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Abstract

We define belief-free equilibria in two-player games with incomplete information as se-
quential equilibria for which players’ continuation strategies are best-replies, after every
history, independently of their beliefs about the state of nature. We characterize a set
of payoffs that includes all belief-free equilibrium payoffs. Conversely, any payoff in the
interior of this set is a belief-free equilibrium payoff.
JEL codes: C72, C73

1 Introduction

The purpose of this paper is to characterize the set of payoffs that can be achieved by a par-
ticular class of equilibria, belief-free equilibria. The games considered are two-player repeated
games with (potentially two-sided) incomplete information, under discounting. The restriction
we impose is that the players’ equilibrium strategies be optimal independently of their beliefs,
from any history on. This concept is not new: it has been introduced in the context of repeated
games with imperfect private monitoring by Ely and Välimäki (2002) and further studied in Ely,
Hörner and Olszewski (2005). It is also related to the concept of ex post equilibrium that is
used in mechanism design (see Crémer and McLean (1985)) and in large finite games (see Kalai
(2004)).
To predict players’ behavior in games with unknown parameters, a model typically includes

the specification of the players’ subjective probability distributions over these unknowns, follow-
ing Harsanyi (1967). This is not necessary when belief-free equilibria are considered. Just as
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ex post equilibria, belief-free equilibria enjoy the desirable property that the beliefs about the
underlying uncertainty are irrelevant. Indeed, players’ beliefs need not be derived by Bayes’ rule
from a common prior. Further, the way in which players update their beliefs as the game unfolds
is irrelevant.

Therefore, while solving for belief-free equilibria requires the game to be fully specified, it
does not require that all players know all the parameters of the model. In this sense, this idea is
close to von Neumann and Morgenstern (1944)’s original purpose when they introduced “games of
incomplete information”, as games in which some parameters remain unspecified. Such equilibria
are also consistent with misperceptions, as defined by Luce and Raiffa (1957). Nevertheless, our
players remain expected utility maximizers, just as in the case of complete information: players
are allowed to randomize, and take expectations when evaluating their payoff.

Most importantly, such equilibria are sequential equilibria (for any prior) satisfying any po-
tentially desirable refinement. However, we do not view belief-free equilibrium as an equilibrium
refinement per se. In fact, belief-free equilibria need not exist. Rather, our purpose is to char-
acterize which equilibrium payoffs are sensitive to the specification of beliefs, and which are not.
The required robustness is extreme in the sense that an equilibrium may be robust to small
changes in beliefs, and yet not be belief-free. Also, it could be that some payoff vector is a se-
quential equilibrium payoff vector for all possible beliefs, but the particular equilibrium achieving
this payoff depends on the beliefs; while we characterize equilibrium payoffs, our restriction is
one on strategies, not on payoffs.

We provide a set of necessary conditions that belief-free equilibrium payoffs must satisfy
which defines a closed convex set, possibly empty. Conversely, we prove that every interior point
of this set is a belief-free equilibrium payoff, provided that players are sufficiently patient.

This set of payoffs already plays a prominent role in the literature on Nash equilibria in games
with one-sided incomplete information. Shalev (1994) considers the case of private values (the
uninformed player knows his own payoffs) and shows that the set of uniform (undiscounted) Nash
equilibrium payoffs can be derived from this set. Closest to our analysis is Cripps and Thomas
(2003) which considers the one-sided case with private values as well, but with discounting. Most
relevant here is their Theorem 2, in which they show that the payoffs in the strict interior of this
set are Nash equilibria for all priors. In general, however, the set of Nash equilibrium payoffs
is larger, as they demonstrate in their Theorem 3 which establishes a folk theorem. Forges
and Minelli (1997) is also related. They show how communication can significantly simplify the
construction of strategies that achieve the Nash equilibrium payoffs. These simple strategies also
appear in Koren (1988). The most general characterization of Nash equilibrium payoffs remains
Hart (1985) for the case of one-sided incomplete information. A survey is provided by Forges
(1992).

As mentioned, the concept of belief-free equilibria has already been introduced in the context
of games with complete but imperfect information. There, the restriction on the equilibrium
pertains to the private history observed by the opponent. In both contexts, the characteriza-
tion of equilibrium payoffs is very tractable, although these characterizations are quite different.
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Non-trivial belief-free equilibria under imperfect monitoring involve players being at least pe-
riodically indifferent across continuation strategies. This is no longer true in what follows. In
the equilibrium that we construct for the proof, the only time players are potentially indifferent
across actions is if minmaxing their opponent calls for randomization.

The next section introduces the two necessary conditions. A leading example is introduced,
for which these conditions are explicitly worked out. Section 3 provides the theorem, and gives
a relatively short proof using explicit communication. The proof without such communication
is given in Appendix. Section 4 applies our logic to another example, a game of bad reputation
introduced by Ely and Välimäki.

2 The model

We consider repeated games with (two-sided) incomplete information, as defined by Harsanyi
[1967-68] and Aumann and Maschler [1995]. There is an J×K array of 2-person games in normal
form, having the same number of actions for each player. Player 1 is told in which row the true
game lies but he is not told which of the games in that row is actually being played. Player 2 is
told in which column the true game lies but he is not told which of the games in that column is
the true game. Players observe all actions, but not their payoffs. More formally, the stage-game
is a finite-action game. Let A1 and A2 be the finite sets of actions for player 1 and 2 respectively,
where Ai has at least two elements. Let A = A1 × A2. When the row is j and the column
is k -for short, when the state is (j, k)-, Player i’s payoff function is denoted ujk

i , for i = 1, 2.
We extend the domain of ujk

i from pure action profiles a ∈ A to mixed actions α ∈ �A in the

standard way. We let uk
1 :=

{
ujk

1

}J

j=1
, uj

2 :=
{

ujk
2

}K

k=1
. Players select an action in each period

t = 1, 2, . . .. Players observe actions, but not payoffs. Let H t = (A1 × A2)
t−1 be the set of all

possible histories ht up to and including period t. A (behavioral) strategy for row j, or type j, of
Player 1 (resp. type k of Player 2) is a sequence of maps sj

1 :=
(
sj,0
1 , sj,1

1 , . . .
)
, sj,t

1 : H t → �A1

(resp. sk
2 :=

(
sk,0
2 , sk,1

2 , . . .
)

, sk,t
2 : H t → �A2). We define s1 :=

{
sj
1

}J

j=1
, s2 :=

{
sk
2

}K

k=1
. Players

use a common factor δ < 1.

Example 1 (Prisoner’s dilemma with one-sided incomplete information) Player 1
is informed of the true state (= the row), Player 2 is not, and there is only one column (J = 2,
K = 1). If the true game corresponds to j = 1, payoffs are given (in every period) by the
prisoner’s dilemma payoff matrix in which T is “Cooperate” and B is “Defect”. If the true game
corresponds to j = 2, payoffs are given by the prisoner’s dilemma payoff matrix in which B is
“Cooperate” and T is “Defect”. The payoffs in the first case are

T B
T 1, 1 −L, 1 + G
B 1 + G,−L 0, 0
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and in the second state are
T B

T 0, 0 1 + G,−L
B −L, 1 + G 1, 1

As usual, we maintain the assumption that cooperation is efficient: L − G > −1.

Our purpose is to characterize the payoffs that can be achieved, with low discounting, by
a special class of sequential equilibria. In a belief-free equilibrium, each player’s continuation
strategy, after any history, is a best-reply to his opponent’s continuation strategy, independently
of his beliefs about the state of the world, and therefore, independently of his opponent’s private
information. Such equilibria are trivially sequential equilibria that satisfy any belief-based re-
quirement. At the same time, they do not require players to be Bayesian, or to share a common
prior. Because they are belief-free, they must in particular induce a subgame-perfect equilibrium
in every complete information game that is consistent with the player’s private information. For-
mally, s := (s1, s2) is a belief-free equilibrium if it is the case that, for all (j, k),

(
sj
1, s

k
2

)
is a

subgame-perfect Nash equilibrium of the infinitely repeated game with stage-game payoffs given

by
(
ujk

1 , ujk
2

)
.

As mentioned, belief-free equilibria have been previously introduced in and applied to games
with imperfect private monitoring. As discussed, with incomplete information, there is no need
for randomization on the equilibrium. Indeed, in our construction, along the equilibrium path,
players always have a strict preference to play some particular action. Of course, this action
potentially depends on a player’s private information (and on the history). In our construction,
randomization only appears during punishment phases, as is standard in folk theorems that do
allow for mixed strategies to determine minmax payoffs, as we do.

A belief-free equilibrium (s1, s2) determines, for each Player i, a J × K array of equilibrium
payoffs vjk

i . Consider i = 1. Conditional on the column k he is being told, Player 2 knows
that Player 1’s equilibrium payoff is one among the coordinates of the vector vk

1 =
(
v1k

1 , . . . , vJk
1

)
.

Because the equilibrium is belief-free, Player 1’s payoff must be individually rational in the special
case in which his beliefs are degenerate on the true column k. It is therefore necessary that for
each column k, Player 2 has one punishment strategy ŝk

2 which guarantees that, independently of
Player 1’s strategy, Player 1 gets no more than vjk

1 for all j. This ensures that no matter Player
1’s information and belief on the row j and the column k respectively, he prefers the equilibrium
payoff vjk

1 to the payoff received when Player 2 uses strategy ŝk
2. If J = 1, so that the game is

of one-sided incomplete information, this requirement on Player 1’s payoff is weak: for each k,
Player 1 must receive at least as much as his minmax payoff (in mixed strategies) in the true
game being played. In general however, this is a stringent restriction, as it implies that the set
of belief-free equilibria is empty for some games.
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Example 2: (Non-existence of belief free equilibria) Player 1 is informed of the true state
(= the row), Player 2 is not (J = 2, K = 1 ). The payoffs are either

L R
U 10,−4 1, 1
D 1, 1 0, 0

or
L R

U 0, 0 1, 1
D 1, 1 10,−4

For each state, Player 2 must be guaranteed to get at least 0 in a belief-free equilibrium: his
equilibrium strategy must be optimal given any beliefs he may have, including degenerate beliefs
on the true state. His payoff must therefore be at least as large as his minimax payoff given the
true state, which exceed 0 in both states. This implies that the action profile yielding −4 to
Player 2 cannot be played more than a fifth of the time in equilibrium. Equivalently, this means
that Player 1 equilibrium payoff is at most 14/5 in each state. However, if Player 1randomizes
between U and D independently of the state, he is guaranteed to get at least 3 in one of the
states, a contradiction. [This state will typically depend on Player 2 ’s strategy. However, no
strategy of Player 2 can bring down Player 1 ’s payoff below 3 in both states simultaneously.]

Computing these minmax levels is in general tedious. Note that these levels are vectors, not
scalars: punishing severely Player 1 in one row may require leaving him a high payoff in another
row. Therefore, different equilibrium payoffs may call for different “punishment” strategies.

For a given p ∈ �{1, . . . , J}(resp. q ∈ �{1, . . . , K}), let bk
1(p) (resp. bj

2(q)) be the value for
Player 1 (resp. Player 2) of the one shot game with payoff matrix p · uk

1 (resp. q · uj
2). We say

that a vector v1 ∈ R
J×K is individually rational for Player 1 if for any k it is the case that

p · vk
1 ≥ bk

1(p),∀p ∈ �{1, . . . , J} ,

where vk
1 :=

{
vjk

1

}
j∈J

. Similarly, v2 ∈ R
J×K is individually rational for Player 2 if for any j it is

the case that
q · vj

2 ≥ bj
2(q),∀q ∈ �{1, . . . , K}

where vj
2 :=

{
vjk

2

}
k∈K

. Approachability (Blackwell (1968)) can be used to show that, if v1 ∈
R

J×K is individually rational for Player 1, then for any column k, Player 2 has a punishment
strategy ŝk

2such that Player 1’s average payoff cannot be larger than vjk
1 for all j independently of

the strategy he uses. (Obviously, an analogous statement holds for Player 2). [Approachability
is usually defined for payoffs evaluated according to the limit of means rather than discounting,
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but the uniform versions of the results that we will use imply the respective counterparts for
discounting, provided the discount factor is close enough to one. See Cripps and Thomas (2003)
for details on the issue of discounting.]

Necessary condition 1 (Individual Rationality): If vi is a belief-free equilibrium payoff
array, then vi is individually rational.

We apply approachability to compute these minmax levels in our first example.

Example (Prisoner’s dilemma with one-sided incomplete information, continued)
It is shown in Appendix that, in the prisoner’s dilemma described above, (v1

1, v
2
1) is a minmax

vector for Player 1 if and only if:

v2
1 > max

{
1 + G

1 + L

(
1 − v1

1

)
, 1 − 1 + L

1 + G
v1

1

}
, v1

1 ≥ 0, v2
1 ≥ 0.

when G < L, and

v2
1 >

⎧⎪⎨
⎪⎩

max
{

1+G
1+L

(1 − v1
1) , 1 − 1+L

1+G
v1

1

}
, for v1

1 < 1+G
2+G+L

, or v1
1 > (1+G)(1+G+L)

2+G+L

v1
1 +

(G+L)(2+G+L)−2
√

(G+L)(2+G+L)
√

v1
1(G−L)+L(1+G)

G−L
otherwise

(1)

v1
1 > 0, v2

1 > 0.

when G > L. See Figure 1.
Note that in this example, individual rationality for Player 2 is straightforward. Because the

equilibrium is belief-free, Player 2’s payoff must be individually rational in the special case in
which his beliefs are degenerate on the true column j. In particular, for each row j, Player 1 has
one punishment strategy sj

1 which guarantees that, independently of Player 2’s strategy, Player
2’s payoff is at most 0. Therefore a payoff v2 = (v0

2, v
1
2) is individually rational for Player 2 only

if vj
2 > 0.
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Figure 1: Player 1’s individually rational payoffs
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In a belief-free equilibrium, play may depend on a player’s private information. That is,
Player 1’s equilibrium strategy sj

1 typically depends on the row j he is told, and Player 2’s
strategy sk

2 on the row k he is told. Since Player 1’s strategy sj
1 must be a best-reply to s2

independently of his beliefs, it must be a best-reply to sk
2, that is, when he assigns probability

one to the true column k. In particular, sj
1 must be a better-reply to sk

2 than sj′
1 , j′ �= j, when

the row is j. This is our second necessary condition. To state it in terms of payoffs, observe that
each pair

(
sj
1, s

k
2

)
induces a distribution {Pr {a | (j, k)} : a ∈ A}j,k over action profiles, where:

Pr {a | (j, k)} = (1 − δ)
∞∑

t=1

δt−1 Pr
{
at = a | (

sj
1, s

k
2

)}
,

and Pr
{
at = a | (

sj
1, s

k
2

)}
is the probability that action a is played in period t given the strategy

profile
(
sj
1, s

k
2

)
. Therefore:
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Necessary Condition 2 (Incentive Compatibility): If (v1, v2) is a pair of belief-free
equilibrium payoff arrays, there must exist {Pr {a | (j, k)} : a ∈ A}j,k such that, for all (j, k):

vjk
1 =

∑
a

Pr {a | (j, k)}ujk
1 (a) ≥

∑
a

Pr {a | (j′, k)}ujk
1 (a) , and

vjk
2 =

∑
a

Pr {a | (j, k)}ujk
2 (a) ≥

∑
a

Pr {a | (j, k′)}ujk
2 (a) .

If such distributions exist, we say that (v1, v2) is incentive compatible. Incentive compatible
payoffs always exist, since the constraints are always satisfied if Pr {a | (j, k)} is independent of
(j, k). However, not every pair of payoff arrays is incentive compatible.

Example: Prisoner’s Dilemma with one-sided incomplete information, continued)
The pair of payoff arrays {(v1

1, v
2
1) , (v1

2, v
2
2)} is incentive compatible if and only if there exists

(µ1
TT , µ1

TB, µ1
BT ) and (µ2

BB, µ2
BT , µ2

TB) such that µ1
TT ≥ 0, µ2

BB ≥ 0, µj
BT ≥ 0, µj

TB ≥ 0, j = 1, 2,
µ1

TT + µ1
TB + µ1

BT ≤ 1, µ2
BB + µ2

BT + µ2
TB ≤ 1, and:

v1
1 = µ1

TT − µ1
TBL + µ1

BT (1 + G) ≥ (
1 − µ2

BB − µ2
BT − µ2

TB

) − µ2
TBL + µ2

BT (1 + G) ,

v2
1 = µ2

BB − µ2
BT L + µ2

TB (1 + G) ≥ (
1 − µ1

TT − µ1
TB − µ1

BT

) − µ1
BT L + µ1

TB (1 + G) ,

v1
2 = µ1

TT + µ1
TB (1 + G) − µ1

BT L, v2
2 = µ2

BB + µ2
BT (1 + G) − µ2

TBL.

For each player, we may characterize the set of payoff arrays that are incentive compatible and,
in addition, satisfy individual rationality for the other player - a constraint that is necessary for
equilibrium. We only describe the resulting set V IC

i in some detail for Player 1, and display
the sets for both players in Figures 2 and 3. In either case, the problem is a standard (finite-
dimensional) optimization problem. Observe that, when G > L, this problem is not linear for
Player 2, as the set of Player 1’s individual rational payoffs is not a polytope.

Recall that, in the prisoner’s dilemma, a player cannot get more than 1 + G/ (1 + L) if
his opponent is guaranteed at least 0. Therefore, vj

1 ≤ 1 + G/ (1 + L) , j = 1, 2. The point
(1 + G/ (1 + L) , 1 + G/ (1 + L)) is obtained by setting µ1

TT = 1 − µ1
TB = µ2

BB = 1 − µ2
BT =

L/ (1 + L). The point (−L/ (1 + L) , 1 + G/ (1 + L)) is obtained by setting µ1
TT = µ1

BT = 0,
µ1

TB = µ2
TB = 1 − µ2

BB = 1/ (1 + L). Further extreme points depend on the value of L − G :
(i) if L − G ≥ 1, we get the point

(
3

2−G+L
− 1, 3

2−G+L
− 1

)
by picking:(

µ1
TT , µ1

TB, µ1
BT

)
=

(
µ2

BB, µ2
BT , µ2

TB

)
=(

1 − 3

2 − G + L
,
1

2

(
1 − L − (1 + G)

2 − G + L

2 + G + L

1 + G + L

)
,
1

2

(
1 − L − (1 + G)

2 − G + L

G + L

1 + G + L

))
;

(ii) if 1 > L − G ≥ 0, we get ((1 + G − L) /2, (1 + G − L) /2) by picking (µ1
TT , µ1

TB, µ1
BT ) =

(µ2
BB, µ2

BT , µ2
TB) = (0, 1/2, 1/2) ;
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(iii) if 0 > L − G ≥ −1, we get the point (0, 1) (and analogously the point (0, 1)) by picking
(µ1

TT , µ1
TB, µ1

BT ) = (0, 0, 0) and (µ2
BB, µ2

BT , µ2
TB) = (1, 0, 0).

The three cases are illustrated below, as are the two cases for Player 2.
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Figure 2: Incentive compatible payoffs for Player 1

(for some individually rational payoffs for Player 2)

L > G + 1 G + 1 ≥ L > G G ≥ L ≥ G − 1

� � �

� ��
� � �

� � �

� � �

�

�

�

�

v1
1 v1

1 v1
1

v2
1 v2

1 v2
1

1

3
2−G+L − 1

1+G−L
2

1
1+L − 1 1

1+L − 1 1
1+L − 1

1 + G
1+L 1 + G

1+L 1 + G
1+L

9



�

�

�

�

Figure 3: Set of Player 2’s payoffs

(for some individually rational and incentive compatible payoffs for Player 1)
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3 Theorem

Let V ∗ denote the feasible set of pairs of payoff arrays satisfying conditions 1 and 2. It is clear
that V ∗ is convex. We prove that:

Theorem Fix some v in the interior of V ∗. The pair of payoff arrays v is achieved in some
belief-free equilibrium if players are sufficiently patient.

This theorem establishes that the necessary conditions are ‘almost’ sufficient. It is then
natural to ask whether we can get an exact characterization. The strict inequalities corresponding
to individual rationality cannot be weakened, in general. One (but not the only) reason for this is
that our optimality criterion involves discounting, while Blackwell’s result is for the undiscounted
case. The strict inequalities corresponding to incentive compatibility may be weakened when V ∗
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has nonempty interior. It then suffices that, if v ∈ V ∗ and some incentive compatibility for Player
1, say, binds at v (and nothing else binds), we can find v′ ∈ V ∗ such that v′

1 = v1 but v′jk
2 �= vjk

2

for all (j, k). However, for the interesting case in which V ∗ has empty interior, this may not be
possible. Consider for instance the case of one-sided incomplete information; Player 1 knows the
row, but his payoff does not depend on the row, so that the incentive compatibility constraints
necessarily bind. A difficulty is then to induce Player 1 to play the minmaxing strategy after a
deviation by Player 2 that is appropriate given the true row. Because there is no possibility to
provide strict incentives for ‘truthtelling’ after the punishment phase, it is then necessary that
the punishment strategy itself be incentive compatible, which reduces the scope for punishment,
and changes the relevant individual rationality constraints.

Figure 4 and 5 display the resulting equilibrium payoffs in the prisoner’s dilemma. Observe
however, that these are the projections of belief-free equilibrium payoff pairs onto each player’s
payoff space. It is not true that any pair of vectors selected from these projections is a pair of
belief-free equilibrium payoff vectors: incentive compatibility imposes some restrictions on the
possible pairs.
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Figure 4: Belief-free equilibrium payoffs for Player 1 as δ → 1

L ≥ G G > L ≥ G − 1

v1
1

v2
1

V ∗
1

v1
1

v2
1

V ∗
1

0

1

1
−L

−L

0

1

1−L

−L

1 + G

1 + G

1 + G
1+L

1 + G
1+L

1 + G

1 + G

1 + G
1+L

1 + G
1+L

..............................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


.......................................................................................................................................................................................................................................................................................................................................................................

...............
...............

...............
...

...............
..............

.
...............

..

............... ............... ............... ............... ............... ............... ............... ............... ............... ............... ............... ............... ............... ............... ...............

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.........
......

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

.............
..

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

The proof of the theorem is constructive. As a first attempt, one may want to try to construct
an equilibrium as follows: initially, players signal (through their choices of actions) what their
private information is, and then play according to the probability distribution over action profiles
corresponding to their messages; further, any deviation from this play is punished by minmaxing
(in the sense of Blackwell). Indeed, this is essentially the construction of Koren (1988). The
problem is that it is not belief-free: if a player is convinced that his opponent’s type is not the
one that he has signalled, the corresponding play need no longer be individually rational.

The actual construction is therefore more involved, to guarantee that beliefs are irrelevant,
after every possible history. In the simple proof presented below, we assume that there is a
public randomization device and that players can communicate at no cost in every period. Both
assumptions can be dropped, as proved in Appendix.

At the end of every period each player announces his private information. Then players play a
correlated action profile that only depends on the last announcement made by the players. These
correlated action profiles are such that Player i obtains an expected payoff of vjk

i whenever the
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true state is jk and players announce jk, and that this payoff is higher than what each player
can secure by an unilateral deviation in the message he sends, independently of the beliefs he
holds, which is possible by condition (2), since v ∈ V ∗. This ensures that each player is willing to
signal his information truthfully, regardless of his beliefs. In case a player chooses an action that
is not consistent with the correlated strategy corresponding to the last announcement, he is then
punished during T periods (T long but finite, with δT 	 1). As v ∈ V ∗, and in particular because
of condition 1, each player has a punishment strategy that forces the other player’s payoff strictly
below its equilibrium level in each state of the nature, provided it is used sufficiently long. Of
course, we also need to make sure that play during such a punishment phase is also belief-free,
and this introduces additional complications.

By repeating announcements in every period, we avoid the problem in the first paragraph, in
case the belief of a player about his opponent’s private information does not coincide with the
signal the opponent has just sent. Since equilibrium strategies specify that players communicate
truthfully their information at the end of each period, the player’s expected payoff is hardly
affected by such a situation (when δ is sufficiently close to one), since he expects his opponent
to revert to what he believes is the true signal within one period.

It is simplest to start proving the proposition under the assumption that players can commu-
nicate at no cost, and that they have access to a public randomization device: at the beginning
of each period, the outcome of a random variable, independent across time and of the state of the
world, is publicly observed. For concreteness, assume that it is uniformly distributed on [0, 1].
The proof for the general case is in Appendix.

So, assume for now that, at the end of each period (including at the end of period “0”, that
is, at the beginning of the game), players simultaneously make an announcement that is publicly
observable. The set of messages is the set of rows and columns, respectively. That is, Player 1
announces j′ = 1, . . . , J , while Player 2 announces k′ = 1, . . . , K.

We first describe the equilibrium strategies, and then check that the strategies yield the
desired payoff arrays, are belief-free, and that no deviation is profitable.
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Figure 5: Belief-free equilibrium payoffs for Player 2 as δ → 1
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Equilibrium Strategies:

The play can be divided in phases, which are similar to, but not to be confused with states
of an automaton.

Phases : There are two kinds of phases: regular phases last only one period, while punishment
phases last at most T periods, where T is to be specified. Regular phases are denoted Rjk (ε1, ε2)
where ε1, ε2 ∈ R, j = 1, . . . , J, k = 1, . . . , K. Punishment phases are denoted P k

1 , P j
2 .

Actions :

(i) Regular Phase: In each regular phase Rjk (ε1, ε2), actions are determined by the out-
come of the public randomization device. Each action profile a is selected with probability
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Pr
{
a | Rjk (ε1, ε2)

}
. Let:

vjk
i

(
Rj′k′

(ε1, ε2)
)

:=
∑
a∈A

Pr
{

a | Rj′k′
(ε1, ε2)

}
ujk

i (a) ,

and let vi (R (ε1, ε2)) =
{

vjk
i

(
Rjk (ε1, ε2)

)}
j,k

denote the corresponding J × K array. These

probabilities (and a real number ε̄ > 0) are chosen such that:

vi (R (ε1, ε2)) = vi + εi, (2)

and:
vjk

1

(
Rjk (ε1, ε2)

)
> vjk

1

(
Rj′k (ε′1, ε

′
2)

)
, vjk

2

(
Rjk (ε1, ε2)

)
> vjk

2

(
Rjk′

(ε′1, ε
′
2)

)
, (3)

for all i = 1, 2, εi, ε
′
i ∈ [−ε̄, ε̄], j = 1, . . . , J, k = 1, . . . , K, j′ �= j, k′ �= k. This is possible since v

is in the interior of V ∗.
At the end of the regular phase, messages are reported truthfully independently of the specific

regular phase, of the outcome of the public randomization device and of the realized action profile.
(ii) Punishment phase: The punishment phase lasts at most T periods.1 Without loss of

generality, we describe here the actions/messages in phase P k
1 . The (behavior) strategy ŝk

2 of
Player 2 during the punishment phase P k

1 is such that the average discounted payoff of Player
1 in the T periods of the phase conditional on state (j, k) is not larger than vjk

1 − 2ε̄, which is
possible since v is in the interior of V ∗.

We now define T , δ̄ < 1, if necessary decrease ε̄ > 0 (introduced above), and specify strategies
in the punishment phase so as to satisfy the following inequalities, for all j, k, and i = 1, 2:

− (1 − δ) M + δ
(
vjk

1 − ε̄
)

> (1 − δ) M + δ
((

1 − δT
) (

vjk
1 − 2ε̄

)
+ δT

(
vjk

1 − ε̄
))

, (4)

(along with the corresponding inequality for Player 2 in phase P j
2 )

− (
1 − δT

)
M + δT vjk

i >
(
1 − δT

)
M + δT

(
vjk

i − 2ε̄/3
)

. (5)

To see that such T , δ̄, ε̄ and strategies exist, observe that for a fixed but small enough ε̄ > 0, (4)
can be satisfied for all T large enough and δ > δ̄ for δ̄ close enough to one. Increasing the value
of δ̄ if necessary, (5) can be satisfied as well.

Returning to the specification of actions and message, as long as the punishment phase P k
1

lasts (i.e. for at most T periods), Player 2 plays according to ŝk
2 (given k and the history starting

in the initial period of P k
1 ). Observe that ŝk

2 need not be pure. Player 1 plays a best-reply sj,k
1 to

1If we described the equilibrium strategies by a formal automaton, we would introduce as many states of the
automaton as possible histories within each punishment phase. We feel that this would needlessly clutter the
exposition.
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ŝk
2, conditional on the true column being k. Without loss of generality, we pick sjk

1 to be pure.
Observe that sjk

1 may depend on j.
Players report truthfully states in all periods of the punishment phase.

Initial phase: As mentioned, players send messages before the beginning of the game. These
initial announcements are made truthfully. The initial phase is Rjk (0, 0), where j, k are the
messages sent.

Transitions :

(i) From a regular phase Rjk (ε1, ε2): if the action of Player 1 (respectively, Player 2) is
different from the action determined by the outcome of the randomization device and the action
of Player 2 (resp. 1) is equal to the action determined by the outcome of the randomization

device, then the next state is P k′
1 (resp. P j′

2 ), where k′ (resp. j′) is the message sent at the end of
the period by the corresponding player. [Observe that the message of the deviator plays no role
here.] Otherwise, (i) if (j′, k′) = (j, k) or both j �= j′and k �= k′, the next state is Rj′k′

(ε1, ε2),
where (j′, k′) is the pair of messages in the period, (ii) if j �= j′and k = k′ (resp. j = j′and
k �= k′), the next state is Rj′k′

(−ε̄, ε2) (resp. Rj′k′
(ε1,−ε̄)).

(ii) From a punishment phase: without loss of generality, consider P k
1 . All statements to

histories here refer to the partial history that starts with the beginning of the punishment phase.
Given ŝk

2, define Hk ⊆ HT as the set of histories of length at most T for which there exists an
(arbitrary) strategy s1 of Player 1 such that this history is on the equilibrium path for s1 and
ŝk
2, as far as actions are concerned. That is, a history is not in Hk if at some point during the

punishment phase the action of Player 2 is inconsistent with ŝk
2.

As soon as the history h ∈ HT is not in Hk, the punishment phase stops and the next state is
P j′

2 , where j′ is Player 1’s announcement in the last period of the punishment phase. If h ∈ Hk,
the punishment phase continues up to the T -th period, and we let henceforth h denote such a
history of length T . Let (j′, k′) denote the pair of messages in the last period of the punishment
phase.

The next state is then Rj′k′ (
ε1

(
h; P k

1

)
, ε2

(
h; P k

1

))
, with ε1

(
h; P k

1

) ∈ [−ε̄, 0], ε1

(
h; P k

1

)
= −ε̄

if k′ = k, and (6): ε1

(
h; P k

1

)
is such that, if k′ �= k, Player 1 is indifferent between sj′k

1 and
playing a best-reply to ŝk

2 assuming that the state of the world is (j′, k′) along every history
h ∈ Hk within the punishment phase (recall that h specifies (j′, k′)).2 Inequality (4) guarantees
that the variation of ε1

(
h; P k

1

)
across histories h that is required is less than 2ε̄/3, so that this

can be done with ε1

(
h; P k

1

)
in [−ε̄, 0] for all histories h. As for ε2

(
h; P k

1

)
, it is in [ε̄/3, ε̄] if k′ = k,

and it is in [−ε̄,−ε̄/3] otherwise; further, (7): ε2

(·; P k
1

)
is such that, conditional on state (j′, k′)

and after every history h′ ∈ Hk within the punishment phase, Player 2 is indifferent over all pure
continuation strategies (within the punishment phase) consistent with Hk, and prefer those to
all others; given (4), this is possible whether k′ = k or not.

2See Hörner and Olszewski for the details of such a specification.
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It is clear that the strategy profile yields the pair of payoff arrays v=(v1, v2). It is equally
clear that play is specified in a way that is independent of beliefs.

Verification that the described strategy profile is a Perfect Bayesian Equilibrium3

Regular phase Rjk (ε1, ε2): (i) actions: suppose that one player, say Player 1, unilaterally de-
viates from the action profile determined by the public randomization device, for some realization
of this device. Then the punishment phase P k′

1 starts, where k′ is the announcement by Player
2. Accordingly, the payoff from deviating is at most equal to the right-hand side of (4), while
the payoff from playing according to the strategy profile is at least the left-hand side of (4). The
result follows. (ii) messages: (a) assume first that Player 1 has deviated from the recommended
action profile, while Player 2 has not. Because Player 2 will correctly report the column k at the

end of the punishment phase P k′
1 that starts, he will get at most

(
1 − δT

)
M + δT

(
vjk

i − ε̄/3
)

by

announcing k′ �= k, while he gets at least − (
1 − δT

)
M + δT

(
vjk

i + ε̄/3
)

if he announces k′ = k,

so that Player 2 has a strict incentive to report truthfully given (5). Given that Player 1 has
deviated, Player 1’s message plays no role in future play, and so it is also optimal for Player 1
to report truthfully; (b) otherwise, if Player i (say Player 2) reports the true state he gets at

least vjk
i − ε̄, while if he misreports, he gets at most (1 − δ) maxk′ vjk

i

(
Rjk′

(ε1, ε̄)
)
+ δ

(
vjk

i − ε̄
)
.

Therefore, (3) guarantees that neither player has an incentive to deviate.
Punishment phase: without loss of generality, consider P k

1 . (i) messages: Observe first that all
the messages in the punishment phase are irrelevant, except in the last period of this punishment
phase, whether this occurs after T periods or before. If such a history belongs to Hk, then
truthful announcements are optimal because of (3), as in case (ii-b) above; if such a history does
not belong to Hk, then truthful announcements are also optimal as the situation is identical
to the one described just above (case (ii-a)). (ii) actions: the inequality corresponding to (4)
for Player 2 guarantees that he has no incentive to take an action outside of the support of
the (possibly mixed) action specified by ŝk

2 after every history h ∈ Hk; within this support, (7)
guarantees that he is indifferent over all the actions (whether k is the true column or not); as for
Player 1, by definition his strategy is optimal in case k is the true column, and (6) guarantees
that it remains optimal to play according to sjk

1 in state of the world (j, k′), for all j, k′.

4 An example from Ely and Välimäki (2004)

Consider the example of Ely and Välimäki (2004) with two-long run players. Player 1 is informed
or the row, his type G or B, at the beginning of the game. In every period, there are two possible
states of the world, not to be confused with the row: these states, θe and θt are realizations of
random variables drawn independently and identically over time. In every period, both states are

3Given that the public randomization device is not finitely-valued, sequential equilibrium is not well-defined.
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equally likely. The realizations are observed by Player 1, but not by Player 2. Player 1 has two
actions, e and t, which stand for engine replacement and tune-up, respectively. In every period,
Player 2 can choose to stay out, in which case both players get a payoff of zero, independently
of the state and row, or trade, in which case the payoff depends both on the action of Player 1
and the state of the world, according to the following matrices, for some w > u > 0:

Type G:
θe θt

e (u, u) (−w,−w)
t (−w,−w) (u, u)

Type B:
θe θt

e (u, u) (u,−w)
t (−w,−w) (−w, u)

That is, Player 1’s type G and Player 2 have the same preferences: matching action and state,
while Player 2’s type B prefers one action to the other independently of the state.

We can easily adapt our proof to encompass such a set-up. We restrict attention to the case
in which trade takes place in virtually all periods. Our purpose is to study which payoffs are
belief-free equilibria with respect to the type of Player 1. We have in mind a situation in which
there is sufficient statistical evidence for Player 2 to treat the law of the i.i.d. state as objective
uncertainty. In other applications, it may make more sense to require that the equilibrium be
belief-free with respect to the evolving state (or both). In this application, there is no belief-
free equilibrium payoff if we insist that the restriction be relative to both kinds of uncertainties
simultaneously, as long as w > u.

We define two probabilities πB and πG, that correspond (approximately) to the fraction of
time Player 1’s bad type and good type perform engine replacements (Player 2 trades almost
always, as we will argue). Incentive compatibility requires that:

V G
1 := u −

∣∣∣∣πG − 1

2

∣∣∣∣ (u + w) > u −
∣∣∣∣πB − 1

2

∣∣∣∣ (u + w) (Player 1’s type G)

V B
1 := πB (u + w) − w > πG (u + w) − w (Player 1’s type B).

Assuming that Player 1’s bad type matches action and state whenever possible given πB (as does
the good type), individual rationality further requires:

u −
∣∣∣∣πB − 1

2

∣∣∣∣ (u + w) > 0 and πB (u + w) − w > 0.

The first inequality guarantees that it is individually rational for Player 2 to trade with a Player
1’s bad type, and implies (given incentive compatibility) that it is also individually rational for
him to do so with a good type (and that it is also individually rational for Player 1’s good type to
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follow his equilibrium strategy). The second inequality guarantees that it is individually rational
for Player 1’s bad type to follow his equilibrium strategy. These inequalities reduce to:

1

2
− u

u + w
< πG, πB <

1

2
+

u

u + w
, and πB > max

{
πG, 1 − πG

}
.

The corresponding set Π∗of probabilities
{
πG, πB

}
is non-empty if and only if 3u > w, which

we assume from now on (observe that in this example, non-existence in the case 3u > w is not
driven by individual rationality or incentive compatibility per se, but by their conjunction). It is
then immediate to characterize the belief-free equilibrium payoffs. The probabilities and payoffs
are represented in the Figure below.
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The reader can probably guess how a full construction in this example (which does not fit
the assumptions of the theorem, because of the changing state) would go, along the lines of
the construction underpinning the proof (we omit the details): the play is divided in phases of
length T , at the beginning of which Player 1 signals his type, and in which he is then supposed to
replace engine a number of times equal (to the nearest integer close) to πBT , or πGT , depending
on the signal he sent. If he does so in a way that matches the state of the world as often as
possible given this constraint, then indeed the fraction of mismatches within such a phase will
tend to

∣∣πB − 1/2
∣∣ or

∣∣πG − 1/2
∣∣ as T → ∞. In order to guarantee that Player 1’s bad type is

indeed willing to match the state of the world rather than replace engines as soon and as often
as he is allowed within a phase, it is necessary that he be punished at the end of the phase
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by an amount proportional to the timing of the observed replacement: as δ → 1, the maximal
necessary punishment tends to zero. To enforce the punishment, players can agree, using a public
randomization device, on a period in which no trade takes place, at the end of the phase, in a
way that gives exactly the right punishment (the device can be dispensed with). It is also clear
how each player can secure zero and drive down his opponent’s payoff to zero, so there is no need
to elaborate on the way punishments for observable deviations are enforced.

5 Conclusion

We have studied belief-free equilibria in two-player repeated games with two-sided incomplete
information under discounting. In a belief-free equilibrium, players’ strategies are best-replies
after every history regardless of a player’s belief about his opponent’s type. Hence, these equi-
libria are robust to all specifications of prior beliefs and updating rules. We show that, when
players are sufficiently patient, any payoff that is (strictly) incentive compatible and individually
rational can by achieved with a belief free equilibrium. Conversely, the payoff in a belief free
equilibrium must be incentive compatible and individually rational. One question that remains
open is a precise characterization of those games for which belief-free equilibria do not exist. We
provide examples to show how to actually determine these payoff sets, and describe an extension
to a game with i.i.d. shocks.
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Appendix: Proof of the main theorem

We first explain the construction without explicit communication, but with a randomization
device. Naturally, communication is replaced by choices of actions, but since the set of actions
may be more limited than the set of states (j, k), it is typically necessary to use several periods to
‘communicate’ a state. We let c− 1 denote the smallest such number given the number of states
and actions (c − 1 ≤ ln2 (max {J, K}) + 1). Players will regularly communicate their private
information in rounds of c periods. In the last of these c periods, players have the opportunity,
through the choice of a specific action, to communicate that the report they have just sent is
incorrect.

Equilibrium Strategies:

The play can again by divided in phases. To guarantee that players’ best-replies are in-
dependent of their beliefs, even within a round of communication (especially if a player’s own
deviation during that round already prevents him from truthfully reporting his information), the
construction must be considerably refined. For each player, we pick two specific actions from Ai,
henceforth referred to as B and U . The pair of payoff arrays v ∈ V ∗ is fixed throughout.

There are two kinds of phases: regular phases last at most n periods, and punishments
phases, that last at most T periods, where n, T are to be specified. Regular phases are denoted
Rjk (ε1, ε2), where j ∈ {1, . . . , J}, k ∈ {1, . . . , K}, or Rxy, where x ∈ {

1, . . . , J,
(
L, nU

1

)}
and

x ∈ {
1, . . . , K,

(
L, nU

2

)}
, with nU

i ∈ {1, . . . , c}, and either x =
(
L, nU

1

)
, or y =

(
L, nU

2

)
, or both

(L stands for “Lie”). Punishment phases are denoted Pi, i = 1, 2. We let ŝk
2 (resp. ŝj

1) denote
a (behavior) strategy of Player 2 (resp. 1) such that Player 1’s (resp. Player 2’s) payoff be less
than vjk

1 − 3ε̄ for all j and all strategies of Player 1 (resp. vjk
2 − 3ε̄ for all k and all strategies of

Player 2), for ε̄ small enough to be specified. Such strategies exists since v ∈ V ∗. Further, we let
sjk
1 (resp. sjk

2 ) denote a fixed, pure-strategy best-reply to ŝk
2 (resp. ŝj

1) given row j (resp. column
k).

In several places of the construction, a communication round of c periods takes place (within
a phase). The integer c is chosen to be the smallest integer such that both |A1|c−1 ≥ J > |A1|c−2

and |A2|c−1 ≥ K > |A2|c−2. We fix a mapping from states J to |J | sequences {at
1}c−1

t=1 of length

c − 1 (at
1 ∈ A1) and similarly a mapping from states K to |K| sequences {at

2}c−1
t=1 of length c − 1

(at
2 ∈ A2). If the play of Player 1 during the first c − 1 periods equals such a sequence, and his

action in period c equals B, we say that Player 1 (or his play) communicates the corresponding
row j. Similarly, if the play of Player 2 during the first c− 1 periods equals such a sequence, and
his action in period c equals B, we say that Player 2 (or his play) communicates the corresponding
column k. Otherwise, we say that Player i (or his play) communicates

(
L, nU

i

)
, where U is the

number of periods during these c periods in which Player i chose action U . We shall provide
incentives for Player i to rather report the true row or column, rather than communicate

(
L, nU

i

)
for any nU

i , and prefer communicating any such
(
L, nU

i

)
rather than the incorrect row or column.
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Further, we provide incentives for Player i to maximize the number nU
i once his play does not

coincide with any of the aforementioned particular sequences that communicate rows or columns
(to avoid having his beliefs enter his choice of action after such out-of-equilibrium histories).

Actions :

(i) Regular phase: A regular phase lasts at most n > c periods, the last c of which is a
communication round. During the first n − c periods, play proceed as follows, for all regular
phases indexed by j, k and true column k′:

Phase: Player 1 Player 2

Rj(L,nU
2 ) sj

1 sjk′
2

Rjk (ε1, ε2) ajk
1 (ε1, ε2) ajk

2 (ε1, ε2)

R(L,nU
1 )(L,nU

2 ) (U, . . . , U) (U, . . . , U)

The specification for R(L,nU
1 )k is the obvious analogue to the case Rj(L,nU

2 ). The action
ajk (ε1, ε2) is to be specified. Observe that the expression sjk′

2 refers to the regular phase through
j, which need not be the true row, while k′ refers to the true column. This specification of

actions is valid as long as (in case of Rjk (ε1, ε2) or R(L,nU
1 )(L,nU

2 )) the history within the phase is
consistent with these actions, or if all deviations from the specified actions during this phase were

simultaneous, and as long as (in case of Rj(L,nU
2 )) the history within the phase is consistent with

sj
1for some arbitrary s2: as will be specified, a punishment phase is immediately entered otherwise.

During the periods n − c, . . . , n − 1 of this phase, Player 1 (resp. Player 2) communicates the
true row j (resp. true column k); if his play since period n− c makes this impossible, he chooses
U in every remaining period.

(ii) Punishment phase: Without loss of generality, consider P1, where T > 2c is to be specified.
In the first c periods of this phase, Player 1 plays U repeatedly while Player 2 communicates
the true column. As in the regular phase, if Player 2’s previous action makes this impossible, he
chooses U in every remaining period of this communication round. In the table below, we refer
to the case in which the column communicated is k as the case k, while

(
L,

(
nU

1 , nU
2

))
refers to

any other case, where nU
i is the number of times Player i chose action U in periods 1, . . . , c. Play

in periods c + 1, . . . , T − c is then as follows:

Phase P T
1 Player 1 Player 2

k sj′k
1 ŝk

2(
L,

(
nU

1 , nU
2

))
U U

This specification is valid (up to period T − c) as long as (in case
(
L,

(
nU

1 , nU
2

))
) both players

have played U in all periods since period c + 1 or all deviations have been simultaneous, or (in
case k) as long as the history since period c + 1 is consistent with ŝk

2 for some strategy s1, for
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otherwise a punishment phase is immediately entered. Here, j′ refers to the true row privately
known to Player 1.

In the last c periods of a punishment phase, a communication round takes place, i.e. players
communicate the true row and column, and as soon as they fail to do so, play U repeatedly.

Initial Phase: In the first c periods of the game, a communication round takes place, i.e.
players communicate the true row and column, and as soon as they fail to do so, play U repeatedly.
In period c+1, the regular phase Rjk (ε1, ε2) is entered if row j and column k are communicated,
where εi ∈ [−ε̄, ε̄] is chosen so that the ex ante payoff in period 1 is exactly vjk conditional on j and
k being the true row and column. If Player 1 communicates j and Player 2 communicates

(
L, nU

2

)
in the first c periods, the regular phase Rj(L,nU

2 ) is entered. Similarly, if Player 1 communicates(
L, nU

1

)
, whereas Player 2 communicates k, regular phase R(L,nU

2 )k is entered. Regular phase

R(L,nU
1 ),(L,nU

2 ) is entered in the remaining case.

Transitions:

From a regular phase: We have already mentioned what happens if there is a deviation
during the first n− c periods of such a phase: if a player makes a unilateral deviation during the

first n − c periods of a regular phase Rjk (ε1, ε2) or R(L,nU
1 )(L,nU

2 ), a punishment phase starts: if
Player 1 (Player 2) unilaterally deviates, punishment phase P1 (resp. P2) is immediately entered.
Similarly, if Player 1 (resp. Player 2) deviates from sj

1 (resp. sk
2) during the first n − c periods

of a regular phase Rj(L,nU
2 ) (resp. R(L,nU

2 )k), the punishment phase P1 (resp. P2) is immediately
entered. From now on, we assume without repeating it that no such deviation occurs.

(i) from Rjk (ε1, ε2) : the new phase depends on the last c periods of the phase. Define also
ρ := 2 (1 − δ) δ−T M . The quantity ε̃jk

i will be defined shortly. In all tables that follow, j′ �= j,
k′ �= k. We have:

Regular Phase:
During periods n − c,. . . , n of the phase,

Player 1 and 2 communicate:
Next Regular Phase:

Rjk (ε1, ε2)
(
L, nU

1

)
,
(
L, nU

2

)
R(L,nU

1 )(L,nU
2 )

Rjk (ε1, ε2)
(
L, nU

2

)
,k R(L,nU

2 )k

Rjk (ε1, ε2)
(
L, nU

2

)
,k′ R(L,nU

2 )k′

Rjk (ε1, ε2) j, k′ Rjk′
(ε1,−ε̄)

Rjk (ε1, ε2) j′, k′ Rj′k′
(ε1, ε2)

Rjk (ε1, ε2) j, k Rjk (ε1, ε2)
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(ii) from R(L,nU
1 )k:

Regular Phase:
During periods n − c,. . . , n of the phase,

Player 1 and 2 communicate:
Next Regular Phase:

R(L,nU
1 )k

(
L, n′U

1

)
,
(
L, n′U

2

)
R(L,n′U

1 )(L,n′U
2 )

R(L,nU
1 )k

(
L, n′U

1

)
,k R(L,n′U

1 )k

R(L,nU
1 )k

(
L, nU

1

)
,k′ R(L,n′U

1 )k′

R(L,nU
1 )k j,

(
L, n′U

2

)
Rj(L,n′U

2 )

R(L,nU
1 )k j, k Rjk

(
ε̃jk
1 + ρnU

1 , ε̄
)

R(L,nU
1 )k j, k′ Rjk′

(
ε̃jk′
1 + ρnU

1 ,−ε̄
)

and symmetrically from Rj(L,nU
2 );

(iii) finally, from R(L,nU
1 )(L,nU

2 ):

Regular Phase:
During periods n − c,. . . , n of the phase,

Player 1 and 2 communicate:
Next Regular Phase:

R(L,nU
1 )(L,nU

2 ) (
L, n′U

1

)
,
(
L, n′U

2

)
R(L,n′U

1 )(L,n′U
2 )

R(L,nU
1 )(L,nU

2 ) (
L, n′U

1

)
,k R(L,n′U

1 )k

R(L,nU
1 )(L,nU

2 ) j, k Rjk
(
ρnU

1 , ρnU
2

)
From a punishment phase: Without loss of generality, consider P1. We have already men-

tioned what happens if there is a deviation during the periods c+1, . . . , T −c of such a phase. In
case

(
L,

(
nU

1 , nU
2

))
, if Player i unilaterally deviates from the play of U , the punishment phase Pi

is immediately entered. In case k, if Player 2 deviates from the support of the (possibly mixed)
action specified by ŝk

2, punishment phase P2 is entered (no matter how Player 1 has played).
From now on, we assume without repeating it that no such deviation occurs. In case k, let h
denote the history during the periods c + 1, . . . , T − c.

(i) In case k:

Punishment Phase P1:
During periods T − c,. . . , T of the phase,

Player 1 and 2 communicate:
Next Regular Phase:

case k
(
L, n′U

1

)
,
(
L, n′U

2

)
R(L,n′U

1 )(L,n′U
2 )

case k
(
L, n′U

1

)
,k R(L,n′U

1 )k

case k
(
L, n′U

1

)
,k′ R(L,n′U

1 )k′

case k j, k Rjk
(
ρnU

1 − ε̄, εk;k
2 (h)

)
case k j, k′ Rjk′

(
εk;k′
1 (h) , εk;k′

2 (h)
)

case k j,
(
L, n′U

2

)
Rj(L,n′U

2 )
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where εk;k
2 (h) ∈ [3ε̄/4, ε̄], εk;k′

2 (h) ∈ [−ε̄/2,−ε̄/4], and εk;k′
1 (h) ∈ [−ε̄, ε̄] are computed as follows:

εk;k
2 (·) makes Player 2 precisely indifferent over all histories h that are consistent with ŝk

2, condi-

tional on the true column being k; εk;k′
2 (·) makes Player 2 precisely indifferent over all histories h

that are consistent with ŝk
2, conditional on the true column being k′; finally, εk;k′

1 (h) compensates
Player 1 for every period along h in which the action he took is the action specified by sjk

1 , so
as to make sure that playing this action is optimal, conditional on the true state being (j, k′)
(communicated in the last c periods).

(ii) In case
(
L,

(
nU

1 , nU
2

))
:

Punishment Phase P1:
During periods T − c,. . . , T of the phase,

Player 1 and 2 communicate:
Next Regular Phase:

case
(
L,

(
nU

1 , nU
2

)) (
L, n′U

1

)
,
(
L, n′U

2

)
R(L,n′U

1 )(L,n′U
2 )

case
(
L,

(
nU

1 , nU
2

)) (
L, n′U

1

)
,k R(L,n′U

1 )k

case
(
L,

(
nU

1 , nU
2

))
j,

(
L, n′U

2

)
Rj(L,n′U

2 )

case
(
L,

(
nU

1 , nU
2

))
j, k Rjk

(
ρnU

1 , ρnU
2

)
It is clear from this specification that the strategy profile described here is belief-free, since

actions are always determined by the history and possibly by a player’s own private information
(in case he is minmaxed), but not on his beliefs about his opponent’s information.

Specification of ε̄, ajk
1 (ε1, ε2), δ, T , n, ε̃jk

i :

Since v ∈ V ∗, it is possible to find ε̄ > 0, for all (ε1, ε2) , (ε′1, ε
′
2) ∈ [−2ε̄, 2ε̄], there exists

probability distributions over A, Pr
{· | Rjk (ε1, ε2)

}
such that for all j, k, j′, k′, and i = 1, 2,

defining:

vjk
i

(
Rj′,k′

(ε1, ε2)
)

:=
∑
a∈A

Pr
{

a | Rj′k′
(ε1, ε2)

}
ujk

i (a) ,

it is the case that, for j′ �= j, k′ �= k,

vjk
1

(
Rj,k (ε1, ε2)

)
> vjk

1

(
Rj′k (ε′1, ε

′
2)

)
and vjk

2

(
Rj,k (ε1, ε2)

)
> vjk

2

(
Rjk′

(ε′1, ε
′
2)

)
; (1A)

further, if {at
1}c

t=1, {at
2}c

t=1 is the sequence that communicates j and k, for all δ close enough to one
and n large enough, we can pick those distributions so that Player i’s average discounted payoff
under state (j, k) from the sequence {at

1, a
t
2}c

t=1 followed by n repetitions of the action profile

determined by Pr
{
a | Rjk (ε1, ε2)

}
is exactly equal to vjk

i + εi. Observe that in the equilibrium
described above, all values of εi are in [−ε̄, ε̄]. Further, since v ∈ V ∗, we may assume that Player
1’s (resp. Player 2’s) average discounted payoff under state (j, k) given that Player 2 uses ŝk

2

(resp. ŝj
1) [that is, given that his opponent minmaxes him in the sense of Blackwell] for n − 2c

periods, followed by any arbitrary play during c periods, is at most vjk
1 − 2ε̄ (resp. vjk

2 − 2ε̄).
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Consider the following inequalities:

vjk
1 + ε1 > (1 − δc) M + δc (1 − δn) (v − 2ε̄) + δn+c

(
vjk

1 + ε̃jk
1 + cρ

)
, (2A)

vjk
1 + ε1 < − (

1 − δn+c
)
M + δn+c

(
vjk

1 + ε̃jk
1

)
, (3A)

vjk
1 − ε̄ > (1 − δc) M + δc

(
1 − δn−c

) (
vjk

1 − 2ε̄
)

+ δn
(
vjk

1 − ε̄
)

. (4A)

Given ε̄, fixing δn, inequality (4A) is satisfied as δ → 1, provided that the value of δn is large
enough. Similarly, given ε̄, fixing δn, inequality (2A) is satisfied as δ → 1 for ε̃jk

1 = −ε̄ , and
(3A) is satisfied for ε̃jk

1 = 3ε̄/4, provided that the value of δn is large enough and ε1 < ε̄/2
(recall that ρ = 2 (1 − δ) δ−T M → 0 for fixed δ−T ). Observe that the left-hand side of (4A)
is the lowest possible payoff for Player 1, evaluated in the first period of a communication
round concluding either a punishment phase or a regular phase, if he communicates his true
row j and Player 2 communicates his true column k, while the right-hand side is the most he
can expect by communicating another row j′ �= j and Player 2 communicates his true column
k. Similarly, the left-hand side of (2A) and (3A) is Player 1’s payoff, evaluated in the first
period of a communication round concluding either a punishment phase or a regular phase,
if he communicates his true row j and Player 2 communicates his true column k (and the
upcoming regular phase is Rjk (ε1, ε2)), while the right-hand side of (2A) (resp. 3A) is the
highest (resp. lowest) payoff he can expect if he communicates

(
L, nU

1

)
for some nU

1 . Therefore,

if ε1 < ε̄/2, by the intermediate value theorem, we can find ε̃jk
1 ∈ (−ε̄, 3ε̄/4) so that the payoff

from communicating the true row exceeds the payoff from communicating
(
L, nU

1

)
for all nU

1 ,
which in turn exceeds the payoff from communicating another row j′ �= j, provided Player 2
communicates the true column. If ε1 ≥ ε̄/2, we can set ε̃jk

1 = 0: in that case as well, the same
ordering obtains provided that the value of δn is large enough as δ → 1. The values ε̃jk

2 are
defined similarly.

Consider now the two inequalities:

− (1 − δn) M + δn
(
vjk

1 + ε̄
)

> (1 − δn) M + δn
(
vjk

1 + ρc
)

, (5A)

− (1 − δn) M + δnvjk
1 > (1 − δn) M + δn

(
vjk

1 − ε̄
)

(6A)

Conditional on Player 2 communicating
(
L, nU

2

)
for some nU

2 : the left-hand side of (5A) is
the lowest possible payoff for Player 1, evaluated in the first period of a communication round
concluding either a punishment phase or a regular phase, if he communicates his true row j,
while the right-hand side is the highest payoff he can get if he communicates

(
L, nU

1

)
for some

nU
1 ; similarly, the left-hand side of (6A) is the lowest possible payoff for Player 1, evaluated in

the first period of a communication round concluding either a punishment phase or a regular
phase, if he communicates

(
L, nU

1

)
for some nU

1 , while the right-hand side is the highest payoff
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he can get if he communicates another row j′ �= j. Observe that both inequalities hold, given ε̄,
letting δ → 1, provided δn is large enough.

Finally, observe that the choice of ρ trivially ensures that, conditional on having started
communicating

(
L, nU

1

)
for some nU

1 , Player 1 has strict incentives to play U in all remaining
periods of the communication round, no matter where this round takes place.

Similar considerations hold for Player 2. To summarize, we have shown that we can guarantee
that both players prefer to communicate their true information, in any communication round,
than to communicate

(
L, nU

i

)
for all nU

i ; that, conditional on communicating
(
L, nU

i

)
for some

nU
i , they have strict incentives to choose U in any remaining period of the communication round;

and that they prefer to communicate
(
L, nU

i

)
for any nU

i than to communicate an incorrect row
or column; all this, provided that δn (and δT ) is fixed but large enough, by taking δ → 1, given
ε̄.

Turning down to actions, we must consider:(
1 − δn+1

)
M + δn+1

(
1 − δT−n

) (
vjk

i − 2ε̄
)

+ δT+1
(
vjk

i − ε̄
)

< − (1 − δn) M + δn
(
vjk

i − ε̄
)

,

(7A)(
1 − δn+1

)
M + δn+1

(
1 − δT−n

) (
vjk

i − 2ε̄
)

+ δT+1
(
vjk

i − ε̄
)

< − (
1 − δT

)
M + δT

(
vjk

i − ε̄

2

)
,

(8A)(
1 − δT

)
M + δT

(
vjk

i − ε̄/2
)

< − (
1 − δT

)
M + δT

(
vjk

i − ε̄/4
)

. (9A)

Observe that all three inequalities hold, for both i = 1, 2, given ε̄, for δT and n fixed, as δ → 1.
This guarantees that, given ε̄, we can choose n, T , δ to satisfy all the inequalities above. As for
the interpretation, (7A) guarantees that Player i does not want to deviate during any regular
phase; (8A) that Player i does not want to deviate during the punishment phase P−i and (9A)

guarantees that we can pick εk;k
2 (·) and εk;k′

2 (·) within a range of values not exceeding ε̄/4 in
case k. Indeed, the left-hand side of (7A) and (8A) is the highest payoff Player i can hope for by
deviating at any time (outside communication rounds), while the right-hand side of (7A) (resp.
(8A)) is the lowest payoff he can expect by sticking to the equilibrium strategies in a regular
phase (resp. in a punishment phase). Note that

(
1 − δT

)
M is the highest payoff he can get

during the punishment phase P−i over all actions consistent with his equilibrium strategy, while
− (

1 − δT
)
M is the lowest such payoff; inequality (9A) guarantees therefore that there exists

functions εk;k′
1 and εk;k

1 whose ranges do not exceed ε̄/4 such that Player 1 is playing a best-reply,

given εk;k′
1 (·), whether or not the true column is k.

It remains to be shown that the public randomization device can be dispensed with. Observe
that the public randomization device is only used in one place, namely to get the exact desired
payoffs during a regular phase. However, since v ∈ V ∗, full-dimensionality hold, and we can use
the exact same technique as in Hörner and Olszewski (2006) by having each player randomize
at the beginning of the regular phase over two subsets of actions, so that the outcome of this
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initial randomization pins down one of four possible sequences of actions during this round, and
have the values of εi being adjusted at the end of the regular phase so as to guarantee that both
players are indifferent over all actions in this initial period; the randomization then allows to
convexify the payoffs. The details are omitted.

Appendix 2: Individual Rationality in the Leading Example

To prove the result, we need to introduce some notations. For α2 ∈ �A2 (viewed henceforth
as an element in the unit interval), let

U (α2) =
{
x =

(
x1, x2

)
: xj = uj

1 (α1, α2) , some α1 ∈ �A1

}
.

where uj
1(α1, α2) is Player 1’s expected payoff in the stage game when players randomize their

actions according to (α1, α2) and the true row, or state, is j. Thus, U (α2) represents the set of
expected payoff vectors that Player 1 can obtain in the two states, given that Player 2 randomizes
his action according to α2 as we vary Player 1’s mixed action α1 (but independent of the row j).
Note α1 and α2 do not depend on j. Let F ⊂ R

2 be a compact set. For all x /∈ F , let ΠF (x)
denote the set of points in F closest to x. If x and y are two distinct points of R

2, Hxy is the
line through y perpendicular to the line xy. Blackwell (1968) shows that if F is a closed convex
set, F is approachable (for Player 2) if and only if it is a B-set: F is a B-set if for all x /∈ F ,
there exists a mixed action α2 for Player 2 and a point y in ΠF (x) such that the hyperplane Hxy

separates x from U(α2).
Assume from now on that F = {x ∈ R

j : xj ≤ vj
1 for all j = 1, 2} and let (v1

1, v
2
1) =: v.

Consider first the case G < L. See Figure 1A. If v lies (weakly) below the segments D1 (see
Figure 1A), then it is always possible to find x /∈ F such that ΠF (x) = v and Hxv is parallel to
D1. Since for all α2, U(α2) ∩ D1 is non-empty, [in fact, D1 and D2 represent the set of extreme
points of U(α2)] there is no α2 such that the line Hxv separates x from U(α2). Hence F is not a
B-set. Similarly, if v lies (weakly) below one of the segments D2 or it has a negative coordinate,
F is not approachable as it is always possible to find a point x /∈ F such that ΠF (x) = v and
Hxv does not separate D1 or D2 from x. Suppose now that v lies above both segments D1 and
D2 and has strictly positive coordinates. Then all points outside F can be separated from U(0),
U(1) or U(1/2) (see Figure 1A). It is straightforward to check that the segments D1 and D2 are
precisely given by the equations:

v2
1 =

1 + G

1 + L

(
1 − v1

1

)
and 1 − v2

1 =
1 + L

1 + G
v1

1,

for the appropriate ranges of values v1
1 and v2

1, giving the desired result.
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Figure 1A: Case G < L
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Consider now the case G > L. See Figure 2A. The curve C represents the sets of payoffs
(v1

1, v
2
1) such that v2

1 equals the right hand side of (1). This region corresponds to the set
of maximal payoffs that Player 1 can achieve in a one-shot game in which players use mixed
(uncorrelated) actions. Namely, a point in C satisfies

v2
1 = max

α1,α2

u2
1(α1, α2)

such that:

v1
1 = u1

1(α1, α2)

where v1
1 ∈ [−L, 1+G]. Hence there is no α2 such that U(α2) has a point that lies strictly above

C. Moreover, for any α2, U (α2) intersects C in one point since the value of α2 that solves the
maximization problem varies between 0 and 1 as v1

1 varies from −L to (1+G). If v lies (weakly)
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below the curve C then it is always possible to find x /∈ F that lies above C such that ΠF (x) = v
and Hxv lies (weakly) below C. Since for all α2, U(α2) ∩ C is non-empty, there is no α2 such
that the line Hxv separates x from U(α2). Consider now v above the curve C and such that v
has strictly positive coordinates. Then all points outside F can be separated from U(0), U(1) or
some intermediate U(α2) (see Figure 2A).
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Figure 2A: Case G > L
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