferent from the middle act by “mixing” the most and least preferred

9Under the Savage axioms, and most notably the Sure-Thing Principle, an expected utility on acts natu-
rally generates a unique measure on the product space.

7



Brian Hill An additively separable representation in the Savage framework

acts. This axiom is rather strong, and has several important consequences. Firstly
(Remark 1, Section 2), it implies that the state space is effectively atomless, in so far
as any atoms are null (Wakker and Zank assume atomless state spaces). Secondly, it
drives not only the elicitation of the expected utility function, but also assures that it
is a countably-additive measure (this is a role played by the continuity assumptions in
Wakker and Zank (1999)).

Given these differences, it is no surprise that the techniques used in the two papers
are, at least at first glance, rather different. In a word, the Wakker and Zank (1999)
results work by applying the Debreu (1960) result for finite state spaces to partitions of
an infinite space and showing that the utility functions obtained from Debreu’s theorem
can be “stuck” together. On the other hand, the result here operates by showing that
an appropriate set of equivalence classes of partial acts is an Archimedean, regular,
positive, ordered local semigroup in the sense of Krantz et al. (1971), and then applying
their Theorem 4 from Chapter 2 to get a representation (see Definition 1 and Theorem
2 in the Appendix). The advantage of this theorem is the weakness of the conditions
required: this is what allows the result shown here to do without specific assumptions
regarding the topological structure of the consequence space or the monotonicity of the
preference relation.

Appendix: Proof of Theorem 1
The proof relies heavily on Theorem 4 in Chapter 2 of Krantz et al. (1971). It is worth
reproducing the essential definition and the statement of the theorem.

Definition 1 (Krantz et al. (1971), p44). Let A be a nonempty set, B and % binary
relations on A and ◦ a binary operation from B to A. The quadruple < A,%, B, ◦ > is
an Archimedean, regular, positive, ordered local semigroup iff, for all a, b, c, d ∈ A,
the following eight axioms are satisfied:

1. < A,%> is a total order: that is, an anti-symmetric weak order (a weak order
such that, if a � b and b � a, then a = b).

2. if (a, b) ∈ B, a % c, and b % d, then (c, d) ∈ B.

3. if (c, a) ∈ B and a % b, then c ◦ a % c ◦ b.

4. if (a, c) ∈ B and a % b, then a ◦ c % b ◦ c.

5. (a, b) ∈ B and (a ◦ b, c) ∈ B iff (b, c) ∈ B and (a, b ◦ c) ∈ B; and when both
conditions hold (a ◦ b) ◦ c = a ◦ (b ◦ c).

6. if (a, b) ∈ B, a ◦ b � a.

7. if a � b, then there exists c ∈ A such that (b, c) ∈ B and a % b ◦ c.

8. {n| n ∈ Na and b � na} is a finite set.

where Na, a subset of the positive integers, and na, an element of A for each n ∈ Na,
are defined inductively as follows:
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(i) 1 ∈ Na and 1a = a;

(ii) if n − 1 ∈ Na and ((n − 1)a, a) ∈ B, then n ∈ Na and na is defined to be
((n− 1)a) ◦ a;

(iii) if n− 1 ∈ Na and ((n− 1)a, a) /∈ B, then for all m > n, m /∈ Na.

The importance of this definition is expressed by the following theorem (Theorem
4 in Krantz et al. (1971)).

Theorem 2 (Krantz et al. (1971), p45-6). Let < A,%, B, ◦ > be an Archimedean,
regular, positive, ordered local semigroup. Then there is a function φ from A to <+

such that for all a, b ∈ A,

(i) a % b iff φ(a) > φ(b);

(ii) if (a, b) ∈ B, then φ(a ◦ b) = φ(a) + φ(b).

Moreover, if φ and φ′ are two functions from A to <+ satisfying conditions (i) and
(ii), then there exists α > 0 such that, for any nonmaximal a ∈ A, φ′(a) = αφ(a).

Let us now begin the proof of Theorem 1. Pick any act e ∈ A,
which shall remain fixed throughout the proof. Let A+ = {fA ∈
Ap | A nonnull event and for any nonnull event A′ ⊆ A, fA′ � eA′} and A− =
{fA ∈ Ap | A nonnull event and for any nonnull event A′ ⊆ A, eA′ � fA′}.
At least one of these sets is non-empty, by Axioms A2 and A3. Furthermore, let A+

∼
be the set of equivalence classes of A+ under ∼; similarly for A−∼. [fA] shall denote
the equivalence class (element of A+

∼) containing fA. Note that there is the following
order �+

∼ on A+
∼: [fA] �+

∼ [gB ] iff, for fA ∈ [fA] and gB ∈ [gB ], fAeAc � gBeBc .
Furthermore, there is a relation on A+

∼, B+, and an operation ◦ defined as follows.
([fA], [gB ]) ∈ B+ iff there are fA ∈ [fA] and gB ∈ [gB ] such that A and B are dis-
joint. For ([fA], [gB ]) ∈ B+, [fA] ◦ [gB ] = [fAgB ] where fA ∈ [fA], gB ∈ [gB ] and
A and B are disjoint. It is straightforward to check that these relations and operations
are well-defined. Similar relations and operations can be defined on A−∼. We begin by
proving the following claim.

Claim < A+
∼,�+

∼,B+, ◦ > and < A−∼,�−∼,B−, ◦ > are Archimedean regular posi-
tive ordered local semigroups (Definition 1).

The importance of the claim should be clear: it will allow us to apply Theorem 2.
Proof of claim. Since the cases are similar, we shall only treat the case of <

A+
∼,�+

∼,B+, ◦ > here. Many stages of the proof will rely on the following lemma.

Lemma 1. For partial acts fA and gB , if fAeAc � gBeBc , there exists an event
A′ ⊆ A, such that fAeAc � fA′eA′c ∼ gBeBc .

Proof. If fAeAc ∼ gBeBc let A′ = A. If not, fAeAc � gBeBc � e, so applying
solvability, there is an event A′′ ⊆ A such that fA\A′′eAc∪A′′ ∼ gBeBc . Setting
A′ = Ac \A′′ yields the required result.
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Remark 2. Note that an equivalent formulation of this lemma is: For partial acts fA
and gB , if [fA] �+

∼ [gB ], then there exists an event A′ ⊆ A, such that fA′ ∈ [gB ].

Let us now show that the clauses of Definition 1 are satisfied.

Lemma 2 (Clause 1.). �+
∼ is a total order.

Proof. The order �+
∼ on A+

∼ inherits the properties of connectedness and transitivity
from the order� onA: so axiom A1 guarantees that�+

∼ is a weak order. Furthermore,
since A+

∼ is obtained by quotienting on ∼, �+
∼ is anti-symmetric. It is thus a total

order.

Lemma 3 (Clause 2.). If ([fA], [gB ]) ∈ B+, [fA] �+
∼ [f ′A′ ] and [gB ] �+

∼ [g′B′ ], then
([f ′A′ ], [g′B′ ]) ∈ B+.

Proof. Since ([fA], [gB ]) ∈ B+, there are elements fA ∈ [fA], gB ∈ [gB ], with A
and B disjoint. Using Lemma 1, choose events A′′ ⊆ A and B′′ ⊆ B such that
fA′′eA′′c ∼ f ′A′eA′c and gB′′eB′′c ∼ g′B′eB′c . So fA′′ ∈ [f ′A′ ], gB′′ ∈ [g′B′ ]; since A
and B are disjoint, so are A′′ and B′′, and hence ([f ′A′ ], [g′B′ ]) ∈ B+.

Note that, since ◦ is commutative, Clause 3. is satisfied if and only if Clause 4. is.

Lemma 4 (Clauses 3. and 4.). If ([fA], [gB ]) ∈ B+ and [fA] �+
∼ [hC ], then [fA] ◦

[gB ] �+
∼ [hC ] ◦ [gB ]

Proof. Since ([fA], [gB ]) ∈ B+, there are elements fA ∈ [fA], gB ∈ [gB ], with A
and B disjoint. Using Lemma 1, choose an event A′ ⊆ A such that fA′ ∈ [hC ]. By
definition of A+

∼, fA′eA′c � fAeAc ; by Axiom A2, it follows that fA′gBe(A′∪B)c �
fAgBe(A∪B)c . Hence [hC ] ◦ [gB ] �+

∼ [fA] ◦ [gB ].

Lemma 5 (Clause 5.). ([fA], [gB ]) ∈ B+ and ([fA]◦[gB ], [hC ]) ∈ B+ iff ([gB ], [hC ]) ∈
B+ and ([fA], [gB ] ◦ [hC ]) ∈ B+; and when both conditions hold ([fA] ◦ [gB ]◦[hC ] =
[fA] ◦ ([gB ] ◦ [hC ]).

Proof. If ([fA], [gB ]) ∈ B+ and ([fA]◦[gB ], [hC ]) ∈ B+, then there are fA, gB and hC ,
members of [fA], [gB ] and hC respectively, such thatA,B andC are disjoint. It follows
that ([gB ], [hC ]) ∈ B+ and ([fA], [gB ] ◦ [hC ]) ∈ B+; furthermore ([fA] ◦ [gB ]◦[hC ] =
[fAgBhC ] = [fA]◦ ([gB ]◦ [hC ]). The same argument works in the other direction.

Lemma 6 (Clause 6.). If ([fA], [gB ]) ∈ B+, then [fA] ◦ [gB ] �+
∼ [fA].

Proof. Since ([fA], [gB ]) ∈ B+, there are elements fA ∈ [fA], gB ∈ [gB ], with A
and B disjoint. fAgBe(A∪B)c and fAeAc differ solely on B; by A2, it is their com-
parison on this set that decides the preference ordering between them. Furthermore, by
definition of A+, gB � eB ; hence the required result.

Lemma 7 (Clause 7.). If [fA] �+
∼ [gB ], then there exists a [hC ] ∈ A+

∼ with ([gB ], [hC ]) ∈
B+ and [fA] �+

∼ [gB ] ◦ [hC ].

10
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Proof. Using Lemma 1, find A′ ⊆ A such that fA′ ∈ [gB ]. Since fAeAc � fA′eA′c ,
A \A′ is a non-null event; take C to be any non-null event which is a subset of A \A′.
Since fA ∈ A+ and C is non-null, fC ∈ A; since A′ ∪ C ⊆ A, fA′∪Ce(A′∪C)c �
fAeAc . Taking [hC ] = [fC ] gives the result.

Lemma 8 (Clause 8.). DefiningN[fA] and n[fA] as in Definition 1: for all [fA], [gB ] ∈
A, {n | n ∈ N and [gB ] � n[fA]} is finite.

Proof. Suppose not. Then there exists an infinite sequence f iAi
∈ A+ such that

f iAi
eAc

i
∼ f jAj

eAc
i

and Ai and Aj are disjoint for each i 6= j f = f iAi
e(

⋃
Ai)c , e

and Ai violate A5.

The claim has thus been proved.
It follows from Theorem 2 that there is a function U+ : A+

∼ → <+ which respects
order, and which maps ◦ to addition; moreover, this function is unique up to a positive
multiplicative factor. Similarly there is a function U− : A−∼ → <+ inversing order (for
[fA], [gB ] ∈ A−∼, [fA] �−∼ [gB ] iff U−([fA]) > U−([gB ])), and sending ◦ to addition,
which is unique up to a positive multiplicative factor. Evidently, these naturally induce
real-valued functions on A+ (resp. A−) sharing the same properties. To ease notation,
these functions will also be called U+ and U−.

This establishes a representation of the orders on A+
∼ and A−∼ by finitely-additive

functions U+ and U−. It remains to be shown that these functions are countably-
additive. This can be shown without any supplementary axioms, thanks largely to
the strength of the solvability axiom (this is similar to the situation in Abdellaoui and
Wakker (2005)). As above, only the case of U+ will be considered; the case of U− is
similar.

Proposition 1. U+ is countably additive.

Proof. Consider a countable set [fEi ] ∈ A+
∼, i ∈ N such that, for all i, j, ([fEi ], [fEj ]) ∈

B+ and let [fE ] =©∞i=1[fEi
]. It needs to be shown that

∑∞
i=1 U

+([fEi
]) = U+([fE ]).

Suppose not. Since ©n
i=1[fEi

] �+
∼ [fE ] for any n, and since U+ is order preserv-

ing, it must hold that
∑n
i=1 U

+([fEi
]) 6 U+([fE ]) for any n. Hence U+([fE ]) >∑∞

i=1 U
+([fEi

]): given the assumption that U+([fE ]) 6=
∑∞
i=1 U

+([fEi
]), we have

that U+([fE ]) >
∑∞
i=1 U

+([fEi ]).
Pick a fE ∈ [fE ]. As was noted in Remark 1, the solvability axiom implies that

the state space may be assumed to be atomless (all atoms are null). Accordingly, for
any positive real number ε, there is an ε′ 6 ε and [gB ] ∈ A+

∼ such that U+([gB ]) = ε′.
So there exists an 0 < ε 6 U+([fE ]) −

∑∞
i=1 U

+([fEi
]) and a [gB ] ∈ A+

∼ with
U+([gB ]) = ε. Using Lemma 1, pick an event E′ ⊆ E such that fE′ ∈ [gB ]. By
construction, for any n,

∑n
i=1 U

+([fEi ]) 6 U+
∼ ([fE ])−U+([gB ]), so©n

i=1[fEi ] �+
∼

[fE\E′ ]. It follows that, by a countable number of applications of Lemma 1, it is
possible to generate a sequence of disjoint non-null events Ei ⊆ E \ E′ such that
fEi
∈ [fEi

] for all i. Thus ©∞i=1[fEi
] �+
∼ [fE\E′ ] ≺+

∼ [fE ] = ©∞i=1[fEi
] (the

last equation, by definition of [fE ]), which is a contradiction. The assumption that
U+([fE ]) 6=

∑∞
i=1 U

+([fEi ]) is thus false.

11
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It remains to “calibrate” the functionsU+ andU−; that is, to assure that the positive
and negative utilities add correctly. This is done as follows.

Definition 2. Say that [fA] ∈ A+
∼ and [gB ] ∈ A−∼ cancel if there is a fA ∈ [fA],

gB ∈ [gB ], such that A and B disjoint and fAgBe(A∪B)c ∼ e.

Suppose that there exist [fA] ∈ A+
∼ such that there are no [gB ] ∈ A−∼ which cancel

[fA] (the case where all elements ofA+
∼ cancel, and the case where all elements of both

A+
∼ and A+

∼ cancel, are dealt with similarly). Let I = {[fA] ∈ A+
∼ | there is [gB ] ∈

A−∼, [fA] and [gB ] cancel}. There is a natural mapping σ : I → A−∼, taking [fA]
to the [gB ] such that [fA] and [gB ] cancel. This mapping is well-defined because of
A2: if not, use Lemma 1 to take two gB′ , gB′′ , B′ ⊂ B′′ (B′ and B′′ events) such
that fAgB′e(A∪B′)c ∼ fAgB′′e(A∪B′′)c ∼ e: by A2 it follows that gB′′\B′ ∼ eB′′\B′

contradicting gB′′ ∈ A−. Using a similar technique, it is easy to show that I is closed
under �+

∼ (if [fA] ∈ I and [f ′A′ ] �+
∼ [fA], then [f ′A′ ] ∈ I) and that σ is surjective.

The following lemma will yield directly the required result.

Lemma 9. For [fA], [f ′A′ ] ∈ I, U+([fA]) > U+([f ′A′ ]) iff σ([fA]) �−∼ σ([f ′A′ ]).

Proof. Suppose not: there are [fA], [f ′A′ ] with U+([fA]) > U+([f ′A′ ]) but σ([fA]) �
σ([f ′A′ ]). Pick fA ∈ [fA] and let A′′ ⊆ A be such that fA′′ ∈ [f ′A′ ] (such an A′′ exists
by Lemma 1). Similarly, pick gB ∈ σ([f ′A′ ]) with B disjoint from A, and let B′ ⊆ B
be such that gB′ ∈ σ([fA]).10 By definition fAgB′e(A∪B′)c ∼ e ∼ fA′′gBe(A′′∪B)c ,
and fA � fA′′ . By A2, it follows that gB′ � gB , contrary to the supposition. This
proves the claim.

Lemma 9 states that −U+ represents �−∼: by the unicity properties of Theorem 2,
there exists an α > 0 such that, for all [fA] ∈ I, U−(σ([fA])) = −αU+([fA]).

Define U , a measure on FSC , as follows. For any element c ∈ C, for any event A,
let

(2) U(A, c) =

 U+(f cA) if f cA′ � eA′ for all non-null events A′ ⊆ A
− 1
αU
−(f cA) if f cA′ ≺ eA′ for all non-null events A′ ⊆ A

0 if f cA′ ∼ eA′ for all non-null events A′ ⊆ A

where f cA is the constant partial act taking the value c on A. This definition extends
naturally toFS×{c} for each c ∈ C: for anyA ∈ FS , there is a set of subsets {Aj | j ∈
J},

⋃
J Aj = A, unique up to addition or removal of null events, such that, for each j,

Aj satisfies one of the conditions in (2). In such a case, U(A, c) =
∑
J U(Aj , c).

Finally, U is extended to a measure on FSC , by defining, for each χ ∈ FSC ,

U(χ) =
∑
C

U(χc, c)

where χc is the projection of χ onto S for consequence c ∈ C.
It follows from the construction that U is a measure on (S × C,FSC); it follows

from the construction and axiom A2 that it represents � according to (1).
10Note that the signs are reversed, because the elements of A−∼ are “negative”.
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Uniqueness Let U ′ be any other expected utility measure representing �. Take
b(A) =

∫
eA
dU ′, where e is the act used in the construction of U (e is such that, for

any event A,
∫
eA
dU = 0). By the additivity properties of U ′, b is a measure on S.

Consider the measure U ′(A, c) − b(A): this function is such that, for any event A,∫
eA
d(U ′− b) = 0 – it agrees with U on the zero (partial) acts. Therefore U and U ′− b

both represent A+ and A−, and by the uniqueness clause in Theorem 2, U ′ − b = aU
for some a > 0.

This completes the proof of the theorem.
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