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Abstract

We propose a stochastic programming approach for quantitative analysis of supply
contracts, involving flexibility, between a buyer and a supplier, in a supply chain frame-
work. Specifically, we consider the case of multi-periodic contracts in the face of correlated
demands. To design such contracts, one has to estimate the savings or costs induced for
both parties, as well as the optimal orders and commitments. We show how to model
the stochastic process of the demand and the decision problem for both parties using
the algebraic modeling language ampl. The resulting linear programs are solved with a
commercial linear programming solver. We compute the economic performance of these
contracts, giving evidence that this methodology allows to gain insight into realistic prob-
lems.

1 Introduction

The purpose of supply chain management (SCM) is to improve the overall efficiency of a
network of producers, retailers and customers, while preserving a decentralized approach
to the decision-making process. Coordination between independent units can be achieved
through appropriate exchanges of information. In that respect, contracts offer a large
variety of possibilities to the mutual benefit of the contractors.

To evaluate the impact of a given contract on the behavior of the agents and on
the performance of the system, it is necessary to perform a quantitative analysis. This
requires the building of a mathematical model that describes the environment (demand,
capacities, etc.) and the use of mathematical tools to treat these models. To illustrate our
point, we focus on a model for supply contracts with options. This model was proposed
in [4], and the authors have provided an extensive theoretical analysis. In the present
paper, we concentrate on the quantitative analysis of such supply contracts: given profit
or costs reallocation rules, what are the potential savings and the future extra-costs, for
the buyer and for the supplier? Such estimates constitute a difficult issue, since profit
and costs depend not only on the demand pattern and the values of some base param-
eters, e.g., finished product selling price, raw material purchasing price, etc., but also
on the procurement and production policies of the contractors. The traditional comput-
ing approaches are based on the news-vendor model and/or on dynamic programming
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[2, 3, 4, 5, 6, 25, 26]. They become intractable on general multi-periodic problems and/or
on problems with constraints on the state variables. In this paper, we propose an approach
based on stochastic programming, which does not suffer from the same limitations.

A main issue in a practical implementation of stochastic programming is the building
and solving of the stochastic programming model from the deterministic and stochastic
description of the problem. The thrust of our paper is that, in the case of supply chain with
option contracts on a multi-period basis, the associate models can be compactly written
in an algebraic modeling language such as ampl [15], and solve by commercial linear
programming solvers, such as cplex [12]. Those tools powerful enough to build a model
and produce in a solution in a reasonable amount of time, allowing the decision-makers
to evaluate the potential merit of a given contract on the fly and perform a sensitivity
analysis on the parameters.

As far as modeling is concerned, models with several periods are also easily constructed.
In order to illustrate our program, we mainly focus on the 2-period model of [4]. We
show how one can reformulate it in the stochastic programming framework. We compute
the optimal strategy for the buyer and for the supplier separately. We then compare
the individual performance with the global optimum of a centralized policy in a vertical
integrated framework, exploited as a benchmark.

The paper is organized as follows. In Section 2, we review the supply chain contracts
that are studied in the literature. Section 3 discusses the formulation of stochastic mod-
els in production/inventory supply chain management as stochastic linear programming
problems. Section 4 focuses on a specific multiperiodic supply chain contract with options.
We provide the corresponding models for the buyer and the supplier. Section 5 deals with
auxiliary models, such as vertically integrated system, or a Stackelberg game associated
with the considered contract with options. Section 6 reports on numerical studies of
the models presented in the preceding two sections. In the conclusion, we review some
interesting extensions and new avenues of research.

2 Supply chain contracts

Supply chain management (SCM) deals with the management of information and material
flow in a network of producers, retailers and customers. Basically the flow control issue in
SCM can be related to the multi-echelon inventory theory, involving stochastic periodic
demands, developed by Clark and Scarf [11], which considers that the whole system is
under a centralized decision process. Using a dynamic programming formulation, these
authors showed that, under strict assumptions, the optimal policy is of the “order-up-to”
type for each installation in the system.

The assumption of shared information made in centralized multi-echelon inventory the-
ory is not realistic in the supply chain context. Moreover, the multiple decision makers
in a supply chain system run different firms or divisions, making it difficult to implement
centralized control. As analyzed in [10, 22], locally rational behavior can be inefficient
from a global perspective. Thus, efficient management requires the coordination of inde-
pendently managed entities, seeking to maximize their own profit.

Classical markets mechanisms appear to be inefficient to achieve such a coordination,
because decision makers have private information which they don’t share with others.
A way to circumvent this difficulty consists of resorting to contracts. Such contracts
include the reallocation of decision rights, rules for sharing the costs of inventory and
stockouts as well as rules for sharing information. In the SCM framework, the contract
analysis is focused on operational details and requires an explicit modeling of materials
flows, forecasting and planning process and the stochastic aspects which perturb the whole
system (see for example [7, 8]).

To be efficient, the contract between the supplier and the buyer has to be rewarding
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to both parties, although each party faces different tradeoff. A focal point in supply
contracting is flexibility and risk sharing when confronted to the dynamic and uncertain
nature of the demand process. Full flexibility would allow the buyer to purchase and
receive any amount and thus meet the uncertain demand with greater probability, at a
lower cost, but at the expense of the supplier. Contracts aim at improving flexibility, while
preserving the interests of both parties. Typically, they allow the buyer to adjust current
orders and future commitments in a limited way, possibly at a given extra-cost paid to
the supplier. In exchange, the supplier is bound to meet the buyer’s demand within the
range of the commitments. This entails additional costs in capacity and raw material to
quickly meet the uncertain demand from the buyer. A good contract should compensate
for those costs to create a win-win situation for both the buyer and the supplier.

Let us briefly review the main types of contracts that have been considered in the
literature.

1. The total minimum quantity commitment [6]. The buyer guarantees that his cumu-
lative orders for all periods in the contract horizon will exceed a specified minimum
quantity. In return, the supplier offers price discounts. In practice, the supplier
provides a menu of (per unit price, total minimum commitment) pairs from which
the buyer chooses a commitment at the corresponding price. As reported in [13],
this kind of contract has been implemented in the textile industry.

2. The total minimum quantity commitment with flexibility [6]. The supplier imposes
restrictions on the total purchases at the discounted price (for example due to limited
production capacity). Any quantity ordered above the restriction is available at a
higher price.

3. The periodical stationary commitment [2, 23, 24]. The buyer is required to purchase
a fixed amount in each period. Discounts are given based on the level of minimum
commitment. Additional units can be purchased at an extra cost. Often, the supplier
imposes restrictions on the total purchases at the discounted price (for example
due to limited production capacity). Any quantity ordered above the restriction is
available at a higher price.

4. The periodical commitment with order bands [25]. The buyer is required to restrict
the order quantities to be within constant specified lower and upper limits. The
unit price depends on the band-width (the difference between the upper and lower
limits) and increases with this band-width.

5. The periodical commitment with rolling horizon flexibility [3, 5]. At the beginning
of the horizon, the buyer commits to purchase given quantities every period. The
buyer has a limited flexibility to purchase quantities different from the original com-
mitments. The buyer is also allowed to update the previously made commitments,
within a given limitation. The unit price decreases with the allowed flexibility. This
kind of contract is exploited in the electronics industry [5, 26].

6. The periodical commitment with options [4]. At the beginning of the horizon, the
buyer commits to purchase given quantities every period. The buyer has a limited
flexibility to purchase options (at unit option price) from the supplier that allows him
to buy additional units, by paying an exercise price. So, options permit the buyer to
adjust orders quantities to the observed demands. It is shown in [4], that under some
assumptions, these contracts with options encompass backup agreements contracts,
periodical commitment contracts with flexibility and pay-to-delay arrangements.

To choose among the various alternatives and to design a good contract one needs to
provide reliable estimates of the potential savings and risks for the parties. To meet this
goal, the operating modes and the relationship among the actors must be apprehended in
carefully designed quantitative models, and those models must be analyzed with appropri-
ate quantitative tools. The quantitative methodology in the quoted literature dealing with
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the contracts reviewed above, is almost exclusively based on the news-vendor model and
dynamic programming. To produce tractable computational schemes, this methodology
imposes on the models special assumptions and approximations. For example, constraints
on the state variables raise serious difficulties in dynamic programming. Correlated de-
mands in multiperiodic problems also introduce enormous complications.

We believe there is a need for efficient and easily implementable formulation and
computational schemes to analyze contracts, either in general or in specific instances.
The methodology should be flexible enough to incorporate local specifications, and fast
enough to provide on-the-fly evaluations. Our contention is that stochastic programming
is an attractive solution method, that does not suffer from the same limitations as the
other approaches. In particular, it is possible to account for the dynamics of the underlying
demand and to handle general constraints on the decision and state variables, such as a
minimum service level or a guaranteed minimum profit.

3 Stochastic programming models in production/inventory
management

From a general perspective, there are two main components in a stochastic programming
problem: a description of the underlying stochastic process and a deterministic discrete
time dynamic model. It is relatively easy to describe those two components separately,
but rather tedious and difficult to build the integrated stochastic programming model
(see for example [20].) One of the active research stream in stochastic programming is
the development of automatic procedures to build the stochastic programming model
from its two basic components [16]. In the lack of widely available tools, we develop our
own procedure based on the algebraic modeling language ampl [15]. Our methodology is
inspired by the principles exposed in [18]. It extends some of the ideas that appeared in
[17].

In this section, we present our approach and we illustrate it on a simple stochastic
production/inventory model. We hope that the simplicity of the deterministic produc-
tion/inventory model makes it easier to follow the steps of the implementation; in sections
4 and 5, we shall describe explicitly supply chain contracts.

The main task in implementing stochastic programming is to build a so-called deter-
ministic equivalent and to solve it by means of some mathematical programming tech-
nique. The basic assumption underlying the concept of deterministic equivalent is that
the decision-maker does not influence the chance moves: i.e., for our problems of interest,
the successive stochastic demands are not affected by the states and/or decision variables.
We introduce the further assumption that the stochastic demand process takes discrete
values only. This makes it possible to formulate the deterministic equivalent as a finite
dimensional mathematical programming problem.

Let us briefly introduce our three step approach to model building based on an alge-
braic modeling language.

1. The first step consists in writing the deterministic model.

2. The second step models the demand process as a discrete event stochastic process.
This process is represented by an event tree, i.e., a set of nodes that are linked by
transition arcs.

3. Finally, the deterministic decision model and the stochastic demand process repre-
sentation are merged to create a full-fledged stochastic programming model.

The thrust of our approach is that each step can be efficiently performed by means of
short ampl instructions. We detail each step separately.
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3.1 The base deterministic model

The basic structure1 of the models involved in the supply chain contracts problematic
corresponds to the classical multi-periodic production/inventory problem:

min
T∑

t=1

(htI
+
t + stI

−
t +

t−1∑
k=0

ct−kXk,t) (1a)

s. t. It = I+
t − I−t , t = 1, . . . , T (1b)

It = It−1 +
t−1∑
k=0

Xk,t − Dt, t = 2, . . . , T (1c)

I1 = X0,1 − D1, (1d)
I+
t , I−t , Xk,t ≥ 0, t = 1, . . . , T, t = k, . . . , t. (1e)

The decision variables, representing orders and their delivery, are denoted as X. The
remaining variables, I, I+ and I−, are state variables. They can be interpreted as the
state of the inventory; they are split into a positive and a negative part, respectively
corresponding to physical inventory and backlog. The objective involves three types of
costs: the ordering/production costs (which depend on the delivery lead-time), the holding
costs and the shortage costs. Finally, the parameter D represents the successive demand
values. In our models, the demands are exogenously defined.

Note that our decision variables Xk,t are double indexed. The first index denotes the
period at which the variable is fixed, while the second refers to the period at which the
decision takes effect. It is not necessary to make such a distinction in a purely deterministic
context, but this will prove to be a considerable help in transforming the deterministic
model to match its stochastic environment.

This linear programming problem is most easily formulated in an algebraic modeling
language, as shown in Figure B.1 in the appendix.

3.2 The stochastic demand process

The demand process for the successive time periods is modeled as a discrete stochastic
process {Dt}t=1,...,T . The distinguishing features for such a process are the relationships
among the successive random variables D1, . . . , DT . Since we consider discrete state space
processes, it suffices to list all possible realizations {d1, . . . , dT }, and give their associate
probabilities to get a probabilistic description of the entire process. Theoretically, the
above information can be given as an exhaustive list, but in many practical situations it
may be generated from a more restricted set of information. Without considerable loss
of generality, we shall consider in this paper that the process is described via one-step
transitions from Dt to Dt+1, t = 1, . . . , T − 1. Namely, given the value of an observed
demand dt, we assume that we know all possible realizations for Dt+1 with their associate
conditional probabilities.

We make now the following specific assumptions:

1. The number of possible discrete values for the demand Dt is denoted nt and depends
only on the time period t. This number nt is independent from the previous demand
value dt−1.

2. The conditional transition probabilities from Dt to Dt+1, with t = 1, . . . , T − 1,
depend on the period t at which the transition takes place, but not on the demand
value dt.

1For sake of clarity, we consider a particularly simple model in this section, which is mainly devoted to
conceptual considerations. Supply chain related models are developed in sections 4 and 5.
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3. The possible discrete values of the stochastic process Dt+1 may be functions of the
observed value at the preceding period dt.

Clearly, those assumption are somewhat restrictive, but they allow an efficient formulation
for the problem studied in Section 4. They could be relaxed to build more general models,
but this is not the purpose of the present paper. It is then an easy matter to reconstruct the
probability distribution for any random sequence {D0, D1, . . . , Dt}, as described further
in the section.

3.2.1 The demand stochastic process as an event tree

Such a discrete stochastic process can be displayed on a so-called event tree. The nodes
of the event tree represent the state of the process at a given period, while the (oriented)
arcs correspond to the probabilistic transitions from one node at given period to another
node at the next period. The main point is that there exists exactly one arc leading to a
node, while there may be many arcs emanating from a node.

With our assumptions for the demand process, the associate event tree is symmetric.
Let2 f [t] be the number of branches emanating from a node; it depends only on t. Let
also denote N [t] the number of nodes at period t.

As any tree, the event tree is unequivocally described by a node numbering and a
predecessor function that gives the number of the node that immediately precedes the
current node. We choose a rather natural node numbering by periods and define the
predecessor mapping as a function that can be computed by the modeling language.

The tree is rooted at period t = 0, but the first realization takes place at t = 1. The
number of nodes at period t is then recursively computed by

N [t] = f [t − 1]N [t − 1],

and N [0] = 1. Nodes on the event tree are indexed with a pair (t, n), with t ∈ {0, . . . T}
and n ∈ {1, . . . N [t]}. At period t, the nodes are numbered from 1 to N [t] going from top
to bottom. Thus, node (t, n) is the n-th node from the top in period t. Similarly, the
transitions from a node to its immediate successors are numbered from top to bottom.

To illustrate our point, we considers the case of a three-period model (with T = 2) and
we represent it on Figure 3.2.1 page 7. In this representation, the uncertainty unfolds in
time from left to right. Nodes appearing in the same vertical slice belong to the same time
period. At t = 0, there are three branches giving rise to three nodes in t = 1 (f [0] = 3
and N[1]=3). At t = 1, each node has two branches (f [1] = 2) and there are N [2] = 6
nodes in t = 2. Time t = 2 is the horizon: no branch emanates from those nodes.

It is possible now to list the data that are required to represent the discrete demand
stochastic process as such an event tree:

• f [t] is the number of transitions from a node in period t. These transitions are thus
indexed from 1 to f [t].

• The stochastic process value at node (t, n) is D[t, n]. The stochastic process value
at t + 1 is given as a function of the origin node (t, n), of the value at this node,
D[t, n], and of the transition index k ∈ {1, . . . f [t]}.

• The conditional transition probabilities p[t, k] are given as function of the period t
and the transition index k ∈ {1, . . . f [t]}.

It is worth pointing out that the size of the tree is a direct multiplication of the
transition numbers. With more than three periods, the tree size may grow enormous if

2From then on, we choose to insert the argument of a function within square brackets ‘[’ and ‘]’. This
notation matches the one in force in the algebraic modeling language ampl, which we use to model and solve
the examples.
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Figure 1: Event tree representation

one allows more than a very few transitions per period. This must be kept in mind in
building models that are solvable by commercial solvers. Furthermore, the above quite
general assumptions allow to model correlated demands.

3.2.2 Navigating through the tree

Since some constraints link two successive periods, we need to introduce an auxiliary
function that help backtracking from a node to its predecessors. The predecessor function
a[t, n, k] maps the current node (t, n) to the index of its predecessor node in period t − k
along the unique path that goes from the root (0, 1) to the node (t, n). This function is
recursively defined by

a[t, n, k] =


⌈

n
f [t−1]

⌉
if k = 1,

a[t − 1, a[t, n, 1], k − 1] otherwise,
(2)

for all 1 ≤ k ≤ t, with �x	 defined as the smallest integer n with n ≥ x.
We find it convenient, though not strictly necessary in the present case, to define a

scenario as the path from the root (0, 1) to any terminal node (leaf of the tree) (T, n).
Let’s now introduce the function b[t, n] which gives the index of the node in slice t

that is traversed by the scenario leading to node (T, n). The mapping b is thus

b[t, n] = a[T, n, T − t]. (3)

Via this function, the scenario associated with the terminal node (T, n) can be represented
as the sequence of nodes {(0, 1), (1, b[1, n]), (2, b[2, n]), . . . (T, b[T, n]), (T, n)}.

Finally, we need the auxiliary function �[t, n] defined as

�[t, n] = n − (a[t, n, 1] − 1)f [t − 1], (4)
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which gives the transition index that caused the transition from (t− 1, a[t, n, 1]) to (t, n).

3.2.3 Computing nodes probabilities

In sake of clarity in this introductory section, we consider the case that the demand values
D[t, n] are exogenously given3. Consider then p[t, j] the conditional transition probabilities
from a node (t, n) to a successor (t + 1, m), where n = a[t + 1, m, 1] and �[t + 1, m] = j.
From our assumptions, those probabilities depend on t and the transition index j, but
not on the node index n; they are exogenously given as parameters.

The functions a[·, ·, ·] and �[·, ·] make it possible to define as computable functions the
probabilistic parameters of the problem, e.g., the node probabilities, associated with the
different demand values. As a matter of fact, the unconditional occurrence probability
P [t, n] of node (t, n) can be recursively computed by

P [t, n] = p[t − 1, �[t, n]] P [t − 1, a[t, n, 1]], (5)

with P [0, 1] = 1. Note that P [T, n] can be viewed as the probability of the scenario
leading to node (T, n).

3.3 Building the full stochastic programming model

The full stochastic programing model superposes decisions and chance moves. It is im-
portant to specify in which order decisions and chance moves occur. To illustrate our
convention, we pictured the sequence of decisions and chance moves on Figure 3.3, page
8.

Update of
the
state vari-
ables

Decision
node

✬
✫

✩
✪

Chance
node

Update
of the
state
variables

Decision
node

period t − 1 period t

Figure 2: Sequence in the decision process

In this picture, the terminal period does not include a decision node; on the other
hand, a unique chance node has to be introduced at the beginning of the process. Clearly,
this representation calls for one more period than the horizon T . As previously stated,
our choice is to start with t = 0 and terminate with t = T .

3.3.1 The deterministic equivalent in the event tree representation

Now that we have in hands the tools to handle the stochastic process, we can formulate
the stochastic counterpart of Problem (1).
The general stochastic linear program. In the stochastic version, the demands are
stochastic, but also the decision and state variables. Once the criterion in (1) has been

3More generally, the demand values D[t, n] are not exogenously given. Then these quantities can be com-
puted by

D[t, n] = h[D[t − 1, a[t, n, 1]], l[t, n]],

where h is some function computable through the algebraic language
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replaced by an expected value, the problem becomes

min E

[
T∑

t=1

(htI
+
t + stI

−
t +

t−1∑
k=0

ct−kXk,t)

]
(6a)

s. t. It = I+
t − I−t , t = 1, . . . , T (6b)

It = It−1 +
t−1∑
k=0

Xk,t − Dt, t = 2, . . . , T (6c)

I1 = X0,1 − D1, (6d)
I+
t , I−t , Xk,t ≥ 0, t = 1, . . . , T, k = 1, . . . , t. (6e)

Problem (6) is a stochastic linear programming problem, but we need to make a few
notational changes to make this property transparent w.r.t. the event tree description of
the demand stochastic process.
The event tree related formalism. Two main operations are in order. First, we
must index variables, parameters and constraints with respect to the tree nodes. Second,
we must introduce the probabilistic elements that were defined in the previous sections;
namely the parameters a, b and � defined in (2), (3) and (4), and the probabilities P given
in (5).

All constraints indexed by t, namely constraints (6b)-(6e), should now be indexed by t
and by n. As an illustration, consider the case of a variable, say I, with a single time index
τ ≤ t appearing in a constraint associated with the node (t, n). The index τ specifies the
date at which the variable has been fixed. Then Iτ should be replaced by I[τ, a[t, n, t−τ ]].
A similar treatment is to be applied to all parameters, such as Dt, that are time and node
dependent. This notational changes are not necessary for the parameters which are not
node dependent, as for example ct, ht or st.

Variables that are endowed with two time indices such as Xτ,t, with τ ≤ t, appearing
in a constraint associated with the node (t, n), should be treated with care. The first index
τ should be expanded to include a node reference, since it refers to the date at which the
value of the variable is fixed; this choice is contingent on node (τ, a[t, n, t−τ ]). The second
index t refers to the date at which the decision takes effects: the value of the variable
is thus the same on all nodes in slice t that have common predecessor (τ, a[t, n, t − τ ])
in period τ . Consequently, the variable Xτ,t that appears in constraint (t, n), becomes
X[τ, a[t, n, t − τ ], t].
The event tree related stochastic linear program. By introducing the event tree
related formalism in the general stochastic linear program (6a)-(6e), we find the following
explicit model. At first, let the total costs incurred up to time T , when the process ends
in node (T, n), be reformulated as

E [T, n] =
T∑

t=1

(htI
+[t, b[t, n]] + stI

−[t, b[t, n)]] +
t−1∑
k=0

ct−kX[k, b[k, n], t]).

Using this expression, we can rewrite the deterministic equivalent linear programming
problem associated with the event tree representation of the stochastic process (Dt)t=1,...,T

:

min
N [T ]∑
n=1

P [T, n]E [T, n] (7a)

s.t. I[1, n] = X[0, 1, 1] − D[1, n], n = 1, . . . N [1], (7b)
I[t, n] = I+[t, n] − I−[t, n],

t = 1, . . . T, n = 1, . . . N [t], (7c)
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I[t, n] = I[t − 1, a[t, n, 1]] +
t−1∑
k=0

X[k, a[t, n, t − k], t] − D[t, n],

t = 2, . . . T, n = 1, . . . N [t], (7d)
I+[t, n] ≥ 0, I−[t, n] ≥ 0, X[t − 1, n, t + k] ≥ 0,

t = 1, . . . T, n = 1, . . . N [t], k = 1, . . . T − t (7e)

A complete ampl formulation of this problem is given in the appendix B.3.

4 The basic model of multi-periodic supply contract
with options

In this paper we focus on a general case of single buyer-single supplier contract with
periodical commitment with options, in presence of periodical correlated demands, as
studied in [4]. It is shown in [4], that under some assumptions, this kind of contract with
options encompasses most of the contracts developed in the literature.

The supply chain instance considered in [4] involves two actors: a supplier and a buyer.
The supplier transforms raw materials into a finished good that is sold and delivered to
the buyer. The buyer is an intermediary between the market and the supplier, selling the
finished product to clients on the end market. The buyer position is that of a wholesale
dealer or a factory performing final assembly. In the latter case, the assembly time is
considered to be negligible.

The management decisions for the actors are as follows. The supplier acquires raw
material at the beginning of the campaign and stores it for future use. He produces, stores
and delivers the finished product to the buyer. Production is limited by the availability
of raw material. The buyer receives, stores and sells to end markets the finished product.
The buyer faces a periodic uncertain demand for the finished product. Leftover products
after the campaign are sold at salvage price, while demand on excess of availability is lost.

The buyer and the supplier agree on a contract which specifies the amount to be deliv-
ered in each period, with possible adjustment from the buyer. The supplier is committed
to deliver the amount of finished product that has been agreed upon in the contract. The
model in [4] has only two periods, but can be extended to a larger number of periods.
Each period offers the possibility to adjust production and ordering decisions to match
the revealed demand. The paper [4] considers this relationship between the supplier and
the buyer as a two-person game with a leader (the supplier) and a follower (the buyer),
which induces that the appropriate solution concept is a Stackelberg optimum. This game
interpretation will be also considered here.

As the objective of the paper is to analyze how apply stochastic programming to a
given supply contract, we choose, without loss of generality, to keep the notations of the
flow models for the buyer and the supplier as simple as possible. Characteristics specific
to a given practical situation could be added.

4.1 The discrete market demand process

The frequent assumption that demands are uncorrelated (except in [4, 23]) does not
reflect reality. For example, the widespread exponential smoothing techniques exploits
such correlations in the computation of the forecasts. Charnes et al. in [9] describe
the importance of considering serial correlation in the optimization of inventory control
policies, even when the magnitude of the autocorrelation is low. Furthermore, Fisher et al.
[14] show that when managing short life-cycle products, simple extrapolation of a small
amount of early sales provides much better forecasts that traditional experts approaches.
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In this case, autocorrelation proves to be the necessary condition for an efficient forecasting
and planning alternative, called Quick Response.

In the present paper, we consider the case of correlated periodic demands, as in [4], but,
as we exploit an event tree formulation, we have to implement a discretization procedure
in order to get a discrete demand process. Let’s first resume the assumptions underlying
the demand process in [4].
Structure of the correlated demand process. This market demand process is de-
scribed by the conditional distribution of Dt+1, conditionally to Dt = dt. This conditional
distribution is assumed to be Gaussian4, i.e.,

Dt+1 | dt = E(Dt+1 | dt) + εt+1

√
Var(Dt+1 | dt),

where {εt}t=1,...,T is a set of independent identically distributed random variables, with
normal distribution with mean 0 and unit standard deviation.

Let µt and σt be the unconditional mean and variance of Dt. Then, the considered
conditional scheme is defined by the equations

E(Dt+1 | dt) = µt+1 + ρt,t+1
σt+1

σt
(dt − µt) (8)

and
Var(Dt+1 | dt) = σ2

t+1(1 − ρ2
t,t+1), (9)

where ρt,t+1 is the correlation coefficient between the successive demands Dt and Dt+1.
The discretization procedure. The discretization of the continuous random variables
Dt is obtained by discretization of the standard normal distribution εt. The basic dis-
cretization scheme we use is described in Appendix A. The scheme generates 2nt + 1
points on the grid, where nt is a parameter that can take different values at different time
period t.

Deciding on the level of discretization is a delicate issue. Clearly, finer grids lead to
better approximation, provided the assumed normal distribution is itself a good approxi-
mation of the true demand process. Unfortunately, the event tree, and the problem, size
grow exponentially with the grid sizes. The numerical studies reported in Section 6 show
that a fine discretization in the first period coupled with cruder grids on later periods still
yields satisfactory results.

4.2 The buyer’s problem

Consider a classical periodic review inventory problem with a finite horizon stochastic
demand. Let T be the horizon, i.e., the number of periods involved in the contract. The
sequence of events and actions taken by the buyer are as follows. At the beginning of
the horizon, the buyer orders Q0,t units to be delivered in period t ∈ {1, .., T}, at a unit
wholesale price of pt. These Q0,t are referred as firm orders.

In addition to this classical rigid purchasing process, the buyer has a limited flexibil-
ity to purchase options (at unit option price) from the supplier that allow him to buy
additional units, by paying an exercise price. We assume that one option gives the buyer
a right to purchase one unit. Formally, at the initial period the buyer purchases M0,t

options, with t ∈ {1, .., T − 1}, at a unit option price of ot. We assume that each decision
variable M0,t is bounded above by a given constant M t. Then, in period t, after observing

4In fact, for practical applications it is necessary to consider truncated Gaussian distributions, as any
demand has to be positive. For sake of clarity in the formulation, we don’t introduce this feature in the
models, even if the numerical examples in section 6, we consider truncated distribution in the numerical
procedures.
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demand value dt, the buyer chooses to exercise mt,t+1 ≤ Mt options to be delivered in
period t + 1, at a unit price of et.5

In each period, excess demand is assumed to be backlogged and excess inventory is
carried to the next period. In time period t, the unit holding cost is hbf

t and the unit
shortage cost is equal to sbf

t . At the end of the horizon T , the left-over inventory can
be either sold to an external specific market for a unit salvage price vbf

e , either returned
to the supplier for a unit salvage price vbf

s . Clearly, if vbf
e < vbf

s , the return option
is preferred, otherwise the left-over inventory are salvaged on the external market. So,
we denote vbf := max(vbf

e , vbf
s ). Let us summarize below the variables and parameters

involved in the buyer’s problem.

Buyer’s decision variables
for t = 1, ..., T − 1

M0,t ≥ 0 : number of options, which can be exercised in period t
mt,t+1 ≥ 0: number of options exercised in period t to be delivered in period t + 1

for t = 1, ..., T
Q0,t ≥ 0: firm order to be delivered to the buyer in period t

Buyer’s state variables
for t = 0, ..., T

It : finished good inventory at the end of period t
I+
t ≥ 0: physical finished good inventory at the end of period t

I−t ≥ 0: backorder of finished good inventory at the end of period t

Buyer’s parameters
vbf : unit salvage value of finished goods

for t = 1, ..., T − 1
M t: bound on the number of options to be exercised in period t
ot : unit price for an option which can be exercised in period t
et : unit price for an option exercised in period t to be delivered in period

t + 1

for t = 1, ..., T
Dt : stochastic demand in period t
rt : selling price of finished product on the end market in period t
pt : unit purchasing cost of finished product from the supplier (for units of

the firm order Q0,t to be delivered in period t)
sbf

t : unit shortage cost for finished goods in period t

hbf
t : unit period holding cost for finished goods in period t

To formulate the buyer’s problem, we define revenues and expenses separately. The
buyer’s revenues Rb have three terms,

Rb(I−, I+) = r1(D1 − I−1 ) +
T∑

t=2

rt(Dt + I−t−1 − I−t ) + vbfI+
T . (10)

The middle term is the cumulated revenues from the effective sales in period t = 2, ..., T ;
the first term pertains to sales in the first period (for which there is no backlog from a
previous period) and the last term is the salvage value of the left-over inventory at the
end of the horizon.

5We assume here a single period delay between the decision to exercise the option and the delivery of the
order. This assumption could be easily relaxed.

12



The Eb expenses are written with two sums, because there are no available options for
period 1,

Eb(I−, I+, m, Q, M) =
T−1∑
t=1

(etmt,t+1 + otM0,t) +
T∑

t=1

(
hbf

t I+
t + sbf

t I−t + ptQ0,t

)
. (11)

Note that the decision variables M and Q are fixed at the beginning of the horizon
(i.e. in t = 0) and, in a sense, are deterministic. In contrast, I+, I− and m are random
variables depending on the demand pattern. Thus, the expenses and the revenue are also
random variables. Consequently, along the lines of section 3, the buyer’s problem can be
reformulated as the stochastic programming problem

min E
[
Rb(I−, I+) − Eb(I−, I+, m, Q, M)

]
(12a)

It = I+
t − I−t , t = 1, . . . T, (12b)

I1 = Q0,1 − D1, (12c)
It = It−1 + Q0,t + mt−1,t − Dt, t = 2, . . . T, (12d)
0 ≤ mt,t+1 ≤ M0,t, t = 1, . . . T − 1, (12e)
0 ≤ M0,t ≤ M t, t = 1, . . . T − 1, (12f)
Q0,t, I

+
t , I−t ≥ 0, t = 1, . . . T. (12g)

The objective function could be modified to account for the buyer’s attitude towards risk.
This can be done using a utility function (see [19]). A common practice is to take a
piecewise linear concave function with break point at a given target level of profit.

A mathematical programming formulation of this problem, using an-ampl like lan-
guage, is given in the appendix C.1.

4.3 The supplier’s problem

In order to produce the finished goods for the buyer, the supplier purchases raw material
from an upstream supplier. Due to long lead-times, purchased orders must be all issued in
the first period. Thus, we assume that the supplier has to order and stock all the necessary
raw material to meet the maximal demand of the buyer as defined by the contract: no
shortage of raw material or finished product delivery is permitted. Thus, the supplier must
purchase enough raw material and produce enough finish products to meet all planned
demands Q0,1 + . . . + Q0,T and all purchased option rights M0,1 + . . . + M0,T−1.

The relationship between the buyer and the supplier are best described as a Stackelberg
game, in which the supplier is the leader and the buyer is the follower. In this situation,
the supplier announces wholesale, option and exercise prices and, for given bounds on
the option exercises, the buyer places orders and options which maximizes his expected
revenues. These orders act as demand functions for the supplier, who determines his
optimal parameters choice (i.e., optimal wholesale, option and exercise prices and optimal
bounds) and his optimal production and inventory variables6.

We assume that the supplier is able to reconstruct the optimal policy of the buyer
and thus determine the issuing buyer’s demands along the same event tree as the one
used in the buyer’s case. In particular, the supplier is able to give numerical values to

6As a matter of fact in a complete Stackelberg game, the supplier, in response to buyer decisions, determines
also his optimal parameters choice (i.e., optimal wholesale, option and exercise prices and optimal bounds)
in the same time as his optimal production and inventory variables. In section 6, we present such a game,
but restricted to a single parameter choice, due to the excessive computation time required to solve a game
including simultaneously all the supplier’s parameters
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the buyer’s decision variable at each node of the event tree. Thus the buyer’s decision
variables appear as parameters to the supplier, and should be single indexed with respect
to the time period at which they take effect. For this reason, we shall systematically
replace the quantities Q0,t, M0,t, mt−1,t and I+

T by Q̃t, M̃t, m̃t and Ĩ+
T .

The supplier has multiple production opportunities depending on the incurred pro-
duction lead-time, with corresponding production costs. So, let wk be the unit labor
cost of production for an order with a delay k ≥ 1. At the beginning of each period
t ≥ 1, after observing mt,t+1 (the total number of exercised options for this period), the
supplier decides on production orders for future periods Xt,t+k with k = 1, ..., T − t and
t = 0, . . . , T − 1. The initial finished goods inventory hold by the supplier is assumed
to be zero. At the end of the process, the left-over raw material and finished product
inventories can be sold to an external specific market for a unit salvage prices vsr and vsf ,
respectively. We recall that the left-over finished inventory of the buyer can be returned
to the supplier. The supplier costs are vbf

s per unit, with a unit-extra transport cost of
tbs.

Prior to formulating the supplier’s problem, let us summarize the variables and pa-
rameters involved in this model.

Supplier’s decision variables
for t = 0, ..., T − 1

Y0,t ≥ 0 : raw material firm order issued in period t = 0 and to be delivered in
period t

Xt,t+k ≥ 0: finished good firm production order issued in period t and to be delivered
in period t+k (with k = 1, ..., T − t)

Supplier’s state variables
for t = 0, ..., T

Jt ≥ 0 : finished good inventory at the end of period t
Rt ≥ 0: raw material inventory at the end of period t

Parameters for the supplier
vsf : unit salvage value of finished goods for the supplier
vbf

s : unit return cost of left-over finished product from the buyer
tbs : unit-extra transport cost of left-over returned finished product from the

buyer
for t = 2, ..., T

m̃t : the demand resulting from the option exercised by the buyer in period
t − 1 (to be delivered in period t)

M̃t: number of options, which can be exercised in period t
ot : unit price for the buyer’s right to exercise an option in period t
et : unit price for an option exercised in period t

for t = 1, ..., T

Q̃t : firm order for period t to be delivered to the buyer
pt : unit selling cost of finished product
ct : unit purchasing cost of raw material to be delivered at the beginning of

period t from firm order Q̃t

wk : unit labor cost of production for an order with a k-period lead-time
hsf

t : unit holding cost for finished product in period t
hsr

t : unit holding cost of raw material in period t
for t = T

Ĩ+
T ≥ 0: physical finished good inventory to the buyer at the end of period

T
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To formulate the supplier’s problem we define the revenues Rs

Rs(J, R, Q̃, m̃, M̃ , Ĩ+) = (
T−1∑
t=1

ptQ̃t + etm̃t+1 + otM̃t)

+pT Q̃T + vsrRT−1 + vsf (JT + δe<sĨ
+
T ), (13)

The first term is the cumulated revenues from the firm orders, the option rights and
the exercise price of the options exercised by the buyer. The remaining terms correspond
to the last firm order and the salvage value of the left-over raw material and finished
product inventories at the end of the horizon.

The expenses Es are written in three sums, corresponding to the costs related to
decisions taken before the first period, to the cumulated cost during all the horizon (except
the last period) and to the last period T ,

Es(J, R, Y, X, Ĩ+) = hsr
0 R0 + c0Y0,0 +

T∑
k=1

wkX0,k

+
T−1∑
t=1

(hsr
t Rt + ctY0,t +

T−t∑
k=1

wkXt,t+k + hsf
t Jt)

+hsf
T JT + (vbf

s + tbs)δe<sĨ
+
T . (14)

From the view point of the supplier, the parameters m̃t and Ĩ+
T are random variables

depending on the buyer’s decisions to exercise the options. In contrast, M and Q are deter-
ministic. Thus the expenses and the revenues are also random variables. Consequently,
the supplier’s optimization problem can be formulated as the stochastic programming
problem

min E
[
Rs(J, R, Q̃, m̃, M̃ , Ĩ+) − Es(J, R, Y, X, Ĩ+)

]
s.t. R0 = Y0,0 −

T∑
k=1

X0,k, (15a)

Rt = Rt−1 + Y0,t −
T−t∑
k=1

Xt,t+k, t = 1, . . . T − 1, (15b)

J1 = X0,1 − Q̃1, (15c)

Jt = Jt−1 +
t−1∑
k=0

Xk,t − m̃t − Q̃t, t = 2, . . . T, (15d)

Rt, Jt, Xk,t ≥ 0, t = 1, . . . T, k = 0, . . . t − 1. (15e)

A complete formulation of this optimization problem, using an-ampl like language, is
given in the appendix C.2.

5 Auxiliary models

We present in this section the pair of models we exploit as benchmark for estimating
the performances of the multi-periodic contract with options : a basic contract without
options and a fully integrated system.
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5.1 The basic contract without options

The assumptions of this model are similar to those of the basic multi-periodic contract
with options, except that no option can be exercised. So, the buyer places firm orders at
the begin of the process for all the periods. No additional amounts can be ordered after
observing demands. In this situation, the whole risks are endowed by the buyer and the
supplier faces a deterministic situation once the buyer has placed the orders.

5.2 Vertical integration

Option contracts help improving the joint performance of the buyer and the supplier
acting independently within the contract framework. A bound on this improvement is
given by the performance of a fully integrated supply chain. To this end, we provide a
model of a fully integrated system. In this new model, the structure of the logistic system
is preserved: purchased raw materials are transformed into a finished goods that are
stored in a retail inventory to serve clients on the end market. In contrast with the buyer-
supplier model, the decisions are taken by a single decision-maker. The raw materials are
still assumed to be purchased at the beginning of the campaign and periodically delivered
or stored for future use. Production is limited by the availability of raw material. The
retail level receives, stores and sells to end markets the finished product. Each period
offers the possibility to adjust production and ordering decisions to match the revealed
demand. There is no necessity of a contract between the production level and the retail
level as the different decision variables are controlled by a single decision maker.

Prior to formulating the integrated model, let us summarize the variables and param-
eters involved.

Decision variables in the integrated model
for t = 0, ..., T − 1

Y0,t ≥ 0 : raw material firm order, issued in the first period, to be delivered
in period t

Xt,t+k ≥ 0: finished good firm production order issued in period t and to be
delivered in period t+k (with k = 1, ..., T − t)

State variables in the integrated model
for t = 0, ..., T

It : retail finished good inventory at the end of period t
I+
t ≥ 0: retail physical finished good inventory at the end of period t

I−t ≥ 0: retail backorder of finished good inventory at the end of period t
Rt ≥ 0: raw material inventory at the end of period t

Parameters for the integrated model
wk: unit labor cost of production for an order with a k-period lead-time
vr : unit salvage value of raw material
vf : unit salvage value of finished goods

for t = 1, ..., T

Dt: stochastic demand in period t
rt : selling price of finished product on the end market in period t
ct : unit purchasing cost of raw material to be delivered at the beginning of

period t

hf
t : unit holding cost for finished product in period t

hr
t : unit holding cost of raw material in period t

sf
t : unit shortage cost for finished product in period t
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The global revenue Ri has three terms

Ri(I−, I+, R) = r1(D1 − I−1 ) +
T∑

t=2

rt(Dt + I−t−1 − I−t ) + vrRT + vfI+
T . (16)

The expenses E i are written as

E i(I+, I−, R, X) =
T∑

t=1

(
hf

t I+
t + sf

t I−t + hr
tRt + ctY0,t +

T−t∑
k=0

wkXt,t+k

)
(17)

Consequently, the present optimization problem can be formulated as the stochastic pro-
gramming problem

min E
[
Ri(I−, I+, R) − E i(I+, I−, R, X)

]
(18a)

It = I+
t − I−t , t = 1, . . . T, (18b)

I1 = X0,1 − D1, (18c)

It = It−1 +
t∑

k=1

Xt−k,t − Dt, t = 2, . . . T, (18d)

R0 = Y0,0 −
T−1∑
k=1

X1,1+k, (18e)

Rt = Rt−1 + Y0,t −
T∑

k=1

X0,k, t = 1, . . . T. (18f)

6 Example of analysis of a base contract

The main purpose of this section is to show that stochastic programming allows in-depth
analysis of contract performance. The work has been carried out on a laptop Toshiba
Satellite Pro 4200, 500 Mhz with 196 Mb of core memory. The modeling language is
ampl [15] and the commercial solver is cplex 6.1 [12]. The models are those of Sections
4 and 5.

Our base model has two periods. The demand parameters are µt = 1000, σt = 330 and
ρt = 0.5. The cost and price parameters are (for t = 1, 2): ct = 3, hbf

t = 0.5, hsf
t = 0.25,

hsr
t = 0.125, rt = 12, pt = 8, ot = 1.5, et = 8, sbf

t = 6, (w1, w2) = (4, 3), vbf = 4, vsf = 5,
vsr = 2, vbf

s = 2 and tbs = 4. The constraint parameters on the option right level is
M t = 10000.

The continuous demands are approximated by discrete values according to the scheme
described in Section 4 and Appendix A. The base choice is to use grids with the same
number of points in each period : this base number is 81, yielding a tree with 6642 nodes.
The deterministic equivalent linear programs have respectively 19929 variables and 13285
constraints for the buyer’s model and only 6809 variables and 6724 constraints in the
supplier’s problem. Solving these two problems is a matter of a few seconds only.

6.1 Impact of the discretization grid

The choice of an appropriate approximation of the stochastic process, is an important
issue in stochastic programming. A finer grid is liable to yield more reliable results, but
the size of the deterministic equivalent program increases dramatically with the size of
the grid. We have carried a few experiments to test the impact of the grid sizes on the
objective function and on the decision variables values for the two problems, the buyer’s
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and the supplier’s. The buyer’s problem is the largest of the two models: it constitutes
the bottleneck in the grid refinement.

The finer grid we considered has 321 points per period. This lead to a tree with 103362
nodes and deterministic equivalent linear program for the buyer with approximatively
200000 constraints and 300000 variables. This is the maximal size we could handle on our
somewhat limited hardware. The solution required about an hour, but much of the time
was spent in swap. Clearly, larger size can be handled on faster computers endowed with
large core memory.

We tested different grid sizes in order to investigate the robustness of the model. The
optimal values of the large buyer’s model – and the corresponding supplier’s model –
constitute our benchmarks for other discretization schemes. Table 1 displays the deci-
sion variables and the profits for the different grid sizes. An 81 × 81 grid reasonably
approximates the 321 × 321 reference grid.

First stage decisions Expected profit
Grid M1 Q0,1 Q0,2 Buyer Supplier Joint

5 x 5 845,00 1396,00 353,00 4220,87 3234,24 7455,10
11 x 11 499,00 1540,00 346,00 4291,80 2791,63 7083,43
21 x 21 484,00 1472,00 410,00 4326,83 2928,51 7255,34
41 x 41 470,00 1483,00 410,00 4328,71 2904,89 7233,60
81 x 81 469,00 1465,00 434,00 4329,08 2924,88 7253,95

161 x 161 471,00 1468,00 429,00 4329,68 2913,82 7243,50
321 x 321 470,00 1469,00 428,00 4329,75 2921,19 7250,94

Table 1: Simultaneous refinement of the 1st and 2nd stage grids.

In the 2-stage stochastic programming framework, the first stage decisions are the
most important, since they are committing for the second stage. Second stage decisions
are recourse to adjust to the chance outcome. This suggests that a looser approximation
of the optimal recourse may be sufficient to gear good first stage decisions. Thus, a coarser
grid for the second stage may be enough. We tested this idea; the results displayed on
Table 2 confirm the analysis: a 41 point grid for the second stage seems to be accurate
enough. In particular, the first stage decision quickly stabilize as the grid for the second
period demand becomes moderately fine.

First stage decisions Expected profit
Grid M1 Q0,1 Q0,2 Buyer Supplier Joint

321 x 5 500,00 1469,00 411,00 4313,88 2860,47 7174,347
321 x 11 456,00 1469,00 437,00 4307,53 2830,25 7137,781
321 x 21 473,00 1469,00 428,00 4330,43 2921,47 7251,906
311 x 41 471,00 1469,00 427,00 4329,92 2921,08 7251,001
321 x 81 470,00 1469,00 428,00 4329,46 2921,36 7250,822
321 x 161 471,00 1469,00 428,00 4329,73 2921,85 7251,58
321 x 321 470,00 1469,00 428,00 4329,75 2921,19 7250,942

Table 2: Refinement of the 2nd stage grid alone.

6.2 Probability distribution of profit, orders and options

The stochastic programming solution provides a much richer information than the sole
optimal expected profit. Indeed, the program computes the profit at each leaf of the
tree: thus, one can easily reconstruct the probability distribution of the profit under the
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optimal policy. Similarly, one can provide a full probabilistic description of the optimal
decisions, in particular those pertaining to the exercised options by the buyer.

In Figure 3, we depict the probability distributions of the buyer and the supplier. We
also provide a picture of the profit density function of the buyer. This information helps
visualize the risk.
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Figure 3: Profit distribution and exercised options.

We also represent the probability distribution of the exercised options and the exercised
option as a function of the observed demand in the first period.

6.3 Downside risk constraint

The expected profit criterion is valid for risk-neutral decision-makers. For risk-averse
decision-makers, one would probably want to use a criterion based on a utility function
[19]. To avoid complication, it is possible to look for a policies focusing on downside risk.
The analysis of the optimal policy in the base model shows that the buyer’s profit can be
as low as −14, 000 and that it achieves a negative value with probability 0.15. It is a minor
change in the model to add a constraint on the minimum profit, or on the conditional
expectation of negative profits (we shall later discuss a similar constraint on the service
level). As an illustration, we run a model with a constraint limiting the buyer’s deficit to
−10, 000. The corresponding numerical results are given on 4.

One notices that the buyer’s policy shifts towards an increasing use of exercised op-
tions. The number of option rights is now 993 instead of 469. The distribution function
of the buyer is steeper, with less dispersion. High and low profits are both limited.

6.4 Sensitivity on option and buy-back prices

The objective of this subsection is to give some insight on how the profits and the ordering
policy change when some of the key parameter in the option contract vary. In particular,
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Figure 4: Profit distribution and exercised options with a downside risk constraint.

we concentrate on the impact of the option right purchasing price co, the option exercise
price ce and the buy-back (or salvage) price vbf

s .
We let each parameter vary independently, while letting the others at their base value.

The results are reported in Tables 3, 4 and 5.

Option price Expected profit M1 Q0,1 Q0,2

ot Buyer Supplier Joint

0 5817.437 907.771 6725.208 10,000 1392 0
0.25 5412.789 1992.316 7405.105 1407 1440 0
0.5 5093.326 2372.814 7466.140 1145 1465 76
0.75 4837.169 2629.032 7466.201 922 1465 192
1 4629.987 2791.614 7421.601 744 1465 287

1.25 4462.506 2885.741 7348.247 597 1465 364
1.5 4329.076 2924.875 7253.951 469 1465 434
1.75 4226.059 2916.696 7142.755 355 1465 496
2 4150.795 2858.695 7009.490 247 1465 553

2.25 4101.365 2765.389 6866.754 149 1465 607
2.5 4076.385 2625.958 6702.343 53 1465 659
2.75 4072.616 2532.186 6604.802 0 1465 690

Table 3: Impact of a variation of the option right price.

As expected, Table 3 shows that the buyer’s profit decreases when the price of option
rights increases, while the supplier’s profit first increases and then decreases. If the price
of the option right is too high, the buyer becomes more conservative, which turns out to
be harmful to the supplier. A similar comment holds for the impact of the price of option
exercise, see Table 4

Finally, Table 5 shows the impact of the buy-back price. It appears that the buyer
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Exercise price Expected Profit M1 Q0,1 Q0,2

et Buyer Supplier Joint

5.75 5503.163 2222.650 7725.813 1231 1269 0
6.00 5299.949 2396.527 7696.476 1168 1318 0
6.25 5109.878 2549.730 7659.608 1106 1367 0
6.50 4935.500 2661.190 7596.690 1040 1416 0
6.75 4775.342 2742.848 7518.190 976 1465 0
7.00 4643.808 2831.888 7475.696 806 1465 157
7.25 4541.091 2867.934 7409.025 688 1465 261
7.50 4457.475 2907.761 7365.236 604 1465 330
7.75 4387.994 2912.204 7300.198 533 1465 385
8.00 4329.080 2924.880 7253.960 469 1465 434
8.25 4279.487 2912.624 7192.111 417 1465 470
8.50 4236.919 2912.044 7148.963 369 1465 502
8.75 4201.249 2882.237 7083.486 321 1465 532
9.00 4170.617 2869.973 7040.590 279 1465 559
9.25 4145.424 2835.369 6980.793 240 1465 581
9.50 4124.188 2807.507 6931.695 200 1465 602

Table 4: Impact of the price of the option exercise.

takes advantage of higher buy-back prices, but in the present model this trend is not
strong enough to induce higher profits for the supplier.

6.5 Stackelberg equilibrium

In the game theoretic framework the relation between the buyer and the supplier can be
depicted as a game with a leader and a follower. The leader (supplier) chooses the option
and buy-back prices (possibly the selling price also) and the follower (buyer) decides
on orders and purchase rights. The Stackelberg equilibrium is defined as the optimal
choice of the leader, under the assumption that the buyer reacts optimally to the leader’s
choice. The problem of computing a Stackelberg equilibrium is known to be very difficult.
However, by performing sensitivity analysis it is possible to estimate the Stackelberg
equilibrium when only one component is allowed to vary.

Here, we have considered the case of the optimal choice by the supplier of the price of
the option right, when the price of of the option exercise is fixed (et = 8). The optimal
choice ot = 1.5 can can be read from Table 3. In Table 3 we compare the Sackelberg
equilibrium with two other extreme cases: a contract with no option rights (ot = ∞), and
a vertically integrated supply chain. We note that at the Stackelberg equilibrium, both
actors are better off, but their joint profit still falls short from the results achieved in the
vertically integrated supply chain.

6.6 Service level

Stochastic programming can easily handle extra constraints. As an illustration, we extend
the base model to include a service level constraint. The service level is defined as the
ratio of served demand on total demands. This constraint can be written as follows∑

n∈N [T ]

P [T, n]I−[T, n] ≤ α
∑

n∈N [T ]

P [T, n]
∑

t=1,...T

D[t, b[t, n]].

The service level parameter is α. Note that this constraint is linear. Table 7 displays the
evolution of profits and decision variables versus the service level
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Salvage price expected profit M1 Q0,1 Q0,2

vbf
s Buyer Supplier Joint

0.000 3925.717 3274.076 7199.793 574 1465.000 297.000
0.125 3947.968 3251.465 7199.433 566 1465.000 307.000
0.250 3971.067 3262.300 7233.367 563 1465.000 311.000
0.375 3994.394 3236.999 7231.393 556 1465.000 319.000
0.500 4017.962 3213.690 7231.652 550 1465.000 328.000
0.750 4065.919 3164.556 7230.475 539 1465.000 343.000
1.000 4114.932 3111.368 7226.300 525 1465.000 360.000
1.250 4166.097 3087.816 7253.913 516 1465.000 375.000
1.500 4218.842 3028.597 7247.439 501 1465.000 392.000
1.750 4272.958 2967.371 7240.329 485 1465.000 412.000
2.000 4329.079 2924.875 7253.954 469 1465.000 434.000
2.250 4387.475 2858.699 7246.174 455 1465.000 452.000
2.500 4447.660 2787.785 7235.445 438 1465.000 475.000
2.750 4510.316 2724.863 7235.179 418 1465.000 497.000
3.000 4575.636 2645.999 7221.635 401 1465.000 522.000
3.250 4643.337 2556.945 7200.282 378 1465.000 549.000
3.500 4714.475 2476.991 7191.466 359 1465.000 574.000
3.750 4788.731 2369.843 7158.574 330 1465.000 605.000
4.000 4866.659 2265.101 7131.760 304 1465.000 638.000

Table 5: Effect of the salvage price.

Scenario NO Model Stackelberg: ot = 1.5 VI Model

Buyer expected profit 4072.616 4329.076 -

Buyer’s profit standard deviation 3702.604 3317.175 -

Supplier expected profit 2532.186 2924.875 -

Supplier’s profit standard deviation 1587.475 1423.715 -

Joint expected profit 6604.802 7253.951 9125.992

Joint profit standard deviation 4776.265 5090.167 6426.418

M1 - 469 -

Q0,1 1465 1465 -

Q0,2 690 434 -

Table 6: No Options, Stackelberg and Vertically integrated models.

service level Expected profit M1 Q0,1 Q0,2

α Buyer Supplier Joint

0,960 4866,66 2265,10 7131,76 304,00 1465,00 638,00
0,960 4866,66 2265,10 7131,76 304,00 1465,00 638,00
0,969 4856,72 2258,85 7115,57 341,00 1502,92 617,08
0,970 4852,73 2307,62 7160,35 358,45 1514,00 610,00
0,971 4847,55 2255,32 7102,87 356,00 1514,00 617,00
0,973 4834,48 2250,14 7084,62 365,00 1527,72 612,28
0,974 4826,65 2246,91 7073,56 375,97 1538,00 605,00
0,975 4817,28 2401,94 7219,22 385,45 1538,00 611,00
0,976 4806,73 2258,96 7065,69 392,62 1538,00 615,00
0,980 4750,29 2237,10 6987,39 425,00 1576,57 598,43
0,990 4430,80 2185,10 6615,89 544,80 1660,00 597,00
0,000 628,13 1978,77 2606,90 1686,00 1978,00 650,00

Table 7: Impact of the service level.
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7 Conclusion

Stochastic programming appears to be a versatile and powerful tool to model the relation-
ship between a buyer and a supplier in a supply chain context. It permits a fine analysis
the impact of contracts on the performance of the chain. In this paper, we focused on
contracts with purchase option rights and a buy-back policy. The contract we studied is
quite general and encompasses many other contracts (see [4]).

The formulation via algebraic modeling languages appears to be simple enough to be
implementable for on-the-fly analyses. The main limitation of stochastic programming
stems from the natural tendency of event tree to become enormous when the demand
discretization and the number of periods increase. However, we have shown that the
current modeling languages and linear programming solvers are powerful enough to handle
satisfactory approximations. Anyhow, the quality of the approximation is not a severe
requirement: the purpose of the models is to give reliable hints on the effects of supply
chain contracts models, knowing that decision-makers need guidelines much more than
precise instructions on how to choose their policies.

Two extensions seem to be in order. One would consist in refining the risk analysis, for
instance by considering complex utility functions. There is no difficulty in dealing with
piece-wise linear concave utility function, contrary to other approaches based on dynamic
programming or similar approaches. The other extension would deal with multiperiodic
problems. While there is no difficulty in formulating such problems, it is clear that in-
creasing the number of periods quickly leads to enormous and intractable event trees. In
that respect, it is interesting to note that satisfactory results in the 2 stage model were
obtained when the grid size in the second period was kept small, if not very small. This
perhaps suggests that using grids of decreasing size for later periods may lead to accu-
rate enough solutions, while controlling the event tree explosion and achieving tractable
models.

Implementation of the stochastic programming approach for rolling horizon contracts
involving several time-periods as in [3, 5] and explicit consideration of the decision-maker
attitude towards risk constitutes an ongoing research.
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A Discretization of the standard normal variable

We propose a scheme that generates a discrete random variable with 2m + 1 values that
approximates the normal random variable with 0 mean and unit standard deviation. The
number m may take arbitrary integer values. Clearly, the parameter m may take different
values at different time period. In this appendix, we do not subscript it with t for the
sake of clarity.

We now explain how we choose the discrete values {δt,1, . . . δt,2m+1} and compute the
associate probabilities {pt,1, . . . pt,2m+1}. The values δs are chosen to be equally spaced,
symmetric around the origin, with a total spread of 6 units. We introduce the step

τ = 6
2m+1 ,

and we define
δ1 = δ2m+1 = 3,
δm+1 = 0,
δk+1 = δk + τ, k = 1, ..., 2m − 1.

For any intermediary point δk, with k = 2, ..., 2m, the associate probability pk is given by

pk =
∫ δk+ τ

2

δk− τ
2

f(x)dx,

where f(·) is the density of the standard normal distribution. For the end points the
probabilities are

p1 =
∫ δ1+

τ
2

−∞
f(x)dx,

and

p2m+1 =
∫ +∞

δ2m+1− τ
2

f(x)dx,

The computation of these integral are programmed in many software packages.
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B The simple production/inventory model formulated
in AMPL

B.1 The base deterministic model

param T > 0; # number of periods

param demand {1..T} >= 0; # periodic demands

param holdingcost >= 0; # inventory holding cost

param shortagecost >= 0; # inventory shortage cost

param procurementcost {k in 1..T} >= 0; # procurement cost (via production

or purchasing) associated with a k period lead-time

var procurement {k in 0..T-1, l in k+1..T} >= 0; # units ordered in period

k and delivered at the beginning of period l (with l-k>=1)

var Inventory {1..T} >= 0; # inventory surplus at the end

of period t

var Inventoryplus {t in 1..T} >= 0; # physical inventory at the end

of period t

var Inventoryminus {t in 1..T}>= 0; # backorder at the end of

period t

minimize total expenses:

sum {t in 1..T} (sum {k in 0..t-1}procurement[k,t]*procurementcost[t-k]
+ holdingcost[t]*Inventoryplus[t] + shortagecost[t]*Inventoryminus[t]);

# Total cumulated costs for all periods

subject to {t in 1..T}:
Inventory[t] = Inventoryplus[t] - Inventoryminus[t];

# Definition of physical inventories and shortages

subject to {t in 2..T}:
Inventory[t] = Inventory[t-1] + sum {k in 0..t-1}procurement[k,t]
- demand[t];

# Definition of procurements/inventories dynamics

subject to:

Inventory[1] = procurement[0,1] - demand[1];

# Definition of the first period inventory
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B.2 The stochastic process formulation

In this example, we consider independent demands. In case of correlation schemes between
successive demands, as considered in the example of this paper, the demand values are
computed parameters, instead of simple parameters.

param T > 0; # number of periods

# Parameters whose values are to be read in the user data file

param f {0..T-1}; # number of branches arising from each node in period t

param p {t in 0..T-1, k in 1..f[t]} >= 0; # transition probabilities from

# any node in period t to its successors in period t+1

# Computed parameters

param N {t in 0..T}:= if t=0 then 1 else N[t-1]*f[t-1];

# number of nodes in period t

# Parameters whose values are to be read in the user data file

param demand {t in 1..T, n in 1..N[t]}; # demand values associated with

# the nodes of the event tree description

# Computed parameters

param a {t in 1..T, n in 1..N[t], k in 1..t}:=
if k=1 then

if t=1 then 1 else ceil(n/f[t-1])

else a[t-1,a[t,n,1],k-1]; # k-periods predecessor

param l {t in 1..T, n in 1..N[t]}:= n-f[t-1]*(a[t,n,1]-1); # transition index of the

last transition

param P {t in 0..T, n in 1..N[t]}:=
if t=0 then 1 else p[t-1,l[t,n]]*P[t-1,a[t,n,1]]; # node probability

param b {t in 0..T, n in 1..N[T]}:= if t < T then a[t+1,b[t+1,n],1] else n;

# index of the node traversed at time t by scenario ending at (T,n)

Figure 5: Model for the stochastic process with ampl
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B.3 The deterministic equivalent linear programming problem

# GLOBAL PARAMETER

param T;

# PROBABILISTIC SECTION

# Parameters whose values are to be read in the user data file

param f {0..T-1}; # number of branches arising from each node in period t

param p {t in 0..T-1, k in 1..f[t]} >= 0; # transition probabilities from

# any node in period t to its successors in period t+1

# Computed parameters

param N {t in 0..T}:= if t=0 then 1 else N[t-1]*f[t-1];

# number of nodes in period t

# Parameters whose values are to be read in the user data file

param demand {t in 1..T, n in 1..N[t]}; # demand values associated with

# the nodes of the event tree description

# Computed parameters

param a {t in 1..T, n in 1..N[t], k in 1..t}:=
if k=1 then

if t=1 then 1 else ceil(n/f[t-1])

else a[t-1,a[t,n,1],k-1]; # k-periods predecessor

param l {t in 1..T, n in 1..N[t]}:= n-f[t-1]*(a[t,n,1]-1); # transition index for

the last transition

param P {t in 0..T, n in 1..N[t]}:=
if t=0 then 1 else p[t-1,l[t,n]]*P[t-1,a[t,n,1]]; # node probability

param b {t in 0..T, n in 1..N[T]}:= if t < T then a[t+1,b[t+1,n],1] else n;

# index of the node traversed at time t by scenario ending at (T,n)
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# DETERMINISTIC EQUIVALENT

param T > 0; # number of periods

param holdingcost >= 0; # inventory holding cost

param shortagecost >= 0; # inventory shortage cost

param procurementcost {k in 1..T}>= 0; # procurement cost (via production

or purchasing) associated with a k period lead-time

var procurement {t in 0..T-1, n in 1..N[t], k in t+1..T} >= 0; # units

ordered in node (t,n) and delivered at the beginning of period k

var Inventory {t in 1..T, n in 1..N[t]} >= 0; # inventory surplus at the end of

period t

var Inventoryplus t in 1..T, n in 1..N[t]>= 0 ; # physical inventory at the end

# of period t

var Inventoryminus t in 1..T, n in 1..N[t]>= 0 ; # backorder at the end of

period t

subject to {t in 1..T, n in 1..N[t]}:
Inventory[t,n] = Inventoryplus[t,n] - Inventoryminus[t,n];

# Definition of physical inventories and shortages

subject to {n in 1..N[1]}:
Inventory[1,n] = procurement [0,1,1] - demand[1,n];

# Definition of initial inventory

subject to {t in 2..T, n in 1..N[t]}:
Inventory[t,n] = Inventory[t-1,a[t,n,1]]

+ sum {k in 0..t-1}procurement[k,a[t,n,k],t]
- demand[t,n];

# Definition of procurements/inventories dynamics

minimize total expenses:

sum {n in 1..N[T]} P[T,n]*sum {t in 1..T-1}(holdingcost * Inventoryplus[t,b[t,n]]

+ shortagecost*Inventoryminus[t,b[t,n]]

+ sum {k in 1..T-t}procurement[t,b[t,n],t+k]*procurementcost[k]);
# Total costs in all periods

C Linear programming models

We give here a mathematical programming formulation of the deterministic equivalent
linear programming problem using ampl-like notation. It is an easy matter to build the
full-fledged ampl model using the methodology discussed in Section 3

C.1 The buyer model in pre-AMPL formulation

The objective is conveniently expressed in terms of revenues and expenses along each
scenario. For each scenario, indexed by n ∈ {1, . . . , N [T ]}, the revenues are given by

Rb[n] = r1

(
D[1, b[1, n]] − I−[1, b[1, n]]

)
+ vbfI+[T, n]

+
T∑

t=2

rt

(
D[t, b[t, n]] − I−[t, b[t, n]] + I−[t − 1, b[t − 1, n]]

)
(19)

and the expenses by

Eb[n] =
T−1∑
t=1

(
otM [0, 1, t] + etm[t, b[t, n], t + 1]

)
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+
T∑

t=1

(
hbf

t I+[t, b[t, n]] + sbf
t I−[t, b[t, n]] + ptQ[0, 1, t]

)
. (20)

The extensive formulation of Problem (12) as a linear programming problem is given
by

max
N [T ]∑
n=1

P [T, n]
(
Rb[n] − Eb[n]

)
(21a)

s.t. I[t, n] = I+[t, n] − I−[t, n], t = 1, . . . T, n = 1, . . . N [t], (21b)
I[1, n] = Q[0, 1, 1] − D[1, n], n = 1, . . . N [1], (21c)
I[t, n] = I[t − 1, a[t, n, 1]] + Q[0, 1, t] + m[t − 1, a[t, n, 1], t] − D[t, n],

t = 2, . . . T, n = 1, . . . N [t], (21d)
0 ≤ m[t, n, t + 1] ≤ M [0, 1, t], t = 1, . . . T − 1, n = 1, . . . N [t], (21e)
0 ≤ M [0, 1, t] ≤ M t, t = 1, . . . T − 1, (21f)
I+[t, n] ≥ 0, I−[t, n] ≥ 0, Q[0, 1, t] ≥ 0,

t = 1, . . . T, n = 1, . . . N [t], (21g)
M [0, 1, t] ≥ 0, t = 1, . . . T − 1. (21h)

C.2 The supplier model in pre-AMPL formulation

The objective is conveniently expressed in terms of revenues and expenses along each
scenario. For each scenario, indexed by n ∈ {1, . . . , N [T ]}, the revenues are given by

Rs[n] = (
T−1∑
t=1

ptQ̃[t] + etm̃[t + 1, b[t + 1, n]] + otM̃ [t])

+pT Q̃[T ] + vsrR[T − 1, b[T − 1, n]] + vsf (J [T, n] + δe<sĨ
+[T, n]), (22)

and the expenses

Es[n] = hsr
0 R[0, 1] + c0Y [0, 1, 0] +

T∑
k=1

wkX[0, 1, k] (23)

+
T−1∑
t=1

(hsf
t J [t, b[t, n]] + hsr

t R[t, b[t, n]] +
T−t∑
k=1

wkX[t, b[t, n], t + k])

+ctY [0, 1, t] + hsf
T J [T, n] + (vbf

s + tbs)δe<sĨ
+[T, n]. (24)

Consequently, the supplier’s optimization problem can be formulated as the stochastic
programming problem

max
N [T ]∑
n=1

P [T, n]
(
Rs[n] − Es[n]

)
R[0, 1] = Y [0, 1, 0] −

T∑
k=1

X[0, 1, k], (25a)

R[t, n] = R[t − 1, a[t, n, 1]] + Y [0, 1, t] −
T−t∑
k=1

X[t, n, t + k],

t = 1, . . . T − 1, n = 1, . . . N [t], (25b)
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J [1, n] = X[0, 1, 1] − Q̃[1], n = 1, . . . N [1], (25c)

J [t, n] = J [t − 1, a[t, n, 1]] +
t∑

k=1

X[t − k, a[t, n, k], t] − m̃[t, n] − Q̃[t],

n = 1, . . . N [t], t = 2, . . . T, (25d)
R[t, n] ≥ 0, t = 0, . . . T − 1, n = 1, . . . N [t], (25e)
J [t, n] ≥ 0, t = 1, . . . T, n = 1, . . . N [t]. (25f)
X[t, n, t + k] ≥ 0, 0 = 1, . . . T − 1, n = 1, . . . N [t], k = 1, . . . T − t. (25g)

C.3 The vertical integration model in pre-AMPL formulation

The objective is conveniently expressed in terms of revenues and expenses along each
scenario. For each scenario, indexed by n ∈ {1, . . . , N [T ]}, the revenues are given by

Rb[n] = r1

(
D[1, b[1, n]] − I−[1, b[1, n]]

)
+ vfI+[T, n] + vrR[T, n]

+
T∑

t=2

rt

(
D[t, b[t, n]] − I−[t, b[t, n]] + I−[t − 1, b[t − 1, n]]

)
(26)

and the expense by

Eb[n] =
T∑

t=1

(
hf

t I+[t, b[t, n]] + sf
t I−[t, b[t, n]] + hr

tR[t, b[t, n]]

+ctY [0, 1, t] +
T−t∑
k=0

wkX[t, b[t, n], t + k]
)
. (27)

The extensive formulation of Problem (18) as a linear programming problem is given by

max
N [T ]∑
n=1

P [T, n]
(
Rb[n] − Eb[n]

)
(28a)

s.t. I[t, n] = I+[t, n] − I−[t, n], t = 1, . . . T, n = 1, . . . N [t], (28b)
I[1, n] = X[0, 1, 1] − D[1, n], n = 1, . . . N [1], (28c)

I[t, n] = I[t − 1, a[t, n, 1]] +
t∑

k=1

X[t − k, a[t, n, k], t] − D[t, n], (28d)

t = 1, . . . T, n = 1, . . . N [t],

R[0, 1] = Y [0, 1, 0] −
T∑

k=1

X[0, 1, k], (28e)

R[t, n] = R[t − 1, a[t, n, 1]] + Y [0, 1, t] −
T−t∑
k=1

X[t, n, t + k],

t = 1, . . . T − 1, n = 1, . . . N [t], (28f)
I+[t, n], I−[t, n], Y [0, 1, t], R[t, n] ≥ 0

t = 1, . . . T, n = 1, . . . N [t], (28g)
X[t, n, t + k] ≥ 0, t = 0, . . . T, k = 1, . . . T − t, n = 1, . . . N [t].

(28h)

31


