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Abstract

Voters� preferences depend on the available information. Follow-

ing Case-Based Decision Theory, we assume that this information is

processed additively. We prove that the collective preferences deduced

from the individual ones through majority vote cannot be arbitrary,

as soon as a winning quota is required. The proof is based on a new

result on random walks.
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1 Introduction

The purpose of this note is to point out a somewhat unexpected relation

between random walks and some aspects of voting theory. Our model is the

following. Voters� preferences are inßuenced by the information that gets

available prior to the election day. This information may take the form of a

collection of facts, arguments or cases that are brought forth. We here assume

that this information is processed in an additive manner by each voter. To

be speciÞc, for each voter i, each case c and each alternative x, there is a

number wi(x, c) that measures the support that case c lends to x: if the

available information is the set D, voter i prefers alternative x to alternative

y iff X
c∈D

wi(x, c) >
X
c∈C

wi(y, c).

This class of decision procedures has been introduced into economics and

axiomatized by Gilboa and Schmeidler (2001) following some work in AI and

psychology.

Our interest lies in understanding whether these assumptions on indi-

vidual preferences can be tested at the aggregate level: does the collective

preference relation derived from individual preferences through qualiÞed ma-

jority voting exhibit any speciÞc pattern? or is it purely arbitrary? In other
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words, knowing how the population of voters reacts facing some evidence,

can we infer anything regarding its reaction to additionnal information ?

Let X be the (Þnite) set of alternatives and C the (Þnite) universe of all

possible cases, and let q ≥ 1/2 be the quota. A society π is deÞned by a

(Þnite) set N of voters and by the vector (wi(x, c))i∈N,c∈C,x∈X of individual

preferences. Collective preferences are deÞned using majority vote with quota

q: given a subset D ⊂ C and two alternatives x and y, x (resp. y) is weakly

preferred to y (resp. to x) by society if no more than q of the voters strictly

prefers y to x (resp. x to y) given D. Thus, a given society induces a map

that associates to any non-empty subset D of C the above reßexive binary

relation over X.

The case q = 1/2 is analysed in Gilboa and Vieille (2002). It is shown

that majority voting may be unpredictable in the sense that any such map

may be the outcome of majority voting. We here prove that this result is

speciÞc to the case q = 1/2 and that, for higher quotas, binary relations

arising from majority voting have some structure. Put somewhat loosely,

collective preferences between any two alternatives cannot be reversed by

adding an extra piece of information, provided much information is already

available.

The paper is organized as follows. Section 2 is devoted to the model and

to the statement of the result. The proof of the main result is given in Section
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3, which emphasizes the connection to random walk theory and sampling.

The proof is based on a new result on random walks, the proof of which is

given in Section 4.

2 Model and Result

2.1 Individual and collective preferences

We let two Þnite sets X and C be given. The set X is the set of alternatives

that are being considered. Most of the paper will focus on the case |X| = 2.

The set C is the universe of all facts (or cases, stories, etc.) that may be

(publicly) known. A population π is described by the setN of voters, together

with the individual preferences over X. Preferences of a voter i ∈ N over

X depends on the available information, that may be any non-empty subset

of C. We make the assumption that information is processed additively.

SpeciÞcally, the preferences of voter i are characterized by a function wi :

X × C →R, with the interpretation that, given information D ⊂ C, voter

i prefers alternative x over alternative y if
P

c∈D wi(x, c) >
P

c∈D wi(y, c).

A population π is described by the set N of individuals, together with the

collection (wi)i∈N of preferences.

Let P∗(C) be the set of non-empty subsets of C and R be the set of
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(complete) reßexive binary relations over X. Let a population π = (N, (wi))

be given. Individual preferences are aggregated using majority voting with

quota q. Fix D ∈ P∗(C) and let x, y be any two alternatives. Alternative x

is preferred to alternative y given D, written x %π
D y, if

¯̄̄̄
¯
(
i ∈ N :

X
c∈C
wi(x, c) >

X
c∈C
wi(x, c)

)¯̄̄̄
¯ ≥ qN. (1)

Thus, π induces a map Mπ : P∗(C)→ R where Mπ(D) =%π
D.

2.2 Results

The imposed structure on individual preferences implies much correlation

between the preferences of voter i given various informations. As an illus-

tration, the following holds, given two disjoints sets D1 and D2. If voter i

prefers x to y given either D1 or D2, he still prefers x to y given both D1 and

D2. Our main focus is in understanding whether any correlation still exists

at the collective level.

The following result, due to Gilboa and Vieille (2002) shows that this

correlation may entirely vanish at the aggregate level, if q = 1
2
. When C is

a singleton, the statement below is a slight generalization of a result due to

McGarvey (1953).
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Theorem 1 Let q = 1/2. For eachM : P∗(C)→ R, there exists a population

π such that Mπ =M .

Our main point is to show that Theorem 1 does not extend to q > 1
2
.

We limit ourselves to two alternatives x and y. This case allows for several

simpliÞcations. First, individual preferences wi : X ×C →R are equivalently

described by wi(c) := wi(x, c) − wi(y, c), so that i prefers x to y given D ifP
c∈D wi(c) > 0. Next, an element % of R can be identiÞed to the set of

winning alternatives, i.e. to x, to y or to {x, y} if respectively x Â y , y Â x

or neither of the two holds.

Theorem 2 Let q > 1/2. Let M : P∗(C)→ R be defined by M(C) = x if

|C| is even and M(C) = y if |C| is odd. If |C| is large enough, there is no

population π such that Mπ =M .

This result may be paraphrased by saying that collective preferencesMπ,

whenever anonymous, cannot be easily reversed as soon as much information

is already available. The statement may be strengthened in many respects,

as will be clear from the proof in Section 3. The present one has the merit

of simplicity.

The formula (1) need not always be the sensible way to deÞne society�s

preferences in the presence of quotas. In many instances, e.g. when consti-
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tutional amendments are being considered, one of the alternatives if a statu

quo while the other is the reform being considered for implementation, so

that the two alternatives do not have symmetric roles. The statu quo is

preferred to the reform iff the reform fails to attract a fraction of at least q of

the voters. It is shown in Gilboa and Vieille (2002) that Theorem 1 extends

to arbitrary q ≥ 1/2 with this modiÞed deÞnition of collective preferences.

The proof of Theorem 2 is based on an auxiliary result on random walks

that we present next. Recall that a random walk is a sequence (Sn)n of

random variables with iid one-step increments Sn+1 − Sn, n ∈ N.

Proposition 3 For every ε > 0, there exists N0 such that the following

holds. For each random walk (Sn), and each N ≥ N0, one has

1

N

N2+N−1X
m=N2

P(S2m ≥ 0 > S2m+1) < ε. (2)

We comment brießy on this result. Note Þrst that no integrability condi-

tion (mean, variance) is assumed on (Sn). The values N and N2 that appear

in (2) are somewhat arbitrary, what matters is that the number of terms in

the summation be small compared to the index of the Þrst term.

We next explore the relationship of Proposition 3 to the Central Limit

Theorem. Let (Sn)n be a random walk, such that the increment Xn :=
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Sn − Sn−1 (S0 = 0) has a variance. By deÞnition, the sequence (Xn)n≥1

is iid. Assume for convenience that E [X2
n] = 1 and set m := E [Xn]. By

the central limit theorem, (Sn − nm/√n)n converges in law to the standard

normal distribution N(0, 1).

If, say, m > 0, (Sn) converges in probability to +∞, hence P(Sn ≥ 0 >

Sn+1) = P(Sn ≥ 0 and Xn+1 < −Sn) converges to zero. If now m = 0, Sn,

when positive, is typically of the order
√
n. In particular, P(Sn ≥ n1/3|Sn ≥

0) converges to one as n goes to inÞnity. Since P(Xn+1 < −n1/3) converges

to zero, P(Sn ≥ 0 and Xn+1 < −Sn) converges to zero. Thus, for each

integrable random walk, P(Sn ≥ 0 > Sn+1) converges to zero as n goes to

inÞnity.

However, the convergence is not uniform, as shown by the example below.

Fix N ∈ N and let (Xn)n be an iid sequence with PN(Xn = N) =
1
N
and

PN(Xn = −1) = 1− 1
N
. Plainly, the event {SN ≥ 0 > SN+1} coincides with

the event {SN = 0, XN+1 = −1} = {XN+1 = −1, Xn = N for exactly one n ∈ {1, ..., N}}.

Therefore,

PN(SN ≥ 0 > SN+1) = (1− 1

N
)N+1

which converges to 1
e
as N goes to inÞnity.

This example shows that P(Sn ≥ 0 > Sn+1) does not converge to zero,

uniformly w.r.t. the random walk. In that respect, the statement in Propo-

8



sition 3 is optimal.

2.3 An example

We here partially analyze an incomplete example, in order to illustrate why

considering large amounts of information is helpful. Let M : P∗(C)→ R be

given, such thatM(C) = x (resp. M(C) = y) whenever |C| = 1 (resp. |C| =

2). Let π = (N, (wi)) be a (hypothesized) population such that Mπ(C) =

M(C) for |C| ≤ 2.

For C ∈ P∗(C), let N(C) be the set of voters i ∈ N that strictly prefer

x to y given C. Since individual preferences are additive in cases, N({c1}) ∩

N({c2}) ⊆ N({c1, c2}). Thus, both N({c1}) and N({c2}) contain at least

q of the population while N({c1}) ∩ N({c2}) contains at most 1 − q of the

population. Thus, for each c1 6= c2, the two sets N({c1}) and N({c2}) should

be fairly different. If C is large, this means that the set N contains many

large fairly different subsets of voters. SpeciÞcally, identify the different

voters to mutually disjoint subintervals of length 1
|N | of [0, 1]. Then, all sets

(N({c}))c∈C are subsets of [0, 1] of length exceeding q, while the length of any

pairwise intersection does not exceed 1 − q. Despite sounding problematic,

this is feasible, provided the quota q is not too large.

Indeed, let q ∈ [1/2, 3/5], and let C be Þxed. Let the set N of voters
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be the set of functions i : C → {0, 1, 2, 3, 4}. The preferences of voter i are

given by wi(c) = 1 if i(c) ∈ {0, 1, 2} and wi(c) = −3 if i(c) ∈ {3, 4}. The

set N({c}) coincides with the set of functions i such that i(c) ∈ {0, 1, 2} ,

hence contains 3/5 of N , while, for c1 6= c2, the set N({c1, c2}) reduces to

N({c1}) ∩N({c2}) which contains 9/25 < 2/5 of N .

Note that in this example, preferences of voters are not correlated across

cases: the preference given a set C of cases of a (randomly selected) voter

gives no information on her preferences given some case c0 /∈ C.

The construction here relies on the idea that it is easier to reverse a voter�s

preferences by adding a single case if little information has been accumulated

so far. A contrario, the basic insight of the proof to come is that this becomes

very difficult if a substantial amount of information has been piled.

3 Votes with quota

Let ε ∈ (0, 2q−1
4
). We let N0 be given by Proposition 3.

3.1 Cyclic populations and random walks

Definition 4 A population (N,w) is said to be cyclic if there is a one-to-one

function v : C → R such that given any permutation σ of C, there is a unique
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i ∈ N such that wi = v ◦ σ.

Plainly, if (N,w) is a cyclic population, then |N | = |C|! .We label cases

from 1 to |C|. Let ι be a randomly selected voter. For n ≤ |C|, we set

Xn := wι(n). Plainly, the random vector (X1, ..., X|C|) is a randomly ordered

list of the elements of the set v(C).

Lemma 5 Let an integer K ≥ N0 and a set C be given such that |C| ≥

(2K2 + 2K − 1)2 /2ε. Let π be a cyclic population. One has

1

K

K2+K−1X
m=K2

P(X1 + ...+X2m ≥ 0 > X1 + ...+X2m+1) < 2q − 1.

Proof. We rephrase the problem using the following auxiliary experiment.

Sample |C| elements c1, ..., c|C| from the set C, and let Yl := w1(cl) be the

weight assigned by the Þrst voter given the lth sampled item.

Let Q denote the law of
¡
c1, ..., c|C|

¢
when sampling is done without re-

placement. In that case,
¡
c1, ..., c|C|

¢
is a random permutation of the elements

of C. Hence, the vector (Y1, ..., Y|C|) is a randomly ordered list of the elements

of v(C), i.e., the law of (Y1, ..., Y|C|) coincides with the law of (X1, ..., X|C|).

Thus, for each m,

P(X1+...+X2m ≥ 0 > X1+...+X2m+1) = Q(Y1+...+Y2m ≥ 0 > Y1+...+Y2m+1)

(3)
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Let Q1 denote the law of
¡
c1, ..., c|C|

¢
when sampling is done with replace-

ment. Plainly, the variables (Y1, ..., Y|C|) are iid in that case. By the choice

of K,

1

K

K2+K−1X
m=K2

Q1(Y1 + ...+ Y2m ≥ 0 > Y1 + ...+ Y2m+1) < ε. (4)

To conclude, we prove that the laws of (Y1, ..., YN1) under the two distribu-

tions Q and Q1 are close, where N1 = 2K
2 + 2K − 1.

Sampling without replacement may be viewed as sampling with replace-

ment, conditional on sampled items being all distinct:

Q((c1, ..., cN1) = (c1, ..., cN1)) = Q1((c1, ..., cN1) = (c1, ..., cN1)|ci 6= cj for each i 6= j).

For each pair (i, j) with i 6= j, Q1(ci = cj) =
1
|C| . Therefore, for any event A

that depends only upon (c1, ..., cN1) , one has

|Q(A)−Q1(A)| ≤ Q1(ci = cj for some i 6= j ≤ N1)

≤ N1(N1 − 1)
2

× 1

|C| ≤ ε (5)

The result follows, by (3), (4) and (5).
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3.2 Proof of Theorem 2

We now prove Theorem 2. We argue by contradiction, and let π = (N, (wi)i∈N)

be an hypothesized population such that Mπ = M . We proceed in three

steps. We Þrst prove that wi may be assumed to be one-to-one for each

i ∈ N . Next, we enlarge the population π to obtain a population π0 that is

a disjoint union of cyclic populations. We conclude by using Lemma 5.

Step 1 For each i ∈ N , let w0i : C →R be a one-to-one function such that

supc |wi(c)− w0i(c)| < 1
|C| min

©¯̄P
i∈C wi

¯̄ª
, where the inÞmum is taken over

all C such that
P

i∈C wi 6= 0. Let π0 = (N, (w0i)) be the population obtained

by changing the weights to w0i. Plainly,
P

i∈C w
0
i(c) > 0 (resp. < 0) wheneverP

i∈C wi(c) > 0 (resp. < 0). Therefore, for each D.

x %π
D y implies x %π0

D y.

Thus, the two binary relations %π
D and %π0

Dcoincide for each D. We assume

below that wi is one-to-one for each i ∈ N .

Step 2 Set N := N × Σ, where Σ is the set of permutations of C. For

(i, σ) ∈ N , we set w(i,σ) := wi ◦σ. In other words, the population π = (N,w)

is obtained from π by adding to each voter i ∈ N all permutations of wi.

Since M(C) = Mπ(C) depends only on |C|, one has Mπ = M . Note that,
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for each i ∈ N , the subpopulation of π with set of voters {i}×P
is a cyclic

population.

Step 3: Conclusion

Let (ι, σ) ∈ N be a randomly selected voter. For n ≤ |C|, set Xn :=

w(ι,σ)(n). For each Þxed i ∈ N , one has, by Lemma 5

1

K

K2+K−1X
m=K2

P(X1 + ...+X2m ≥ 0 > X1 + ...+X2m+1|ι = i) < 2q − 1. (6)

Multiplying (6) by P(ι = i) and summing over i yields

1

K

K2+K−1X
m=K2

P(X1 + ...+X2m ≥ 0 > X1 + ...+X2m+1) < 2q − 1. (7)

On the other hand, since Mπ = M , one has P(X1 + ...+X2m ≥ 0) ≥ q and

P(X1 + ... + X2m+1 < 0) ≥ q for each m, hence P(X1 + ... + X2m ≥ 0 >

X1 + ...+X2m+1) ≥ 2q − 1- a contradiction to (7).

4 On random walks

Recall that a randomwalk is a sequence (Sn) whose increments (Sn+1−Sn)n≥0

are iid. We set Xn := Sn − Sn−1; Sn is usually seen as the position at time

n of a particle that moves from date n − 1 and n of an amount of Xn. The
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law of the random walk (Sn) is determined by the law of X1.

We shall use an alternative construction of the random walk. DeÞne µ+

(resp. −µ−) to be the law of X1 conditioned on X1 ≥ 0 (resp. X1 < 0) and

set p = P(X1 ≥ 0), q = P(X1 < 0). Let (Yn) (resp. (Zn)n) be a sequence

of iid variables with law µ+ and µ− respectively. Beware that both Yn and

Zn are nonnegative variables. Set S+
k =

Pk
l=1 Yl, and S

−
k =

Pk
l=1 Zl. Then

the sequence (Sn) can be described as follows. At time n: choose a direction

dn ∈ {−1,+1} with respective probabilities p and q; if dn = 1, move up by

an amount Yn; if dn = −1, move downwards by the amount Zn. Thus,

Sn =
nX
l=1

{Yl1dl=1 + Zl1dl=−1} .

Let κn = |{l ≤ n : dl = +1}| be the number of upward moves up to n. Plainly,

κn has a binomial distribution B(n, p), and Sn is distributed as S+
κn −S−n−κn .

Moreover, ,

P(Sn ≥ 0 > Sn+1) = P(Sn ≥ 0, dn+1 = −1, Sn + Zn+1 < 0)

= qP(Sn ≥ 0 > Sn + Zn+1)

= qP(S+
κ − S−n−κ ≥ 0 > S+

κ − S−n+1−κ)

= qP(S−n−κ ≤ S+
κ < S

−
n+1−κ). (8)
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Lemma 6 One has P(Sn ≥ 0 > Sn+1) ≤ q supk∈{1,...,n}Cknpkqn−k.

Proof. We shall prove that, for each (y1, ..., yn) ∈ Rn
+,

P(S−n−κn ≤ S+
κn < S

−
n+1−κn|(Y1, ..., Yn) = (y1, ..., yn)) ≤ sup

k∈{1,...,n}
Cknp

kqn−k.

The conclusion will follow by integration over the possible values of (Y1, ..., Yn),

using (8). Since both sequences (S−l ) and (S
+
l ) are non-decreasing, the sets

(indexed by k)
©
S−n−k ≤ S+

k < S
−
n+1−k

ª
are disjoint, thus,

nX
k=1

P(S−n−k ≤ y1 + ...+ yk < S
−
n+1−k) ≤ 1.

Next,

P(S−n−κn ≤ S+
κn < S

−
n+1−κn|(y1, ..., yn))

=
nX
k=1

P(κn = k)P(S
−
n−k ≤ y1 + ...+ yk < S

−
n+1−k)

≤ sup
k∈{1,...,n}

P(κn = k) = sup
k∈{1,...,n}

Cknp
kqn−k.

We proceed to the proof of Proposition 3. The argument goes as follows.

Let M be large, and (Sn) be a given random walk. We prove that if p

(= P(S1 ≥ 0) is of the order of 1
M
, the events {S2m ≥ 0 > S2m+1}, where m
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ranges over M2, ...,M2 +M − 1, are approximately disjoint. If the number

of these events exceeds 1
ε
, their average probability can not exceed ε. On the

other hand, if p is much greater than 1
M
, the probability of each of the events

{S2m ≥ 0 > S2m+1} is close to zero, hence also the average of these. We now

provide details.

By Stirling�s formula, there is α > 1 such that

1

α
≤ n!

(n
e
)n
√
2πn

≤ α for each n, (9)

(α may be chosen to be small, e.g., α = 2 suffices).

Let ε > 0, and M ≥ max(1
ε
, 2
ε
(α

3e2

ε
√
π
+ 1)) be given. Let (Sn)n≥0 be an

arbitrary random walk. We prove below that (2) holds.

Case 1: q ≤ ε

By Lemma 6, P(S2m ≥ 0 > S2m+1) ≤ q for each m. Hence the result is

obvious in that case.

Case 2:M2p ≥ α3e2

ε
√
π
+ 1 and q ≥ ε.

Let an even m ≥ 2M2 be given. By Lemma 6,

P := P(Sm ≥ 0 > Sm+1) ≤ q sup
k
Ckmp

kqm−k. (10)
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By Feller (section VI.3), the values Ckmp
kqm+1−k Þrst increase with k then

decrease, the maximum being reached for k such that (m + 1)p − 1 < k ≤

(m+ 1)p. Note that mq < m− k ≤ (m+ 1)q.

By (9),

Ckm ≤ α3 mm

kk(m− k)m−k
r

m

2πk(m− k) .

Next, note that

³mp
k

´k
=

µ
1 +

mp− k
k

¶k

≤ exp
½
k ln(1 +

1

k
)

¾
≤ e.

For the same reason,
¡
mq
m−k

¢m−k ≤ e. Hence, by (10), P ≤ α3e2
q

m
2πk(m−k)

.

Finally, observe that
q

m
k(m−k)

≤ √2max
³

1√
k
, 1√

m−k

´
. Therefore

P ≤ α3e2

√
π
max

µ
1√
k
,

1√
m− k

¶
≤ ε,

where the second inequality follows by the choice of M . The result follows

by averaging over m.

Case 3:Mp ≤ ε
2
.

Plainly, if S2m1+1 < 0 ≤ S2m2 for some m2 > m1, then dm = −1 for some

m > m1. Therefore,

P(S2m1+1 < 0, S2m2 ≥ 0 for some m2 > m1) ≤Mp
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We next apply the inequality

nX
i=1

P(Ai) ≤ P(∪ni=1Ai) +
n−1X
i=1

P(Ai ∩ (∪nj=i+1Aj)

with the family of events Am = {S2m ≥ 0 > S2m+1} to get

M2+M−1X
m=M2

P(S2m ≥ 0 > S2m+1) ≤ 1 +
M2+M−1X
m=M2

Mp

≤ 1 +M2p.

The result follows by dividing by M .
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