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In this note we study a take-it-or-leave-it bargaining procedure between two
risk neutral individuals engaged in the joint stochastic production of a commod-
ity. Each individual has to exert effort, that is, to provide a one—dimensional
input which is unobserved to the other individual. The output—contingent shar-
ing rule is constrained to lead to nonnegative consumption for both individuals,
a limited liability constraint. The individuals enter joint production in one of
two possible occupations, or tasks, the p-agent and the a-agent, which differ in
their incentive intensity. Hence, incentives are asymmetric. The p—agent makes
a take-it-or-leave-it offer to the a—agent, and has therefore all the contractual
power, modulo providing the a—agent an exogenously given reservation utility.
Although the general characterization of team problems with limited liability

is well-known (see, e.g., Holmstrom (1982) and Legros and Matsushima (1991)),
as well as for the special case of the principal-agent model (see Holmstrom
(1979)), the team problem we study —with asymmetric incentives— has not been
fully analyzed. For example, properties of the expected surplus and payoffs
critical to our equilibrium analysis in Chakraborty and Citanna (2001, 2002)
are not typically spelled out. Hence, the details are provided in this note,
with a particular stress on those properties that are key for obtaining wealth
effects when individuals can choose endogenously which task to perform, as in
Chakraborty and Citanna (2001, 2002).
The contractual situation described here has double, asymmetric moral haz-

ard. The asymmetry of the effort productivity is assumed to be a first order
effect. That is, we assume that the a—agent’s effort has a greater impact on the
probability of success than the p—agent’s.
We introduce increasingly restrictive conditions on the probability of success

as a function of efforts, on the cost of effort, as well as on the output gains, and
study what they yield in terms of properties of the optimal contract.
First, minimal concavity of the success probability in efforts, as well as con-

vexity of the cost of effort provision, is assumed, together with enough regularity
to get incentive compatible efforts as continuous functions of the sharing rule.
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Second, existence of a solution to the contractual problem and boundedness of
the sharing rule are shown by adding the condition that marginal productivity
of each effort is less than its marginal cost when the other side totally shirks.
In order to obtain that the net gain to the a—agent is proportional to the

bonus offered to him, as well as concavity of the p—agent’s gain and of the total
(net expected) surplus —both natural and intuitive properties of the contract—,
we introduce restrictions on the second partials of the success probability and
of the disutility of effort. We focus on production processes which have neg-
ligible second order cross—effects, or small cross—partials of the probability of
success with respect to efforts. Although some nonseparability may be present,
this cannot be too strong to overturn the first order effects. Strategic comple-
mentarities that could reverse the relative importance of the effort exerted in
production by the a—agent are therefore excluded. These turn out to be the
main restrictions imposed in the analysis of the problem leading to a character-
ization identical to Chakraborty and Citanna’s (2001, 2002). These restrictions
also imply that the a—agent’s incentive compatible effort is nondecreasing and
concave in the bonus, while the p—agent’s is nonincreasing. Further, they imply
that the a—agent’s effort reacts more to a bonus change than the p—agent’s does.
They finally also imply that at the optimum the p—agent must offer a bonus
that cannot be lower than what maximizes his own payoff. When it is strictly
higher, it is because the participation constraint binds.
It is then shown that the optimal contract gives rise to a hump—shaped

expected surplus as a function of the a—agent’s reservation utility. This surplus,
generated by the optimal contract, is increasing in the a—agent’s reservation
utility as long as his limited liability binds. It increases at a rate less than one,
and then becomes flat until the reservation utility of the p—agent is so high that
the p—agent’s limited liability binds.
The present note then generalizes the setup used by Chakraborty and Ci-

tanna (2001,2002) beyond the linear—quadratic case. The latter is introduced
at the end as an example of production problems satisfying the general assump-
tions.

1 The model
1.0.1 Technology

Our starting point is the production technology. Production yields a stochastic
output X(ω) through the exercise of unobservable effort. Here ω ∈ Ω represents
the states of the world. Denoting efforts by ep and ea, for the p-agent and the
a-agent respectively, we assume that ei ∈ [0, 1], for i = a, p. The cost of effort e
for the individual is c(e) ≥ 0. We suppose that Ω = 2, and that X is related to
efforts as follows:

X(ω) =

½
X(2) with probability f(ep, ea)
X(1) with probability 1− f(ep, ea),
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where X(2) > X(1) ≥ 0. Hereafter we use ∆X = X(2) −X(1). Extensions to
Ω > 2 may be accommodated with the usual monotonicity conditions.
We start off with general assumptions on f and c.

A1 a) c(e) is a C1 function, increasing and strictly convex, with c(0) = 0; b)
f(ep, ea) is a C1 function, increasing and concave in both of its arguments;
c)

fa(ep, ea) ≥ fp(ep, ea) ≥ 0 and max{fa(ep, ea), fp(ep, ea)} > 0.

where fp(ep, ea) = ∂f(ep, ea)/∂ep and fa(ep, ea) = ∂f(ep, ea)/∂ea.

A1.c means that jobs have a different impact of effort on output, or incentive
intensity. When fp = 0 for all ep, ea, we are in the well-known principal—agent
case. A1.c is the key assumption on technology in Chakraborty and Citanna
(2001, 2002). As for A1.a and A1.b, one can switch from strict convexity of c
to strict concavity of f for what follows.

1.0.2 Contracts

In the take-it-or-leave-it procedure, the p-agent offers the a-agent a wage as a
function of the output to maximize profits (a sharing rule). The contract is then
accepted or rejected by the a-agent. The contract has to guarantee the a-agent
at least a reservation utility of U , in expected terms (the individual rationality
(IR) constraint).
The p-agent makes an offer to the a-agent, i.e., a compensation scheme

w(ω)ω∈Ω. We use the notation ∆w ≡ w(2)− w(1) for the ‘bonus/malus’.
If the individuals receive their wealth at the time of contracting, as opposed

to waiting until after production takes place, they have to decide who gets to
hold wealth until uncertainty is resolved. Also, if there is a start-up cost C > 0
and the firm needs to borrow to start, it must be decided who gets to borrow,
whether the individuals or the match, pooling the resources of the partners.
Such decisions may have an impact if the cost of borrowing or the return from
lending depend on the amount of the loan, that is, if financial markets are
imperfect. In what follows, we assume that there is a riskfree asset that can be
exchanged by the firm as well as the individuals at a given rate of r ≥ 1. In this
case, we can without loss of generality assume that the p—agent is financially
responsible also for the liabilities or assets of the firm. Then, after production
the p—agent receives fW f

p (r) = W f
p (r) + W f

F (r) + X(1) no matter what the

realized state of the world is, where W f
j (r) is the final wealth of j = a, p or F ,

the firm. Since it is assumed that the individuals or the firm can invest and
borrow at the riskfree rate r, the final wealth depends on r.
The p-agent thus solves:
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max
w(1),∆w,ea,ep

fW f
p (r) + (∆X −∆w)f(ep, ea)− w(1)− c(ep) s.t.

W f
a (r) +∆w f(ep, ea) + w(1)− c(ea) ≥ U (IR)

ea ∈ argmaxe0∈[0,1]∆w f(ep, e
0)− c(ea) (ICa)

ep ∈ argmaxe0∈[0,1](∆X −∆w)f(e0, ea)− c(ep) (ICp)
min[w(1) +∆w,w(1)] ≥ −W f

a (r) (LLa)

min[∆X − w(1)−∆w,−w(1)] ≥ −fW f
p (r) (LLp)

(C)

The p-agent maximizes expected total wealth minus the cost of effort. Note
the separability of utility for consumption and effort, which is used to simplify
computations.

2 Analysis
2.0.3 Incentive compatible efforts

The (IC) constraints imply that the agents are playing a Nash equilibrium
among themselves. The set of incentive compatible efforts is therefore nonempty
given the continuity of the objective functions and the compactness, convexity
of the choice sets. It only depends on ∆w, and we denote with f(∆w) the
probability computed at an incentive compatible choice of efforts, ep(∆w) and
ea(∆w). If (ep, ea) is an incentive compatible choice of efforts, then it must
satisfy1

∆wfa(ep, ea)− c0(ea) + µa − νa = 0
(∆X −∆w)fp(ep, ea)− c0(ep) + µp − νp = 0

(1)

and

min{ea, µa} = 0,min{1− ea, νa} = 0
min{ep, µp} = 0,min{1− ep, νp} = 0

(2)

It is immediate to see that if ∆w ≤ 0 then it is a dominant strategy to set
ea = 0, or ea(∆w) = 0 if ∆w ≤ 0. Similarly, ep(∆w) = 0 if ∆w ≥ ∆X. We will
look at problems that have the following additional property.

P1 There exists continuous selections ep(∆w), ea(∆w) of incentive compatible
efforts.

Although P1 does not explicitly list conditions on f, c leading to it, many
such sufficient conditions exist. P1 amounts to conditions on derivatives of f
and c that make the determinant of the derivative of (1) with respect to ep, ea
nonnull, a regularity condition. A sufficient condition for property P1 is that

1That the Kuhn-Tucker conditions are necessary and sufficient here follows from assump-
tion A1. That the FOCs are also sufficient in this case for problem (C) follows from Rogerson
(1985). We are of course using differentiability of f and c.
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f, c have constant second derivatives. The Nash equilibrium given ∆w is then
unique.
We will maintain assumption A1 and property P1 hereafter.

Lemma 1 Let A1 and P1 hold. When fp(ep, ea) ≡ 0, ea(∆w) is nondecreasing
for all e. When fp(ep, ea) > 0, ep(∆w) is constant implies ea(∆w) is nonde-
creasing, and ea(∆w) is constant implies ep(∆w) is nonincreasing.

Proof. When fp(ep, ea) ≡ 0, ep(∆w) = 0 for all e, then only first order
effects matter. From (1) and since fa(ep, ea) > 0, if ∆w0 > ∆w,

∆w0fa(0, ea(∆w))− c0(ea(∆w))

½
> 0 if ea(∆w) > 0
= −µa if ea(∆w) = 0

In the first case, the marginal benefit of the a—agent’s effort is greater than
its marginal cost. Using A1, i.e., concavity of f and convexity of c, we see
that ea(∆w0) ≥ ea(∆w), i.e., ea(∆w) is nondecreasing (and obviously ep(∆w)
nonincreasing).
When fp(ep, ea) > 0, then typically both ea(.) and ep(.) are not constant at

least over some range of ∆w. When one of the two functions is constant, then
again only first order effects matter. Hence, if ep(∆w) is constant, ea(∆w) is
nondecreasing by the previous reasoning.
On the other hand, if ea(∆w) = ea(∆w

0) = ea, if∆w0 > ∆w and if ep(∆w) <
1, from (1)

(∆X −∆w0)fp(ep(∆w), ea)− c0(ep(∆w)) (3)

< (∆X −∆w)fp(ep(∆w), ea)− c0(ep(∆w)) = 0

so that A1 implies ep(∆w0) ≤ ep(∆w), i.e., ep(∆w) is nonincreasing.
Lemma 1 implies that ea(∆w) is nondecreasing when ∆w ≥ ∆X, and that

ep(∆w) is nonincreasing when ∆w ≤ 0. This will be useful in proving Lemma
2 below.
Later, it will be useful to have ea(∆w) nondecreasing and ep(∆w) nonin-

creasing for all ∆w ∈ [0,∆X]. This is true if fp(ep, ea) ≡ 0 (the principal—agent
setup), and by continuity it will be true if second order cross effects are negligi-
ble relative to first order ones, i.e., if fpa is sufficiently close to zero relative to
fa and fp. In this case, even strategic complementarity of efforts (i.e., fpa > 0)
can be accomodated.2

2What are sufficient conditions to get that ea(∆w) is nondecreasing in ∆w, while ep(∆w)
is nonincreasing for all ∆w when second order effects are not negligible? Suppose that

fpa ≤ 0 and
fa(e, e)

fp(e, e)
= const (independent of e)

When this holds, it must be true that for any ∆w where neither function is constant and any
∆w0 > ∆w,

[ea(∆w0)− ea(∆w)] > 0 and [ep(∆w0)− ep(∆w)] < 0, or vice versa.

For suppose not, and say both terms are positive. By increasing the bonus/malus to ∆w0 >
∆w, the p—agent’s FOC’s gives the inequality (3). Now, since ea(∆w0) > ea(∆w) and fpa ≤ 0,
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2.0.4 ∆w is a bonus to the a—agent

Substituting in (C) these functions, we obtain

maxw(1),∆w fW f
p (r) + (∆X −∆w)f(∆w)− w(1)− c(ep(∆w)) s.t.

W f
a (r) +∆wf(∆w) + w(1)− c(ea(∆w)) ≥ U (IR)

min[w(1), w(1) +∆w] ≥ −W f
a (r) (LLa)

min[∆X − w(1)−∆w,−w(1)] ≥ −fW f
p (r) (LLp)

(C 0)
We now examine the properties of (C 0). First, we introduce further assumptions
on f, c and ∆X.

A2 We assume that f, c and ∆X are such that

∆Xfp(e, 0) ≤ c0(ep(0))

all e ≥ ep(0), and
∆Xfa(0, e) ≤ c0(ea(∆X))

all e ≥ ea(∆X).

These conditions essentially say that it does not pay to exert too much effort
when the other agent puts in nothing (marginal benefit of effort increase is below
its marginal cost). Assumption A2 puts a bound on the bonus/malus use in the
contract, as shown in the following lemma.

Lemma 2 Let A1, A2 and P1 hold. If (w∗(1),∆w∗) solves (C 0) , then ∆w∗ ∈
[0,∆X].

Proof. Suppose not. First consider an optimal (w∗(1),∆w∗) such that
∆w∗ < 0 and such that ep(∆w) is constant in a closed neighborhood U∆w∗ .
Then, f is constant on this neighborhood. Let f(∆w∗) = f∗ and choose

w0(1) = w∗(1)− f∗(∆w0 −∆w∗)
∆w0 = max{∆w | ∆w ≤ 0 and ∆w ∈ U∆w∗}

(∆X −∆w0)fp(ep(∆w), ea(∆w0))− c0(ep(∆w)) ≤
(∆X −∆w0)fp(ep(∆w), ea(∆w))− c0(ep(∆w)) < 0

Then, the marginal benefit of the p—agent’s effort is less than its marginal cost. Using A1,
we see that ep(∆w0) < ep(∆w), a contradiction. A similar argument shows that the terms
cannot be both negative.
Since ea(∆w) = 0 if ∆w ≤ 0, ea(.) will have to increase, and ep(.) decrease, in a right

neighborhood of ∆w = 0. Similarly, ea(.) decreases and ep(.) increases in a left neighborhood
of ∆X. Continuity implies that the two functions must cross. Now the constant rate of
substitution fa/fp along the diagonal implies that there is a unique ∆w for which ea(.) and
ea(.) will cross.
Finally, the two functions must be globally monotonic. If not, there is going to be a pair of

points ∆w,∆w0 where ej(∆w) = ej(∆w0) for j = p or a, but ei(.) has the wrong slope. This
implies our monotonicity property.
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First, since ∆w0 < 0, w0(1) < w∗(1) implies (LLp) is satisfied. Second,

w0(1) +∆w0 = w∗(1) +∆w∗ + (1− f∗)(∆w0 −∆w∗) > w∗(1) +∆w∗,

and (LLa) is satisfied. Also,

∆w0f(∆w0)+w0(1)−c(ea(∆w0)) = ∆w0f∗+w∗(1)−f∗(∆w0−∆w∗) = w∗(1)+f∗∆w∗,

so that the (IR) is also satisfied. Hence, (w0(1),∆w0) is feasible and gives the
same payoff to the p—agent, as it is easily checked.
Next, let (w∗(1),∆w∗) be such that ∆w∗ ≤ 0 and, by Lemma 1, ep(∆w) <

ep(∆w
∗) for 0 ≥ ∆w > ∆w∗. Choose

w0(1) = w∗(1) + f∗∆w∗

∆w0 = 0

It is immediately verified that (LLp), (LLa) and (IR) are satisfied. Now let
ep(0) = e0p and f(0) = f 0. The p—agent makes ∆Xf 0 −w∗(1)− f∗∆w∗ − c(e0p),
or

∆X(f 0 − f∗) + c(e∗p)− c(e0p) + (∆X −∆w∗)f∗ − w∗(1)− c(e∗p)

which is greater than or equal to the payoff at (w∗(1),∆w∗) if and only if

∆X(f 0 − f∗) + c(e∗p)− c(e0p) ≥ 0
Applying the mean value theorem, this is true if and only if

−∆Xfp(be)(e∗p − e0p) + c0(be)(e∗p − e0p) ≥ 0
where be ∈ [e0p, e∗p]. Equivalently,

∆Xfp(be, 0) ≤ c0(be),
which follows from A2.
On the other hand, let (w∗(1),∆w∗) with ∆w∗ > ∆X. First assume that

ea(∆w) is constant in a closed neighborhood U∆w∗ . Then, f is constant on this
neighborhood. Choose

w0(1) = w∗(1) + f∗(∆w∗ −∆w0)
∆w0 = min{∆w | ∆w ≥ ∆X and ∆w ∈ U∆w∗}

Since w0(1) > w∗(1) and∆X−w0(1)−∆w0 ≥ w∗(1)+∆w∗ (since (1−f∗)∆w∗ ≥
(1− f∗)∆w0), (LLa), (LLp) and are satisfied. Also,

∆w0f 0 − w0(1)− c(e0a) = ∆w
∗f∗ − w∗(1)− c(e∗a),
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so that (IR) is satisfied, while the p—agent’s payoff is unchanged. When ∆w∗ >
∆X and, by Lemma 1, ea(∆w) < ea(∆w

∗) for ∆X ≤ ∆w < ∆w∗, let

w0(1) = w∗(1) + f∗(∆w∗ −∆w0)
∆w0 = ∆X

Observe that w0(1) > w∗(1) so that (LLa) is satisfied. Also,

∆X − w0(1)−∆w0 = −w∗(1)− f∗(∆w∗ −∆X) ≥ ∆X − w∗(1)−∆w∗

if and only if (1−f∗)∆w∗ ≥ (1−f∗)∆X, which is verifed, and (LLp) also holds.
As for the p—agent’s payoff, this is identical at (w∗(1),∆w∗) to −w0. Finally,
the (IR) is satisfied if and only if

∆Xfa(0,bbe) < c0(bbe)
for bbe ∈ [e0a, e∗a], again true if A2 holds.
Since ∆w is nonnegative in the optimal contract, it is a bonus given to the

a—agent. As a by—product, existence of a solution to (C0) if the constraint set
is nonempty is now obvious since the p-agent’s payoff function is continuous,
and the (LL) constraints imply fW f

p (r) ≥ w(1) ≥ −W f
a (r) and ∆X ≥ ∆w ≥ 0,

defining a compact set for (w(1),∆w).

2.0.5 Gains and surplus

We introduce the notation:

ga(∆w) ≡ ∆wf(∆w)− c(ea(∆w))
gp(∆w) ≡ (∆X −∆w)f(∆w)− c(ep(∆w))
g(∆w) ≡ ga(∆w) + gp(∆w)

where gp is the gain to the p-agent, ga the gain to the a-agent, and g is the
surplus from the match, all net of wealth and of the low state output, and as
functions of the bonus ∆w. We add assumptions on f and c, as follows.

A3 a) f and c are at least C2, and f is h.d.1; b) small second order cross
effects relative to first order ones, e.g., fpa ≈ 0; and c) for all ep, ea,

fa(ep, ea)

fp(ep, ea)
≥ ∆wfaa(ep, ea)− c00(ea)

(∆X −∆w)fpp(ep, ea)− c00(ep)
.

Assumption A3.b amounts to essentially requiring the problem to have little
strategic complementarity effects across tasks. In other words, the problem must
be effectively separable in ep and ea. This does not mean that only one effort
is used in the optimal contract. The following (small) curvature assumption is
also made on the now twice—differentiable incentive compatible efforts ep(.) and
ea(.).
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P2 e00p(∆w), e
00
a(∆w) exist and are small, with e00a(∆w) ≤ 0.

Without assumptions A3 and P2, the exogenous productivity assumption
can be reversed by strategic complementarities (or substitution) of efforts be-
tween agents, and the analysis of the contractual game becomes considerably
more subtle and complicated. We can now prove fundamental properties for the
gains, in line with the intuitive view of the team problem where the a—agent
exerts the more productive effort. Also, let ∆wp, ∆wg be maximizers of gp and
g, respectively.

Lemma 3 Under A1-A3, P1 and P2, when ∆X > ∆w > 0: a) ga is strictly
increasing; b) gp and g are strictly concave; c) ∆wp < ∆wg.

Proof. a) Since under the maintained assumptions (in particular, A3.a)
ep(.) and ea(.) are differentiable, for ∆X > ∆w > 0, using (1) and neglecting
terms with fpa(., .) by A3.b, we have

g0a(∆w) = f(∆w) +∆wfp(ep, ea)e
0
p(∆w)

where again, ej = ej(∆w), for j = p, a. Given A3.b, ea is increasing and ep
decreasing in ∆w (see footnote 2). Now, using P1 and (1) one can show that,
using A3.b and neglecting terms containing fpa ,

|e0p(∆w)| ≤ |e0a(∆w)|
because of A3.c. Since f is h.d. 1, and using also fa ≥ fp,

g0a(∆w) = faea(∆w) + fpep(∆w)−∆wfp(ep, ea)
¯̄
e0p(∆w)

¯̄
≥ faea(∆w) + fpep(∆w)−∆wfa(ep, ea) |e0a(∆w)|
= fa[ea(∆w)−∆we0a(∆w)] + fpep(∆w).

Concavity of ea (i.e., P2) implies that the first term is positive, and g0a > 0.
b) Now, using again (1) and neglecting terms with fpa, we have

g00p = (∆X −∆w)[faa (e0a(∆w))
2
+ fae

00
a(∆w)]− [fa2e0a(∆w) + fpe

0
p(∆w)]

is negative, because of P2 and what observed above about e0a and e
0
p. Analogous

procedure shows that

g00 = ∆wfpp(e
0
p(∆w))

2 + (∆X −∆w)faa (e0a(∆w))
2 − [fa2e0a(∆w)− fpe

0
p(∆w)]

is negative. c) now follows immediately.
Using the gain functions, for any choice (w(1),∆w) the p-agent’s payoff is

fW f
p (r) + gp(∆w)− w(1)
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while the (IR) constraint is

W f
a (r) + ga(∆w) + w(1) ≥ U.

Let (w∗(1),∆w∗)(U,W, r) be the optimal sharing rule, i.e., a solution to (C 0),
expressed as a function of U,W and r. We immediately have the following
result.

Lemma 4 Under A1-A3, P1 and P2:
a) ∆w∗(U,W, r) ≥ ∆wp.
b) Either the (IR) constraint binds or ∆w∗(U,W, r) = ∆wp.

Proof. a) If not, then by Lemma 3 increasing ∆w and keeping w(1) con-
stant increases the p-agent’s objective function without violating any of the
constraints.
b) We drop reference to U,W, r for the optimal choice. Suppose not. Then

W f
a (r) + ga(∆w

∗) + w∗(1) > U and ∆w∗ > ∆wp.

If w∗(1) > −W f
a (r), simply decrease w(1), increasing the p-agent’s payoff, a

contradiction to the optimality of (w∗(1),∆w∗). If w∗(1) = −W f
a (r), and if

∆w∗ ∈ (∆wp,∆X], then for ∆wp < ∆w
0 < ∆w∗, gp(∆w0)− gp(∆w

∗) > 0, and
we can decrease ∆w to increase payoffs while satisfying the (IR) constraint, by
its continuity, again contradicting the optimality of (w∗(1),∆w∗).
Our problem (C0) is then equivalent to

maxw(1),∆w fW f
p (r) + gp(∆w)− w(1) s.t.

Wa + ga(∆w) + w(1) ≥ U (IR)
w(1) ≥ −W f

a (r) (LLa)

−w(1) ≥ −fW f
p (r) (LLp)

∆X ≥ ∆w ≥ ∆wp

Note that if (w∗(1),∆w∗)(U,W, r) is a solution with ∆w∗(U,W, r) > ∆wp,
the (IR) constraint must hold with equality. Then we can substitute w(1) =
U −W f

a (r) − ga(∆w) from the (IR) constraint into the (LL) constraints and
into the objective function. We then eliminate w(1) from the problem, which
becomes

max∆w fW f
p (r) +W f

a (r) + g(∆w)− U s.t.
ga(∆w) ≤ U (LLa)

ga(∆w) ≥ U −W f
a (r)−fW f

p (r) (LLp)
∆X ≥ ∆w > ∆wp

(P )

In this case, and because ga is increasing and g is concave, a solution to (P1)
which we know exists, is also unique. Note that in (P1) at most one of the (LL)
constraints binds at a solution. Also note that a solution (w∗(1),∆w∗)(U,W, r)
to problem (C 0) either has ∆w∗(U,W, r) = ∆wp or solves (P ).
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If the optimum for (P ) is at the boundaries (LL) , it depends on the reserva-
tion utility U , and possibly onWp,Wa and r. We denote it by∆w∗(U,Wp,Wa, r).
Let S(U) ≡ S̃(∆w∗(U,Wp,Wa)) be the optimal surplus, as a function of U only.
Let ∆wi(U,W, r) denote ∆w which solves (LLi) in (P1), for i = p, a. We are fi-
nally ready to state the main property of the solution to the bargaining problem,
regarding the derivative of the surplus with respect to the reservation utility.

Proposition 5 i) Suppose that ∆wg > ∆wa(U,W, r). Then ∆wg is not feasible
for (P ), (LLa) binds and

∆w∗(U,W, r) = ∆wa(U,W, r)

if ∆wa(U,W, r) ≥ ∆wp, or

∆w∗(U,W, r) = ∆wp.

ii) Suppose that ∆wg < ∆wp(U,W, r). Then ∆wg is not feasible for (P ) ,
(LLp) binds and

∆w∗(U,W, r) = ∆wp(U,W, r).

Furthermore, in case (i),

∂S(U,W, r)/∂U ∈ (0, 1]

and ∂S(U)/∂U < 1 if ∆wa(U,W, r) > ∆wp; while in case (ii),

∂S(U)/∂U < 0

In all other cases, ∂S(U)/∂U = 0 when S is differentiable.

Proof. i) Clearly ∆wg is not feasible for (P ) because ga is increasing in ∆w
and (LLa) is already binding at ∆wa(U,W, r). Since g(∆w) is increasing before
∆wg, ∆wa(U,W, r) is the maximum for (P ). If ∆wa(U,W, r) < ∆wp, then
∆wa(U,W, r) is worse than∆wp, and∆w∗(U,W, r) = ∆wp. ii) The proof of this
statement is similar to i), and therefore omitted. As for the derivative, consider
case (i). Now g0a(∆w) > 0 implies that, as U increases, ∆wa must increase
as well. So ∂∆wa/∂U > 0. Then ∂S(U,W, r)/∂U = (dg/dw)(∂∆wa/∂U) > 0,
since g is increasing when ∆wa(U,W, r) < ∆wg. If ∆wa(U,W, r) solves (P ), and
if∆wa(U,W, r) > ∆wp, gp concave implies that as U increases gp decreases. But
since g = gp + ga = gp + U, we have ∂S(U,W, r)/∂U < 1. Now the other cases
are obvious.
Let Up(B∗, U,W, r), Ua(B∗, U,W, r) be the p-agent’s and a-agent’s payoffs,

respectively.
We summarize the properties of the solution to problem (C 0).
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Proposition 6 a) A solution to (C 0) exists if W f
a (r) +fW f

p (r) + ga(∆X) ≥ U,
and entails the surplus

S(U,W, r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(∆wp) if U < ga(∆wp) (S.1)
g(∆wa(U)) ga(∆wp) ≤ U < ga(∆wg) (S.2)

g(∆wg)
ga(∆wg) ≤ U, and
U < fW f

p (r) +W f
a (r) + ga(∆wg)

(S.3)

g(∆wp(U,fW f
p (r),W

f
a (r))) fW f

p (r) +W f
a (r) + ga(∆wg) ≤ U (S.4)

Moreover, in case (S.2), ∂
∂U [S(U,W, r)] ∈ (0, 1), this derivative being zero in

(S.1) and (S.3) and negative in (S.4).

We interpret the statement of the proposition.
(S.1): here U is so low that (IR) does not bind, although (LLa) does. In this

situation we have ‘efficiency wages’, and the a-agent gets more than his outside
option.
(S.2): here (IR) binds and so does (LLa) , the intuitive case. The monotonic-

ity of surplus S(U,W, r) in U in case (S.2) is explained by the fact that, since
(LLa) and (IR) are binding, an increase in U implies that the a-agent must
be paid more in the high state, increasing his incentives to exert effort. While
the p-agent’s incentives will be so reduced, the net result on surplus will be
nonnegative as fa ≥ fp.
(S.3): no (LL) constraint binds, and maximum incentive compatible surplus

is achieved.
(S.4): only (LLp) binds. In this last case, an increase in the a—agent’s

reservation utility must be paid with an increase in bonus but since the effort
exerted is too high already, surplus will decrease.
Note also that S(U,W, r) is independent of W (and so is Up) unless (LLp)

binds, and it is a constant in cases (S.1) and (S.3) . Unless the limited liability
constraint binds for the p-agent, net (expected) surplus in a match depends on
wealth only if the outside option of the a—agent does.
The optimal solution yields the following (expected) payoffs to the p-agent

and the a-agent:

Ua(B∗, U,W, r) =

½
ga(∆wp) if U < ga(∆wp)
U otherwise

(4)

Up(B∗, U,W, r) = fW f
p (r) +W f

a (r) + S(U,W, r)− Ua(B∗, U,W, r) (5)

It is immediately seen that B∗ is constrained efficient.

2.0.6 Summary

In conclusion, the assumptions we have made to get to Proposition 6 (A1-A3,
P1-P3) are summarized as:
—. c is at least C2, increasing, convex with c(e) ≥ 0 and c(0) = 0.
— f is at least C2, increasing, concave, and h.d. 1, with

i. fa(ep, ea) ≥ fp(ep, ea) ≥ 0 and max{fa(ep, ea), fp(ep, ea)} > 0.
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ii. fpa ≈ 0
— ∆Xfp(e, 0) ≤ c0(ep(0)) all e ≥ ep(0), and ∆Xfa(0, e) ≤ c0(ea(∆X)) all

e ≥ ea(∆X).
— fa(ep,ea)

fp(ep,ea)
≥ ∆wfaa(ep,ea)−c00(ea)

(∆X−∆w)fpp(ep,ea)−c00(ep)
In addition, we have assumed sufficient regularity for f and c so that
— ep(∆w), ea(∆w) are differentiable functions on [0,∆X], with e00p(∆w), e

00
a(∆w) ≈

0 and e00a(∆w) ≤ 0.
Proposition 6 summarizes an important property for the analysis in Chakraborty

and Citanna (2001, 2002). They also considered contractual problems where
gp(∆wg) ≤ ga(∆wg) for all f, with equality only if fa = fp.
As far as the shape of surplus is concerned, this property is irrelevant. As for

equilibrium effects with endogenous matching, if gp(∆wg) > ga(∆wg), then no
wealth effects would appear in equilibrium. This is because maximum incentive
compatible surplus would be achievable with equal division irrespective of the
individual wealth level. This follows from the definition of the unrestricted set
R in Chakraborty and Citanna (2001, 2002). In this sense it is economically
more interesting to focus on the opposite case.3

It remains to be seen if the set of such f, c and ∆X satisfying all of our
assumptions is nonempty.

An example Consider a quadratic cost of effort, i.e.

c(e) = c
e2

2
with c > 0

and f linear, i.e.,

f(ep, ea, α) = αea + (1− α)ep

where α ∈ [1/2, 1] and ∆X < 2c.
In this case fp = 1− α, fa = α and 0 ≤ fp ≤ fa ≤ 1, with max{fa, fp} > 0.

Also, fpa = 0.
From the (IC) constraints, we derive the optimal efforts ep(∆w,α) and

ea(∆w,α) as continuous functions of ∆w and α. They are

ea(∆w,α) = max{0,min[α∆wc , 1]}
ep(∆w,α) = max{0,min{ (1−α)(∆X−∆w)c , 1]}

Notice that ep(∆w), ea(∆w) are differentiable functions on [0,∆X], with e00p(∆w) =
e00a(∆w) = 0. Now,

∆Xfp(e, 0)− c0(ep(0)) = ∆X(1− α)− c(1− α)∆X/c = 0 ≤ 0 all e ≥ ep(0),

∆Xfa(0, e)− c0(ea(∆X)) = ∆Xα− cα∆X/c = 0 ≤ 0 all e ≥ ea(∆X).

3The other property used in Chakraborty and Citanna (2001, 2002) is gp(∆wp) > ga(∆wp).
However, this is inessential, and everything goes through in that paper even if it does not hold.
In the proof of Proposition 1, Step 2, one needs to evaluate Φ at gp(∆wp), as opposed to at
ga(∆wp), to apply the intermediate value theorem.
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Next,

fa(ep, ea)

fp(ep, ea)
=

α

1− α
≥ 1 = −c−c =

∆wfaa(ep, ea)− c00(ea)

(∆X −∆w)fpp(ep, ea)− c00(ep)
.

Then we derive an expression for the probability of success as a continuous
function of ∆w and α, f(∆w,α). This is

f(∆w,α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− α if ∆w ≤ ∆X − c

1−α
(1− α)2(∆X −∆w)/c ∆X − c

1−α < ∆w ≤ 0
[α2∆w + (1− α)2(∆X −∆w)]/c 0 < ∆w ≤ ∆X
α2∆w/c ∆X < ∆w ≤ c/α
α c/α < ∆w

Note that ga is strictly increasing, and gp and g are globally concave reaching
interior maximums at

∆wp(α) = ∆X
α2 − (1− α)2

2α2 − (1− α)2

and

∆wg(α) = ∆X
α2

α2 + (1− α)2
≤ ∆X

respectively. Observe that here gp(∆wp(α), α) > ga(∆wp(α), α) and that gp(∆wg(α), α) ≤
ga(∆wg(α), α) for all α ∈ [12 , 1], with the second inequality holding with equality
if and only if α = 1

2 .
Hence all the results of this note apply, and in particular Proposition 6.
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