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Abstract

We consider two ascending auctions for multiple objects: the SEAMO (simul-
taneous English auction for multiple objects) and the the JAMO (Japanese
auction for multiple objects). We first derive a (competitive) Perfect Bayesian
Equilibrium of the JAMO by exploiting the strategic equivalence between
the JAMO and the Survival Auction which consists of a finite sequence of
sealed-bid auctions. Then, we prove that many of the (unwanted) collusive or
signaling equilibria studied in the literature in the framework of the SEAMO
do not have a counterpart in the JAMO. However, it is shown that certain
collusive equilibria based on retaliatory strategies do exist in both auctions.
JEL Classification: C72, D44.
Keywords: Multi-unit auctions, Ascending auctions, FCC auctions, Col-

lusion, Retaliation.



1 Introduction

Since the first series of FCC spectrum auctions held in the US, academics and
policymakers alike have recognized almost unanimously at least three main
advantages of the openness and simultaneity of the FCC auction rules: They
ensure a fully transparent bidding process, that enables extensive information
revelation of bidders’ valuations, and at the same time allows bidders to build
efficient aggregations of licenses.2 Yet the openness and simultaneity of the
FCC auctions also facilitate tacit collusion. Bidders can observe each other’s
behavior and can thus coordinate on collusive agreements. Cramton and
Schwartz (1999, 2000) report on bidding phases of the FCC which illustrate
many of the communication and coordination devices tacitly used in practice
by bidders; Klemperer (2001) provides further evidence and discussion, also
relating to the recent European UMTS auctions.
In this paper we consider two auction mechanisms which are simplified

versions of the FCC and of some European UMTS auctions: The SEAMO (si-
multaneous English auction for multiple objects), which is the version closer
to the actual FCC auctions, and the JAMO (Japanese auction for multiple
objects), which differs in at least two basic respects. Both auctions are si-
multaneous ascending auctions. However, unlike the SEAMO and the FCC
auctions, in the JAMO, prices are raised directly by the auctioneer, and clos-
ing is not simultaneous but rather license-by-license. We show that these two
differences are already sufficient to eliminate many (unwanted) collusive or
signaling equilibria that are equilibria of the SEAMO.3 In particular, jump
bid equilibria constructed in Gunderson and Wang (1998) and collusive equi-
libria constructed in Engelbrecht-Wiggans and Kahn (1998) and Brusco and
Lopomo (2001) are not equilibria of the JAMO. Nonetheless, we show that
equilibria involving retaliatory strategies do exist in both the JAMO and the
SEAMO. These equilibria share some features with bidding behavior reported
by Cramton and Schwartz (1999, 2000) in the actual FCC auctions.
More generally, our results are inspired by the following questions: Can

we establish a link between some well identified auction rules in the FCC auc-

2See e.g., McAfee and McMillan (1996), Cramton (1997, 1998), Milgrom (1998), Cram-
ton and Schwartz (1999, 2000), Klemperer (2001).

3Albano et al. (2001) and Branco (2001) provide evidence that the JAMO may
perform well in terms of both efficiency and revenue in certain environments with
complementarities.
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tions and the emergence of a particular type of collusive equilibria? To what
extent are signaling, collusive or retaliatory strategies sensitive to certain
modifications of the auction rules? These questions are more than theoretic
preoccupations. Economists and market designers weigh off the pros and
cons of different auction mechanisms in order to maximize revenue and/or
efficiency in the allocation of scarce resources. However, the pursuit of those
objectives would be hampered by choosing an auction mechanism which is
deemed to facilitate collusion or retaliation. Our analysis suggests that the
SEAMO does facilitate (tacit) collusion relative to the JAMO.
The paper is organized as follows. Section 2 contains a description of the

framework and of the actual auction rules. In Section 3, which is the main
section, we consider a series of signaling equilibria and show that many of
the equilibria of the SEAMO have no counterpart in the JAMO. Section 4
indicates some directions for future research. The main proofs are contained
in the Appendix.

2 Three Ascending Auctions

2.1 Framework

Throughout the paper we work with a framework close to the one of Krishna
and Rosenthal (1996). Two objects are auctioned to a set of participants
of two types: M global bidders who are interested in both objects and Nk
local bidders who are interested in only one of the two objects, k = 1, 2.
Both global and local bidders draw their values all independently from some
smooth distribution F with positive density f , both defined over [0, 1]. Let
vk and uk denote the stand-alone value of object k = 1, 2 to a global and to
a local bidder respectively. The value of the bundle vB to a global bidder is
greater or equal to the sum of stand-alone values, that is,

vB = v1 + v2 + α,

where α ≥ 0 is commonly known and coincides across all global bidders. The
nature of bidders, local and global, is also commonly known.4

4The fact that a bidder with v1 = 0 and v2 > 0 qualifies as a global bidder when α = 0
is a degenerate case; we stress that what distinguishes global from local bidders is that
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We further restrict the analysis to the following cases: (i) v1 = v2 = x ∈
[0, 1] and α ≥ 0. (ii) v1, v2 ∈ [0, 1] and α = 0; (iii) v1, v2 ∈ [0, 1] and α > 1;
Krishna and Rosenthal (1996) consider case (i); Brusco and Lopomo (2001)
consider cases (ii) and (iii).

2.2 Auction Rules

The auction mechanisms we consider are more or less simplified versions of
the simultaneous ascending auction used by the FCC for the sale of spec-
trum licenses in the US. The third mechanism (SA) is equivalent to the first
(JAMO) and is used mainly to simplify some of the analysis. We briefly
describe the rules.

JAMO: Prices start from zero for all objects and are simultaneously and
continuously increased on all objects until only one agent is left on a given
object, in which case prices on that auction stop and continue to rise on
the remaining auctions. Once an agent has dropped from a given auction
the exit is irrevocable. The last agent receives the object at the price at
which the auction stopped. The number and the identity of agents active
on any auction is publicly known at any given time, (including information
about the identity of local and global bidders). The overall auction ends
when all agents but one have dropped out from all auctions. We refer to this
mechanism as the Japanese auction for multiple objects (JAMO); some also
refer to it as the English clock auction.

SEAMO: The auction proceeds in rounds. At each round, t = 1, 2, .., each
bidder submits a vector of bids where bids for single objects are taken from
the set {∅} ∪ (bk(t− 1),+∞), where ∅ denotes “no bid”, and bk(t− 1) is the
“current outstanding” bid, that is, the highest submitted bid for object k
up to round t − 1. Thus for each object k a bidder can either remain silent
or raise the high bid of the previous round of at least ν > 0, (we take ν
arbitrarily close to zero). All licenses close simultaneously. The auction ends
if all bidders remain silent on all objects, and the winners are the “standing
high bidders” determined at round t− 1 and they pay their last bid. Given
the simultaneity of closing, we refer to this mechanism as the simultaneous

global bidders have a potential for obtainig a positive value from each object besides the
typically positive complementarity.
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English auction for multiple objects (SEAMO).

Two basic differences distinguish the two mechanisms. First, the JAMO
does not allow for rounds of bidding; bidders press buttons corresponding to
the objects on which they wish to bid; by releasing a button, a bidder quits
that auction irrevocably; thus, bidders have “smaller” strategy spaces than
in SEAMO; in particular they have no influence on the pace at which prices
rise. Second, closing is not simultaneous in the JAMO but rather license-
by-license. We shall highlight the role of these distinguishing features in the
emergence of collusive and signaling equilibria.

SA: The auction proceeds in rounds. At each round, t = 1, 2, .., each bidder
submits a vector of sealed bids where bids for a single object are taken from
the set {∅}∪ (b(t− 1),+∞), where ∅ again denotes “no bid” or “not allowed
to bid”, and b(t− 1) here is the lowest among all bids submitted during the
previous round. In the following rounds, the bidders who submitted b(t) in
the current round, are not allowed to bid on the object where they submitted
b(t). At the end of each round the auctioneer only announces b(t), the object
for which b(t) was submitted and the identity of the bidders that submitted
the bid. An object is attributed to the last bidder having the right to bid
on that object and the winner will pay an amount of money equal to the
last lowest bid on that object. Note that since at least one bidder exits from
some object in any given round, the two objects will be attributed after at
most 2(M +N1+N2)− 1 rounds. Following Fujishima et al. (1999), we refer
to this auction as the survival auction (SA).

2.3 Some Basic Results

Before turning to the collusive and signaling equilibria, we derives some basic
results on the three mechanisms just described. The main result (Prop. 2)
characterizes a natural Perfect Bayesian Equilibrium (PBE) of the JAMO,
which in turn induces a corresponding equilibrium in the other two mecha-
nisms.
In the JAMO or the SA, the information available to a bidder at any time

t, is described by Ht. In the JAMO, t coincides with the current level reached
by prices, while, in the SA, t represents the current minimum admissible bid
on any of the objects; in both mechanisms, Ht contains, for each object,
the set of active bidders on the object as well as, the price at which the
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other bidders dropped out. The following proposition due to Fujishima et
al. (1999) is useful in characterizing equilibria in the JAMO; it is used in the
proof of Prop. 2.

Proposition 1 The JAMO and the SA are strategically equivalent.

Proof. The proof is as in Fujishima et al. (1999). It consists in showing
isomorphism (identity) of the information sets Ht as well as of their prece-
dence relation in the two auctions; from this one shows isomorphism (again
identity) of the action spaces and that corresponding actions induce same
payoffs. ¥
The proposition implies that the JAMO and the SA are outcome equiv-

alent and that their equilibria coincide. This allows us to use the easier SA
to analyze the JAMO.
Next, we derive a PBE of the SA (and JAMO), which is obtained as the

solution to certain equations defining the optimal bid (or exiting time). Fix
an object, say object 1, and fix a bidder who is active on the object. Let
Π(p,Ht) denote the expected payoff to the bidder, if, at time t and given
the information set Ht, he submits a bid of p on that object, while the other
bidders are assumed to play optimal strategies in the current round, and all
bidders are assumed to play optimal continuation strategies in the following
rounds. We assume these have already been determined appropriately and
are known to the bidder. It can be shown that optimal bids (equivalently,
optimal exiting times) can be obtained as the smallest solutions to equations
of the form:

Π0(p,Ht) = 0. (1)

These conditions can be used to compute, for any bidder and any object, the
optimal bid (equivalently, exiting time). Consider a bidder active only on one
object, say 1; he will bid p = v, where v is his value added from purchasing
object 1, (i.e., u1 or v1 for locals or globals buying only that object, and
v1 + α for globals who have already bought object 2). This can be obtained
from Eq. (1) since it reduces to (v − p) · g(p) ≤ 0 for some density g, which
yields the standard condition, p = v, for English or second price auctions on
one object. Similarly, in the absence of synergies (case (ii)) a global bidder
active on both object will bid v1 on object 1 and v2 on object 2. In cases
(i) and (iii), if all local bidders have already exited the auction, the game is
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equivalent to an auction for a single object, the bundle, where bidders pay
twice their bid, and so, a global bidder will bid vB/2 on each object.

5 In
the presence of both global and local bidders, the characterization of optimal
bid in cases (i) and (iii) is more complex: for a global bidder active on both
objects, Eq. (1) can be shown to reduce toµ

N1
N1 +N2

πL1(p,Ht) +
N2

N1 +N2
πL2(p,Ht)

¶
fN1+N2(p|t) = 0, (2)

where πLk(p,Ht) is the continuation payoff if a local bidder on object k and
all the other global bidders on the two objects set the lowest bid p in the
round corresponding to Ht, and fN1+N2(·|t) is another conditional density
that is specified in the proof. Notice that as long as local bidders are active,
the bid that solves Eq. (2) does not depend on the number of other global
bidders active on the two objects. We can state:

Proposition 2 Suppose bidders bid only on objects they value. Then the
exiting times for both local and global bidders conditional on information
until time t, {τ ∗(Ht)}, which are obtained as the smallest solutions to Eq. (1),
constitute a symmetric PBE of the JAMO.

Proof. See the Appendix. ¥
Thanks to Prop. 1, we can prove Prop. 2 without using the optimal-

stopping machinery that would be necessary to compute the exiting time in
the JAMO. Indeed, as the SA ends in a finite number of rounds, we can
characterize the equilibrium using backward induction arguments.
A crucial step in the proof of Prop. 2 is that , in cases (i) and (iii), a global

bidders active on two objects has a best response to submit the same bid for
the two objects. In other words, in the JAMO, a global bidder exits both
objects simultaneously. Therefore, his optimal bid will not depend on how
the other bidders behave after he has quit the auctions. This simplifies the
characterization of the equilibrium. Moreover, in case (i), it can be shown

5For example, when the complementarity is very high, say α > 2, a global bidder is
always willing to pay for the bundle more than any two local bidders, and so all local
bidders will exit in early rounds of the auction, and only global bidders will bid for the
bundle.
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that the equilibrium of Prop. 2 is the unique symmetric PBE in (weakly)
undominated strategies when bidders bid only on objects they value.6

However, for intermediate values of α ∈ (0, 1), and if v1 and v2 are differ-
ent, submitting the same bid on the two objects is not always optimal. Then
a global bidder’s optimal bids will depend on how exiting on one object will
affect the other global bidders’ behavior on the other object. In this case
showing existence of a PBE is already problematic.7

Next, we relate equilibria of the SEAMO and the JAMO.

Proposition 3 Every PBE of the JAMO induces a PBE of the SEAMO.

Proof. Let {t∗(Ht)} be the exiting times constituting a PBE for the JAMO.
Then all bidders bidding the standing high bid plus an arbitrarily small bid
increment in each round and stopping to bid according to these exiting times
(also along out of equilibrium paths) constitutes an (arbitrarily close) PBE
of the SEAMO. Because winning bidders pay their own last high bid and
because of the simultaneity of the closing, there are no profitable deviations
from the above strategies. ¥
This also implies that the set of outcomes induced by PBE of the JAMO

is contained in the set of outcomes induced by PBE of the SEAMO. The
converse of this as well as of Prop. 3 is not true; the SEAMO has many more
equilibria. In what follows, we will see examples of equilibria that are PBE
of the SEAMO but not otherwise.
In particular, Prop. 3 implies that the equilibrium of Prop. 2 has a coun-

terpart in the SEAMO. Albano et al. (2001), within an example with 2 objects
and 4 bidders, argue that the JAMO obtains close to ex-post efficiency with
higher revenues than the revenue-maximizing ex-post efficient mechanism,
and that it dominates both the sequential and the one-shot simultaneous
auctions in terms of ex-ante efficiency. Branco (2001) obtains similar re-
sults in a somewhat different framework. Given the above proposition, these
results immediately extend to corresponding equilibria of the SEAMO.

6See Section 3.3 for more discussion on the latter assumption. Essentially, it says that
local bidders do not bid on both objects.

7For example, Athey’s (2001) theorem does not apply due to the presence of non uni-
dimensional signals; McAdams’ (2001) theorem does not apply because of the modularity
condition on the payoffs.
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3 Collusive and Signaling Equilibria

In this section, we consider certain collusive and signaling devices and equi-
libria that have been studied in the literature, typically in the framework of
the SEAMO, and show that they are not viable in the JAMO, due to the
more restrictive nature of the strategy spaces. We also construct equilibria
involving retaliatory strategies for both the JAMO and the SEAMO.

3.1 Some Signaling Devices

Bidders in the FCC auctions attempted to communicate in a variety of ways.
Since there is no way of proving any private exchange of information among
bidders, we are bound to analyze communication arising through the ex-
ploitation of the auction rules themselves. This section analyzes some com-
mon communication devices also apparently used in the actual FCC auctions,
namely code and jump bidding, and withdrawal bids, from the viewpoint of
the JAMO.

Code Bidding: Code bidding is one of the more obvious forms of signaling.
Since bids are expressed in dollars and since, at least in the FCC auctions,
most licenses displayed six-digit prices, bidders could use the last three digits
to encode messages. Code bids had different natures. Some bidders used the
last three digits to “disclose” their identities. For example, in the AB auction
(Auction 4), GTE frequently used “483” as the last three digits; this number
corresponds to “GTE” on the telephone keypad. In other circumstances code
bidding had a reflexive nature. The last three digits were used by a bidder
both to signal a license of special interest to her and the license on which the
same bidder was punishing competitors for not bumping the first market.8

In the JAMO mechanism, bidders are obliged to use code bidding in very
specific way: to stop bidding on a given license as soon as the price encodes
“meaningful” digits. However, this strategy would irrevocably exclude that
bidder from competing for that license, and with two objects, would there-
fore also exclude her from bidding for the bundle; moreover it would also
exclude her from performing any retaliation, since she should presumably be

8See Cramton (1997) and Cramton and Schwartz (1999, 2000) for detailed accounts of
collusive behavior in the actual FCC auctions.
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interested in purchasing the only remaining object. It follows that:

Proposition 4 Code bidding is ineffective in any PBE of the JAMO (with
two objects).

While this excludes signaling equilibria that rely on code bidding when two
objects are auctioned, the result may not extend to more than two objects.
For example, suppose three licenses are being auctioned, suppose a bidder is
interested in purchasing license, say 1, and that she is active on all licenses at
an early stage of the auction. Then she can stop bidding on, say, license 3 at
a price whose digits encode a message similar to the one used by GTE, while
remaining active on the other two licenses. This allows her to use license
2 as a potential threat for retaliation. The extent to which retaliation will
be successful or credible so as to eventually constitute a PBE of the corre-
sponding game, is something that is explored further below (in the context of
two objects). But in principle, a higher number of licenses for sale (without
restrictions on the number of licenses bidders are allowed to bid on) makes
for more possibilities of sending messages or code bids even in the JAMO
auction. Clearly, such a signaling device becomes more difficult and costly to
use if prices are raised not continuously but in predetermined finite amounts.

Jump Bidding: It need not always be in the interest of the bidders to
increase prices at the minimum pace required by the auction rules. In fact,
Gunderson and Wang (1998) show how a bidder in a SEAMO can benefit
by using jump bids as a signal of a high valuation, possibly causing other
bidders to drop out earlier; this may lead to lower revenues for the seller.9

While jump bids are possible in the SEAMO they are obviously not in the
JAMO. The FCC’s recent decision to limit the amount by which bids can be
raised e.g., in the LMDS auction (Auction 17), may suggest a change in this
direction, see also Cramton and Schwartz (2000).

BidWithdrawals: While the FCC had originally allowed unlimited number
of bid withdrawals in order to allow bidders to make more efficient aggre-

9A crucial assumption for the existence of these equilibria is that the bidder making
the jump bids have discontinuous support for valuations. See also Avery (1998) for further
equilibria involving jump bids in the context of one-object English auctions with affiliated
values.
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gations of licenses, it was soon noticed that they could be used as signaling
devices. As Cramton and Schwartz (2000) report, withdrawal bids were ap-
parently used in FCC auctions as part of a warning or of retaliatory strategies,
as well as part of cooperative strategies, where bidders attempted to split
licenses among themselves. Neither the JAMO nor the SEAMO versions de-
scribed above allow for withdrawal bids. Again, the FCC’s recent decision to
limit their number to two, e.g., in the LMDS auction (Auction 17), suggests
another change in this direction.

3.2 Closing Rules

Milgrom (2000) contains a description of the tâtonnement logic that inspired
most of the FCC auction rules. In particular, the rules specified that bidding
would remain open on all licenses until there were no new bids on any license.
This simultaneous closing rule allows each losing bidder to switch at any time
from the lost license to a substitute or to stop bidding on a complement.
However, as Milgrom points out, it is also vulnerable to collusion.

Milgrom’s Example: Consider the following example fromMilgrom (2000).
Two bidders bid for two objects 1 and 2, which are each worth 1 to both
bidders. Milgrom shows that there exists a sequential equilibrium of the
SEAMO (with complete information) such that the selling price for both ob-
jects is ν, i.e., the smallest possible bid, and the bidders realize the highest
collusive payoff of 2 · (1− ν), (see Theorem 8, p. 264).
The logic of the equilibrium is that both players buy one object each at

the lowest possible price by using a simple threatening strategy: Bidder 1
bids ν on auction 1 if bidder 2 has never bid on 1; otherwise he does not bid.
If bidder 2 has bid on 1, then bidder 1 reverts to a “competitive” bidding
strategy, that is to keep bidding on each object until a price of 1 is reached;
bidder 2 plays symmetrically.
As Milgrom suggests, such a low revenue equilibrium is avoided if closing

is not simultaneous but rather license-by-license. According to such closing
rule, bidding would stop on a license if at any round there is no new bid on
that license. The JAMO provides an example of license-by-license closing.
Indeed, once all bidders but one drop from one license and remain active on
the other licenses, the first license closes irrevocably. The result of Theo-
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rem 9 in Milgrom (2000), which states that at each (trembling-hand) perfect
equilibrium with license-by-license closing the price of each license is at least
1− ν carries over to the JAMO (also with complete information), where in
fact the price of each license is exactly 1. By applying Prop. 2 to the exam-
ple described above where as in our usual framework the bidders’ values are
private information, the following result can be shown to follow:

Corollary 1 Suppose that bidders 1 and 2 have (private) values of 1 for both
objects, and α = 0, then, in the PBE of the JAMO, the selling price is 1 for
each object.

Such a selling price of 1 (or 1− ν) is also not guaranteed in the SEAMO
with incomplete information as the equilibria constructed in Engelbrecht-
Wiggans and Kahn (1998) and Brusco and Lopomo (2001) show.

The Collusive Equilibria of Brusco and Lopomo: Brusco and Lopomo
(2001) (henceforth BL) construct several kinds of PBE in undominated strate-
gies of the SEAMO (in our usual framework), some of which are very similar
to the ones constructed by Milgrom under complete information. Kwasnica
and Sherstyuk (2002) provide some experimental evidence for such equilibria
when there are few players and with small complementarities. We shall see
that none of BL’s equilibria are possible in the JAMO.
The logic of their collusive equilibria is as follows: Consider two global

bidders and, for simplicity, take α = 0. The bidders use the first round
to signal to each other which of the two objects they value the most. If
they rank the objects differently, bidders confirm their initial bids in all
subsequent rounds and obtain their most preferred object at the minimum
price; otherwise they revert to the “competitive” strategy of raising prices
on both objects up to their private values. BL then go on to refine this
type of collusive equilibrium by allowing bidders to signal more than just the
identity of the higher valued object. This allows them to obtain collusive
equilibria even more favorable to the bidders. In particular, they show that
a collusive equilibrium may also arise when bidders have the same ranking
for the objects, also if there are more than two bidders as well as if there are
positive complementarities (α > 1); they also show, however, that the scope
for collusion diminishes as the number of bidders increases and the number
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of objects is fixed at two; and the possibility of collusion is lowered if the
complementarities are large and variable.
Again, the rule driving the presence of such equilibria is the simultaneous

closing. The JAMO mechanism instead is built around the irrevocable exit
and induces license-by-license closing, which makes the rounds of signaling
necessary in the above equilibria impossible. In these examples bidders al-
ways have an incentive to bid for any object for which they have positive
value. In particular, it follows:

Corollary 2 The collusive equilibria constructed as PBE of the SEAMO in
Brusco and Lopomo (2001) are never PBE of the JAMO.

Note also that these collusive equilibria are not PBE of the JAMO even if
one allows for rounds of cheap talk between the bidders prior to the auction.
As it has often been pointed out, simultaneous closing has the advantage

of being more flexible in allowing bidders to revise and update their bidding
behavior in forming aggregates, (see e.g., Cramton (1997, 1998), Milgrom
(1998, 2000), Cramton and Schwartz (1999, 2000)). Moreover, Kagel and
Levin (2000) point out that, especially for intermediate values of the com-
plementarities, ascending auctions may suffer from the exposure problem by
which global bidders may drop out too early from individual licenses thus
reducing efficiency. Although their comparison is with one-shot sealed bid
auctions, it seems plausible the exposure problem would be even more pro-
nounced in auctions with license-by-license closing than in ones with simul-
taneous closing. This is something that needs to be further investigated, also
in connection with the rules for withdrawing bids.

3.3 Retaliatory Equilibria and Withdrawal Rules

We have seen examples of collusive equilibria that are equilibria of the SEAMO
but are ruled out as equilibria of the JAMO. In this section, we show that
equilibria involving certain retaliatory strategies may nonetheless exist in
both the SEAMO and the JAMO.

Retaliatory Equilibria: The logic of these retaliatory equilibria is straight-
forward. Suppose that two objects are put for sale to two bidders, one global
bidder who is interested in both objects, and one local bidder who wishes
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to buy only object 1. Assume all this to be common knowledge. The two
bidders have overlapping interests on object 1, and the local bidder wants
the global bidder to exit early from object 1. In order to achieve this, the
local bidder actively bids on object 2, although the object has no value to
him. Such a strategy is potentially costly to both the local and the global
bidder; we refer to it as a retaliatory strategy. The extent to which the lo-
cal bidder is successful in inducing the global bidder to drop out early from
object 1 depends on whether he succeeds in making his threat credible. We
show that the JAMO is not immune to equilibria that effectively involve such
strategies.

Proposition 5 There exist PBE of both the JAMO and the SEAMO where
bidders use retaliatory strategies effectively.

Proof. In Example 2 below, we construct a family of such equilibria in
the context of the JAMO and the usual framework of Section 2.1; for the
SEAMO there will be corresponding equilibria as in Prop. 2. ¥
Before presenting the mentioned family of retaliatory equilibria, we first con-
sider a simpler and more intuitive type of retaliatory equilibrium within a
slightly more special framework.

Example 1. Consider our usual framework with two objects and two bid-
ders; one local bidder interested in object 1 and one global bidder interested
in both objects 1 and 2, with the same value for the two objects, v1 = v2 = x,
and α = 0; assume also all values are drawn according to the uniform distri-
bution on [0, 1]. It is easy to see that the following is a PBE of the JAMO:

– all types of the local bidder bid on both objects and stay on object 1 until
u1 and on object 2 until min(u1, t

2
1+ν), where t21 is the global bidder’s exiting

time from object 1, and ν > 0 arbitrarily small;

– all types of the global bidder exit from object 1 at t + ν if at t the local
bidder is on object 2; otherwise all types of the global bidder stay on both
objects until x.

In equilibrium, the global bidder immediately drops out of object 1 inducing
the local bidder to also immediately drop out of object 2. As is often typical
in such retaliatory equilibria, the retaliating bidder (here the local bidder)
obtains a higher ex ante payoff than in the standard equilibrium of Prop. 2,
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while the other agents (here the global bidder and the auctioneer) are both
worse off. ¥
To sustain these equilibria, the local bidder threatens the global bidder

with a harsh punishment if the latter does not drop out of object 1.
It can be checked that our assumption of uniformly distributed private

values, which guarantees the optimality of the global bidder’s strategy, turns
out to be a special case of the assumption made by BL to sustain their “most
collusive” equilibrium, namely, that the expected private value for each good
is no less than 1/2.10

The above example relies on the fact that the local bidder has some
extra information about the global bidder’s valuation of object 1 relative to
object 2. Without this information he needs to resort to a more refined form
of signaling.

Example 2. Consider our usual framework of Section 2.1 with two objects
and two bidders; one local bidder interested in object 1 and one global bidder
interested in both objects 1 and 2, and suppose for simplicity α = 0; assume
again all values are drawn according to the uniform distribution on [0, 1].
Then, for any l ∈ (0, 1], the following is a PBE of the JAMO:
– all types of local bidder with u1 ≤ l bid only on object 1 and stay until u1;
all types of local bidder with u1 > l bid on both objects and stay on object 1
until u1 and on object 2 until c = l(

√
2− 1) < l;

– all types of global bidder with v1 < l bid on both objects and stay on
object 1 until c and on object 2 until v2 whenever the local bidder is active
on both objects, staying until v1, v2 respectively otherwise; all types of global
bidder with v1 ≥ l bid on both objects always staying until v1, v2 respectively.
This characterizes a family of retaliatory equilibria indexed by the parame-
ter l that are PBE of the JAMO, (see Section 4 for a proof). Note that the
equilibria are not in undominated strategies, since the local bidder always
has a (weakly) dominant strategy to drop from object 2 whenever it is the
only object he is bidding on. If the local bidder is active on both auctions
this signals that his valuation is above the threshold l, i.e., u1 > l; if he bids
only on object 1, then u1 ≤ l, and both bidders bid up to their valuations
10We are grateful to a referee for pointing this out to us.
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and only on the objects they value.
When l = 1 we get the standard, non—retaliatory equilibrium of Prop. 2,

since with probability one the local bidder will not be active on object 1.
When l → 0 we almost get the standard equilibrium, since c → 0, i.e., the
local bidder enters both auctions but almost immediately exits object 2.
Unlike the equilibrium of Example 1, here, to ensure incentive compati-

bility for the local bidder, the bidding threshold c is such that he only weakly
prefers the retaliatory equilibrium, his ex ante payoff is the same as in the
standard equilibrium, i.e., 1/6; the global bidder continues to be worse off
than in the standard equilibrium, her ex ante expected payoff being

2

3
+
l

2
−
√
2l +

3l2

2
− 13l

3

6
+
√
2l3 +

l4

6
≤ 2/3 ∀l,

while due to the extra bidding on object 2, the auctioneer actually earns
higher ex ante revenues than in the previous example and in the standard
equilibrium

1

3
− l +

√
2l − 2l2 +

√
2l2 + 3l3 − 2

√
2l3 ≥ 1/3 ∀l. ¥

Example 2, continued. It is worth pointing out that Example 2 can be
extended to a local bidder competing against an arbitrary number M of
global bidders with preferences as in cases (i) and (ii) of Section 2.1, and
with general distribution function F defined on [0, 1] for values. The PBE
described above is still a PBE for any l ∈ (α, 1], where the parameter value
c(< l) is now chosen as the unique solution to the equationZ l−α

c

z ·G0(z)dz = (c− α) ·G(l − α), (3)

where G = FM is the distribution function for the global bidders’ highest
valuation for object 1 (or 2). In presence of complementarities, the only
difference is that a global bidder exits object 1 at c if v1 + α < l, whereas
if v1 + α > l he behaves as described in Section 2.3.11 In order to ensure
incentive compatibility for the local bidder, as M increases, the parameter c
also increases. ¥
11This suggests that such retalatory equilibria may disappear when α > 1.
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Examples 1 and 2 are also close in spirit to the collusive equilibria of BL:
global bidders and the local bidder have overlapping interests on object 1;
the local bidder threatens to retaliate (i.e., to be active) on object 2 if the
global bidders do not exit object 1. This signaling device is effective since it
is common knowledge that the retaliatory bidder is interested in one object
only. Thus by not “turning the light off” on object 2 when the price is zero,
the local bidder triggers the beliefs that sustain the collusive equilibrium.

JAMO vs. Sequential Auction: A necessary condition for triggering col-
lusive equilibria in the JAMO is simultaneous bidding on both objects. The
auctioneer could prevent bidders from adopting retaliatory strategy by sell-
ing the objects sequentially12 rather than simultaneously. Indeed, it is easy
to see that, at least with two objects, retaliatory strategies are ineffective,
since local bidders cannot gain by bidding on an object they do not value.
However, despite its proofness against retaliatory equilibria, the sequen-

tial auction becomes less attractive than other mechanisms under the as-
sumption that bidders play a “competitive” equilibrium. Indeed, Albano
et al. (2001) and Branco (2001) show that the sequential auction performs
rather poorly in terms of both efficiency and seller’s revenue as compared to
the JAMO and two one-shot sealed-bid auctions. In particular, the results
confirm the intuition that simultaneous bidding is mainly responsible for the
(good) performance of the JAMO both in terms of efficiency and seller’s rev-
enue. However, the existence of collusive equilibria in the JAMO suggests
that there does exist a trade-off between designing auction rules in order to
increase efficiency and revenue, and allowing bidders to exploit the same set
of rules for reaching a certain degree of co-ordination.

Finally, we see what happens to the equilibria constructed in Examples 1
and 2 if one allows for withdrawal rules.

Withdrawal Rules: Withdrawal rules in the FCC auctions were originally
designed to allow for a more efficient aggregation of licenses, and, until Auc-
tion 16, the FCC allowed an unlimited number of withdrawals. If a bidder
decides to withdraw her bid from a license, the FCC becomes the standing
high bidder, and the withdrawing bidder is charged a penalty equal to the
difference between the withdrawn bid and the selling price after the with-

12We are grateful to another referee for suggesting this point.
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drawal. However, if the penalty is sufficiently low, bidders might use bid
withdrawals as a signaling device (as mentioned above) but also as part of a
retaliatory strategy.
Consider first the equilibrium of Example 1. If bidders are allowed one

bid withdrawal, then as long as the local bidder does not withdraw his bid for
object 2 with probability greater than 1/2, this still leads to a PBE without
really affecting the equilibrium outcome. It will still be optimal for the global
bidder to immediately exit from object 1, and both objects are sold at zero
prices in equilibrium. The only difference is that the out-of-equilibrium belief
that the local will continue to bid on object 2 if the global continues bidding
on object 1 is slightly more credible since the penalty to the local bidder is
reduced.
While the possibility of withdrawing bids makes for cheaper retaliatory

strategies, thus increasing the credibility that a bidder will continue to bid
on an object he does not value, at the same time, it also takes away the
commitment value that the retaliating bidder will buy the object he does not
value. It is easy to see that introducing the possibility of one bid withdrawal
destroys the equilibrium of Example 2, since on one hand, given the global
bidder’s strategy, the local bidder now has a strictly dominant (continuation)
strategy to withdraw all bids where he ends up having to buy the object he
does not value; unlike Example 1, this happens with positive probability in
equilibrium. On the other hand, if the global bidder assumes that the local
bidder will always withdraw his bid for an unwanted object, then she has a
best response to exit from the local bidder’s unwanted object, object 2, at
any ν > 0 and the standard equilibrium follows.

4 Conclusion

Recent research on multi-unit ascending auctions has highlighted the exis-
tence of two potentially conflicting features of the auction rules adopted by
the FCC and subsequently in some of the European UMTS auctions. On
one hand, the transparency and flexibility of the bidding process eases an
efficient aggregation of licenses; on the other, the amount of information
available to bidders together with the strategic possibilities allowed by the
rules may be used to implement tacit collusive agreements, see Cramton and
Schwartz (1999, 2000) and Klemperer (2001).
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By not allowing bidders to set the pace at which prices rise on individual
licenses, the auctioneer can make bidders’ signaling devices blunt without
losing the information revelation feature of the ascending mechanism. In
this sense we have maintained that the SEAMO facilitates tacit collusion
relative to the JAMO and have shown that several collusive equilibria, which
appear in the SEAMO, do not have a counterpart in the JAMO.
We have also shown that certain retaliatory equilibria are possible in both

the JAMO and the SEAMO. Again, it is evident from the construction of
such equilibria that they are “harder” to implement in a JAMO than in a
SEAMO. A more complete assessment of the relative performance of the
two auctions certainly requires further study. We outline some directions for
future research.
First, the framework is admittedly restrictive. For example, if the number

of licenses is greater than two, the set of equilibria is likely to depend on the
composition of the bundles that global bidders are interested in acquiring.
That is, with more than two objects there are several ways preferences over
bundles can overlap. It is also possible that code-bidding may reappear even
in the JAMO. But even with only two objects, the case of mild synergies
may already pose non-trivial existence problems.
Second, an issue that has not been addressed is the rationale of having

prices rise simultaneously (i.e., at the same “speed”) in the JAMO. We have
imposed the same “speed” on both objects, being aware that there is no
theoretical or empirical justification for this assumption.
Third, other aspects of the FCC auctions such as activity rules, the num-

ber of allowable bid withdrawals, and the simultaneity of closing deserve
further investigation. Although some modifications of the standard SEAMO
undertaken by the FCC may be seen as changes in direction of the JAMO,
there seems to be no general agreement on e.g., whether closing should be
simultaneous or not. Albano et al. (2001) and Branco (2001) show that
under certain conditions, license-by-license closing may perform rather well
theoretically. Kagel and Levin (2000) on the other hand provide experi-
mental evidence indicating that, at least within certain ranges of bidders’
valuations, inefficiencies may arise due to what they call the “exposure prob-
lem”. Clearly, more needs to be done to better assess the theoretical and
empirical performance of the “Japanese” vs. “English” design of the auction
and the simultaneous vs. license-by-license closing, as well as of other rules
mentioned. Also, while the JAMO and the SA are theoretically equivalent
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it would be useful to obtain further experimental evidence contrasting their
relative performance.
Finally, motivated by considerations of market structure and bidder asym-

metries, Klemperer (1998, 2001) suggests an auction format he calls “Anglo-
Dutch” that combines an ascending or “English” auction with a first-price
sealed-bid or “Dutch” auction. Our results suggest that an alternative that
may be worth considering in similar environments is a combination of a
“Japanese” with a first-price sealed-bid auction. Similarly, Ausubel and Mil-
grom (2002) suggest an English ascending auction that allows for package
bidding in order to improve efficiency while avoiding some of the problems
arising for example from Vickrey-Clarke-Groves mechanisms. Also here it
may be worthwhile to consider a “Japanese” design while keeping the re-
maining features that allow bidders to bid on packages; of course, here the
question of how to increase the prices of the items for sale becomes even more
pressing.

Appendix

Proof of Proposition 2: If bidders, upon observing a local bidder bidding
on an object objects they value, then the exiting times obtained from Eq. (1)
are clearly (weakly) dominant strategies for the local bidders, and they are
also (weakly) dominant (continuation) strategies for global bidders currently
bidding on only one object.13 Given these exiting times, in what follows, we
show that Eq. (1) also yields globally optimal exiting times for global bidders
bidding on two objects. We will argue using both the JAMO and the SA.
Case (ii) v1, v2 ∈ [0, 1] and α = 0, follows from the fact that, since α = 0,

no global bidder has any incentive to exit on object k after vk, k = 1, 2. On
the other hand, there is no incentive to exit before vk either. As mentioned
in the text, these exiting times are also obtained by differentiating Π(p;Ht)
with respect to p and setting equal to zero.
The following lemmas cover the remaining cases (i) v1 = v2 = x ∈ [0, 1]

and α ≥ 0, and (iii) v1, v2 ∈ [0, 1] and α > 1. Fix a global bidder h and let yk
denote the highest exiting time on object k among all other bidders. For any

13In the auction for object k, a local bidder will bid uk, and a global bidder will bid vk
or vk + α depending on whether he has already dropped or won the other object.
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given strategy profile of the other bidders, denote by Gk(·|Ht) the cumulative
distribution function of yk given the information Ht. Let further H

k
t denote

the information set Ht, where the global bidder h has exited object k at t.
Then we can state:

Lemma 1 If Gk(·|Ht) ≤ Gk(·|H3−k
t ), for k = 1, 2, then in the JAMO global

bidders exit both objects simultaneously.

The condition on Gk implies that if global bidder h exits one object, the
probability of winning the other object will not increase. Therefore, it is
always optimal to stay on object k at least until vk. We need to show that
for both objects the optimal exiting time τ ≥Max{v1, v2}. Case (i) is clear,
since τ ≥ v1 = v2 = x. To see case (iii), assume without loss of generality
that v2 ≥ v1. If a global bidder wins one object he will necessarily win both
objects, since we are assuming (weakly) undominated continuation strategies,
which would lead all other remaining bidders to exit at the latest at 1 from
the second object. Therefore, a global bidder who is active on two objects
has nothing to lose if he stays on the two objects (at least) until v2. Indeed,
if he exits object 1 before v2, he does not increase the probability of winning
object 2 and he loses the opportunity of winning the bundle. More formally,
at t ∈ (v1, v2), the global bidder’s expected profit from exiting object 1 is
E[(v2 − y2)1{y2≤v2}|H1

t ]. If instead, he stays on the two objects until v2 and
then exit the two objects only if he wins no object before v2, then his expected
payoff is

E[(v1 + v2 + α − (y1 + y2))1{min{y1, y2}≤v2}|Ht]
≥ E[(v1 + α−max{y1, y2})1{min{y1, y2}≤v2}|Ht]

+E[(v2 −min{y1, y2})1{min{y1, y2}≤v2}|H1
t ]

> E[(v2 − y2)1{y2≤v2}|H1
t ]

where the first inequality follows from Gk(·|Ht) ≤ Gk(·|H3−k
t ), k = 1, 2 and

the second from y1, y2 ≤ 1 < α. Thus, it is suboptimal to exit object 1 before
v2 and therefore the bundle bidder will exit simultaneously the two objects
at a price no smaller than v2.

14

14To prove uniqueness of a symmetric PBE, in case (i), we note the assumption on Gk
can be dispensed with, since it follows directly from symmetry of the equilibrium strategies.
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Lemma 2 Eq. (1) is a necessary and sufficient condition for a globally op-
timal exiting time whenever M = 1 and N1,N2 are arbitrary.

We prove the lemma for a global bidder active on the two objects. The
local bidders’ strategies is not affected by Ht, thus when a global bidder
faces only local bidders, we have Gk(·|Ht) = Gk(·|H3−k

t ). From Lemma 1
and Prop. 1, in the SA, for the global bidder it is optimal to submit the same
bid p on the two objects. Then, three possible outcomes arise with probability
1: (i) p is the lowest bid and the global bidder exits the auction; (ii) a local
bidder sets the lowest bid on object 1; (iii) a local bidder sets the lowest bid
on object 2. Let FN(·|t) denote the cumulative distribution function of the
lowest valuation among N local bidders given that their valuation for the
object is at least t, and let fN(·|t) = F 0N(·|t). More specifically we can write
FN(x|t) = 1 − (1 − F (x|t))N , where F (x|t) = F (x)−F (t)

1−F (t) is the cumulative
distribution of a local bidder’s valuation given that his valuation is at least
t. Therefore, Π(p;Ht) can be rewritten as

Π(p;Ht) =

Z p

t

πL1(s,Ht)(1− FN2(s|t))fN1(s|t)ds

+

Z p

t

πL2(s,Ht)(1− FN1(s|t))fN2(s|t)ds.

Consequently, the necessary condition is obtained deriving with respect to p:

Π0(p;Ht) = πL1(p,Ht)(1− FN2(p|t))fN1(p|t)
+ πL2(p,Ht)(1− FN1(p|t))fN2(p|t)

=

µ
N1

N1 +N2
πL1(p,Ht) +

N2
N1 +N2

πL2(p,Ht)

¶
fN1+N2(p|t),

since (1 − FNk(s|t))fN3−k(s|t) = N3−k(1 − F (p|t))N1+N2−1f(p|t), and hence
Eq. (2). To check sufficiency note that

Π00(p;Ht) =

µ
N1

N1 +N2
π0L1(p,Ht) +

N2
N1 +N2

π0L2(p,Ht)
¶
fN1+N2(p|t)

+

µ
N1

N1 +N2
πL1(p,Ht) +

N2
N1 +N2

πL2(p,Ht)

¶
f 0N1+N2(p|t)
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In order to verify that π00(τ ;Ht) ≤ 0, it is sufficient to that observe that the
second term vanishes and that πL1(p,Ht) and πL2(p,Ht) are not increasing
in p. Indeed, πL1(p,Ht) is the global bidder’s continuation payoff given that
all remaining local bidders’ valuation for the objects is at least p that is also
the minimum admissible bid in the next round. Clearly, an increase in p
cannot improve πL1(p,Ht).

Lemma 3 The exiting times defined by Eq. (2) are nondecreasing functions
of vB.

By Lemma 1 the global bidder drops out simultaneously from both ob-
jects, which implies that in case (iii), since α ≥ 1, either they win both
objects or none; this implies that their expected payoff functions and hence
their exiting times will depend only on the value of the bundle vB. Since
x = (vB − α)/2 this is clearly true also in case (i).
Suppose τ = τ(vB;Ht) is a global bidder’s equilibrium bid at information

set Ht when his value for the bundle is vB. Then it must be the case that
Π0(τ ;Ht) = 0, where as above we can write

Π0(p;Ht) =
µ

N1
N1 +N2

πL1(p,Ht) +
N2

N1 +N2
πL2(p,Ht)

¶
fN1+N2(p|t) = 0

for p = τ . Now, the probability of winning at any given price depends only
on the other bidder’s valuation, and the global bidder’s ex-post payoff is non-
decreasing in vB. Thus, if v̄B > vB is the global bidder’s value for the bun-
dle, then the corresponding expressions π̄L1(p,Ht) and π̄L2(p,Ht), computed
with the higher value v̄B, are not smaller than the counterparts πL1(p,Ht)
and πL1(p,Ht) computed with vB. Finally, considering that Π

00(τ ;Ht) ≤ 0
we have that Π

0
(p;Ht) ≥ Π0(p;Ht) implies that if τ is optimal for vB at Ht,

submitting τ 0 ≥ τ is better for the global bidder with v̄B.

Lemma 4 Eq. (1) is a necessary and sufficient condition for a globally op-
timal exiting time for M , N1, and N2 arbitrary.

The proof is by (backward) induction. Consider a global bidder who
after some sufficiently large number of stages of the SA is still active on the
two objects such that either there is no other global bidder active on the
two objects, in which case Lemma 2 applies, or all active bidders are global
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bidders, in which case, it is a (weakly) dominant strategy to bid vB/2 on
both objects.
Let Ht be such that there are two global bidders and Nk local bidders on

objects k = 1, 2. Fix global bidder h, and let v1 and v2 be his valuation for
the two objects. Let τ(vB;Ht) be a global bidder’s strategy in a symmetric
equilibrium. The first step is to prove that the global bidders exit simulta-
neously from the two objects and that the equilibrium strategy τ(vB;Ht) is
not decreasing in vB. In order to prove the first property it is sufficient to
choose appropriately the out-of-equilibrium-path beliefs for the global bid-
ders. Indeed, if each global bidder believes that exiting only on one object
will not increase the probability of winning the other object, then, by Lemma
1, it will be optimal to exit simultaneously the two objects. For the second
property, as customary in auction theory, we assume that τ (vB;Ht) is not
decreasing in vB then we show that the equilibrium strategy τ(·) satisfies this
restrictions.
If at the information set Ht, global bidder h bids p on the two objects,

his expected payoff function is

Π(p;Ht) =

Z p

t

πL(s,Ht)(1− FB(s|Ht))fN1+N2(s|Ht)ds

+

Z p

t

πB(s,Ht)(1− FN1+N2(s|Ht))fB(s|Ht)ds (4)

and hence

Π0(p;Ht) = πL(p,Ht)(1− FB(p|Ht))fN1+N2(p|Ht)
+ πB(p,Ht)(1− FN1+N2(p|Ht))fB(p|Ht), (5)

where πL(p,Ht) and πB(p,Ht) are the continuation payoffs if respectively a
local bidder or another global bidder sets the lowest bid p ≥ t; and FB(·|Ht)
is the cumulative distribution of the other global bidders’ lowest bid, and
fB(·|Ht) = F 0B(·|Ht).
If τ (·;Ht) is nondecreasing in the value of the bundle, πL(p;Ht) = 0 for

all p ≥ τ(vB;Ht). Indeed, πL(p;Ht) is the continuation payoff when the other
global bidder bids more than p. However, if p ≥ τ (vB;Ht), then the other
global bidder will value the bundle at least as much as global bidder h. This
implies that bidder h cannot expect a positive profit in the following rounds.
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Thus, at a symmetric equilibrium, the optimal bid will be the smallest p that
solves

πB(p;Ht)(1− FN1+N2(p|Ht))fB(p|Ht) = 0. (6)

Since πB corresponds to a situation where the lowest bid is made by a global
bidder, this means that the only remaining active global bidder is bidder h,
so we can apply Lemma 2 to get

πB(p;Ht) =

Z τ

p

µ
N1

N1 +N2
πL1(s;Hp) +

N2
N1 +N2

πL2(s;Hp)

¶
fN1+N2(s|HB

p )ds

where τ is the smallest s such that the argument of the integral is zero.
Therefore, τ(vB;Ht) = τ = τ ∗(vB;Ht) that is not decreasing in vB for Lemma
3. This proves the lemma for the case of two global bidders and N1 + N2
local bidders.
Suppose now that the number of global bidders isM > 2. Observe that at

a symmetric equilibrium where τ (vB;Ht) is increasing in vB, global bidder h’s
continuation payoff is positive only if in the current round there is no other
global bidder submitting a higher price than his own. Thus, if with M − 1
global bidders the optimal bid (or exiting time) is τ(vB;Ht) = τ = τ ∗(vB,Ht)
obtained as the smallest solution to Eq.(2), then we have

πB(p;Ht) =

Z τ

p

πB(s;H
B
p )fB(s|HB

p )ds.

where, by some abuse of notation, HB
p is the information set Ht updated

by the fact that a bundle bidder exited with a bid of p. This implies that
also with M global bidders the optimal bid is τ (vB;Ht) = τ = τ ∗(vB;Ht)
determined as the smallest p solving Eq. (2) that is increasing in vB. ¥

Proof of Example 2: We directly prove the general case mentioned at the
end of the example. There are M global bidders and one local bidder on
object 1; preferences are according to cases (i) or (ii); values are drawn from
a smooth distribution F defined on [0, 1].
We first check optimality for any global bidder, then we check it for the

local bidder. If the local bidder is active on both objects, global bidders infer
that u1 > l. Hence, a global bidder with v1+α ≤ l knows that he will not win
object 1 even if he wins object 2 and then continues optimally until v1 + α
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on object 1. Therefore, exiting object 1 at time c and exiting object 2 at v2
is a (weak) best reply for such a global bidder. If, however, v1 + α > l, then
a global bidder is better off remaining on each object so long as his expected
continuation payoff remains strictly positive. Namely, if v1, v2 ∈ [0, 1] and
α = 0, (case (ii)), then a global bidder remains on objects 1 and 2 until v1
and v2 respectively. On the other hand, if v1 = v2 = x and α ≥ 0, (case (i)),
then a global bidder’s strategy will be of the type described in Section 2.3:
there is an optimal time τ that depends on vB and Ht such that, if he does
not win any object before τ he exits both objects, and he continue optimally
until x+ α otherwise. This proves that the global bidders’ strategy is a best
reply to the local bidder’s strategy.
To prove optimality for the local bidder, we need to show that the local

bidder’s strategy is a best reply and that it is profitable for the local bidder to
bid on both objects if and only if u1 > l, i.e., that the equilibrium is incentive
compatible, so that being active on both objects gives a credible signal that
u1 > l. Let yk ∈ [0, 1] denote the global bidders’ highest valuation for object
k, k = 1, 2, and let G = FM denote the corresponding distribution function.
Keep in mind that the global bidder with the highest valuation for object
2 will exit auction 2 before c only if y2 < c. When the local bidder is not
active on object 2 and still active on object 1, the bundle bidder with the
highest valuation for object 1 will exit auction 1 at y1 + α. When the local
bidder is active on object 2, if y1 ≤ l − α, then the global bidder with the
highest valuation for object 1 will exit auction 1 at c; whereas if y1 > l − α
and the local bidder is still active on object 1, then the global bidder with
the highest valuation for object 1 will exit auction 1 at y1 + α.
If u1 < c, then it is clearly not optimal for the local bidder to bid on both

objects since he will have to pay at least c for object 1. Hence we assume
u1 ≥ c. Suppose that u1 ≤ l. If the local bidder decides to implement the
retaliatory strategy, then his expected payoff is

R l−α
0
(u1 − c) · G0(y1)dy1 −R c

0
y2 · G0(y2)dy2. The first integral is the local bidder’s payoff from object

1: the local bidder wins object 1 only if y1 < l − α, (recall that l ∈ (α, 1])
and he pays c. The second integral is the expected payoff from object 2:
if y2 < c, then he has to buy object 2 at a price y2. If, however, at time
0 the local bidder decides to bid only on object 1, his expected payoff isR u1−α
0

(u1 − y1 − α)G0(y1)dy1.
At equilibrium we want the local bidder to bid only on object 1 when
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u1 ≤ l, i.e., the following needs to be satisfiedZ l−α

0

(u1 − c) ·G0(y1)dy1 −
Z c

0

y2 · (y2)dy2 ≤
Z u1−α

0

(u1 − y1 − α) ·G0(y1)dy1,

which is satisfied for c solving Eq. (3).
Suppose now that u1 > l. Then, at t = 0, the local bidder’s expected

payoff from adopting the retaliatory strategy must be greater or equal than
the payoff from bidding only on object 1, i.e.,Z l−α

0

(u1 − c) ·G0(y1)dy1 +

Z u1−α

l−α
(u1 − y1 − α) ·G0(y1)dy1

−
Z c

t

y2 ·G0(y2)dy2 ≥
Z u1−α

0

(u1 − y1 − α) ·G0(y1)dy1

It is easy to check that the above inequality is satisfied for any t < c and for
any l ∈ (α, 1]. Finally an appropriate choice of out of equilibrium path belief
guarantees that at any t < c the local bidder’s expected payoff by insisting
with the retaliatory strategy is greater or equal than the payoff of exiting
object 2 and continuing on object 1. ¥
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