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Abstract

We investigate the structure of the pricing kernels in a general dynamic investment

setting by making use of their duality with the self financing portfolios. We generalize

the variance bound on the intertemporal marginal rate of substitution introduced in

Hansen and Jagannathan (1991) along two dimensions, first by looking at the variance of

the pricing kernels over several trading periods, and second by studying the restrictions

imposed by the market prices of a set of securities.

The variance bound is the square of the optimal Sharpe ratio which can be achieved

through a dynamic self financing strategy. This Sharpe ratio may be further enhanced

by investing dynamically in some additional securities. We exhibit the kernel which

yields the smallest possible increase in optimal dynamic Sharpe ratio while agreeing

with the current market quotes of the additional instruments.
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1. Introduction

The duality between pricing kernels and portfolio payoffs is the key to many funda-

mental results in asset pricing theory. In a one period setting, a pricing kernel is a random

variable mt+1 which satisfies the equality

Rf
t,t+1Et[mt+1]wt = Et [mt+1wt+1](1)

for every portfolio with payoff wt+1 at time (t + 1) and value wt at time t, where Rf
t,t+1

and Et denote respectively the (gross) risk free rate from t to (t + 1) and the conditional

expectation operator corresponding to the information available at time t. Harrison and

Kreps (1979) show that the existence of a pricing kernel is equivalent to the law of one price

while the absence of arbitrage corresponds to the existence of a positive pricing kernel.

If we know the prices today and the payoffs tomorrow of a set of securities, then a positive

pricing kernel mt+1 consistent with these securities provides an efficient method to produce

contingent claim prices in an arbitrage free framework. The kernel mt+1 yields an arbitrage

free price Ft today for a payoff Ft+1 tomorrow through the equation

Rf
t,t+1Et[mt+1]Ft = Et [mt+1Ft+1] .

This technique is especially useful when the market is incomplete and the claim Ft+1 cannot

be obtained as the payoff of a portfolio based on the primitive securities.

Every positive pricing kernel yields however a different arbitrage free price system, and

in many situations the resulting range of contingent claim prices is so wide as to be of little

practical use. It is then natural to seek a rationale to reduce the set of admissible pricing

kernels, and in turn the range of corresponding prices. The quest for such a rationale is a

central theme in asset pricing theory. Bernardo and Ledoit (2000) show for instance that

setting upper and lower bounds to a pricing kernel in every state of the world controls the

maximum gain–loss ratio of every investment strategy. Balduzzi and Kallal (1997) consider

the restrictions imposed by the risk premia assigned by the pricing kernels on some arbitrary

sources of risk.

The variance bound on the pricing kernels introduced in Hansen and Jagannathan (1991)

is another important consequence of the duality between kernels and portfolios. The square

of the Sharpe ratio of every portfolio is smaller than the variance of every pricing kernel,

once properly normalized, and equality obtains for a unique portfolio whose payoff is also
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itself a pricing kernel. This result is useful in two ways. On the one hand, the variance of

every pricing kernel yields an upper bound to the Sharpe ratios which portfolio managers

may expect to obtain in the market. On the other hand the Sharpe ratio of any portfolio

is a lower bound to the variance of the pricing kernels, and this allows to reject the asset

pricing theories for which the discount factor does not display enough variation across the

states of nature. Bekaert and Liu (2001) give an extensive account of the growing use of

these bounds in financial economics.

In view of this result, Cochrane and Saá–Requejo (2000) reduce the set of admissible

pricing kernels by rejecting candidates with large variance on the ground that they may

give rise to abnormal good–deals in the form of investment opportunities with large Sharpe

ratios. They reason that although positive pricing kernels with large variance do not create

arbitrage opportunities, they are nevertheless suspicious and should be discarded. Cochrane

and Saá–Requejo (2000) compute the upper and lower bounds for the price of a contingent

claim when a variance bound is imposed on the kernels. Černý (2002) and Longarela (2001)

generalize this result. Černý (2002) defines a good–deal in terms of certainty equivalent

while Longarela (2001) replaces the variance of the kernel with the measure of model mis-

pecification introduced in Hansen and Jagannathan (1997).

Our contribution is to extend the investigation of the duality between investment strate-

gies and pricing kernels from a single period to several consecutive trading periods. A

pricing kernel from time t to horizon T is a random variable mT which satisfy the equality

Rf
s Es[mT ]ws = Es [mT wT ] ,(2)

for every intermediate period s between t and T and for every self financing portfolio whose

value varies from ws to wT between time s and horizon T . We denote here Rf
s the gross

risk free rate from s to T .

The time dimension of this duality has so far been limited to the description of the

information set implicit in the conditional expectation of Equation 1. We generalize the

variance bound of Hansen and Jagannathan (1991) to a multiperiod setting by showing

that the standard deviation of the intertemporal marginal rate of substitution over a span

of trading periods is larger than the optimal Sharpe ratio available over the corresponding

investment horizon through dynamic self financing strategies. Every investment span gives

rise to a different variance bound, and it is legitimate to expect a sharper restriction on the

pricing kernels than the one which results from a single trading period.
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The asset pricing results which follow from restrictions on the pricing kernels have so

far been obtained through a repeated use of a single period analysis. This is for instance

the case in both Bernardo and Ledoit (2000) and Cochrane and Saá–Requejo (2000) who

compute contingent claim price bounds recursively. They cannot deal with a constraint on

the kernels which is defined over several periods and which cannot be written as a succession

of constraints on the one period intertemporal marginal rates of substitution.

An important example of such a constraint is the observation of the current market prices

of a set of new securities on top of the original ones. It is then natural to study the set

of kernels which agree with these quotes. If the payoffs of the new securities span several

trading periods, this constraint cannot be written in a convenient time separable way. Our

multiperiod analysis handles these constraints and allows us to exhibit the sharper variance

bounds which they generate.

We propose a theory of pricing kernels in a general dynamic investment environment.

We describe the structure of the pricing kernels which are consistent with the stochastic

evolution of a finite number of securities. Equation 2 highlights the duality between the

pricing kernels and the value processes of the self financing portfolios. We show that the

pricing kernel with minimum conditional variance over a span of trading periods is the

unique kernel which is also the final value of a self financing portfolio. This final value

happens to have minimum conditional second moment among the self financing portfolios.

We refer to this strategy as the L2 minimum portfolio. The analysis of this duality yields

a number of results, both on the pricing kernels and on the dynamic investment strategies.

As explained above, positive pricing kernels allow to derive the price dynamics of new

instruments in an arbitrage free framework. This technique is also often described as the

choice of a risk neutral probability distribution in which discounted security prices are

martingale. The new instruments may for instance be derivatives written on the original

securities. We take a partial equilibrium point of view and we assume that the new securities

have no effect on the price dynamics of the original ones. The introduction of additional

instruments may therefore only enhance the efficient frontier available through dynamic

trading.

This increase in efficiency depends on the price dynamics of the new instruments. We

show that if the price process followed by the new instruments is derived from a pricing ker-

nel consistent with the original securities, then the increase in the optimal dynamic Sharpe

ratio is a function of the extent to which the new instruments help dynamically replicate
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the kernel. This suggests that a manager who seeks to maximize the dynamic Sharpe ratio

of her fund by increasing her investment scope should consider first the securities which

best replicate the kernel.

The maximum gain in efficiency is obtained once the kernel is perfectly replicated with

both the original and the additional securities so that it becomes the final value of a self

financing strategy. The maximum dynamic Sharpe ratio is then the standard deviation of

the pricing kernel. This also proves that the standard deviation of a given pricing kernel is

an upper bound to the dynamic Sharpe ratio which can be reached through dynamic self

financing strategies which invest in a arbitrarily large number of instruments, provided that

the price process of these instruments is derived from the given kernel.

Once the pricing kernel is perfectly replicated, no more mean–variance efficiency gain

may be expected from the introduction of new securities and the strategy which replicates

the kernel belongs to the enhanced efficient frontier. If we use a pricing kernel which is

already the final value of a self financing strategy based on the original securities in the first

place, then no efficiency gain is possible right from the start. This means that every new

instrument is priced by this kernel in such a way as to be useless for the construction of a

dynamically mean–variance efficient strategy. The pricing kernel with minimum–variance

is the only kernel enjoying this property. This special kernel corresponds therefore to a

min–max in terms of dynamic Sharpe ratio. Cochrane and Saá–Requejo (2000) have pro-

posed to eliminate dynamics which create “good–deals”, where they define a good–deal as

an investment strategy with a large instantaneous Sharpe ratio. The minimum–variance

kernel extends this methodology to an intertemporal Sharpe ratio. It generates conservative

dynamics which do not allow any increase in Sharpe ratio, thereby eliminating “good–deals”

in a dynamic sense.

Besides its interpretation in terms of portfolio management, the minimum–variance pric-

ing kernel has received attention in the finance literature for another related issue: the

variance–optimal hedge of a contingent claim. Schweizer (1995) derives the price of a con-

tingent claim from the cost of its optimal replication by means of self financing strategies.

Optimality is measured by a quadratic loss function. This price happens to be identi-

cal to the one derived from the minimum–variance pricing kernel. The importance of the

variance–optimal hedging strategy is highlighted by the remark that every pricing kernel

can be written as the variance–optimal hedge residual of a contingent claim.

We prove that the cost of the variance–optimal hedge of a security does not change as
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new hedging instruments are introduced, as long as these instruments are themselves priced

according to the cost of their variance–optimal hedge, that is if their price dynamics is

derived from the minimum–variance pricing kernel.

We next investigate the situation where, on top of the original securities, the current

market prices of a set of additional securities are available. These new instruments could

typically be a set of actively traded calls and puts written on the original securities. In

line with the option pricing literature, we shall sometimes refer to the collection of these

prices as a smile. We illustrate the significance of this situation by considering two dynamic

investment problems, the dynamic management of a portfolio on the one hand, and the

pricing and hedging of a contingent claim on the other hand.

We consider first a fund manager who trades in a finite number of securities and who

considers investing in derivative instruments written on them. Markets are frictionless

and perfectly competitive and we assume that the manager knows the price dynamics of

the underlying securities. Although she observes the prices of all traded securities every

period, she does not know the future price dynamics of the derivative instruments. The

manager could for instance be an equity portfolio manager who is considering investing in

convertible bonds written on the shares in which she is trading. The manager faces several

interconnected questions. Which derivatives should she select? Which price dynamics will

they follow? How should she optimally manage her portfolio with the new instruments?

Which performance gain can she expect from expanding her investment scope?

Consider now an investment banker who is seeking to price and hedge an exotic derivative

instrument written on some underlying securities. The banker knows the price process

followed by the underlying securities, and he observes the market quotes of a set of actively

traded derivatives written on them, for instance vanilla calls and puts, but he does not

know their price dynamics. The exotic derivative is not actively traded and no market

price is readily available. The banker seeks to use the traded derivatives, together with

the underlying securities, in order to hedge the exotic instrument. He is confronted with

several questions, echoing the questions raised by the fund manager. Which price dynamics

will follow the traded derivatives? At which price should he deal in the exotic instrument?

Which is the best hedging strategy using both the underlying securities and the traded

derivatives?

In a complete market setting, the questions raised by both the fund manager and the

investment banker find immediate answers. For every derivative instrument, only one price

6



dynamics is consistent with absence of arbitrage, and it is given by the value process of its

exact replication strategy. No performance gain can be expected in the management of a

portfolio by the introduction of new securities since the opportunity set is not modified by

the addition of redundant securities. There is no need either for the banker to hedge the

exotic instrument with the traded derivatives since it is already perfectly replicated with

the underlying securities. In an incomplete market setting however, exact replication is

typically not possible and many price dynamics for the new instruments may be consistent

with the observed market quotes and the principle of absence of arbitrage. An important

question arises as to which rationale allows to reduce the choice among admissible price

dynamics. We offer a rationale which answers the concerns of both the fund manager and

the investment banker.

Following again the logic of limiting good–deals in a dynamic sense, we characterize the

kernel which yields a minimum increase in optimum Sharpe ratio while agreeing with the

prices of the instruments for which market quotes are available. Drawing on the duality with

the dynamic portfolios, we describe the efficient investment strategies which corresponds

to this kernel. They solve a max–min problem in terms of dynamic Sharpe ratio. These

strategies have a remarkable feature, they hold fixed quantities of the quoted instruments,

on top of an investment in the L2 minimum portfolio for the original securities.

The constraint of matching the smile reduces the set of admissible pricing kernels and

leads to a higher variance bound on the kernels. We describe this set and we show that

the increase in the variance bound is given by the distance, in the metric of the variance–

optimal hedge residuals, between the observed market quotes of the instruments and the

cost of their variance–optimal hedge.

We show that the pricing kernel which limits dynamic good–deals while agreeing with

the smile is also optimal in terms of variance–optimal hedge for two reasons. First it prices

a contingent claim as close as possible to the cost of its variance–optimal hedge. Second

this price is the initial value of a constrained optimal hedging strategy. In both cases, the

constrained optimality corresponds to a min–max where we consider the worst possible

contingent claim. We show finally that the contingent claim price derived from this kernel

is equal to the value of the variance–optimal hedge of the claim, when the dynamic hedging

strategy uses both the original securities and the instruments of the smile.

The paper is organized as follows. Sections 2 to 4 describe the self financing portfolios and

their mean–variance properties. They draw heavily on Henrotte (2001) which provides an

7



extensive account of the structure of these dynamic investment strategies. Section 5 studies

the structure of the pricing kernels and generalizes the Hansen and Jagannathan (1991)

variance bound to a multiperiod setting. Section 6 explains how to price additional securities

in an incomplete market setting while avoiding mean–variance good–deals in a dynamic

sense. It relates the increase in the slope of the efficient frontier with the extent to which

the additional securities help replicate the kernel. Section 7 studies the pricing kernels

and the price dynamics which are consistent with the constraint of matching the market

quotes of a given set of securities. We derive a lower bound to the variance of these kernels

and we describe the minimum increase in the optimal dynamic Sharpe ratio implied by

this constraint. This lower bound and this minimum are reached for a pricing kernel and

an efficient dynamic strategy which we describe in Section 8. We propose this dynamics

as a solution to our two investment problems in incomplete markets, the mean–variance

management of a portfolio and the optimal hedge of a contingent claim.

2. Dynamic Portfolios

2.1. Initial Market Structure

We consider a finite number n of underlying securities traded in a frictionless and com-

petitive market over a set of discrete times with finite horizon. We index the trading dates

by the integers between 0 and a final horizon T . Information is described by a filtration

F def.= {Ft}0≤t≤T over a probability space (Ω,FT , P ).

Throughout the article, equalities and inequalities between random variables are under-

stood to hold P almost surely. We denote respectively E[F ] and Et[F ] the expected value

and the conditional expectation with respect to Ft of a random variable F in L1(P ). We

let L2
t (P ) be the space of random variables in L2(P ) which are measurable with respect to

Ft and we let L2(P ; RI n) be the space of random vectors in RI n with components in L2(P ).

If ft is positive and measurable with respect to Ft, we define L2
t (P, ft) as the set of random

variables F such that ftF belongs to L2
t (P ). We define in the same way L2

t (P, ft; RI n) for

random vectors in RI n. We close this list of technical notations by letting x′y denote the

usual scalar product of two vectors x and y in RI n.

An unspecified numeraire is fixed every period and we let pt be the vector of prices of the

n securities in this numeraire at time t. We let dt be the numeraire dividend distributed by

the securities at time t. The owner of one unit of security i at time t is entitled to receive the
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dividend di
t+1 in numeraire the next period. We let φt

def.= (pt+dt) be the cum-dividend price

vector of the securities at time t. The vector processes {pt}0≤t≤T , {dt}0≤t≤T , and {φt}0≤t≤T

are adapted to the filtration F . We do not limit ourselves to equities and the dividends

should be understood as general, and possibly contingent, numeraire distributions.

We do not rule out that some security might be redundant at some trading period and in

some state of the world but we do impose that the law of one price holds. For the remainder

of the article, we shall assume that the following two assumptions are satisfied.

Assumption 1 Prices and returns of the securities do not vanish. For every period t

between 0 and T and for every period s between 1 and T the price vectors pt and φs are

P almost surely different from the null vector.

Assumption 2 Law of one price. For every period t between 0 and (T − 1), and for every

random vectors Xt and Yt in RI n measurable with respect to Ft, the equality φ′t+1Xt = φ′t+1Yt

implies p′tXt = p′tYt.

2.2. Self Financing Portfolios

A dynamic portfolio X starting at time t is a process in RI n adapted to F and indexed

by time s with t ≤ s ≤ (T − 1), where Xi
s represents the number of units of security i held

in portfolio X at time s. We let w(X) be the value process of portfolio X, naturally defined

by ws(X) def.= p′sXs for s ≤ (T − 1) and we let wT (X) = φ′T XT−1.

We say that a dynamic portfolio X starting at time t is self financing at time s whenever

ws(X) = φ′sXs−1 and that it is self financing whenever it is self financing from (t + 1) to

T . We remark that the definition of the final value of the strategy implies that a dynamic

portfolio is always self financing at time T .

It is easily checked that the law of one price implies that two self financing portfolios

with identical final values at time T share the same value process. This property will allow

us later to identify two such dynamic portfolios.

Henrotte (2001) characterizes the set of self financing dynamic portfolios starting at time

t with the property that their final value at time T is in L2(P ). Saving on notation, we

denote Xt this set with no explicit reference to T since which we shall keep this final horizon

constant throughout our analysis. We also let wT (Xt)
def.= {wT (X) ; X ∈ Xt} be the set

in L2(P ) of terminal values of portfolios in Xt. Besides the self financing condition, no
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restriction is imposed on the value process of the portfolios at periods prior to the final

horizon.

Henrotte (2001) builds a positive process h by backward induction from the final value

hT = 1 at time T . This process plays a central role in the description of the structure of

Xt, and more generally in the mean–variance analysis. It is closely linked to the notion of

dynamic Sharpe ratio and it can be interpreted as a correction lens for myopic investors.

We denote N+ the Moore–Penrose generalized inverse of a symmetric matrix N in RI n×
RI n. The matrix N+ is itself symmetric, commutes with N , and satisfies1

NN+N = N,

N+NN+ = N+.

If N is a random matrix measurable with respect to Ft, then N+(ω) is defined for every ω

in Ω and N+ is also measurable with respect to Ft.

Proposition 1 The adapted process h defined by hT = 1 at time T and the backward

equation

ht
def.=

(
p′tN

+
t pt

)−1(3)

with Nt
def.= Et

[
ht+1φt+1φ

′
t+1

]
for 0 ≤ t ≤ (T − 1), is well defined, P almost surely positive,

and satisfies φt ∈ L2
t (P,

√
ht; RI n) for every period t between 0 and T as soon as the following

two conditions are met:

(a). φT ∈ L2(P ; RI n);

(b). dt ∈ L2
t (P,

√
ht; RI n) for every period t with 0 ≤ t ≤ (T − 1).

The following properties then hold.

(i). For every dynamic portfolio X ∈ Xt the process {hsws(X)2}t≤s≤T is a submartingale,

that is, for every period s with t ≤ s ≤ (T − 1) we have

hsws(X)2 ≤ Es

[
hs+1ws+1(X)2

] ≤ Es

[
wT (X)2

]
.

(ii). The set Xt is the set of self financing dynamic portfolios starting at time t such that

ws(X) ∈ L2
s(P,

√
hs) for every period t ≤ s ≤ T .

1see Theil (1983) for a general description of the Moore–Penrose inverse.
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(iii). The set wT (Xt) is closed in L2(P ).

Condition (b) of Proposition 1 involves the variable ht which is derived recursively through

Equation 3. The following lemma provides a sufficient condition independent of h.

Lemma 1 If φT is an element of L2(P ; RI n) (Condition (a) of Proposition 1), then dt be-

longs to L2
t (P,

√
ht; RI n) for every period t from 0 to (T−1) (Condition (b) of Proposition 1)

if one security, say Security k, pays no dividend and is such that (pk
T /pk

t )dt is an element

of L2(P ; RI n) for every period t from 0 to (T − 1).

For the remainder of the article, we assume that Conditions (a) and (b) of Proposition 1

are satisfied so that the results of this proposition apply.

Assumption 3 Conditions (a) and (b) of Proposition 1 are satisfied.

Two equations will prove useful. For every period t between 0 and (T − 1),

φt+1 = NtN
+
t φt+1,(4)

and the law of one price implies then that

pt = NtN
+
t pt.(5)

The process h acts as a weight which regularizes the prices and the values of the self

financing portfolios in Xt every period. Once we multiply these processes by the square

root of h, they all have finite second moments every period. Henrotte (2001) shows that the

process h is the largest process with value hT = 1 at horizon T having this regularization

property.

3. Optimal Hedge

This section investigates the hedging properties of the self financing dynamic portfolios.

We first show how to construct a dynamic strategy which best replicates a payoff FT at

horizon T , starting from a value wt at time t. The loss function which we choose at horizon

T is the norm of L2(P ), which is well defined for the portfolios in Xt. We then study the cost

and quality of the optimal hedge and we show that the value process of the optimal solution
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is unique. When the final payoff FT is zero, we obtain as a special case the L2 minimum

portfolio which is the hedging numeraire used by Gouriéroux et al. (1998). We show that

our analysis can be extended to deal with the optimal replication of securities described by

a sequence of contingent cash flows instead of a single final payoff. We introduce interest

rates by mean of default free zero coupon bonds and we relate our work with the concept

of variance–optimal signed martingale measure introduced in Schweizer (1995).

3.1. Construction of an Optimal Hedge

The optimal L2 replication of a contingent claim involves a mixture of forward and

backward equations. We derive first the cost of the optimal hedge every period in a backward

way, and we then use this process in order to construct the optimal hedging strategy through

a forward equation.

Proposition 2 For every period t such that 0 ≤ t ≤ (T − 1), for every initial value wt in

L2
t (P,

√
ht), and for every payoff FT in L2(P ),

essinf
X∈Xt

wt(X)=wt

Et

[
(FT − wT (X))2

]
= Et

[(
FT − wT (Xt,wt,FT )

)2
]

= ht(Ft − wt)2 + gt.(6)

Ft and gt are defined by backward induction by gT
def.= 0 and for t ≤ s ≤ (T − 1),

Fs
def.= p′sN

+
s Es [hs+1Fs+1φs+1] ,

gs
def.= Es [gs+1] + Es

[
hs+1(Fs+1)2

]− Es

[
hs+1Fs+1φ

′
s+1

]
N+

s Es [hs+1Fs+1φs+1] .

For every period s between time t and (T −1), the random variable Fs belongs to L2
s(P,

√
hs)

and gs is a nonnegative random variable in L1(P ) which is measurable with respect to Fs.

The dynamic portfolio Xt,wt,FT is defined recursively by

Xt,wt,FT
t

def.= ht(wt − Ft)N+
t pt + N+

t Et [ht+1Ft+1φt+1] ,(7)

Xt,wt,FT
s

def.= hs

(
φ′sX

t,wt,FT
s−1 − Fs

)
N+

s ps + N+
s Es [hs+1Fs+1φs+1] ,(8)

for (t + 1) ≤ s ≤ (T − 1). The dynamic portfolio Xt,wt,FT belongs to Xt, starts at time t

with initial value wt, and satisfies

Es

[(
FT − wT (Xt,wt,FT )

)2
]

= hs

(
Fs − ws(Xt,wt,FT )

)2
+ gs(9)

for every period s between t and T .
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It is easily checked that if FT , F a
T , and F b

T are in L2(P ), if wt, wa
t , and wb

t are in L2
t (P,

√
ht),

and if γt is measurable with respect to Ft with γtFT in L2(P ) and γtwt in L2
t (P,

√
ht), then

Xt,wa
t ,F a

T + Xt,wb
t ,F b

T = Xt,wa
t +wb

t ,F a
T +F b

t ,(10)

γtX
t,wt,FT = Xt,γtwt,γtFT .

It is clear from Proposition 2 that the optimization program

essinf
X∈Xt

Et

[
(FT − wT (X))2

]

is solved in Xt,Ft,FT with gt as optimal value. The variable Ft is therefore the initial cost of

the best replication strategy of the payoff FT , while gt describes the quality of this optimal

hedge.

We remark that the construction of both Fs and gs from FT in Proposition 2 is respectively

linear and quadratic and does not depend on the starting time t as long as t ≤ s. This

allows us to construct a linear operator Qt and a quadratic operator Gt for every period

t between 0 and T from the space of random variables in L2(P ) to the space of random

variables measurable with respect to Ft such that Qt(FT ) def.= Ft and Gt(FT ) def.= gt as defined

recursively in Proposition 2. This proposition shows that Qt(FT ) belongs to L2
t (P,

√
ht)

while GT (FT ) is an element of L1(P ). At time T , the operators QT and GT are trivially

respectively the identity and the null operator. We derive from Equation 6 that

Gt(FT ) = Et

[(
FT − wT (Xt,Qt(FT ),FT )

)2
]

.(11)

We still denote Gt the bilinear operator defined by polarization for two payoffs F a
T and F b

T

in L2(P ) as

Gt(F a
T , F b

T ) =
1
2

(
Gt(F a

T + F b
T )−Gt(F a

T )−Gt(F b
T )

)
(12)

= Et

[(
F a

T − wT (Xt,Qt(F a
T ),F a

T )
) (

F b
T − wT (Xt,Qt(F b

T ),F b
T )

)]
.

The following lemma lists some properties of these operators which will be used through-

out our analysis.

Lemma 2 Let s and t be two periods such that t ≤ s ≤ T , let FT be a payoff in L2(P ), and

let wt be an initial value in L2
t (P,

√
ht).

(i). For every dynamic portfolio X in Xt, Qs (wT (X)) = ws(X).
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(ii). Gt(FT ) = 0 if and only if FT belongs to wT (Xt). For every dynamic portfolio X in

Xt, Gt(wT (X), FT ) = 0.

(iii). hsws(Xt,wt,0)Qs(FT ) = Es

[
wT (Xt,wt,0)FT

]
.

(iv). For every dynamic portfolio X in Xs,

hs

(
Qs(FT )− ws(Xt,wt,FT )

)
ws(X) = Es

[(
FT − wT (Xt,wt,FT )

)
wT (X)

]
.

3.2. Uniqueness of the Optimal Hedge

The next result shows that Optimization Problem 6 of Proposition 2 has a unique solution,

at least in terms of value at time T , and therefore also in terms of value process. We recall

that we cannot expect to obtain a unique portfolio because we do not rule out redundancy

between the securities.

Lemma 3 We consider a period t between 0 and (T −1), an initial value wt in L2
t (P,

√
ht),

and a payoff FT in L2(P ). For every dynamic portfolio Y in Xt, the equality wT (Y ) =

wT (Xt,wt,FT ) holds P almost surely on the set At(Y ) in Ft defined by

At(Y ) def.=
{
ω ∈ Ω such that: Et

[
(FT − wT (Y ))2

]
= ht(Qt(FT )− wt)2 + Gt(FT )

and wt(Y ) = wt} .

3.3. L2 Minimum Portfolio

The L2 minimum portfolio obtains for a special choice of final payoff FT and initial value

wt. For FT = 0 and wt = 1/
√

ht, we introduce the simplified notations Xt def.= Xt,1/
√

ht,0 and

wt
s

def.= ws(Xt) for t ≤ s ≤ T . Notice that 1/
√

ht is an element of L2
t (P,

√
ht). Equations 7

and 8 of Proposition 2 show that the self financing strategy Xt is obtained by investing

every period s between t and (T − 1) the value wt
s in the portfolio hsN

+
s ps whose value at

time s is hsp
′
sN

+
s ps = 1 and Xt

s = hsw
t
sN

+
s ps. The self financing condition implies that

wt
s+1 = φ′s+1X

t
s so that

wt
s+1 = wt

shsφ
′
s+1N

+
s ps.(13)
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Proposition 2 proves that the final value wt
T of this strategy has minimum conditional second

moment among the dynamic portfolios in Xt

essinf
X∈Xt

wt(X)=1/
√

ht

Et

[
wT (X)2

]
= Et

[
(wt

T )2
]

= ht(wt
t)

2 = 1.(14)

Statement (iii) of Lemma 2 with s = t and wt = 1/
√

ht implies that

Qt(FT ) =
1√
ht

Et

[
wt

T FT

]
,(15)

which shows that Qt is a positive operator whenever wt
T is itself positive. If wt

s does not

vanish at time s between t and T , we also have

Qs(FT ) =
1

hswt
s

Es

[
wt

T FT

]
.

3.4. Hedging of a Sequence of Cash Flows

We generalize our analysis from a single payoff at horizon T to a sequence of contin-

gent cash flows every period up to T . This will prove important later when we introduce

additional securities with possibly complex distribution schedules and different maturities.

We consider a period t between 0 and (T − 1) and we let f = {fs}t+1≤s≤T be a sequence

of cash flows from (t+1) up to T adapted to F . We say that a dynamic portfolio X starting

at time t finances the cash flow fs at time s with s ≤ (T − 1) when ws(X) = (φ′sXs−1− fs)

and that it finances the sequence of cash flows f if it finances the cash flows fs from (t + 1)

to (T − 1). At the last period, we recall that we have defined the final value of a dynamic

portfolio X by the equation wT (X) = φ′T XT−1.

We create a one to one operator θf on the set of dynamic portfolios starting at time t

which transforms the self financing portfolios into strategies which finance the sequence of

cash flows f as follows. For every dynamic portfolio X starting at time t, we let Y = θf (X)

be the dynamic portfolio starting at time t defined by Yt = Xt and

Ys = Xs −
(∑s

u=t+1 fu

√
huwu

s

)
hsN

+
s ps

for (t+1) ≤ s ≤ (T − 1). The following lemma yields some first properties of this operator.

Lemma 4 Let X and Y be two dynamic portfolios starting at time t such that Y = θf (X).
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(i). The portfolio X is self financing if and only if the portfolio Y finances the sequence

of cash flows f .

(ii). wt(Y ) = wt(X) and (fT − wT (Y )) = (FT − wT (X)) with

FT =
T∑

s=t+1

fs

√
hsw

s
T ,

where we let wT
T = 1.

We remark that the payoff FT is obtained at time T by investing every cash flow of the

sequence f in the L2 minimum portfolio up to time T .

We let Xt(f) be the set of dynamic portfolios starting at time t which finance f and

which end up at horizon T with a value in L2(P ). The following proposition proves the

equivalence between the variance–optimal hedge of FT through self financing portfolios in

Xt and the L2 optimal replication of the sequence f by means of dynamic strategies in

Xt(f). Some integrability condition on the sequence f are needed for this result.

Proposition 3 Let f = {fs}t+1≤s≤T be a sequence of cash flows such that fs belongs to

L2
s(P,

√
hs) for every period s from (t + 1) to T . The payoff FT =

∑T
s=t+1 fs

√
hsw

s
T is in

L2(P ) and the mapping θf is one to one from Xt to Xt(f). For every initial value wt in

L2
t (P,

√
ht), we have

essinf
Y ∈Xt(f)

wt(Y )=wt

Et

[
(fT − wT (Y ))2

]
= essinf

X∈Xt
wt(X)=wt

Et

[
(FT − wT (X))2

]

= ht (Qt(FT )− wt)
2 + Gt(FT )

and the first program is solved in Y = θf

(
Xt,wt,FT

)
.

The optimal hedging strategies for the two equivalent optimization programs of Proposi-

tion 3 start with an identical initial value at time t equal to Qt(FT ) and lead to the same

replication error described by Gt(FT ). The next lemma explains how both the optimal

hedging cost Qt(FT ) and the optimal hedging quality Gt(FT ) can be directly computed

from the sequence f .

Lemma 5 Let f = {fs}t+1≤s≤T be a sequence of cash flows such that fs is in L2
s(P,

√
hs)

for every period s from (t+1) to T and let FT =
∑T

s=t+1 fs

√
hsw

s
T . We define the processes
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f̄ = {f̄s}t≤s≤T and ḡ = {ḡs}t≤s≤T from the sequence f by backward induction as follows.

We let f̄T = ḡT
def.= 0, and

f̄s
def.= p′sN

+
s Es

[
hs+1(f̄s+1 + fs+1)φs+1

]
,

ḡs
def.= Es [ḡs+1] + Es

[
hs+1(f̄s+1 + fs+1)2

]

− Es

[
hs+1(f̄s+1 + fs+1)φ′s+1

]
N+

s Es

[
hs+1(f̄s+1 + fs+1)φs+1

]
,

for t ≤ s ≤ (T − 1). For every period s between t and T we have

Qs(FT ) =
s∑

u=t+1

fu

√
huwu

s + f̄s,

Gs(FT ) = ḡs,

with the convention that
∑t

u=t+1 fu

√
huwu

s = 0. In particular at time t we have Qt(FT ) = f̄t

and Gt(FT ) = ḡt.

3.5. Interest Rates

We introduce from now on a money market. For the rest of the article we assume that

Security 1 is a risk free zero coupon bond paying a unique dividend of one unit of numeraire

at maturity T .

Assumption 4 For every period t between 0 and (T − 1) the price p1
t of the zero coupon

bond is positive.

We let Rf
t

def.= 1/p1
t be the nominal risk free return from investing in the zero coupon bond

from time t up to horizon T . This buy and hold strategy belongs to Xt, we denote it 1t.

We remark that ws(1t) = Qs(1) = p1
s = 1/Rf

s for s ≥ t and we learn from Statement (i)

of Proposition 1 that ht(p1
t )

2 ≤ Et

[
ht+1(p1

t+1)
2
] ≤ 1. We define Ht

def.= ht/(Rf
t )2 so that,

with this normalization, this last inequality writes Ht ≤ Et [Ht+1] ≤ 1 and the normalized

process H is a positive submartingale, with HT = 1.

We derive from Statement (iii) of Lemma 2 with FT = 1 and wt = 1/
√

ht that for every

period s between t and T we have

Es

[
wt

T

]
=

hsw
t
s

Rf
s

,(16)

Et

[
wt

T

]
=
√

ht

Rf
t

=
√

Ht.(17)
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We remark that the sufficient condition of Lemma 1 which requires that (pk
T /pk

t )dt be in

L2(P ; RI n) holds with k = 1 as soon as Rf
t dt is in L2(P ; RI n) for every period t between 0

and (T − 1). This is the case for instance if Rf
t is bounded and dt belongs to L2(P ; RI n).

3.6. Variance–Optimal Martingale Measure

We have seen that the operator Qt is positive as soon as the final value wt
T = wT (Xt) of

the L2 minimum portfolio Xt is itself positive. We show that when this happens, the cost

Qs(FT ) at time s between t and (T − 1) of the optimal hedge of a payoff FT in L2(P ) can

be expressed as the discounted conditional expectation of FT in a probability distribution

different from the original probability P . This new probability distribution is called the

minimum–variance probability distribution or the variance–optimal martingale probability.

We first notice from Equation 16 that if wt
T is positive, then the value wt

s of the strategy

Xt at time s is also positive. Statement (iii) of Lemma 2, together with Equation 16, yields

the following result

Qs(FT ) =
1

Rf
s

Es

[
wt

T FT

]

Es

[
wt

T

] .(18)

If z is a positive random variable in L1(P ), we denote P z and Ez the probability distri-

bution and its corresponding expectation operator obtained from the original probability P

by means of the positive Radon-Nikodym derivative z/E[z]. For every random variable F

such that zF is in L1(P ) we have Ez[F ] = E[zF ]/E[z] and Ez
t [F ] = Et[zF ]/Et[z].

We use this construct here with z = wt
T and we obtain

Qs(FT ) =
1

Rf
s

E
wt

T
s [FT ] ,

which shows that Qs(FT ) can indeed be written as a discounted expectation in the modified

probability distribution Pwt
T .

One can usually not expect wt
T to be positive when the cum-dividend prices assume

unbounded values. This fact has been noted in Schweizer (1995). When this happens, the

minimum–variance probability becomes the variance–optimal signed martingale measure

and the operator Qt, although still well defined, is not positive.

In a continuous time setting, Gouriéroux et al. (1998) shows that wt
T is always positive

as long as prices follow continuous semimartingales with no dividend distribution. They

assume a no arbitrage condition which is more strict than the law of one price.
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4. Mean–Variance Portfolio Selection

We summarize the mean–variance properties of self financing dynamic portfolios. We

consider in this section a time period t between 0 and (T − 1) and we study the notions of

dynamic Sharpe ratio and efficient frontier conditioned on the information at date t.

For every dynamic portfolio X in Xt, we denote SRt(X) the Sharpe ratio conditioned on

the information available at time t which results from following the self financing investment

strategy X from time t up to horizon T . We let

SRt(X) def.=
Et [wT (X)]−Rf

t wt(X)√
Vart [wT (X)]

when Vart [wT (X)] is non zero and we set SRt(X) def.= 0 whenever Vart [wT (X)] = 0.

We denote Rt(X) def.= wT (X)/wt(X) the gross return from period t to horizon T of a

dynamic portfolio X in Xt with non vanishing value wt(X) at date t. In particular we have

Rf
t = Rt(1t) when X = 1t is the strategy which invests without rebalancing in the default

free zero coupon bond with maturity T from time t on. If wt(X) and Vart [wT (X)] are

P almost surely different from zero, we also have

SRt(X) =
Et [Rt(X)]−Rf

t√
Vart [Rt(X)]

,

the usual definition of a Sharpe ratio.

Our definition of returns is not innocuous. The choice of non annualized gross returns

allows us to bring together in an common framework the theories of dynamic hedging

and of dynamic mean–variance analysis. This nice convergence may not hold for other

specifications of the returns.

We let the dynamic mean–variance efficient frontier at time t with horizon T , which we

denote EFt, be the set of portfolios in Xt which are solution to the optimization program

essinf
X∈Xt

wt(X)=wt

Et[Rt(X)]=Rt

Vart [Rt(X)]

for some expected return target Rt measurable with respect to Ft and some positive initial

value wt in L2
t (P,

√
ht).

Henrotte (2001) shows that the optimal dynamic Sharpe ratio from time t to horizon T ,
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conditioned on the information available at time t, writes SRt
def.=

√
1/Ht − 1 and

esssup
X∈Xt

SRt(X)2 = SRt(Xt)2 = (SRt)
2 .

The optimal dynamic Sharpe ratio obtains for the portfolios on the efficient frontier EFt.

Under some regularity condition, every efficient portfolio on EFt can be identified with a

combination of the portfolio Xt and the zero-coupon bond with maturity T , where the

proportions2 invested in the two strategies are fixed at time t.

5. Pricing Kernels

We let PKt be the set of pricing kernels corresponding to the dynamics of the underlying

securities from period t up to horizon T . It is defined as the set of random variables mT in

L2(P ) such that

Rf
s msws(X) = Es [mT wT (X)] ,(19)

for every period s between t and T and for every dynamic portfolio X in Xs, where we let

ms
def.= Es[mT ]. This definition highlights the duality between the pricing kernels and the

self financing portfolios. We provide an equivalent and more standard definition in terms

of security prices.

Lemma 6 A random variable mT in L2(P ) is a pricing kernel in PKt if and only if the

following equivalent conditions are satisfied.

(i). For every period s between t and (T − 1), Rf
s msps = Es

[
Rf

s+1ms+1φs+1

]
.

(ii). For every period s between t and (T − 1), Rf
s msps = Es

[∑T−1
u=s+1 Rf

umudu + mT φT

]
.

We remark that we do not require any positivity condition on the pricing kernels and

PKt is therefore a vector subspace of L2(P ).
2The L2 minimum portfolio Xt lies in the non optimal part of the efficient frontier and SR(Xt) = − SRt.

An optimal dynamic mean–variance strategy should therefore short this portfolio.
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5.1. Structure of Pricing Kernels

The next proposition describes the structure of PKt. We let PK0
t be set of kernels in PKt

with zero conditional expectation at time t,

PK0
t

def.= {mT ∈ PKt such that mt = 0} .

We say that two random variables y and z in L2(P ) are conditionally orthogonal at time t if

and only if Et[yz] = 0. If Z is a subset of L2(P ), we let Z⊥t be the set of random variables

in L2(P ) conditionally orthogonal at time t to every random variable in Z.

Proposition 4 Let t and s be two periods such that 0 ≤ t ≤ s ≤ (T − 1).

(i). wt
T is a pricing kernel in PKt which is therefore not reduced to zero.

(ii). PK0
t = wT (Xt)⊥t.

(iii). Every pricing kernel mT in PKt satisfies ms/
√

Hs =
√

hsQs(mT ) and ms belongs to

L2
s(P, 1/

√
Hs).

(iv). PKt is the set of random variables mT in L2(P ) which can be written mT = ξtw
t
T +m0

T

for some random variables ξt in L2
t (P ) and m0

T in PK0
t so that

PKt =
(
L2

t (P )× wt
T

)
+ wT (Xt)⊥t

where L2
t (P )× wt

T
def.=

{
ξtw

t
T with ξt ∈ L2

t (P )
}
.

(v). PKt ∩wT (Xt) = L2
t (P )× wt

T .

(vi). PKt =
{(

FT − wT (Xt,wt,FT )
)

with FT ∈ L2(P ) and wt ∈ L2
t (P,

√
ht)

}
and

PK0
t =

{(
FT − wT (Xt,Qt(FT ),FT )

)
with FT ∈ L2(P )

}
.

(vii). The two sets PK0
t and PKt are closed in L2(P ) and wT (Xt) =

(
PK0

t

)⊥t.

Statement (i) proves that wt
T is a pricing kernel and Statement (v) shows that this is the

only kernel which is also the final value of a self financing strategy in Xt. Every other kernel

is obtained by adding to it a component which is conditionally orthogonal at time t to the

final value of every dynamic portfolio. When the market is complete, wT (Xt) = L2(P ) and

PKt reduces to L2
t (P )×wt

T , so that, up to a normalization constant ξt at time t, the pricing
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kernel wt
T is unique. This generalizes to a multiperiod setting the standard results on the

structure of the discount factors as exposed for instance in Cochrane (2001).

Statement (vi) highlights the connection between the pricing kernels and the variance–

optimal hedging technique described in Section 3. Every pricing kernel can be described as

the variance–optimal hedge residual of some contingent claim. Kernels in PK0
t obtain for

optimal initial values at time t. The next lemma draws on this connection and shows that

the operators Qt and Gt can be used in order to describe how a pricing kernel evaluates a

payoff.

Lemma 7 Let t and s be two periods such that 0 ≤ t ≤ s ≤ T and let mT be a pricing

kernel in PKt. For every payoff FT in L2(P ) we have

Rf
s msQs(FT ) + Gs (mT , FT ) = Es [mT FT ] .(20)

We remark that Equation 20 is consistent with Equation 19 in the case where there exists

a portfolio X in Xt such that FT = wT (X). We derive indeed from Statements (i) and (ii)

of Lemma 2 that Qs(wT (X)) = ws(X) and Gs(mT , wT (X)) = 0.

5.2. Variance Bounds on Pricing Kernels

We have defined in Section 4 the strategy Xt as the L2 minimum portfolio. It is the

dynamic portfolio whose final value wt
T has minimum conditional second moment at time

t within Xt. We show here that wt
T is also L2 optimal within PKt, and we derive from this

optimality a set of intertemporal bounds on the variance of the pricing kernels.

Proposition 5 We consider two periods t and s such that 0 ≤ t ≤ s ≤ T . Every pricing

kernel mT in PKt satisfies

Es

[
m2

T

]
=

m2
s

Hs
+ Gs (mT ) ,(21)

Vars [mT ] = m2
s(SRs)2 + Gs(mT ),(22)

and therefore also

m2
s

Hs
≤ Es

[
m2

T

]
,(23)

m2
s(SRs)2 ≤ Vars[mT ].(24)
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Inequalities 23 and 24 become equalities if mT = ξtw
t
T with ξt in L2

t (P ). For s = t, this last

condition is both sufficient and necessary and the pricing kernel ξtw
t
T solves

essinf
mT∈PKt

mt=
√

Htξt

Et

[
m2

T

]
= ξ2

t .(25)

This proposition proves that wt
T is the kernel with minimum–variance in PKt. For every

random variable m̄t in L2
t (P, 1/

√
Ht), the pricing kernel (m̄t/

√
Ht)wt

T solves indeed

essinf
mT∈PKt
mt=m̄t

Vart[mT ] = m̄2
t SR2

t .

For every intermediate period s between t and T , the square of the optimal dynamic

Sharpe ratio from s to T yields a lower bound to the conditional variance at time s of

the pricing kernels in PKt. The gap between the variance of a kernel mT and its lower

bound is Gs(mT ), which measures the quality of the replication of the kernel, that is the

distance between the kernel and the set of attainable payoffs wT (Xt). For s = t, we derive

from the decomposition of a kernel proposed in Statement (iv) of Proposition 4 that the

excess variance of a pricing kernel is due to the component in PK0
t which is conditionally

orthogonal to wT (Xt). When the kernel belongs to wT (Xt), the replication is perfect and

the inequality becomes an equality. Statement (v) of Proposition 4 shows that wt
T is the

only kernel enjoying this property.

6. Extension of the Investment Scope

The analysis of the self financing portfolios and their pricing kernels which we developed so

far will help us now tackle a central issue in incomplete markets. We study the implications

of selecting a price process for some derivative instruments in a way which is consistent with

the dynamic behavior of their underlying securities. We focus on two related investment

problems, the dynamic management of a portfolio on the one hand, and the optimal hedging

of a contingent claim on the other hand. This section deals with basic issues, we postpone

until the next one the analysis of the constraint imposed by a smile, which we define as the

observation of current market quotes for a set of derivatives.

In addition to the original n securities, we consider nx new securities which distribute

some numeraire dividends every period described by the vector process {dx
t }1≤t≤(T−1). For
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every period t between 0 and (T − 2), the owner of one unit of security j at time t receives

the next period the dividend dx,j
t+1. A time (T − 1), one unit of security j gives right to the

final payoff φx,j
T at time T . One can think of φx,j

T as the sum of a dividend and a residual

value which describes the market value of security j at time T . This is meant to handle

cases where an instrument has a maturity which is longer than the investment horizon which

we consider. If the maturity is shorter than T , the dividends vanish once the instrument

matures and the final payoff is zero.

We assume that the dividend process {dx
t }1≤t≤(T−1) and the final payoff φx

T are given and

known. We further assume that the dividend process is adapted to F , that the final payoff

φx
T is a random vector in L2(P ; RI nx), and that for every period t between 1 and (T −1) and

for every index j the dividend dx,j
t belongs to L2

t (P,
√

ht). These new instruments may be

derivatives written on the original securities, in which case the dividends and the final payoff

are functions of the prices of the original securities. We do not however limit ourselves to

this situation and we allow for a very general definition of the new instruments.

We consider a period t between 0 and (T−1) and we let the vector processes {px
s}t≤s≤(T−1)

and {φx
s}t≤s≤(T−1) in RI nx be respectively the ex and cum dividend price dynamics of the

new securities between t and (T − 1). We say that this price dynamics starting at time t is

admissible if it is adapted to F , if φx
s = (px

s + dx
s ) every period, and if it satisfies the law of

one price together with the prices of the original n securities. In line with Assumption 2,

this last requirement means that for every period s between t and (T − 1) and for every

vector (u, v) in RI n× RI nx measurable with respect to Fs, the equality φ′s+1u+(φx
s+1)

′v = 0

implies p′su+(px
s )′v = 0. It is a weak notion of absence of arbitrage, the minimum structure

which we need in order to apply our dynamic mean–variance analysis.

We limit our investigations to admissible price dynamics in a partial equilibrium frame-

work where the price process of the original securities is assumed to be known and fixed.

We do not study for instance how the introduction of the new securities may modify the

prices of the original ones. The denomination “original” and “new” security is therefore

somewhat misleading, it is only a convenient way to describe an extension of the investment

scope.
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6.1. Admissible Price Dynamics

We first study the existence and the construction of an admissible price dynamics for

the new securities. The following lemma checks that an admissible price dynamics may be

derived from a positive pricing kernel for the original securities. It is well known that a

positive kernel prevents the existence of arbitrage opportunities, it precludes therefore also

any violation to the law of one price.

Lemma 8 Let mT be a positive pricing kernel in PKt and let {px
s , φx

s}t≤s≤(T−1) be defined

by the equations

px
s =

Es

[∑T−1
u=s+1 Rf

umudx
u + mT φx

T

]

Rf
s ms

,(26)

and φx
s = px

s + dx
s . These two processes form an admissible price dynamics for the new

securities.

Even when no positive kernel is available, and in particular even if we do not know if wt
T

is positive, it is possible to exhibit an admissible price dynamics for the new securities. We

define the processes {p̄x
s , φ̄x

s}t≤s≤(T−1) in RI nx by the backward equations

p̄x,j
s = p′sN

+
s Es

[
hs+1φ̄

x,j
s+1φs+1

]
,

φ̄x,j
s = p̄x,j

s + dx,j
s ,

for every index j from one to nx.

Lemma 9 The processes {p̄x
s , φ̄x

s}t≤s≤(T−1) form an admissible price dynamics for the new

securities. If wt
T is positive, they coincide with the processes derive in Lemma 8 from the

kernel mT = wt
T .

Drawing on the analysis of Section 3.4, we remark that if we let f = {fs}t+1≤s≤T be the

sequence of cash flows corresponding to the dividends and the final payoff of new security

j with fs = dx,j
s for s between (t + 1) and (T − 1) and fT = φx,j

T , then the process

{p̄x,j
s }t≤s≤(T−1) coincides with the process {f̄s}t≤s≤(T−1) defined in Lemma 5. We derive

from Proposition 3 and Lemma 5 that if we let

F x
T

def.=
T−1∑

s=t+1

√
hsw

s
T dx

s + φx
T ,
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then p̄x,j
t = Qt(F

x,j
T ) and p̄x,j

t represents the cost of the variance–optimal hedge of the se-

quence of cash flows generated by new security j from time (t+1) up to horizon T . Likewise,

the price p̄x,j
s corresponds to the cost of the variance–optimal hedge of the remaining cash

flows from time (s + 1) up to T .

We remark that for every pricing kernel mT in PKt we have

Et [mT F x
T ] = Et

[∑T−1
s=t+1 Rf

s msd
x
s + mT φx

T

]
(27)

which shows again that F x
T can be interpreted as a single final payoff equivalent to the

sequence of cash flows generated by the new securities from (t + 1) up to T .

6.2. Extended Asset Structure

We consider now an admissible price dynamics {px
s , φx

s}t≤s≤(T−1) and we study the ex-

tended asset structure between time t and horizon T which consists in the n original se-

curities together with the nx new ones with their proposed price dynamics. We denote pe
s

and φe
s the ex and cum dividend prices at time s for the extended asset structure. The

first n components of the vectors pe
s and φe

s are respectively ps and φs while their last nx

components are respectively px
s and φx

s .

The extended asset structure satisfies both Assumptions 1 and 2 as well as Conditions (a)

and (b) of Proposition 1. The zero coupon bond is one of the original security and it

remains traded. The results of Sections 2 to 5 can therefore be brought to bear, with

period t corresponding to the initial trading period 0 in these sections. We remark that the

fact that we do not impose any absence of redundancy between the securities allows us to

consider with very general instruments.

We set he
T = hT = 1 and for s between t and (T − 1), we let he

s, He
s , X e

s , Qe
s, Ge

s, PKe
s,

Xs,e, ws,e
T , SRe

s be the counterparts to respectively hs, Hs, Xs, Qs, Gs, PKs, Xs, ws
T , SRs for

the extended asset structure. Notice that we have He
s

def.= he
s/(Rf

s )2 and SRe
s

def.=
√

1/He
s − 1.

It is clear that PKe
s is a subset of PKs. The next lemma shows that a necessary and

sufficient condition for a pricing kernel in PKt to belong to PKe
t is to “price” correctly the

new securities. It is a direct application of Lemma 6 to the extended structure.

Lemma 10 A pricing kernel mT in PKt belongs to PKe
t if and only the following equivalent

conditions are satisfied.

(i). For every period s between t and (T − 1), Rf
s msp

x
s = Es

[
Rf

s+1ms+1φ
x
s+1

]
.
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(ii). For every period s between t and (T − 1), Rf
s msp

x
s = Es

[∑T−1
u=s+1 Rf

umudx
u + mT φx

T

]
.

For a pricing kernel mT in PKe
t , we derive from Equation 27 that

Rf
t mtp

x
t = Et [mT F x

T ](28)

and the kernel evaluates identically at time t the sequence of cash flows generated by the

new securities and the unique final payoff F x
T .

6.3. Sharpe Ratio Improvement

The optimal dynamic Sharpe ratio may only increase as a result of the extension of the

investment scope, which means that for every period s between t and (T − 1) we have

SRs ≤ SRe
s and He

s ≤ Hs. The following result quantifies this increase in terms of pricing

kernels. We recall that wt,e
T is the value at time T of the L2 minimum portfolio Xt,e in the

set of self financing strategies X e
t for the extended asset structure.

Result 1 For every pricing kernel mT in PKe
t and for every period s between t and (T −1),

m2
s

[
(SRe

s)
2 − (SRs)2

]
= Gs(mT )−Ge

s(mT ),

in particular at time t, (SRe
t )

2 − (SRt)2 = Gt(w
t,e
T )/He

t .

Result 1 tells us that the optimal dynamic Sharpe ratio increases inasmuch as the repli-

cation of the pricing kernels for the extended asset structure is enhanced by the use of the

additional securities. If, as exposed in Lemma 8, a positive pricing kernel mT is used in

order to generate the price dynamics of an increasing number of new instruments, then the

Sharpe ratio increases as long as Ge
s(mT ) decreases and the new instruments help replicate

the kernel. This suggests that one should consider in priority new securities which best

contribute to the replication quality of the kernel.

Once enough instruments have been introduced so that mT is perfectly replicated, the

optimal dynamic Sharpe ratio ceases to increase as new instruments are added. The optimal

dynamic Sharpe ratio from s to T reaches then the maximum possible value consistent with

the kernel mT . This maximum is given by the variance of the kernel,

(SRe
s)

2 = Vars[mT /ms].
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With no clear indication on how to choose a pricing kernel, a fund manager runs the risk of

picking a kernel with a large variance which induces large potential increases in performance

for some carefully selected new instruments. The perceived increase in performance may

only be the result of a dubious choice of price dynamics for the additional securities. With

this pitfall in mind, we investigate the admissible price dynamics which yields the lowest

possible increase in Sharpe ratio for the corresponding optimal dynamic strategy. This

situation corresponds to a min–max in terms of dynamic Sharpe ratio. Without any smile

constraint, we show that it is possible to avoid any mean–variance abnormal good–deal.

6.4. Absence of Good Deal

We consider an admissible price dynamics {px
s , φx

s}t≤s≤(T−1) and the extended asset struc-

ture which it generates from time t up to horizon T . We characterize the situation where no

gain in dynamic Sharpe ratio may be expected from trading in the new securities. Absence

of dynamic good–deal at time s corresponds to the equality SRe
s = SRs. We first propose

two equivalent characterizations of this situation in terms of the minimum–variance kernel.

Lemma 11 For every period s between t and (T − 1), the equality SRe
s = SRs holds if and

only if the following equivalent conditions hold.

(i). ws,e
T = ws

T .

(ii). ws
T belongs to PKe

s.

These equivalent conditions imply that px
s = p̄x

s .

We next show that absence of dynamic good–deal at every period obtains when the price

dynamics of the new instruments corresponds to the cost of their variance–optimal hedge.

Proposition 6 The following two statements are equivalent.

(i). SRe
s = SRs for every period s between t and (T − 1).

(ii). px
s = p̄x

s for every period s between t and (T − 1).

If no dynamic good–deal is available at time t, it seems intuitive that no good–deal should

exist either at a later trading date s. We only prove this fact for the periods s such that

the value wt
s of the L2 minimum strategy does not vanish.
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Proposition 7 If SRe
t = SRt, then at every period s between t and (T − 1) such that wt

s

does not vanish we have SRe
s = SRs.

When wt
T is positive, we know that wt

s never vanishes and we may further characterize the

absence of good–deal at time t in terms of the entire price process of the new instruments.

Result 2 If wt
T is positive, then SRe

t = SRt if and only if px
s = p̄x

s for every period s between

t and (T − 1). When this happens, we also have SRe
s = SRs for t ≤ s < T .

The use of the price dynamics {p̄x
s , φ̄x

s}t≤s≤(T−1) can therefore be justified on two grounds.

On the one hand it corresponds to the cost of the variance–optimal hedge of the cash flows

generated by the new securities, and on the other hand it prevents any abnormal good–deal

at every trading period. The next proposition describe a further interesting property of this

price dynamics. The cost of the variance–optimal hedge of any payoff does not change if

the new securities are used as additional hedging instruments.

Proposition 8 If px
s = p̄x

s for every period s between t and (T − 1) then the operators Qe
s

and Qs are identical for every period s between t and (T − 1).

7. Smile Consistent Kernels and Dynamics

We consider again a period t between 0 and (T − 1) and the nx new securities described

by their dividends and final payoffs. A smile at time t is a random vector Sx
t in RI nx ,

measurable with respect to Ft, which describes the prices of the nx new securities at period

t. We start by studying the pricing kernels which are consistent with the smile and we

provide a lower bound on the variance of these kernels. We then study the admissible price

dynamics for the new securities between period t and horizon T which agree with the smile

Sx
t at time t, and we derive a lower bound on the optimal dynamic Sharpe ratio for the

corresponding extended market structure.

7.1. Smile Consistent Pricing Kernels

A pricing kernel consistent with the smile Sx
t at time t is a pricing kernel mT in PKt

which satisfies

Rf
t mtS

x
t = Et

[
T−1∑

s=t+1

Rf
s msd

x
s + mT φx

T

]
.
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According to Equation 27, this is equivalent to the requirement that Rf
t mtS

x
t = Et [mT F x

T ].

We let PKt(Sx
t ) be the set of pricing kernels consistent with the smile Sx

t at time t. We give

conditions for the set PKt(Sx
t ) to be non empty and we study the properties of the pricing

kernels in PKt(Sx
t ).

We extend the definition of the operators Qt and Gt from random variables to random

vectors. If F a
T and F b

T are two random vectors respectively in L2(P ; RI na) and L2(P ; RI nb),

we let Qt(F a
T ) be the random vector in RI na such that (Qt(F a

T ))i
def.= Qt((F a

T )i) and we let

Gt(F a
T , F b

T ) be the random matrix of size (na × nb) such that
[
Gt(F a

T , F b
T )

]
i,j

def.= Gt

(
(F a

T )i, (F b
T )j

)
.

We also denote Gt(F a
T ) the symmetric matrix Gt(F a

T , F a
T ). We shall need the following

inequality.

Lemma 12 Let F a
T and F b

T be respectively a random variable in L2(P ) and a random vector

in L2(P ; RI nb), then Gt(F a
T , F b

T )Gt(F b
T )+Gt(F b

T , F a
T ) ≤ Gt(F a

T ).

In the same spirit as above, if wa
t is a random vector in L2

t (P,
√

ht; RI na) and if F a
T is a

vector payoff in L2(P ; RI na), we let Xt,wa
t ,F a

T be the random matrix of size n × na whose

ith column is the random vector process Xt,(wa
t )i,(F

a
T )i in RI n which describes the variance–

optimal hedging strategy of the payoff (F a
T )i starting at time t with wealth (wa

t )i. It is then

natural to let ws(Xt,wa
t ,F a

T ) represent the value process of these na dynamic portfolios, a

random vector in RI na such that ws(Xt,wa
t ,F a

T )i
def.= ws(Xt,(wa

t )i,(F
a
T )i).

We have already introduced the vector payoff F x
T

def.=
∑T−1

s=t+1

√
hsw

s
T dx

s + φx
T . We let

F x
t

def.= Qt(F x
T ) be the cost at time t of the variance–optimal hedge of the component of F x

T .

We have seen that F x
t = p̄x

t and F x
t can also be described as the cost at time t of the optimal

replication strategy of the cash flows generated by the new securities from time (t+1) up

to horizon T . We let M t,x
T

def.= F x
T − wT (Xt,F x

t ,F x
T ) represent the gap at maturity T between

the vector payoff F x
T and its variance–optimal hedge. Notice that Qt(M

t,x
T ) = 0 and that

Equation 12 implies that Gt(F x
T ) = Et

[
M t,x

T (M t,x
T )′

]
.

The next lemma yields some first results on PKt(Sx
t ). We define the random vector Λx

t
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and the random variables Kx
t and Hx

t as follows,

Λx
t

def.=
√

htGt(F x
T )+ (Sx

t − F x
t ) ,

Kx
t

def.= ht (Sx
t − F x

t )′Gt(F x
T )+ (Sx

t − F x
t ) = Λx

t
′Gt(F x

T )Λx
t ,

Hx
t

def.=
Ht

(1 + Kx
t )

.

Lemma 13 Let mT be a pricing kernel in PKt(Sx
t ). We have

Rf
t mt (Sx

t − F x
t ) = Gt (mT , F x

T ) ,(29)

m2
t

Ht
Kx

t ≤ Gt (mT ) ,(30)

and mt belongs to L2
t (P, 1/

√
Hx

t ).

For a random variable m̄t in Ft, we let

mt,x
T (m̄t)

def.=
m̄t√
Ht

(
wt

T + (Λx
t )′M t,x

T

)
.

This kernel will play a central role in our analysis, we list here some basic properties.

Lemma 14 For every random variable m̄t in L2
t (P, 1/

√
Hx

t ) the random variable mt,x
T (m̄t)

is a pricing kernel in PKt which satisfies Et[m
t,x
T (m̄t)] = m̄t and

Et

[(
mt,x

T (m̄t)
)2

]
=

m̄2
t

Hx
t

.

For m̄t in L2
t (P, 1/

√
Hx

t ) and t ≤ s ≤ T we let mt,x
s (m̄t)

def.= Es

[
mt,x

T (m̄t)
]
. The next

condition will be shown to be necessary and sufficient for the existence of smile consistent

pricing kernels.

Condition 1 (Sx
t − F x

t ) = Gt(F x
T )Gt(F x

T )+ (Sx
t − F x

t ).

Proposition 9 (i). If the smile Sx
t satisfies Condition 1, then for every random vari-

able m̄t in L2
t (P, 1/

√
Hx

t ), the pricing kernel mt,x
T (m̄t) is in PKt(Sx

t ). In particular

PKt(Sx
t ) contains pricing kernels mT such that mt does not vanish.

(ii). Reciprocally, if there exists a pricing kernel mT in PKt(Sx
t ) such that mt does not

vanish, then the smile Sx
t satisfies Condition 1.

We next investigate the L2 properties of the pricing kernels in PKt(Sx
t ). This will provide

a lower bound to the variance of the kernels which are consistent with the smile.
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7.2. Variance Bound with a Smile

The following proposition proves that the kernel mt,x
T (mt) has minimum L2 norm within

PKt(Sx
t ).

Proposition 10 Every pricing kernel mT in PKt(Sx
t ) satisfies the following two inequali-

ties,

m2
t

Hx
t

≤ Et

[
m2

T

]
,(31)

m2
t (SRt)2 + m2

t (R
f
t )2 (Sx

t − F x
t )′Gt(F x

T )+ (Sx
t − F x

t ) ≤ Vart [mT ] .(32)

These two inequalities become equalities if and only if mT = mt,x
T (mt).

When mt does not vanish, Inequality 32 writes also

(SRt)2 + (Rf
t )2 (Sx

t − F x
t )′Gt(F x

T )+ (Sx
t − F x

t ) ≤ Vart [mT /mt] .

This inequality describes how the smile constraint sharpens the variance bound on the

marginal rate of substitution which we derived in Proposition 5. The increase in the bound

is a function of the distance, in the metric described by the matrix Gt(F x
T )+, between the

observed prices Sx
t of the instruments in the smile and the cost F x

t of their variance–optimal

hedge.

In the simple case where nx = 1 and the smile data is limited to one instrument, the

increase in the square of the Sharpe ratio writes (Sx
t − F x

t )2/Gt(F x
T ). It is large when the

hedging quality is high and the difference between F x
t and Sx

t is large. Intuitively, this says

that it is “costly” for a pricing kernel to produce prices which deviate much from the cost

of the optimal hedge when the replication is good, as this would require a kernel with a

large variance.

7.3. Optimal Dynamic Sharpe Ratio with a Smile

We recall that an admissible price dynamics starting at time t for the new securities is a

couple of vector processes {px
s , φx

s}t≤s≤(T−1) in RI nx adapted to F which satisfies φx
s = px

s+dx
s

and such that, together with the price processes of the original securities, they satisfy the

law of one price. We say that a price dynamics for the new securities is consistent with

the smile Sx
t at time t if it is admissible and if it satisfies px

t = Sx
t . The next proposition
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studies the existence of smile consistent price dynamics. It shows in particular the necessity

of Condition 1.

Proposition 11 (i). Let mT be a positive pricing kernel in PKt(Sx
t ). The price dynamics

{px
s , φx

s}t≤s≤(T−1) defined by the backward equations

px
s = Es

[
Rf

s+1ms+1φ
x
s+1

]
/

(
Rf

s ms

)

and φx
s = px

s + dx
s is consistent with the smile Sx

t at time t.

(ii). If there exists a price dynamics consistent with the smile Sx
t at time t, then the smile

Sx
t satisfies Condition 1.

We derive from Propositions 9 and 11 that a sufficient condition for the existence of

a price dynamics consistent with the smile is Condition 1, together with the requirement

that the kernel mt,x
T (

√
Hx

t ) be positive. The price dynamics generated by this kernel has

interesting properties which we investigate in the next section. We consider here the general

case.

We assume that there exists a price dynamics consistent with the smile Sx
t at time t.

We let {px
s , φx

s}t≤s≤(T−1) be such a consistent price dynamics and we consider the extended

asset structure which it generates between time t and horizon T .

We learn from Proposition 11 that Condition 1 is satisfied and we know from Proposi-

tion 9 that the pricing kernel mt,x
T (m̄t) is an element of PKt(Sx

t ), for every variable m̄t in

L2
t (P, 1/

√
Hx

t ). The set PKt(Sx
t ) is therefore not trivial.

Statement (ii) of Lemma 10 proves that if mT is a pricing kernel for the extended asset

structure, then

Rf
t mtp

x
t = Et

[
T−1∑

s=t+1

Rf
s msd

x
s + mT φx

T

]
.

Since px
t = Sx

t , we obtain that mT belongs to PKt(Sx
t ). This proves that the set PKe

t of

pricing kernels for the extended asset structure is a subset of PKt(Sx
t ).

The next proposition provides a lower bound to the optimal dynamic Sharpe ratio of the

extended asset structure. Notice that for every period s between t and (T − 1) we have

SRe
s =

√
1/He

s − 1. We define similarly SRx
s

def.=
√

1/Hx
s − 1 and we remark that

(SRx
t )2 = (SRt)2 + (Rf

t )2 (Sx
t − F x

t )′Gt(F x
T )+ (Sx

t − F x
t ) .
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Proposition 12 Let {px
s , φx

s}t≤s≤(T−1) be a price dynamics for the new securities which is

consistent with the smile Sx
t at time t. The corresponding extended asset structure satisfies

0 < He
t ≤ Hx

t ≤ Ht ≤ 1 and its optimal dynamic Sharpe ratio from t to T satisfies

SRt ≤ SRx
t ≤ SRe

t . The minimum increase in the square of the optimal dynamic Sharpe

ratio from the original asset structure to the extended one is given by

(SRx
t )2 − (SRt)2 = (Rf

t )2 (Sx
t − F x

t )′Gt(F x
T )+ (Sx

t − F x
t ) .

Every pricing kernel mT in PKe
t satisfies the inequality m2

t (SRx
t )2 ≤ Vart [mT ].

The next section investigates situations where the Sharpe ratio reaches its smile con-

strained lower bound SRx
t .

8. Two Dynamic Investment Problems

Our analysis will help us answer the questions raised by the fund manager and the

investment banker who are seeking a rationale for selecting a price dynamics for some new

instruments in an incomplete market setting. A basic requirement is to avoid working with

price dynamics which create arbitrage opportunities. A second objective is to be consistent

with the market quotes of some liquid derivative instruments. The positive pricing kernels

in PKt(Sx
t ) fulfill these requirements. When markets are incomplete however, these kernels

are usually not unique, and an additional rationale is needed in order to pick a “good”

candidate. The fund manager is afraid of generating spurious dynamic good–deals, while

the banker would like to keep a close link between the price of a security and the cost of its

dynamic hedge.

We show in this section that when the kernel mt,x
T is positive, it meets these two concerns.

For the fund manager, it generates a smile consistent price dynamics which yields the

smallest possible increase in Sharpe ratio. For the investment banker, it produces derivative

prices which are as close as possible to the hedging cost under the constraint of the smile.

8.1. Portfolio Management and the Smile

We consider a price dynamics {px
s , φx

s}t≤s≤(T−1) consistent with the smile Sx
t at time t and

the corresponding extended asset structure which it generates. We study the situation where

the optimal dynamic Sharpe ratio of the extended asset structure reaches its theoretical

lower bound, as described in Proposition 12.
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The kernel mt,x
T plays here again a crucial role. We know from Proposition 11 that

Condition 1 is satisfied and from Proposition 9 that mt,x
T (

√
Hx

t ) is a smile consistent pricing

kernel in PKt(Sx
t ). From now on, we shall simply let mt,x

T denote the kernel mt,x
T (

√
Hx

t )

with mt,x
t =

√
Hx

t .

We recall that F x,j
T corresponds to the final payoff of the self financing strategy which

holds one unit of new security j from t to T and which reinvests every dividend distributed

by this security in the L2 minimum portfolio for the initial securities up to horizon T . As

a result, the random variable

mt,x
T =

√
Hx

t√
Ht

(
wt

T + (Λx
t )′M t,x

T

)

is the final value of a self financing dynamic portfolio starting at t which combines on the one

hand some constant quantities of the nx new securities given by the vector (
√

Hx
t /
√

Ht)Λx
t ,

and on the other hand a portfolio based on the n original securities. We denote Y e this self

financing portfolio. Since, according to Lemma 14, the payoff mt,x
T is in L2(P ), the portfolio

Y e is in X e
t . Its value at time t is

wt(Y e) =

√
Hx

t√
Ht

(
1√
ht

+ (Λx
t )′(Sx

t − F x
t )

)
=

1

Rf
t

√
Hx

t

.

Proposition 13 Let {px
s , φx

s}t≤s≤(T−1) be a price dynamics consistent with the smile Sx
t at

time t. The optimal dynamic Sharpe ratio SRe
t of the extended asset structure reaches its

minimum value SRx
t if and only if one the following equivalent conditions hold.

(i). wt,e
T = mt,x

T .

(ii). The value process of the dynamic portfolio Xt,e is identical to the one of a self financing

strategy in X e
t which holds constant quantities from t to T of the new securities given

by the vector (
√

Hx
t /
√

Ht)Λx
t .

(iii). The pricing kernel mt,x
T belongs to PKe

t .

(iv). For every period s between t and (T − 1),

Rf
s mt,x

s px
s = Es

[
Rf

s+1m
t,x
s+1φ

x
s+1

]

= Es

[
T−1∑

u=s+1

Rf
umt,x

u dx
u + mt,x

T φx
T

]
.
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Since dynamic mean–variance efficient portfolios for the extended asset structure are fixed

combinations from t to T of the strategy Xt,e and the risk free bond, Statement (ii) provides

a simple characterization of absence of good–deal under the constraint of a smile. The cor-

responding optimal strategies keep constant quantities through time of the securities which

define the smile, and these quantities are proportional to the vector Gt(F x
T )+ (Sx

t − F x
t ).

We next investigate if reaching the lower bound of the Sharpe ratio at time t implies that

an equivalent lower bound is reached at a later trading date s, for the smile given by the

price vector px
s . For every period s between t and (T − 1) we let

Kx
s

def.= hs (px
s − p̄x

s )′Gs(F x
T )+ (px

s − p̄x
s ) ,

Hx
s

def.=
Hs

(1 + Kx
s )

,

SRx
s

def.=
√

1/Hx
s − 1.

Proposition 14 Let {px
s , φx

s}t≤s≤(T−1) be a price dynamics consistent with the smile Sx
t at

time t. If SRe
t = SRx

t then at every period s between t and (T − 1) such that mt,x
s does not

vanish, SRe
s = SRx

s .

Combining these results with Propositions 9 and 11, we obtain that when the kernel mt,x
T

is positive, it generates a smile consistent price dynamics which avoids good–deals every

period.

Result 3 If the pricing kernel mt,x
T is positive and if the smile Sx

t satisfies Condition 1,

then the price dynamics {px
s , φx

s}t≤s≤(T−1) defined by

px
s = Es

[
Rf

s+1m
t,x
s+1φ

x
s+1

]
/

(
Rf

s mt,x
s

)

and φx
s = px

s + dx
s is consistent with the smile Sx

t at time t. It generates an extended asset

structure such that SRe
s = SRx

s for every period s between time t and horizon (T − 1).

8.2. Hedging and Pricing with the Smile

We now turn our attention to the problem of hedging and pricing derivatives with the

constraint of a smile. We assume here that both wt
T and mt,x

T are positive.

For a pricing kernel mT in PKt such that mt
def.= Et[mT ] is positive and a payoff FT in

L2(P ), we let Jt(FT ; mT ) represent the quality of the variance–optimal hedge of FT with
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the original securities, under the constraint that the replication starts at time t with a value

derived from the kernel mT . Formally we let

Jt(FT ; mT ) def.= essinf
X∈Xt

wt(X)=Et[mT FT ]/(Rf
t mt)

Et

[
(FT − wT (X))2

]
.

We know from Proposition 2 that Jt(FT ; mT ) = ht(wt(X) − Qt(FT ))2 + Gt(FT ). When

mT = wt
T , Equation 18 proves that wt(X) = Qt(FT ) and Jt(FT ;mT ) reaches its mini-

mum over the set of pricing kernels with positive conditional expectation at time t with

Jt(FT ; wt
T ) = Gt(FT ). The following proposition shows that the kernel mt,x

T solves a min–

max problem in terms of hedging quality over all possible normalized payoffs in L2(P ) at

horizon T .

Proposition 15 If wt
T and mt,x

T are positive and if the smile Sx
t satisfies Condition 1, then

the optimization program

essinf{
mT ∈ PKt(Sx

t )

mt > 0

esssup Jt(FT ; mT )− Jt(FT ;wt
T ){

FT ∈ L2(P )

Et

[
F 2

T

]
= 1

is solved for the pricing kernel mt,x
T with minimum value Kx

t .

Since Jt(FT ; mT )−Jt(FT ; wt
T ) = ht(wt(X)−Qt(FT ))2 with wt(X) = Et[mT FT ]/(Rf

t mt),

the min–max problem of Proposition 15 can also be interpreted as selecting the smile con-

sistent kernel which produces contingent claim prices as close as possible to the cost of the

optimal unconstrained hedge. This result proves the constrained optimality of the kernel

mt,x
T , both in terms of hedging and in terms of pricing.

We now study the optimal hedge for the extended asset structure generated by the kernel

mt,x
T . We show that this kernel generates prices which correspond to the cost of the variance–

optimal hedge constructed with both the original and the new securities.

Proposition 16 Let us assume that mt,x
T is positive and that the smile Sx

t satisfies Con-

dition 1. Let us consider the extended asset structure which this pricing kernel generates

through the smile consistent price dynamics {px
s , φx

s}t≤s≤(T−1) defined by

px
s = Es

[
Rf

s+1m
t,x
s+1φ

x
s+1

]
/

(
Rf

s mt,x
s

)
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and φx
s = px

s + dx
s . For every payoff FT in L2(P ), the price generated by the pricing kernel

mt,x
T coincides with the cost of the variance–optimal hedge of FT which uses both the original

and the new securities, that is

Qe
s(FT ) = Es

[
mt,x

T FT

]
/

(
Rf

s mt,x
s

)
(33)

for every period s between time t and horizon T . Furthermore at time t we have

Qe
t (FT ) = Qt(FT ) + (Sx

t − F x
t )′Gt (F x

T )+ Gt (F x
T , FT ) .(34)

We check that for FT = F x
T in Equation 34, Condition 1 implies that Qe

t (F
x
T ) = Sx

t .

Equation 34 explains how to extrapolate the quotes of the smile to any additional contingent

claim.

Finance and Economics Department, Groupe HEC, 78351 Jouy-en-Josas Cedex, France;

henrotte@hec.fr.
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Appendix to Section 3

Proof of Lemma 2. We only prove the second part of Statement (ii) which is not

in Henrotte (2001). We use Equation 12 with F a
T = wT (X) and F b

T = FT . The equal-

ity Gt(wT (X), FT ) = 0 results from the fact that Qt(wT (X)) = wt(X) and wT (X) =

wT (Xt,wt(X),wT (X)). Q.E.D.

Proof of Lemma 4. Statement (i). Let X be a self financing dynamic strategy

starting at time t and let Y = θf (X). For every period s from (t+1) up to (T − 1) we have

ws(Y ) = p′sYs = p′sXs −
( s∑

u=t+1

fu

√
huwu

s

)
hsp

′
sN

+
s ps.

We know from Equation 3 that hsp
′
sN

+
s ps = 1. The fact that X is self financed at time s

implies that p′sXs = φ′sXs−1. Since furthermore
√

hsw
s
s = 1, we derive

ws(Y ) = φ′sXs−1 −
( s−1∑

u=t+1

fu

√
huwu

s

)
− fs.

For u ≤ (s− 1) we know from Equation 13 that wu
s = wu

s−1hs−1φ
′
sN

+
s−1ps−1 and therefore

ws(Y ) = φ′sXs−1 −
( s−1∑

u=t+1

fu

√
huwu

s−1hs−1φ
′
sN

+
s−1ps−1

)
− fs

= φ′s

[
Xs−1 −

( s−1∑

u=t+1

fu

√
huwu

s−1

)
hs−1N

+
s−1ps−1

]
− fs

= φ′sYs−1 − fs,

which proves that Y finances the sequence of cash flows f . Reciprocally, the same equations

proves that X is self financing as soon as Y finances f .

Statement (ii). The equality wt(Y ) = wt(X) results from the fact that Yt = Xt. At

time T , and since Equation 13 implies that wu
T = wu

T−1hT−1φ
′
T N+

T−1pT−1 for u ≤ (T − 1),
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an analysis similar to the one developed above yields

wT (Y )− fT = φ′T YT−1 − fT

= φ′T XT−1 −
( T−1∑

u=t+1

fu

√
huwu

T−1hT−1φ
′
T N+

T−1pT−1

)
− fT

= wT (X)−
T−1∑

u=t+1

fu

√
huwu

T − fT

= wT (X)−
T∑

u=t+1

fu

√
huwu

T ,

and we obtain that (wT (Y )− fT ) = (wT (X)− FT ). Q.E.D.

Proof of Proposition 3. The fact that the payoff FT belongs to L2(P ) results from

the equalities

E
[
(fs

√
hsw

s
T )2

]
= E

[
hsf

2
s Es

[
(ws

T )2
]]

= E
[
hsf

2
s

]
,

and the fact that every cash flow fs belongs to L2
s(P,

√
hs). Since both fT and FT are in

L2(P ) and since, according to Statement (ii) of Lemma 4, (fT − wT (Y )) = (FT − wT (X)),

wT (Y ) is in L2(P ) if and only if wT (X) is itself in L2(P ). We conclude with Statement (i) of

Lemma 4 that the mapping θf is one to one from Xt to Xt(f). The equivalence between the

two optimization programs is then a direct consequence of the properties of the mapping

θf . Q.E.D.

Proof of Lemma 5. We prove these results by backward induction. We first deal

with the hedging cost. At time T , we check that QT (FT ) = FT =
∑T

s=t+1 fs

√
hsw

s
T .

Let us assume that Qs+1(FT ) =
∑s+1

u=t+1 fu

√
huwu

s+1 + f̄s+1 for t ≤ s ≤ (T − 1). Since√
hs+1w

s+1
s+1 = 1, we also have Qs+1(FT ) =

∑s
u=t+1 fu

√
huwu

s+1 + f̄s+1 + fs+1. Using the
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equations wu
s+1 = wu

s hsφ
′
s+1N

+
s ps, N+

s NsN
+
s = N+

s , and the definition of f̄s, we derive

Qs(FT ) = p′sN
+
s Es [hs+1Qs+1(FT )φs+1]

=
s∑

u=t+1

fu

√
hup′sN

+
s Es

[
hs+1w

u
s+1φs+1

]
+ p′sN

+
s Es

[
hs+1(f̄s+1 + fs+1)φs+1

]

=
s∑

u=t+1

fu

√
hup′sN

+
s Es

[
hs+1φs+1φ

′
s+1

]
N+

s pshsw
u
s + f̄s

=
s∑

u=t+1

fu

√
hup′sN

+
s pshsw

u
s + f̄s

=
s∑

u=t+1

fu

√
huwu

s + f̄s,

and this proves the desired backward induction.

For the hedging quality, ḡT = GT (FT ) = 0 at time T and we assume that ḡs+1 = Gs+1(FT )

for t ≤ s ≤ (T − 1). We know from Proposition 2 that

Gs(FT ) = Es [Gs+1(FT )] + Es

[
hs+1F

2
s+1

]−Es

[
hs+1Fs+1φ

′
s+1

]
N+

s Es [hs+1Fs+1φs+1]

= Es [Gs+1(FT )] + Es

[
hs+1

(
Fs+1 − φ′s+1N

+
s Es [hs+1Fs+1φs+1]

)2
]
,

where Fs+1 = Qs+1(FT ). According to our previous result,

Qs+1(FT ) =
s∑

u=t+1

fu

√
huwu

s+1 + f̄s+1 + fs+1

=
s∑

u=t+1

fu

√
huhsw

u
s φ′s+1N

+
s ps + f̄s+1 + fs+1

= φ′s+1Zs + f̄s+1 + fs+1,

where Zs =
∑s

u=t+1 fu

√
huhsw

u
s N+

s ps is a vector measurable with respect to Fs. We

compute

Fs+1 − φ′s+1N
+
s Es [hs+1Fs+1φs+1] = φ′s+1Zs − φ′s+1N

+
s NsZs

+ f̄s+1 + fs+1 − φ′s+1N
+
s Es

[
hs+1

(
f̄s+1 + fs+1

)
φs+1

]
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and since, according to Equation 4, NsN
+
s φs+1 = φs+1, we obtain that

Gs(FT ) = Es [Gs+1(FT )]

+ Es

[
hs+1

(
f̄s+1 + fs+1 − φ′s+1N

+
s Es

[
hs+1

(
f̄s+1 + fs+1

)
φs+1

])2
]

= Es [ḡs+1] + Es

[
hs+1

(
f̄s+1 + fs+1

)2
]

−Es

[
hs+1

(
f̄s+1 + fs+1

)
φ′s+1

]
N+

s Es

[
hs+1

(
f̄s+1 + fs+1

)
φs+1

]
.

This proves that Gs(FT ) = ḡs and concludes the backward induction proof. Q.E.D.

Appendix to Section 5

Proof of Lemma 6. Let mT be a pricing kernel in PKt and let s be a trading period

between t and (T − 1). For every index i from 1 to n, there exists a self financing portfolio

Y i in Xs such that ws(Y i) = pi
s and ws+1(Y i) = φi

s+1. We create indeed this portfolio by

holding one unit of security i at time s, and by investing the value φi
s+1 of the portfolio at

time (s + 1) in the L2 minimum portfolio Xs+1 up to horizon T . This strategy is obviously

self financing. Since the portfolio Xs+1 is worth 1/
√

hs+1 at time (s+1), the value at time

T of the strategy writes wT (Y i) = φi
s+1

√
hs+1w

s+1
T and satisfies

E
[
wT (Y i)2

]
= E

[
hs+1(φi

s+1)
2Es+1

[
(ws+1

T )2
]]

= E
[
hs+1(φi

s+1)
2
]
,

which is finite according to Proposition 1. We conclude that Y i is indeed in Xs. Since mT

is in PKt, we have

Rf
s+1ms+1φ

i
s+1 = Es+1[mT wT (Y i)],

Rf
s msp

i
s = Es[mT wT (Y i)],

and we conclude that Rf
s msps = Es

[
Rf

s+1ms+1φs+1

]
, which proves Statement (i).

The reciprocal is easily obtained by backward induction on s, making use of the self

financing condition at every trading period. The equivalence between Statements (i) and (ii)

is straightforward. Q.E.D.

Proof of Proposition 4. Statement (i). The payoff wt
T is an element of wT (Xt) and

is therefore in L2(P ) so that wt
T is in L2(P ). Consider a period s between t and T and a

dynamic portfolio X in Xs. We know from Statement (iii) of Lemma 2 with wt = 1/
√

ht and
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FT = wT (X) that hsw
t
sQs(wT (X)) = Es

[
wt

T wT (X)
]

and we conclude with Statement (i)

of Lemma 2 and Equation 16 that Rf
s Es

[
wt

T

]
ws(X) = Es

[
wt

T wT (X)
]

which proves that

wt
T is a pricing kernel in PKt.

Statement (ii). If mT is an element of PK0
t then for every portfolio X in Xt

Rf
t mtwt(X) = Et [mT wT (X)] = 0

since mt = 0 and mT belongs to wT (Xt)⊥t .

Reciprocally, consider a payoff mT in wT (Xt)⊥t , a period s between t and T , and a

portfolio X in Xs. For every event As in Fs, we create a dynamic portfolio Y starting at

time t with zero wealth in the following way. We do not invest until time s. At time s we

do nothing until the horizon T in case the event As does not occur. If the event As occurs

at time s, we purchase the portfolio
√

HsXs and we borrow its cost
√

Hsws(X) by selling

Rf
s
√

Hsws(X) units of zero coupon bonds. We then follow the self financing strategy of√
HsX until time T when we redeem the bond.

This dynamic portfolio Y is clearly self financing and starts indeed in t with zero wealth.

Its final value wT (Y ) is given by wT (Y ) = 1As

√
Hs

(
wT (X)−Rf

s ws(X)
)
. It is an element

of L2(P ) since
√

Hs is bounded, wT (X) is in L2(P ), and
√

HsR
f
s ws(X) =

√
hsws(X) is in

L2(P ).

according to Statement (ii) of Proposition 1. We conclude that Y is an element of Xt and

since mT is in wT (Xt)⊥t , we obtain

Et

[
1As

√
HsmT

(
wT (X)−Rf

s ws(X)
)]

= 0.

This equality holds for every event As in Fs and therefore

Es

[√
HsmT

(
wT (X)−Rf

s ws(X)
)]

= 0

and since
√

Hs > 0 we conclude that Rf
s Es [mT ] ws(X) = Es [mT wT (X)] and mT is in PKt.

The strategy 1t which consists in holding the zero coupon bond from time t on is an

element of Xt with final payoff 1. Since mT is conditionally orthogonal to this strategy, we

derive that Et [mT ] = 0 and mT is indeed an element of PK0
t .

Statement (iii). First notice that if mT is in PKt, mT belongs to L2(P ) so that mT is

in L2(P ). Equation 15 shows that Qs (mT ) = (1/
√

hs)Es [ws
T mT ]. Since mT is in PKt and

ws
T is in wT (Xs) with ws

s = 1/
√

hs, we compute

Qs (mT ) =
1√
hs

Rf
s msw

s
s =

1
hs

Rf
s ms
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and eventually ms/
√

Hs =
√

hsQs(mT ) which is in L2(P ) according to Proposition 2.

Statement (iv). We check first that if ξt is an element of L2
t (P ), the product ξtw

t
T is

in L2(P ) as required. Indeed

E
[(

ξtw
t
T

)2
]

= E
[(

ξtw
t
T

)2
]

= E
[
ξt

2Et

[
(wt

T )2
]]

= E
[
ξt

2
]

< ∞

since Et

[
(wt

T )2
]

= 1. It is now clear that ξtw
t
T and the sum m0

T + ξtw
t
T is in PKt for every

variable m0
T in PK0

t .

Reciprocally, if mT is a pricing kernel in PKt, we let ξt = mt/
√

Ht. We know from

Statement (iii) that ξt is in L2
t (P ). As seen above, the product ξtw

t
T is therefore in PKt

and so is the difference m0
T = mT − ξtw

t
T . We check that

Et

[
m0

T

]
= Et

[
mT − ξtw

t
T

]
= mt − ξtEt

[
wt

T

]
= mt − mt√

Ht

√
Ht = 0,

since Et

[
wt

T

]
=
√

Ht from Equation 17. This proves that m0
T is a element of PK0

t and that

mT is in PK0
t +

(
L2

t (P )× wt
T

)
. We conclude with Statement (ii) that PKt = wT (Xt)⊥t +(

L2
t (P )× wt

T

)
.

Statement (v). We have already seen that L2
t (P ) × wt

T is a subset of PKt. It is also

a subset of wT (Xt) since for every element ξt of L2
t (P ), the product ξtw

t
T is in L2(P ) and

corresponds to the value at time T of the self financing portfolio ξtX
t.

Reciprocally, if mT is an element of PKt
⋂

wT (Xt), we know that, as an element of PKt,

it writes mT = m0
T + ξtw

t
T , with m0

T in wT (Xt)⊥t and ξt in L2
t (P ). Since both ξtw

t
T and

mT are in wT (Xt), so is m0
T and we obtain that Et

[
(m0

T )2
]

= 0. We conclude that m0
T = 0

and mT = ξtw
t
T is an element of L2

t (P )× wt
T .

Statement (vi). We consider a payoff FT in L2(P ), an initial value wt at time t in

L2
t (P,

√
ht) and a period s between t and T . We let mT =

(
FT − wT (Xt,wt,FT )

)
, obviously

an element of L2(P ). We apply Statement (iv) of Lemma 2 successively with X = 1s, the

strategy in Xs which buys and holds one unit of the zero coupon from time s until maturity

T , and with X any dynamic portfolio in Xs. We obtain

ms = Es [mT ] =
hs

Rf
s

(
Qs(FT )− ws(Xt,wt,FT ))

)

and Rf
s msws(X) = Es [mT wT (X)]. This proves that mT is a pricing kernel in PKt. If wt is

chosen equal to Qt(FT ), then

mt =
ht

Rf
t

(
Qt(FT )− wt(Xt,Qt(FT ),FT )

)
= 0
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and mT belongs to PK0
t .

Reciprocally, if m0
T is a pricing kernel in PK0

t , then m0
T is in L2(P ) and the final value

wT (Xt,Qt(m0
T ),m0

T ) is an element of wT (Xt). We have obtained above that the variable(
m0

T − wT (Xt,Qt(m0
T ),m0

T )
)

is an element in PK0
t and this proves that wT (Xt,Qt(m0

T ),m0
T ) is

also in PK0
t . Since PK0

t = wT (Xt)⊥t we conclude that wT (Xt,Qt(m0
T ),m0

T ) = 0 and if we

choose FT = m0
T , then m0

T =
(
FT − wT (Xt,Qt(FT ),FT )

)
.

We consider now a pricing kernel mT in PKt. From Statement (iv) we write mT =

m0
T + ξtw

t
T with m0

T in PK0
t and ξt in L2

t (P ). We let FT = m0
T and we have seen that m0

T =(
FT − wT (Xt,Qt(FT ),FT )

)
. We compute −ξtw

t
T = −ξtwT (Xt,1/

√
ht,0) = wT (Xt,−ξt/

√
ht,0) so

that, following Equation 10,

mT = FT − wT

(
Xt,Qt(FT ),FT + Xt,−ξt/

√
ht,0

)
= FT − wT

(
Xt,Qt(FT )−ξt/

√
ht,FT

)
.

We conclude that mT =
(
FT − wT (Xt,wt,FT )

)
with FT = m0

T and wt = Qt(FT )− ξt/
√

ht.

Statement (vii). We first prove that PK0
t = wT (Xt)⊥t is closed in L2(P ). Consider a se-

quence {m0,n
T }n≥0 in wT (Xt)⊥t which converges in L2(P ) to m0

T . We prove that m0
T belongs

to wT (Xt)⊥t . Let X be any dynamic portfolio in Xt. The sequence {Et[m
0,n
T wT (X)]}n≥0 is

null for every n and converges in L1(P ) to Et

[
m0

T wT (X)
]

since

E
[∣∣∣Et

[
m0,n

T wT (X)
]
− Et

[
m0

T wT (X)
]∣∣∣

]
≤ ‖wT (X)‖L2(P )‖

(
m0,n

T −m0
T

)
‖L2(P ).

Therefore Et

[
m0

T wT (X)
]

= 0 and m0
T belongs to wT (Xt)⊥t which is closed in L2(P ).

We consider next a sequence {mn
T }n≥0 in PKt which converges in L2(P ) to mT . From

Statement (iv) we find two sequences {m0,n
T }n≥0 and {ξn

t }n≥0 respectively in wT (Xt)⊥t and

in L2
t (P ) such that mn

T = m0,n
T + ξn

t wt
T for every n ≥ 0. The sequence {mn

T }n≥0 is a Cauchy

sequence in L2(P ) and we compute

Et

[
(mn

T −mm
T )2

]
= Et

[(
m0,n

T −m0,m
T + (ξn

t − ξm
t )wt

T

)2
]

= Et

[(
m0,n

T −m0,m
T

)2
]

+ (ξn
t − ξm

t )2 Et

[(
wt

T

)2
]

+ 2 (ξn
t − ξm

t )Et

[(
m0,n

T −m0,m
T

)
wt

T

]

= Et

[(
m0,n

T −m0,m
T

)2
]

+ (ξn
t − ξm

t )2 ,

since Et

[(
wt

T

)2
]

= 1 and Et

[(
m0,n

T −m0,m
T

)
wt

T

]
= 0. We obtain

E
[
(mn

T −mm
T )2

]
= E

[(
m0,n

T −m0,m
T

)2
]

+ E
[
(ξn

t − ξm
t )2

]
,
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which shows that both {m0,n
T }n≥0 and {ξn

t }n≥0 are Cauchy sequences which converge re-

spectively to m0
T and ξt in L2(P ).

On the one hand we know that m0
T belongs to wT (Xt)⊥t because this set is closed in L2(P ).

On the other hand ξt is measurable with respect to Ft and belongs to L2
t (P ). It is easily

checked that the sequence {ξn
t wt

T }n≥0 converges in L2(P ) to ξtw
t
T so that mT = m0

T + ξtw
t
T

and, according to Statement (iv), mT belongs to PKt. We conclude that PKt is closed in

L2(P ).

Since PK0
t = wT (Xt)⊥t , it is clear that wT (Xt) is a subset of

(
PK0

t

)⊥t . Let us prove the

reverse inclusion by considering a random variable FT in
(
PK0

t

)⊥t . We let Ft = Qt(FT ).

The final value wT (Xt,Ft,FT ) is in wT (Xt) and therefore
(
FT − wT (Xt,Ft,FT )

)
is in

(
PK0

t

)⊥t .

We know from Statement (vi) that
(
FT − wT (Xt,Ft,FT )

)
is in PK0

t and we conclude that

Et

[(
FT − wT (Xt,Ft,FT )

)2
]

= 0, which proves that FT = wT (Xt,Ft,FT ) and that FT belongs

to wT (Xt). Q.E.D.

Proof of Lemma 7. Equation 12 yields

Gs (mT , FT ) = Es

[(
mT − wT (Xs,Qs(mT ),mT )

)(
FT − wT (Xs,Qs(FT ),FT )

)]

= Es [mT FT ]− Es

[
mT wT (Xs,Qs(FT ),FT )

]

− Es

[(
FT − wT (Xs,Qs(FT ),FT )

)
wT (Xs,Qs(mT ),mT )

]
.

The last term vanishes since
(
FT − wT (Xs,Qs(FT ),FT )

)
belongs to PK0

s as seen in State-

ment (vi) of Proposition 4 and wT (Xs,Qs(mT ),mT ) is a payoff in wT (Xs). Eventually we

obtain

Gs(mT , FT ) = Es [mT FT ]−Rf
s msws(Xs,Qs(FT ),FT ) = Es [mT FT ]−Rf

s msQs(FT )

which is Equation 20. Q.E.D.

Proof of Proposition 5. If we set FT = mT in Equation 20, we obtain Equation 21

since
√

hsQs(mT ) = ms/
√

Hs, according to Statement (iii) of Proposition 4. Equation 22

results then from Equation 21 and the definition of SRs, we have indeed

Vars [mT ] = Es

[
m2

T

]− (Es[mT ])2 = m2
s

(
1

Hs
− 1

)
+ Gs [mT ] = m2

s(SRs)2 + Gs (mT ) .

The two inequalities are a direct consequence of Equations 21 and 22 and the fact that

Gs(mT ) is nonnegative. If mT = ξtw
t
T with ξt in L2

t (P ), then mT = wT (ξtX
t) and mT
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belongs to wT (Xt), and therefore also to wT (Xs). According to Statement (ii) of Lemma 2,

Gs(mT ) = 0 and both inequalities are equalities.

For s = t, equality obtains in both cases if and only if Gt(mT ) = 0. Statement (ii) of

Lemma 2 proves that this happens if and only if mT belongs to wT (Xt), or, according to

Statement (v) of Proposition 4, if and only if mT belongs to the set L2
t (P )× wt

T . Q.E.D.

Appendix to Section 6

Proof of Lemma 8. We show that the law of one price holds from t to T . We consider

a period s between t and (T − 1) and a vector (u, v) in RI n× RI nx measurable with respect

to Fs such that φ′s+1u + (φx
s+1)

′v = 0. It results from Lemma 6 and from Equation 26 that

Rf
s msps = Es

[
Rf

s+1ms+1φs+1

]
,

Rf
s msp

x
s = Es

[
Rf

s+1ms+1φ
x
s+1

]
.

The equality φ′s+1u + (φx
s+1)

′v = 0 implies that

Rf
s ms

(
p′su + (px

s )′v
)

= Es

[
Rf

s+1ms+1

(
φ′s+1u + (φx

s+1)
′v

)]
= 0

and we conclude that p′su + (px
s )′v = 0 since ms is positive. Q.E.D.

Proof of Lemma 9. We consider a period s between t and (T − 1) and a vector (u, v)

in RI n× RI nx measurable with respect to Fs such that φ′s+1u+(φ̄x
s+1)

′v = 0. We know from

the definition of p̄x
s and from Equation 5 that

p̄x
s = Es

[
hs+1φ̄

x
s+1φ

′
s+1

]
N+

s ps,

ps = Es

[
hs+1φs+1φ

′
s+1

]
N+

s ps.

The equality φ′s+1u + (φ̄x
s+1)

′v = 0 implies that

u′ps + v′p̄x
s = Es

[
hs+1

(
u′φs+1 + v′φ̄x

s+1

)
φ′s+1

]
= 0

and we conclude that p′su + (p̄x
s )′v = 0.

Let us consider the kernel mT = wt
T . We learn respectively from Equations 13 and 16

that wt
s+1 = wt

shsφ
′
s+1N

+
s ps and Rf

s ms = hsw
t
s for every period s between t and (T − 1)

and we derive that

Rf
s msp̄

x
s = hsw

t
sEs

[
hs+1φ̄

x
s+1φ

′
s+1

]
N+

s ps = Es

[
hs+1φ̄

x
s+1w

t
s+1

]
= Es

[
Rf

s+1ms+1φ̄
x
s+1

]
.
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A simple induction yields Rf
s msp

x
s = Es

[∑T−1
u=s+1 Rf

umudx
u + mT φx

T

]
. If wt

T is positive, mt

does not vanish and we obtain Equation 26. Q.E.D.

Proof of Proposition 11. Without loss of generality, we consider the case s = t. We

assume that SRe
t = SRt and we show that wt,e

T = wt
T by proving that Et

[
(wt,e

T − wt
T )2

]
= 0.

We know from Equation 14 that Et

[
(wt

T )2
]

= Et

[
(wt,e

T )2
]

= 1. According to State-

ment (i) of Proposition 4, wt,e
T is in PKe

t , and therefore also in PKt and Equation 19 yields

Et

[
wt,e

T wt
T

]
= Rf

t Et

[
wt,e

T

]
wt

t. It results from Equation 17 that Et

[
wt,e

T

]
=

√
He

t and since

Rf
t wt

t = Rf
t /
√

ht = 1/
√

Ht, we derive that Et

[
wt,e

T wt
T

]
=

√
He

t /
√

Ht. Now SRe
t = SRt

implies that He
t = Ht and Et

[
wt,e

T wt
T

]
= 1 and we conclude that

Et

[
(wt,e

T − wt
T )2

]
= Et

[
(wt,e

T )2
]

+ Et

[
(wt

T )2
]− 2Et

[
wt,e

T wt
T

]
= 0.

If wt,e
T = wt

T , then wt
T belongs to PKe

t since, according to Statement (i) of Proposition 4,

wt,e
T is an element of PKe

t ,

Let us now assume that wt
T belongs to PKe

t . The self financing strategy wt
T is an element of

wT (X e
t ) since it is in wT (Xt). According to Statement (v) of Proposition 4, there exists ξt in

L2
t (P ) such that wt

T = ξtw
t,e
T . We know however that Et

[
(wt

T )2
]

= Et

[
(wt,e

T )2
]

= 1, and we

conclude that ξt = 1 and that wt,e
T = wt

T . Since, according to Equation 17, Et

[
wt

T

]
=
√

Ht

and Et

[
wt,e

T

]
=

√
He

t , we conclude that He
t = Ht and SRe

t = SRt.

If wt
T is a pricing kernel in PKe

t , then we learn from Equation 28 that Et

[
wt

T F x
T

]
=

Rf
t Et

[
wt

T

]
px

t =
√

htp
x
t . According to Equation 15, this implies that for every security j we

have px,j
t = Qt(F

x,j
T ) and since Qt(F

x,j
T ) = p̄x,j

t , we conclude that px
t = p̄x

t . Q.E.D.

Proof of Proposition 6. The fact that Statement (i) implies Statement (ii) results

directly from Lemma 11. Let us assume that px
s = p̄x

s and that φx
s+1 = φ̄x

s+1 for every

period s between t and (T − 1). We check by backward induction that he
s = hs for every

period s between t and (T − 1). Let us assume therefore that he
s+1 = hs+1. We seek to

prove that he
s = hs.

We know from Equation 3 of Proposition 1 that 1/he
s = (pe

s)
′Es

[
hs+1φ

e
s+1(φ

e
s+1)

′]+
pe

s.

We consider the following matrix As, measurable with respect to Fs,

As =

(
Id 0

Bs Id

)
,
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with Bs = −Es

[
hs+1φ̄

x
s+1φ

′
s+1

]
N+

s . Since As is invertible, we remark that

(A′s)
−1Es

[
hs+1φ

e
s+1(φ

e
s+1)

′]+
A−1

s =
(
AsEs

[
hs+1φ

e
s+1(φ

e
s+1)

′]A′s
)+

and we have

1
he

s

= (pe
s)
′Es

[
hs+1φ

e
s+1(φ

e
s+1)

′]+
pe

s

= (pe
s)
′A′s(A

′
s)
−1Es

[
hs+1φ

e
s+1(φ

e
s+1)

′]+
A−1

s Asp
e
s

= (Asp
e
s)
′ (AsEs

[
hs+1φ

e
s+1(φ

e
s+1)

′]A′s
)+

Asp
e
s

= (Asp
e
s)
′ (Es

[
hs+1(Asφ

e
s+1)(Asφ

e
s+1)

′])+
Asp

e
s.

We notice that p̄x
s = Es

[
hs+1φ̄

x
s+1φ

′
s+1

]
N+

s ps = −Bsps and we have

Asp
e
s =

(
ps

p̄x
s + Bsps

)
=

(
ps

0

)

and

Asφ
e
s+1 =

(
φs+1

φ̄x
s+1 + Bsφs+1

)
.

The block diagonal terms of the matrix Es

[
hs+1(Asφ

e
s+1)(Asφ

e
s+1)

′] vanish since

Es

[
hs+1φs+1(φ̄x

s+1 + Bsφs+1)′
]

= Es

[
hs+1φs+1(φ̄x

s+1)
′]−Es

[
hs+1NsN

+
s φs+1(φ̄x

s+1)
′]

and NsN
+
s φs+1 = φs+1, as seen in Equation 4. As a result, we have

(
Es

[
hs+1(Asφ

e
s+1)(Asφ

e
s+1)

′])+ =

(
N+

s 0

0 Cs

)
,

for some matrix Cs, and

1
he

s

= (Asp
e
s)
′ (Es

[
hs+1(Asφ

e
s+1)(Asφ

e
s+1)

′])+
Asp

e
s = psN

+
s ps.

Since 1/hs = psN
+
s ps, we obtain that he

s = hs, which concludes the backward induction

proof. Q.E.D.

Proof of Proposition 7. We assume that SRe
t = SRt and we consider a period s

such that wt
s does not vanish. We know from Lemma 11 that the payoff wt

T is in PKe
t , and
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therefore also in PKe
s. Since it is also an element of wT (X e

s ), we conclude with Statement (v)

of Proposition 4 that there exists a variable ξs in L2
s(P ) such that wt

T = ξsw
s,e
T . From the

construction of Xt and Xs and the fact that wt
s does not vanish, we derive that

ws
T =

ws
s

wt
s

wt
T =

1√
hswt

s

wt
T =

ξs√
hswt

s

ws,e
T .

Since, according to Equation 14, Es

[
(ws

T )2
]

= Es

[
(ws,e

T )2
]

= 1, we obtain that ws
T = ws,e

T

and we conclude with Lemma 11 that SRe
s = SRs. Q.E.D.

Proof of Proposition 8. We us assume that px
s = p̄x

s for every period s between t and

(T − 1) and we check by backward induction that for every random variable FT in L2(P )

we have Qe
s(FT ) = Qs(FT ) for every period s between t and T . At time T we easily have

Qe
T (FT ) = QT (FT ) = FT . Let us assume that Qe

s+1(FT ) = Qs+1(FT ) and let Fs+1 be this

common value. We know from Proposition 2 that

Qs(FT ) = p′sN
+
s Es [hs+1Fs+1φs+1] ,

Qe
s(FT ) = (pe

s)
′Es

[
hs+1φ

e
s+1(φ

e
s+1)

′]+
Es

[
hs+1Fs+1φ

e
s+1

]
,

since, according to Proposition 6, SRe
s = SRs and he

s+1 = hs+1. Drawing from the same

analysis and from the same notations as in the proof of Proposition 6, we write

Qe
s(FT ) = (Asp

e
s)
′Es

[
hs+1(Asφ

e
s+1)(Asφ

e
s+1)

′]+
Es

[
hs+1Fs+1(Asφ

e
s+1)

]

=
(
p′s 0

)(
N+

s 0

0 Cs

)(
Es [hs+1Fs+1φs+1]

Ds

)
,

for some random vector Ds in RI nx . We conclude that Qe
s(FT ) = p′sN+

s Es [hs+1Fs+1φs+1] =

Qs(FT ) which concludes the proof by backward induction. Q.E.D.

Appendix to Section 7

Proof of Lemma 12. We shall use the fact that if Σ is a σ-algebra on the probability

space (Ω, P ) and if X is a random variable in L2(P ) and Y is a random vector in L2(P ; RI n),

then if we let N = E [Y Y ′|Σ] and Z = E [XY ′|Σ]N+Y , then Z is a random variable in

L2(P ) and E
[
Z2|Σ] ≤ E

[
X2|Σ]

. This fact results from the following two equations:

E
[
X2|Σ]− E

[
XY ′|Σ]

N+E [Y X|Σ] = E
[
(X − Z)2|Σ] ≥ 0,
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and

E
[
Z2|Σ]

= E
[
XY ′|Σ]

N+E [Y X|Σ] ≤ E
[
X2|Σ]

.

We apply this result with Σ = Ft and

X = M t,a
T = F a

T − wT

(
Xt,Qt(F a

T ),F a
T

)
,

Y = M t,b
T = F b

T − wT

(
Xt,Qt(F b

T ),F b
T

)
.

Equations 11 and 12 show that

Gt(F a
T ) = Et

[
(M t,a

T )2
]
,

Gt(F a
T , F b

T ) = Et

[
M t,a

T (M t,b
T )′

]
,

and we obtain that Z = Gt(F a
T , F b

T )Gt(F b
T )+M b

T is an element of L2(P ) and that

Gt(F a
T , F b

T )Gt(F b
T )+Gt(F b

T , F a
T ) ≤ Gt(F a

T ),

which proves Lemma 12. Q.E.D.

Proof of Lemma 13. From the definition of PKt(Sx
t ) and Equation 20 we derive

respectively Rf
t mtS

x
t = Et [mT F x

T ] and Rf
t mtF

x
t + Gt (mT , F x

T ) = Et [mT F x
T ], which yields

Equation 29.

We now apply Lemma 12 with F a
T = mT and F b

T = F x
T and we obtain

(Rf
t mt)2 (Sx

t − F x
t )′Gt(F x

T )+ (Sx
t − F x

t ) ≤ Gt (mT )

which writes (m2
t /Ht)Kx

t ≤ Gt(mT ) and yields Inequality 30. Since Gt(mT ) is in L1(P ), this

inequality shows that (m2
t /Ht)Kx

t is also in L1(P ). Statement (iii) of Proposition 4 proves

that m2
t /Ht belongs to L1(P ) and therefore so does (m2

t /Ht)(1 + Kx
t ) = m2

t /Hx
t . Q.E.D.

Proof of Lemma 14. We start by showing that mt,x
T (m̄t) is a random variable in

L2(P ). According to Statement (vi) of Proposition 4, every component of M t,x
T , which

is also wT (Xt)⊥t according to Statement (ii) of the same proposition. This implies that

Et

[
M t,x

T wt
T

]
= 0 and

Et

[(
mt,x

T (m̄t)
)2

]
= Et

[(
m̄t√
Ht

wt
T

)2
]

+ Et

[(
m̄t√
Ht

(Λx
t )′M t,x

T

)2
]

=
m̄2

t

Ht
Et

[(
wt

T

)2
]

+
m̄2

t

Ht
(Λx

t )′Gt(F x
T )Λx

t

=
m̄2

t

Ht
(1 + Kx

t ) =
m̄2

t

Hx
t

.
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Since m̄t is in L2
t (P, 1/

√
Hx

t ), we conclude that mt,x
T (m̄t) is indeed in L2(P ). Notice also

that Et

[
mt,x

T (m̄t)
]

= m̄t since Et

[
M t,x

T

]
= 0 and Et

[
wt

T

]
=
√

Ht.

Next we show that mt,x
T (m̄t) is a pricing kernel in PKt. We derive from above that the

random variable (m̄t/
√

Ht)(Λx
t )′M t,x

T is in L2(P ) and in PK0
t = wT (Xt)⊥t . Since Hx

t is

smaller than Ht, the ratio (m̄t/
√

Ht) is in L2
t (P ) and we conclude with Statement (iv) of

Proposition 4 that mt,x
T (m̄t) is a pricing kernel in PKt. Q.E.D.

Proof of Proposition 9. Statement (i). We know from Lemma 14 that mt,x
T (m̄t) is

a pricing kernel in PKt and we check that Rf
t m̄tS

x
t = Et

[
mt,x

T (m̄t)F x
T

]
. We compute

Et

[
mt,x

T (m̄t)M
t,x
T

]
=

m̄t√
Ht

Et

[
wt

T M t,x
T

]
+

m̄t√
Ht

Et

[
M t,x

T

(
M t,x

T

)′]
Λx

t

=
m̄t√
Ht

√
htQt(M

t,x
T ) +

m̄t√
Ht

√
htGt(F x

T )Gt(F x
T )+ (Sx

t − F x
t )

= Rf
t m̄t (Sx

t − F x
t ) .

The last equation results from Condition 1, and the fact that Qt(M
t,x
T ) = 0. Since mt,x

T (m̄t)

is a pricing kernel in PKt, we know that

Et

[
mt,x

T (m̄t)wT

(
Xt,F x

t ,F x
T
)]

= Rf
t m̄tF

x
t

and we obtain that Et

[
mt,x

T (m̄t)F x
T

]
= Rf

t m̄tS
x
t , which proves that mt,x

T (m̄t) is an element

of PKt(Sx
t ).

Statement (ii). We consider a pricing kernel mT in PKt(Sx
t ) such that mt = Et[mT ]

does not vanish. We know from Equation 29 of Lemma 13 that

Rf
t mt (Sx

t − F x
t ) = Gt (mT , F x

T ) .

Since the variables mt and Rf
t do not vanish, Condition 1 holds if we show that

Gt(F x
T )Gt(F x

T )+Gt (F x
T ,mT ) = Gt (F x

T , mT ) ,

or equivalently, if we prove that Gt (F x
T ,mT ) = Gt

(
F̄ x

T ,mT

)
, where we let

F̄ x
T = Gt(F x

T )Gt(F x
T )+F x

T .

We check that Gt(F x
T ) = Gt(F̄ x

T ) = Gt(F x
T , F̄ x

T ), and therefore that Gt(F x
T − F̄ x

T ) = 0. We

derive from Statement (ii) of Lemma 2 that every component of the random vector (F x
T−F̄ x

T )
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is a payoff in wT (Xt). We conclude with the same statement that Gt

((
F x

T − F̄ x
T

)
, mT

)
= 0,

and this proves that Condition 1 is satisfied. Q.E.D.

Proof of Proposition 10. Inequalities 31 and 32 result respectively from Equations 21

and 22 of Proposition 5, together with Inequality 30 of Lemma 13. It is clear that these

two inequalities become jointly equalities if and only if Gt(mT ) = (m2
t /Ht)Kx

t . We show

that this happens if and only if mT = mt,x
T (mt).

We know from Lemma 13 that mt belongs to L2
t (P, 1/

√
Hx

t ) and the proof of Lemma 14

shows that the variable (mt/
√

Ht)(Λx
t )′M t,x

T is in L2(P ). The variable

yT
def.= mT − mt√

Ht
(Λx

t )′M t,x
T

is therefore also in L2(P ) and we check that Equality 29 of Lemma 13 implies that Gt(yT ) =

Gt(mT ) − (m2
t /Ht)Kx

t . According to Statement (ii) of Lemma 2, the equality Gt(mT ) =

(m2
t /Ht)Kx

t is therefore equivalent to the fact that yT belongs to wT (Xt). Since both

mT and
(
mt/

√
Ht

)
(Λx

t )′M t,x
T are in PKt, this equivalent condition says that yT is an ele-

ment of PKt
⋂

wT (Xt) which, according to Statement (v) of Proposition 4, is also L2
t (P )×

wt
T . Therefore the equivalent condition states that the kernel mT can be written as

mT = ξtw
t
T + (mt/

√
Ht)(Λx

t )′M t,x
T for some variable ξt in L2

t (P ). Since then Et [mT ] =

ξt

√
Ht, we conclude that ξt =

(
mt/

√
Ht

)
and the equivalent condition writes mT =

(mt/
√

Ht)
(
wt

T + (Λx
t )′M t,x

T

)
= mt,x

T (mt) as desired. Q.E.D.

Proof of Proposition 11. Statement (i). Lemma 8 has established the admissibility

of the proposed price dynamics. Lemma 10 shows that Rf
t mtp

x
t = Et [mT F x

T ] and since mT

belongs to PKt(Sx
t ), we obtain that Rf

t mtp
x
t = Rf

t mtS
x
t . Since mT is positive, we conclude

that px
t = Sx

t .

Statement (ii). We first show that for every random vectors Xt in RI nx measurable

with respect to Ft, the equality X ′
tM

t,x
T = 0 implies X ′

t(S
x
t −F x

t ) = 0. We do this by proving

by backward induction that the equality

X ′
t

(
φx

s +
s−1∑

u=t+1

dx
u

√
huwu

s − ws

(
Xt,F x

t ,F x
T
))

= 0

holds for every period s between (t + 1) and T , where we set the sum
∑s−1

u=t+1 dx
u

√
huwu

s to

zero for s = (t + 1). The equality holds for s = T since M t,x
T = F x

T −wT

(
Xt,F x

t ,F x
T

)
. Let us

53



assume that

X ′
t

(
φx

s+1 +
s∑

u=t+1

dx
u

√
huwu

s+1 − ws+1

(
Xt,F x

t ,F x
T
))

= 0.

The self financing condition at time (s + 1) of the nx portfolios described by the ma-

trix Xt,F x
t ,F x

T implies that ws+1

(
Xt,F x

t ,F x
T

)
= φ′s+1X

t,F x
t ,F x

T
s . We also know that wu

s+1 =

hsw
u
s p′sN+

s φs+1 and we obtain

X ′
t

(
φx

s+1 +
s∑

u=t+1

dx
u

√
huhsw

u
s p′sN

+
s φs+1 − φ′s+1X

t,F x
t ,F x

T
s

)
= 0.

The law of one price for the extended asset structure implies that

X ′
t

(
px

s +
s∑

u=t+1

dx
u

√
huhsw

u
s p′sN

+
s ps − p′sX

t,F x
t ,F x

T
s

)
= 0

which also writes

X ′
t

(
px

s +
s−1∑

u=t+1

dx
u

√
huwu

s + dx
s − ws

(
Xt,F x

t ,F x
T
))

= 0.

Finally, since φx
s = px

s + dx
s , we obtain

X ′
t

(
φx

s +
s−1∑

u=t+1

dx
u

√
huwu

s − ws

(
Xt,F x

t ,F x
T
))

= 0

as desired. For s = (t + 1) this equation writes X ′
t

(
φx

t+1 − wt+1

(
Xt,F x

t ,F x
T

))
= 0. The law

of one price from t to (t + 1) implies that X ′
t

(
px

t − wt

(
Xt,F x

t ,F x
T

))
= 0 and since the price

dynamics is consistent with the smile, px
t = Sx

t and we conclude that X ′
t(S

x
t − F x

t ) = 0 as

claimed.

We consider now a random vectors Xt in RI nx measurable with respect to Ft. Since

Gt(F x
T ) = Et

[
M t,x

T (M t,x
T )′

]
and Gt(F x

T )Gt(F x
T )+Gt(F x

T ) = Gt(F x
T ), some simple algebra

shows that

Et

[(
X ′

tM
t,x
T −X ′

tGt(F x
T )Gt(F x

T )+M t,x
T

)2
]

= 0,

which proves that (Xt −Gt(F x
T )+Gt(F x

T )Xt)
′
M t,x

T = 0. According to our first result, we

obtain that (Xt −Gt(F x
T )+Gt(F x

T )Xt)
′ (Sx

t − F x
t ) = 0, which also writes

X ′
t

(
(Sx

t − F x
t )−Gt(F x

T )Gt(F x
T )+ (Sx

t − F x
t )

)
= 0.
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Since this last equation is true for every random vectors Xt in RI nx measurable with respect

to Ft, we conclude that (Sx
t − F x

t ) = Gt(F x
T )Gt(F x

T )+ (Sx
t − F x

t ) and the smile satisfies

Condition 1. Q.E.D.

Proof of Proposition 12. We let m̄t = inf(
√

Hx
t ,

√
He

t ) so that both (m̄t/
√

Hx
t ) and

(m̄t/
√

He
t ) are in L2

t (P ), and we let ξt = m̄t/
√

He
t . Proposition 5 applied to the extended

asset structure proves that the pricing kernel mT = ξtw
t,e
T is in PKe

t and satisfies mt =√
He

t ξt = m̄t and Et[m2
T ] = ξ2

t . Since PKe
t is a subset of PKt(Sx

t ), the pricing kernel mT is

also in PKt(Sx
t ). We learn from Equation 31 of Proposition 10 that m2

t /Hx
t ≤ Et[m2

T ], and

therefore (m̄2
t /Hx

t ) ≤ ξ2
t = (m̄2

t /He
t ). Since m̄t is positive, we conclude that He

t ≤ Hx
t ≤ Ht

and

SRt =
√

(1/Ht − 1) ≤ SRx
t =

√
(1/Hx

t − 1) ≤ SRe
t =

√
(1/He

t − 1).

We now compute

(SRx
t )2 − (SRt)2 =

1
Hx

t

− 1
Ht

=
Kx

t

Ht
= (Rf

t )2 (Sx
t − F x

t )′Gt(F x
T )+ (Sx

t − F x
t ) ,

which yields the desired result. The last statement results directly from Equation 32 of

Proposition 10 and the fact that PKe
t is a subset of PKt(Sx

t ). Q.E.D.

Appendix to Section 8

Proof of Proposition 13. We first remark that the equality between SRx
t and SRe

t is

equivalent to the fact that He
t and Hx

t are themselves identical.

(He
t = Hx

t ) implies (i). We apply Lemma 3 to the extended asset structure with FT = 0,

wt = wt(Xt,e) = (1/
√

he
t ), and Y = Y e in X e

t . Since

Et

[
(FT − wT (Y ))2

]
= Et

[
(wT (Y e))2

]
= 1 = he

tw
2
t

and

wt(Y ) = wt(Y e) =
1

Rf
t

√
Hx

t

=
1

Rf
t

√
He

t

=
1√
he

t

= wt,

the set At(Y e) has probability one and mt,x
T = wT (Y e) = wt,e

T .

(i) implies (ii). If wT (Xt,e) = mt,x
T then wT (Xt,e) = wT (Y e) and an iterated use of

the law of one price and the self financing condition proves by backward induction that

ws(Xt,e) = ws(Y e) for every period s between t and T .
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(i) implies (iii). Statement (i) of Proposition 4 applied to the extended asset structure

proves that wt,e
T is an element in PKe

t . If mt,x
T = wt,e

T , then mt,x
T is in PKe

t .

(iii) implies (He
t = Hx

t ). On the one hand we have proved in Proposition 12 that

He
t ≤ Hx

t . On the other hand, if mt,x
T belongs to PKe

t , Optimization Program 25 applied to

the extended asset structure yields

Hx
t

He
t

≤ Et

[(
mt,x

T

)2
]

.

Since Et

[
(mt,x

T )2
]

= 1, we conclude that Hx
t ≤ He

t and He
t = Hx

t as desired.

(ii) implies (He
t = Hx

t ). We let Λt
def.= (

√
Hx

t /
√

Ht)Λx
t and we first show that there

exists a portfolio X in Xt such that wT (Xt,e) = wT (X) + Λ′tM
t,x
T .

The strategy Xt,e has a value process which is identical to the one of a self financing

strategy in X e
t which holds the constant quantities Λt of the new securities from time t

up to horizon T . Every period s between (t + 1) and (T − 1), this self financing strategy

reinvests the dividend Λ′tdx
s distributed by the new securities in the original securities. If we

define the sequence of cash flows f = {fs}t+1≤s≤T by fs = −Λ′tdx
s for s between (t + 1) and

(T − 1) and fT = 0, then there exists a dynamic portfolio Z starting at time t which only

invests in the original securities, which finances f , and such that wT (Xt,e) = Λ′tφx
T +wT (Z).

Let Y be the dynamic portfolio starting at time t such that θf (Y ) = Z. We learn from

Lemma 4 that Y is a self financing portfolio which only invests in the original securities and

that wT (Z) = (wT (Y )− FT ) with

FT =
T∑

s=t+1

fs

√
hsw

s
T = −Λ′t

( T−1∑

s=t+1

dx
s

√
hsw

s
T

)
= Λ′tφ

x
T − Λ′tF

x
T .

We obtain that wT (Xt,e) = wT (Y ) + Λ′tF x
T . If we let X = Y + Xt,F x

t ,F x
T Λt then X is

also a self financing portfolio which only invests in the original securities and wT (Xt,e) =

wT (X) + Λ′tM
t,x
T . The equality

Et

[(
Λ′tM

t,x
T

)2
]

=
(Λx

t )′Gt(F x
T )Λx

t

1 + (Λx
t )′Gt(F x

T )Λx
t

proves that Λ′tM
t,x
T is in L2(P ). Since wT (Xt,e) is also in L2(P ), we conclude that wT (X) is

in L2(P ) and X is a portfolio in Xt which satisfies wT (Xt,e) = wT (X) + Λ′tM
t,x
T as desired.

According to Statement (i) of Proposition 4, wT (Xt,e) is a pricing kernel in PKe
t and

therefore also in PKt. Statement (iv) of the same proposition proves that there exists ξt
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in L2
t (P ) and m0

T in PK0
t such that wT (Xt,e) = ξtw

t
T + m0

T . Since Λ′tM
t,x
T is in PK0

t ,

the conditional orthogonality between wT (Xt) and PK0
t implies that wT (X) = ξtw

t
T and

m0
T = Λ′tM

t,x
T . We also learn from Equation 17 that Et[wT (Xt,e)] =

√
He

t , which implies

that ξt = (
√

He
t /
√

Ht). Eventually we obtain that wT (Xt,e) = (
√

He
t /
√

Ht)wt
T + Λ′tM

t,x
T .

Since wt,e
T = wT (Xt,e) is in PKe

t , it is consistent with the smile and we have

Sx
t =

1√
he

t

Et

[
wt,e

T F x
T

]
=

1√
he

t

√
He

t√
Ht

Et

[
wt

T F x
T

]
+

1√
he

t

Et

[
F x

T (M t,x
T )′

]
Λt

=
√

ht√
he

t

√
He

t√
Ht

F x
t +

1√
he

t

Et

[
M t,x

T (M t,x
T )′

]
Λt

= F x
t +

1√
he

t

Gt(F x
T )Λt

and (Sx
t − F x

t ) = (1/
√

he
t )Gt(F x

T )Λt. Condition 1 implies that we also have (Sx
t − F x

t ) =

(1/
√

ht)Gt(F x
T )Λx

t and we obtain that Gt(F x
T )

√
He

t Λx
t = Gt(F x

T )
√

HtΛt.

Let εT = (
√

Hx
t /

√
He

t )wt,e
T −mt,x

T . We notice that

εT =

√
Hx

t√
He

t

√
Ht

(√
HtΛt −

√
He

t Λx
t

)′
M t,x

T

so that

Et

[
ε2T

]
=

Hx
t

He
t Ht

(√
HtΛt −

√
He

t Λx
t

)′
Gt(F x

T )
(√

HtΛt −
√

He
t Λx

t

)
= 0

since Gt(F x
T )

(√
HtΛt −

√
He

t Λx
t

)
= 0. This proves that εT = 0 and we obtain that mt,x

T =

(
√

Hx
t /

√
He

t )wt,e
T . On the one hand, Lemma 14 shows that Et

[(
mt,x

T

)2
]

= 1, and on the

other hand we know that Et

[
(wt,e

T )2
]

= 1. We conclude that He
t = Hx

t .

(iii) is equivalent to (iv). This equivalence results directly from Lemma 10. Q.E.D.

Proof of Proposition 14. We assume that He
t = Hx

t and we consider a period s such

that mt,x
s does not vanish. We know from Statement (iii) of Proposition 13 that mt,x

T is in

PKe
t , and therefore also in PKe

s. We have already seen that the payoff mt,x
T is in wT (X e

t ),

it is therefore also in wT (X e
s ). We obtain that mt,x

T is in PKe
s

⋂
wT (X e

s ) and, according to

Statement (v) of Proposition 4,

mt,x
T =

mt,x
s√
He

s

ws,e
T ,(35)
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where we recall that mt,x
s

def.= Es

[
mt,x

T

]
.

We let F s,x
T =

∑T−1
u=s+1

√
huwu

T dx
u +φx

T . Since mt,x
T is in PKe

t , Statement (ii) of Lemma 10

shows that

Rf
s mt,x

s px
s = Es

[
T−1∑

u=s+1

Rf
umt,x

u dx
u + mt,x

T φx
T

]
= Es

[
mt,x

T F s,x
T

]
,

and since mt,x
T is in PKt and Qs(F

s,x
T ) = p̄x

s , we derive from Equation 20 of Lemma 7 that

Rf
s mt,x

s p̄x
s + Gs

(
mt,x

T , F s,x
T

)
= Es

[
mt,x

T F s,x
T

]
.

We also compute

Gs

(
mt,x

T , F s,x
T

)
=

√
Hx

t√
Ht

Gs

(
wt

T + (Λx
t )′M t,x

T , F s,x
T

)
=

√
Hx

t√
Ht

Gs(F x
T )Λx

t ,

since

Gs

(
(Λx

t )′M t,x
T , F s,x

T

)
= Gs

(
(Λx

t )′M t,x
T , F x

T −
s∑

u=t+1

dx
u

√
huwu

T

)
= Gs(F x

T )Λx
t .

Combining these results we obtain

Rf
s mt,x

s (px
s − p̄x

s ) =

√
Hx

t√
Ht

Gs(F x
T )Λx

t ,

from which we derive
(
Rf

s mt,x
s

)2
Kx

s =
hsH

x
t

Ht
(Λx

t )′Gs(F x
T )Λx

t .

We compute

Gs

(
mt,x

T

)
=

Hx
t

Ht
Gs

(
wt

T + (Λx
t )′M t,x

T

)
=

Hx
t

Ht
(Λx

t )′Gs(F x
T )Λx

t ,

and we obtain that

Gs

(
mt,x

T

)
=

(
Rf

s mt,x
s

)2

hs
Kx

s =

(
mt,x

s

)2

Hs
Kx

s ,

which, together with Equation 21, implies that

Es

[(
mt,x

T

)2
]

=

(
mt,x

s

)2

Hs
+ Gs

(
mt,x

T

)
=

(
mt,x

s

)2

Hx
s

.(36)
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We wish now to apply the result of Proposition 10 at time s for the smile px
s . No-

tice that the kernel mt,x
T is in PKe

s and therefore also in PKs(px
s ). The price dynamics

{px
u, φx

u}s≤u≤(T−1) is of course consistent with the smile px
s and Statement (ii) of Proposi-

tion 11 proves that px
s satisfies Condition 1 at time s, that is

(px
s − p̄x

s ) = Gs

(
F s,x

T

)
Gs

(
F s,x

T

)+ (px
s − p̄x

s ) .

Equation 36 proves that mt,x
T = ms,x

T (mt,x
s ). Since mt,x

s is P almost surely different from

zero, we also have ms,x
T (

√
Hx

s ) = (
√

Hx
s /mt,x

s )ms,x
T (mt,x

s ) and therefore ms,x
T (

√
Hx

s ) =

(
√

Hx
s /mt,x

s )mt,x
T . We derive from Equation 35 that ms,x

T (
√

Hx
s ) = (

√
Hx

s /
√

He
s )ws,e

T . Since

Es

[
(ws,e

T )2
]

= 1 and, according to Lemma 14, Es

[(
ms,x

T (
√

Hx
s )

)2
]

= 1, we conclude that

He
s = Hx

s . Q.E.D.

Proof of Proposition 15. Let us consider a pricing kernel mT in PKt(Sx
t ) such that

mt > 0 and a payoff FT in L2(P ) such that Et

[
F 2

T

]
= 1. Let wt = Et [mT FT ] /(Rf

t mt)

be the value of the payoff FT derived from the kernel mT . According to Equation 20 of

Lemma 7, (wt − Qt(FT )) = Gt(mT , FT )/(Rf
t mt), and since Jt(FT ; mT ) − Jt(FT ; wt

T ) =

ht (wt −Qt(FT ))2, we obtain that

Jt(FT ; mT )− Jt(FT ;wt
T ) =

ht(
Rf

t mt

)2 Gt(mT , FT )2 =
Ht

m2
t

Gt(mT , FT )2.

We know from Statement (iv) of Proposition 4 that the kernel mT can be written mT =

(mt/
√

Ht)wt
T + m0

T , where m0
T is a kernel in PK0

t . According to Statement (ii) of Lemma 2

and Equation 12, we have

Gt(mT , FT ) = Gt(m0
T , FT ) = Et

[
m0

T

(
FT − wT (Xt,Qt(FT ),FT )

)]
= Et

[
m0

T FT

]
.

The maximum value of Gt(mT , FT )2 over random variables FT such that Et

[
F 2

T

]
= 1 is

Et[(m0
T )2] and we obtain that

esssup
FT∈L2(P )
Et[F 2

T ]=1

Jt(FT ; mT )− Jt(FT ; wt
T ) = (Ht/m2

t )Et

[(
m0

T

)2
]
.

Since Et[(mT )2] = Et[(m0
T )2] + (m2

t /Ht), we have

(Ht/m2
t )Et

[(
m0

T

)2
]

= (Ht/m2
t )Et

[
(mT )2

]
− 1
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and we conclude with Inequality 31 of Proposition 10 that the program

essinf
mT∈PKt(Sx

t )
Et[mT ]>0

(Ht/m2
t )Et

[
(mT )2

]
− 1

is solved for the pricing kernel mt,x
T with minimum value (Ht/Hx

t )− 1 = Kx
t . Q.E.D.

Proof of Proposition 16. Since the smile satisfies Condition 1, Proposition 9 shows

that the kernel mt,x
T is in PKt(Sx

t ) and since it is positive, we learn from Proposition 11 that

the proposed price dynamics is consistent with the smile. We derive from Proposition 13

that mt,x
T is equal to wt,e

T . Equation 33 results then directly from Equation 18 applied to

the extended asset structure.

According to Equation 20 and since mt,x
t =

√
Hx

t , we compute

Qe
t (FT ) =

Et

[
mt,x

T FT

]

Rf
t mt,x

t

= Qt(FT ) +
1

Rf
t

√
Hx

t

Gt

(
mt,x

T , FT

)
.

We also derive from Statement (ii) of Lemma 2 that

Gt

(
mt,x

T , FT

)
=

√
Hx

t√
Ht

Gt

(
wt

T + (Λx
t )′M t,x

T , FT

)
=

√
Hx

t√
Ht

(Λx
t )′Gt (F x

T , FT )

and we conclude that

Qe
t (FT ) = Qt(FT ) +

1

Rf
t

√
Hx

t

√
Hx

t√
Ht

(Λx
t )′Gt (F x

T , FT )

= Qt(FT ) +
√

ht

Rf
t

√
Ht

(Sx
t − F x

t )′Gt (F x
T )+ Gt (F x

T , FT )

= Qt(FT ) + (Sx
t − F x

t )′Gt (F x
T )+ Gt (F x

T , FT ) ,

which is Equation 34. Q.E.D.
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