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Abstract

A commodity is shared between some individuals: There is an initial alloca-
tion; some selection procedures are used to choose an alternative allocation

and; individuals decide between keeping the initial allocation or shifting to the
alternative allocation. The selection procedures are supposed to involve an el-

ement of randomness in order to re°ect uncertainty about economic, social
and political processes. It is shown that for every allocation, ¸, there exists a

number, ³(¸) 2 [0; 1], such that, if the number of individuals tends to in¯nity,
then the probability that a proportion of the population smaller (resp. larger)

than ³(¸) prefers an allocation chosen by the selection procedure converges to
1 (resp. 0). The index ³(¸) yields a complete order in the set of Pareto op-

timal allocations. Illustrations and interpretations of the selection procedures
are provided.

Keywords: Pareto-optimal allocations, Infra-majority voting.

JEL-classi¯cation: D31, D72.

Correspondence: Herv¶e Crµes, HEC School of Management, D¶epartement Finance et
Economie, 78 351, Jouy-en-Josas, France. Tel: 33 1 39 67 94 12; fax: 33 1 39 67 70 85.

Email: cres@hec.fr.

¤We are grateful to Edi Karni and Herv¶e Moulin for valuable discussions and helpful comments.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6276866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The present paper investigates the general question of whether social choice rules, es-
pecially voting rules, can be used to distinguish and even better rank Pareto-optimal

allocations. The present framework is too simple to yield a general answer to this ques-
tion. Nevertheless it provides a partial positive answer. For the sake of clarity, and in

order to ¯x ideas it might be helpful to give a short introduction to the framework as well
as the main results of the present paper before entering into its motivation.

A family of simple models is considered: The set of divisions of one unit of a commodity
betweenm individuals. A division of the commodity is thus a vector ¸ withm nonnegative

coordinates that sum up to one, i.e. it is a point in the (m-1){simplex and it is called an
allocation throughout the paper. Individuals are assumed to care only about their own

share of the commodity so obviously all allocations are Pareto-optimal.
Fix the number of individuals, m, an allocation, ¸, and an integer, n, n 2 f1; : : : ;mg.

The main aim of the paper is to compute the \number" of other allocations, ¸0, that
are such that at least n individuals are better o® with ¸0 than with ¸. Since we have

a continuum of allocations, the natural way to count this \number" of allocations is to
compute their volume or Lebesgue measure. Clearly this volume is 1 for n = 1 and 0 for

n = m because all allocations are Pareto optimal. The main result is the following: There
exists a number, ³(¸) 2 [0; 1], such that these volumes converge to 1 for n=m < ³(¸) and

to 0 for n=m > ³(¸) as the number of individuals tends to in¯nity. As an example, for the
egalitarian allocation, ¸ = (1=m; : : : ; 1=m), the threshold value converges to e¡1 ¼ 0:37

as the number of individuals tends to in¯nity1. Of course the number, ³(¸), depends
on how volumes of allocations are measured as well as the allocation therefore a family

of measures, all related to the Lebesgue measure, are considered. For every measure in
this family a simple model is obtained and the same threshold phenomenon as for the

Lebesgue measure is observed.
The occurence of this threshold e®ect as the number of individuals tends to in¯nity

constitutes the main result of the paper. It is derived quite \mechanically" from compu-
tations in the sense that it is based on a purely parametric approach, where the Lebesgue

measure in accordance with Laplace's advice is taken as the most neutral and natural
measure. It should be noted that the case of a ¯nite (but large) number of individuals

1Volume of the set of allocations that are better than the egalitarian allocation for a proportion larger
than ½ of the population: For ½ = 0:5, it is 2 ¢10¡5 for m = 100 and 2 ¢10¡9 for m = 200 and; for ½ = 0:4,
it is 0:08 for m = 100 and 0:03 for m = 200.
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is of course the most interesting case; actually, going to the limit with a continuum of
individuals, where the threshold is clear-cut, is a mean to extract information for the

¯nite case. Therefore the paper also contains results about the strength of the threshold
e®ect for the ¯nite case.

The motivation for this parametric approach and the computation of those volumes is
clear: Starting from an allocation, ¸, it is obviously very easy to ¯nd another allocation,

¸0, that makes all individuals but one better o®: We just have to take the share of one
individual and split it between the others. Thus, if most social choice rules behave as

Maxwell's devil and select alternative allocations that are exactly in this almost zero-
measure set where all individuals but one are better o® then the parametric approach

followed in the present paper would be gratuitous and the main result would be a mere
curiosity. However there are many upstream economic, social and political reasons why

this is not the case. Indeed, uncertainty about characteristics, outcomes of social as well
as political processes may be major reasons why Maxwell's devil is less relevant.

Even though it is beyond the primary concern of the present paper some attempts to
justify the parametric approach by yielding microeconomic illustrations of why Maxwell's

devil is less relevant and macroeconomic interpretations of the parametric approach's con-
sequences are made. Of course our aim is to argue against Maxwell's devil-like arguments

and, more boldly, to advocate for the interest of interpreting the Lebesgue measure as a
probability distribution over the set of allocations as representing how alternative allo-

cations are selected. The ¯rst two illustrations are very simple non-coorperative games
where m individuals have to share one unit of a commodity. The ¯rst game being a one-

shot game and the second game being bargaining a la Rubinstein. The last illustration
is a pure exchange economy with consumption externalities involving two consumers and

one good.
It is an implicit conjecture in the present paper that numerous upstream mechanisms

to divide a commodity generate (and can be identi¯ed with) probability distributions over
the (m-1){simplex of allocations2 as soon as they involve an element of randomness which
is a fair assumption in case of uncertainty about characteristics, outcomes of social as well

as political processes. We conjecture that the nature of the result (the threshold e®ect)
will appear very often in large populations. The paper focuses on a family of special

distributions but ongoing research seeks to qualify \often".
2The induced distribution might be degenerate: A way to share a commodity could be to pull out knifes

and give it to the surviving guy; the distribution is concentrated on the vertices of the (m-1){simplex,
1=m chance for everybody provided that there are no strong (wo)men.
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Indeed, natural and easy interpretations of these distributions are given in terms
of wealth distributions by use of a simple urn model that dates back to Polya and

Eggenberger3. So the interest of the Lebesgue measure goes beyond the brutal para-
metric approach with the belief that Maxwell's devil does not strike too often.

The paper is organized as follows. Section 2 introduces the framework. Section 3
illustrates the choice of the Lebesgue measure as a selection mechanism. In Section 4 the

main results are stated; it mainly contains the de¯nition of the index ³ and the study of
its asymptotic properties. The family of selection mechanisms at scope in the paper are

given an interpretation in Section 5. Finally section 6 o®ers interpretations of the results
together with some concluding comments. All proofs are gathered in the appendix, which

starts with a section on urn models, with emphasize on the notion of occupancy. Indeed,
urn models turn out to be very helpful for the computation of the various probabilities,

on which the proposed ranking of allocations is based.

2 The framework

Some commodity is allocated betweenm individuals and the preferences of each individual

depends on his share only. Allocations are represented by points in the (m-1){simplex

Sm¡1 =
(
¸ = (¸1; : : : ; ¸m) 2 Rm+ j

mX

i=1
¸i = 1

)
;

where the i'th coordinate is the share of the i'th individual. Clearly, indi®erence sets for
the i'th individual are linear manifolds indexed by the i'th coordinate.4

Generally, as argued in the introduction, uncertainty about characteristics, outcomes
of social as well as economic processes introduces an element of randomness in the selection

of allocations - some illustrations are provided in the next section. Therefore selection
procedures are identi¯ed with probability measures over the set of allocations, Sm¡1. In

the present paper, the Lebesgue measure { called indi®erently the uniform distribution {
is studied so that computing probabilities merely reduces to computing volumes. But in

order to study di®erent selection procedures, the uniform distribution is considered over
3The literature on preference formation in a voting population facing a set of candidates has made

extensive use of these Polya-Eggenberger urn models, see Berg (1985) and Berg & Gehrlein (1992).
4In Karni & Safra (1995) a similar framework is considered, but the commodity is supposed to be

indivisible and points in the (m-1){simplex are probability distributions, where the i'th coordinate is the
probability that the i'th individual gets the commodity. However Karni & Safra is concerned with the
existence of social welfare functions, while the present paper is concerned with allocative stability.
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the set of all possible divisions of the commodity into cm pieces (with c 2 N), so that all
individuals get c pieces. For di®erent values of c, the uniform distribution over the set of

divisions of the commodity into cm pieces induces di®erent probability distributions over
the set of allocations. Indeed, divisions induce allocations as described hereafter.

For a ¯xed c, divisions are represented by points in the (cm-1){simplex

Scm¡1 =

8
<
:Ã = (Ã1; : : : ; Ãcm) 2 Rcm+ j

cmX

j=1
Ãj = 1

9
=
; ;

where the j'th coordinate is the size of the j'th piece, and the (cm-1){simplex is endowed
with the Lebesgue measure. Given a division of the commodity, the share of an individual

consists of c pieces with subsequent index, thus the share of the i'th individual is

¸i =
ciX

j=c(i¡1)+1

Ãj :

Clearly, indi®erence sets for the i'th individual in the (cm-1){simplex are linear manifolds

which are indexed by the sum of the individual's pieces. A probability measure over the
set of allocations is induced by the Lebesgue measure over the set of divisions and the

\projection" of the (cm-1){simplex on the (m-1){simplex, ¼ : Scm¡1 ! Sm¡1, de¯ned by

¼(Ã1; : : : ; Ãcm) =

0
@
cX

j=1
Ãj ; : : : ;

cmX

j=(c¡1)m+1

Ãj

1
A :

The density of the induced probability measure on Sm¡1 can easily be computed.

Lemma 1 The Lebesgue measure on Scm¡1 induces a probability measure on Sm¡1 with

density

pc(¸) =
(cm¡ 1)!
[(c¡ 1)!]m

mY

i=1
¸c¡1i :

Remark Consider the egalitarian allocation, ¸ = (1=m; : : : ; 1=m) and another allocation
¸0 6= ¸. Then

lim
c!1

pc(¸0)
pc(¸)

= 0:

Therefore, the induced probability measure on Sm¡1 converges to the Dirac measure with

support on the egalitarian allocation as c tends to in¯nity { the notion of convergence left
unde¯ned. This can be caught intuitively by remembering that c is the number of pieces

that every individual gets and that the more pieces individuals get the more are shares
averaged.
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3 Illustration of the Lebesgue measure

3.1 Example of a simple game

A population ofm individuals want to share one unit of a commodity: A cake, represented

by the uniform unit disk. The individuals might simply decide to share the cake evenly.
There are a lot of more or less complicated mechanisms proposed in the literature. This

section introduces one that is quite simple and moreover can result in any member of the
family of distributions with densities (pc)c2N.

The basic game: The m individuals choose simultaneously a point on the unit circle;
µ 2 [0; 2¼]. Thus m points are chosen: (µi)mi=1. There exists a permutation of the agents,

¾, such that
0 · µ¾(1) · µ¾(2) · : : : · µ¾(m) · 2 ¼:

The share of agent i is the slice of the cake contained between the radii de¯ned by his

chosen point µi and the ¯rst one encountered counterclock-wise: suppose i = ¾(k), it is
the portion (µ¾(k); µ¾(k+1)), with the convention that ¾(m+ 1) = ¾(1). For this game it is

a Nash equilibrium in mixed strategies that all individuals choose their points on the unit
circle according to the uniform distribution. It is shown that the induced distribution

over the (m-1){simplex of shares is the uniform distribution.

Proposition 1 If all individuals choose their points on the unit circle according to the
uniform distribution over the interval [0; 2¼], then the game induces the uniform distribu-

tion over the (m-1){simplex of allocations.

Proof Follows from Tovey (1997). Q.E.D.

Corollary 1 Suppose that ¯rst individuals divide the commodity into c small pieces of

equal size (each of them represented as a uniform unit disk) second they share every piece
by playing the described game. Then for the Nash equilibrium in mixed strategies where

all individuals choose their points on the unit circle according to the uniform distribution
the induced distribution over the (m-1){simplex of shares has density pc.

3.2 Example of a less simple game

As in the previous game a population of m individuals want to share one unit of a

commodity. There is an initial allocation and individuals can decide by voting whether
they keep their initial shares or they enter into bargaining a la Rubinstein in order to
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select another allocation. However as explained in Osborne & Rubinstein (1990) and van
Damme (1991) all allocations can be supported as subgame perfect equilibria provided

that there are more than two individuals, m ¸ 3. Thus the outcome of bargaining is
characterized by indeterminacy, so unless individuals coordinate their strategies it is far

from obvious how individuals should play.
Individuals can coordinate their strategies through some extrinsic random variable

such that all individuals observe this variable and coordinate their strategies on it. Indeed
suppose that all individuals believe that the choices of strategies of all other individuals

depend on a random variable on the (m-1){simplex such that if the random variable
takes the value ¸ then they play strategies that make the allocation ¸ a subgame perfect

equilibrium. Then all individuals play strategies that make the allocation ¸ a subgame
perfect allocation. All distributions of the random variable seem to be equally reasonable,

in particular the family of distributions with densities (pc)c2N is just as reasonable as all
other distributions. Perhaps the uniform distribution is a natural prior, because if all

allocations are equally reasonable then the uniform distribution over the set of allocations
seems to be a neutral belief.

In order to complete the description of the game suppose that the random variable
is drawn from a distribution with density pc for c 2 N and that ¯rst the value of the

random variable is revealed and second individuals vote about keeping their initial shares
or entering into bargaining. For this game the main result of the present paper is that for

any initial allocation, ¸, there exists a number, ³c(¸) 2 [0; 1], such that the probability
that there is a n=m proportion that prefers an allocation selected according to the extrinsic

random variable converges to 1 for n=m < ³c(¸) and to 0 for n=m > ³c(¸) as m tends to
in¯nity.

It should be remarked that the coordination of individuals' strategies by some extrinsic
random variable implies that sunspots matter, see Cass & Shell (1983) and Shell (1987).

However in games with indeterminacy it seems quite natural that players coordinate their
strategies { at least to some degree { and they can only coordinate on an extrinsic random
variable.

3.3 Example of a market mechanism

A general model of consumption externalities was introduced in Arrow (1969) and ex-

tensively studied in Crµes (1996). Consider an economy with 1 commodity and 2 con-
sumers where agents in°ict negative consumption externalities to each other. Let x1
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(resp. x2) denote the consumption of consumer 1 (resp. consumer 2). Consumer 1's, re-
spectively consumer 2's, utility function is given by U1(x1; x2) = log x1 ¡ x2, respectively
U2(x1; x2) = log x2 ¡ x1. Externalities are individualized as in Arrow (1969) through
markets: There are, beside the usual market for the proper commodity, also markets

for externalities. Consumers face individualized prices on all markets, behave as price-
takers and express demands for both their proper and external consumptions. Prices clear

markets.
Both consumers are endowed with 1 unit of the commodity. Moreover, beside these

endowments in physical consumption good, legal entitlements are distributed to the con-
sumers that represent, in a Coasian world, the initial juridical situation from where they

can trade on external e®ects; this legal entitlement, denoted ! is the same for both
consumers, to respect the symmetry between them. In this example, we consider the

parametric family of economies where ! is taken, to ¯x idea, in [¡1; 1]. No value of
! sounds more \reasonable" or probable than another. So that assuming the Lebesgue

measure on this parametric family seems a fair assumption.
The system of equilibrium equations of this market economy is equivalent to the system

of equilibrium equations derived from the usual planner's program, with the addition of
consumer 1's budget constraint. Consumer 1's consumption x1 can be expressed as a

function of its welfare weight t 2 [0; 1]:

x1(t) =
1

2(1 ¡ 2t)

³
3 ¡ 4t¡

p
32t2 ¡ 32t+ 9

´

and of course x2(t) = x1(1 ¡ t) = 2 ¡ x1(t). Both x1(t) and U1(x1(t); x2(t)) are increas-
ing function of t. For any value of the legal entitlement !, there exists a symmetric

equilibrium where the consumers are treated equally by the market; it is described by:
x1 = x2 = 1, t = 1=2. But if ! 2 [¡1;¡0:5] (this corresponds to the case where the legal

authority wants to compensate for the negative externality through the legal entitlement),
there exists also a pair of asymmetric equilibria. Thus we know that for ! 2 [¡1;¡0:5],

there exists a corresponding value t(!) 6= 1=2 and x1 6= x2; the equilibrium allocations
are (x1(t(!)); x2(t(!))) and (x1(1 ¡ t(!)); x2(1 ¡ t(!))). It is easy to compute, for an

asymmetric welfare weight t 6= 1=2, the reciprocal function !(t):

!(t) =
1

1 ¡ 2t

Ã
1 ¡ 2t+ tx1(t) ¡ t

x1(t)

!
:

Plotting this function yields the following curve: The curve being almosty linear, the uni-
form distribution over the set of parameters ! 2 [¡1; 1] generates a distribution over the
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Welfare Weight at Equilibrium

¡1

¡0:5

0:5
-

6

1{simplex of welfare weights a distribution which is close to be uniform. Either there are

no asymmetric equilibria (! 2 [¡0:5; 1]) or there are, and then they are evenly distributed
in the 1{simplex of welfare weights. Suppose this example can be, to some extent, gen-

eralized: there are m consumers in°icting external e®ects on each other. Economies are
parametrized by endowments and/or legal entitlements. Suppose that welfare weights

yield reasonable ordinal comparisons of the utility level of the consumers5. Suppose the
Lebesgue measure induces, on the (m-1){simplex of welfare weights, a distribution whose

density is close to pc; since for any c, the value of ³c at the center of the simplex is
smaller than 0.5, it can be asserted that for most economies the symmetric equilibrium

defeats asymmetric equilibria by pairwise comparison through majority voting: it is then
a Condorcet winner.

This example is not introduced to lead to such an hypothetic statement. Its main
virtue is to provide an example of a microeconomic model that generates a distribution

over the simplex which is close to the uniform distribution. The starting point consists
in considering a parametric model in which assuming the Lebesgue measure is the most

neutral and natural assumption.
5This is true in the example: U1(x1(t); x2(t)) is an increasing function of t. But it is di±cult to admit it

is still the case when there are more than 2 consumers: utility levels depend on all welfare weights; at most
it can be conjectured that for nice enough classes of utility functions, even though \indi®erence surfaces"
in the (m-1){simplex of welfare weights are not hyperplanes, they can be straightened by application of
a di®eomorphism.
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4 Main results

For ¸; ¸0 2 Sm¡1 let N(¸; ¸0) ½ M = f1; : : : ;mg be the set of indices for which ¸i < ¸0i.
Let Tn(¸) ½ Sm¡1 be the set of points ¸0 for which N(¸; ¸0) contains exactly n elements

and; Un(¸) ½ Sm¡1 be the set of points for which N(¸; ¸0) contains at least n elements.
Hence Tn(¸) is the set of allocations which are prefered by exactly n individuals to the

allocation ¸, and Un(¸) is the set of allocations which are prefered by at least n individuals
to the allocation ¸.

Proposition 2 The measures of Tn(¸) ½ Sm¡1 and Un(¸) ½ Sm¡1 are

tc;n(¸) =
m¡nX

j=0
(¡1)m¡n¡j

0
@ m¡ j

n

1
AQc;j(¸)

uc;n(¸) =
m¡nX

j=0
(¡1)m¡n¡j

0
@ m¡ j ¡ 1

n¡ 1

1
AQc;j(¸) (1)

where

Qc;j(¸) =
X

J2Mj

c¡1X

k1=0
¢ ¢ ¢

c¡1X

km¡j=0

0
@ cm¡ 1

k1; : : : ; km¡j

1
A

ÃX

i2J
¸i

!cm¡1¡k 0
@
m¡jY

h=1
¸khih

1
A

k =
m¡jX

i=1
ki

M n J = fi1; : : : ; im¡jg

and Mj is the set of all subsets of M with j elements.

Remark As shown and developped in the appendix, the quantities tc;n(¸) and uc;n(¸)
are known in discrete probability theory. Consider m urns and (cm ¡ 1) balls which are

allocated into the m urns according to the probability distribution ¸ over the urns (i.e.
every ball is allocated to urn i with probability ¸i). Then tc;n(¸) is the probability that

exactly n urns contain less than c balls and uc;n(¸) is the probability that at least n urns
contain less than c balls.

Clearly

1 = uc;1(¸) ¸ : : : ¸ uc;n(¸) ¸ uc;n+1(¸) ¸ : : : ¸ uc;m(¸) = 0;
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because Pareto optimal allocations are only considered. The quantity uc;n(¸) is the prob-
ability that an allocation chosen by the selection procedure is prefered to the initial allo-

cation ¸ by at least n individuals. On the one hand if uc;n(¸) is small for some small ratio
n=m, then ¸ is stable in the sense that it is quite unlikely that an alternative allocation

that is chosen by the selection procedure is preferred by a r-majority for r ¸ n=m. On the
other hand if uc;n(¸) is large for some large ratio n=m, then ¸ is unstable in the sense that

it is quite likely that an alternative allocation that is chosen by the selection procedure is
preferred by a r-majority for r · n=m. Of course it is pretty subjective whether a ratio

is small or large, but in order to ¯x ideas it is helpful to think of small ratios as being
signi¯cantly smaller than 1=2 and large ratios as being signi¯cantly larger than 1=2.

De¯nition 1 Let ¸; ¸0 2 Sm¡1 then ¸ is at least as stable as ¸0 if and only if

uc;n(¸) · uc;n(¸0)

for all n 2M .

Hence in order to compare the stability of the two allocations ¸ and ¸0, the two

\curves", (n=m; uc;n(¸))mn=1 and (n=m; uc;n(¸0))mn=1, have to be compared, but these two
curves may or may not cross. Indeed let c = 1, m = 4 and

¸ =
µ 32
100
;
32
100
;
32
100
;

4
100

¶
; ¸0 =

µ 37
100
;
37
100
;
13
100
;
13
100

¶
; ¸00 = (1; 0; 0; 0)

then
u1;2(¸) ¼ 0:730 and u1;3(¸) ¼ 0:098

u1;2(¸0) ¼ 0:716 and u1;3(¸0) ¼ 0:104

u1;2(¸00) = 1 and u1;3(¸00) = 1:

Thus ¸ and ¸0 are both at least as stable as ¸00 but they cannot be ranked. On the one

hand, if the curves do not cross then the allocation with the curve to the left is at least
as stable as the other one { see ¯gure 1.a. On the other hand, if the curves do cross then

the allocations cannot be ranked { see ¯gure 1.b.

4.1 The index

In order to study asymptotic properties of the ranking of allocations relative to their

stability, the relation between allocations for m individuals and allocations for m + 1
individuals has to be considered.
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Hence let ¸ be a probability measure on the Borel sets of the unit interval then ¸
induces an allocation, ¸m = (¸m;1; : : : ; ¸m;m) 2 Sm¡1, for all m 2 N by

¸m;i = ¸(Im;i)

Im;1 =
·
0;

1
m

¸
and Im;i =

¸i¡ 1
m
;
i
m

¸
for all other i 2M

Let ® be the Lebesgue measure then a probability measure, ¯, is absolutely continuous if
and only if ¯(A) = 0 , ®(A) = 0 and it is singular if there exists B such that ¯(B) = 1

and ®(B) = 0. According to the Lebesgue decomposition theorem (see Itô (1984)) there
exists a unique decomposition of ¸ into a convex combination of an absolutely continuous

probability measure, °, and a singular probability measure, ±, such that

¸ = w° + (1 ¡ w)±

where w 2 [0; 1].

With the present relation between allocations and individuals the study of the asymp-
totic properties of the ranking of allocations relative to their stability reduces to the study

of asymptotic properties of sequences of curves, ((n=m; uc;m;n(¸m))mn=1)m2N.

Theorem 1 For all ¸, all c and all (nm)m2N

lim
m!1uc;m;nm(¸) =

8
>>>><
>>>>:

1 for lim sup
m!1

nm
m

< ³c(¸)

0 for lim inf
m!1

nm
m

> ³c(¸)
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where

³c(¸) =
c¡1X

a=0

Z

[0;1]

(cw°(r))a

a!
e¡cw°(r)dr:

For ¸ the associated sequence of curves, ((n=m; uc;m;n(¸m)mn=1)m2N, converges point-

wise to the following correspondence

dc(¸; r) =

8
>>>>>>>>><
>>>>>>>>>:

1 for r < ³c(¸)

[0; 1] for r = ³c(¸)

0 for r > ³c(¸):

according to theorem 1. Since curves are decreasing the largest deviations between curves,
((n=m; uc;m;n(¸m)mn=1)m2N, and correspondences, dc, are for the smallest deviations be-

tween n=m and ³c(¸).

Observation 1 For all m 2 N and all c 2 N

uc;m;n(¸m) ¸ (n=m¡ ³c;m(¸m))2
(n=m¡ ³c;m(¸m))2 + bc;m

for n=m · ³c;m(¸m)

uc;m;n(¸m) · bc;m
(n=m¡ ³c;m(¸m))2 + bc;m

for n=m ¸ ³c;m(¸m)

where

³c;m(¸m) =
1
m

c¡1X

a=0

mX

i=1

0
@ cm¡ 1

a

1
A¸am;i(1 ¡ ¸m;i)cm¡1¡a

and
bc;m = c2

Ã
1
m

+
(2(c¡ 1))2c

cm¡ 1

!
:

Remark Note that
limm!1 ³c;m(¸m) = ³c(¸)

limm!1 bc;m = 0:

Moreover the proof of observation 1 reveals that bc;m comes from a very conservative

approximation, perhaps bc;m can be replace by a constant, which does not depend on c.

By an application of observation 1 it is possible to discuss how complete the ranking

by stability is, i.e. for which relative sizes of groups is it possible to rank two allocations
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and for which relative sizes is it not possible to rank them? Consider two allocations, ¸
and ¸0, then

uc;m;n(¸m)
>
< uc;m;n(¸0m) if and only if ³c;m(¸m)

>
< ³c;m(¸0m)

provided that

n
m

¸ ³c;m(¸m) + ³c;m(¸0m)
2

¡
vuut

Ã
³c;m(¸m) ¡ ³c;m(¸0m)

2

!2

¡ bc;m

or
n
m

· ³c;m(¸m) + ³c;m(¸0m)
2

+

vuut
Ã
³c;m(¸m) ¡ ³c;m(¸0m)

2

!2

¡ bc;m

Hence the ranking of allocations by their stability becomes \more and more" complete as
the number of individuals tends to in¯nity. Indeed if ³c(¸) < ³c(¸0) then the associated

curves can only cross for n=m closer and closer to ³c;m(¸m), where the curve for ¸0m
converges to one, or ³c;m(¸0m), where the curve for ¸m converges to zero, as m tends to

in¯nity because bc;m converges to zero and ³c;m converges to ³c as m tends to in¯nity.

De¯nition 2 For m 2 N and all c 2 N the index of an allocation, ¸m 2 Sm¡1, is

³c;m(¸m).

The index of an allocation is the expected relative size of the group of individuals who

prefer an allocation chosen by the selection procedure to the allocation in question as
shown in the appendix. To pursue the translation in terms of occupancy, as it is shown in

the appendix, the index is the expected ratio of urns that are allocated less than c balls
when allocating (cm¡ 1) balls into m urns according to the probability distribution ¸.

Observation 2 For all m 2 N and all c 2 N

³c;m(¸m) =
1
m

mX

n=1
uc;m;n(¸m) =

1
m

+
1
m

mX

n=1
(n¡ 1)tc;m;n(¸m):

Hence, the index is a weighted sum of the probabilities that either exactly or at least

n individuals prefer an allocation chosen by the selection procedure to the allocation in
question. Observation 1 shows that the index contains relevant information with respect

to ranking by stability, while observation 2 shows that the index has a reasonable inter-
pretation. For an allocation, ¸, in Sm¡1 consider m¡ 2 hypersurfaces of Sm¡1 through ¸

de¯ned by uc;n(¸0) = uc;n(¸) for n 2 f2; : : : ;mg. If these m¡2 level surfaces coincide then
ranking by stability is complete, but as shown after de¯nition 1 it is not. Observation 2 is

14



a ¯rst step toward showing that the iso-index hypersurface (de¯ned by ³c;m(¸) = ³c;m(¸0))
are \in between" the m¡ 2 level surfaces. As an illustration reconsider the example after

de¯nition 1, then ¯gure 2.a and ¯gure 2.b illustrate this construction. The level curves
on ¯gure 2.a, §2 and §3, are the sections of the two hypersurfaces de¯ned respectively

by u1;2(¸¤) = u1;2(¸) and u1;3(¸¤) = u1;3(¸) by the hyperplane ¸4 = 1=5 (the triangle {
here a 2-simplex of size 4/5 { is of course the section of the 3-simplex S3 by the same

hyperplane). On ¯gure 2.a, the six small stripes of space in between §2 and §3 are the
allocations that cannot be compared with ¸ using the ranking by stability.

Figure 2.a Figure 2.b

§2

§3

It is easy to check that ¸0 is in one of these stripes. On ¯gure 2.b the iso-index curve
is added and it is between §2 and §3, and to some extent sums up the information that

they both give in terms of ranking by stability.
In case c = 1 the index takes the form

³1;m(¸m) =
1
m

mX

i=1
(1 ¡ ¸m;i)m¡1

and

lim
m!1 ³1;m(¸m) = ³1(¸) =

Z

[0;1]
e¡w°(r)dr:

Consider the egalitarian allocation, where all individuals share the commodity, then

³1(¸) = e¡1 ¼ 0:37:

Therefore the expected number of individuals who prefer an allocation chosen by the
selection procedure is approximately 0:37m for m large. For the egalitarian allocation:

u1;40 = 0:08 and u1;50 = 2 ¢ 10¡5
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for m = 100 and
u1;80 = 0:03 and u1;100 = 2 ¢ 10¡9

for m = 200.
Consider an allocation, where two thirds of the individuals share the commodity and

one third of the individuals get nothing, then

³1(¸) =
Z

[0;2=3]
e¡

3
2dr +

Z

]2=3;1]
1dr =

2
3
e¡

3
2 +

1
3

¼ 0:48:

Therefore the expected number of individuals who prefer an allocation chosen by the
selection procedure is approximately 0:48m for m large. Hence the egalitarian allocation

is more stable than the other allocation, where two thirds of the individuals share the
commodity and one third of the individuals get nothing.

In case c = 3 the index takes the form

³3;m(¸m) =
2X

a=0

mX

i=1

0
@ 3m¡ 1

a

1
A¸am;i(1 ¡ ¸i;m)3m¡1¡k

and

lim
m!1 ³3;m(¸m) = ³3(¸) =

2X

a=0

(3w°(r))a

a!

Z

[0;1]
e¡3w°(r)dr:

For the egalitarian allocation, ³3(¸) ¼ 0:423 and for an allocation, where ten eleventh
of the individuals share the commodity and one eleventh of the individuals get nothing,

³3(¸) ¼ 0:418. Hence the allocation, where ten eleventh of the individuals share the
commodity and one eleventh of the individuals get nothing, is more stable than the

egalitarian allocation for m large - even though it is not much. Recall that c is the
number of pieces that individuals get and the more pieces that individuals get the more

are shares averaged, therefore individuals, who have more than 1=m of the commodity,
tend to prefer the allocation in question rather than an allocation chosen by the selection

procedure.
Suppose that ¸ = w° + (1 ¡ w)± where ° is an absolutely continuous probability

measure and ± is a singular probability measure then Dw³c(¸) < 0 according to some
straight forward calculations. So, if ¸ minimizes ³c(¸) then ¸ is absolutely continuous.

Let

fc(x) =
c¡1X

a=0

(cx)a

a!
e¡cx and gc(x) = 1 ¡ 1

x
(1 ¡ fc(x)):

Then fc(x) is the marginal contribution to the index of an individual who gets x and

gc(x) is the index of an allocation where some group of size 1¡1=x gets nothing and some
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group of size 1=x shares the commodity. fc(x) is strictly decreasing on [0;1[, strictly
concave on [0; (c¡ 1)=c] and strictly convex on [(c¡ 1]=c;1[ according to some straight

forward calculations. Therefore, in order to minimize ³c(¸), individuals should get either
0 or (c¡ 1)=c provided that they get something in [0; (c¡ 1)=c] and individuals should all

get the same provided that they get something in [(c¡ 1)=c;1[. So, if ¸ minimizes ³c(¸)
then there exists x 2 [(c ¡ 1)=c;1[ { actually x ¸ 1 { such that some group of size 1=x

shares the commodity and the rest gets nothing. Therefore, the solution to

min gc(x)

s.t. x ¸ 1

characterizes the allocations that minimize ³c(¸) in the sense that if x solves the problem

then some group of size 1=x should share the commodity and some group of size 1 ¡ 1=x
should get nothing. In order to study whether the egalitarian allocation minimizes ³c(¸),

the derivative of gc(x) could be evaluated at x = 1 where

Dxgc(x) =
1
x2

Ã
1 ¡

Ã cX

a=0

(cx)a

a!
+ (1 ¡ c)(cx)

c

c!

!
e¡cx

!

=
1
x2
e¡cx

0
@

1X

a=c+1

(cx)a

a!
+ (1 ¡ c)(cx)

c

c!

1
A

according to some straight forward calculations. We conjecture that Dxgc(1) < 0 for all

c ¸ 3 which implies that the egalitarian allocations does not minimize ³c(¸) for c ¸ 3 but
we have not been able to prove this conjecture.

4.2 Interpretation of the Lebesgue measure

The selection procedures studied in the present paper are taken to be the uniform dis-
tribution over the set of divisions, i.e. the (cm-1){simplex, or equivalently the induced

family of probability distributions on the set of allocations, i.e. the (m-1){simplex. These
probability distributions can be generated by the P¶olya-Eggenberger urn models that give

an alternative interpretation of the selection procedures. Indeed in this alternative inter-
pretation \equalitarianism", i.e. the extent to which it is easier for a wealthy individual

than for a poor individual to become wealthier, becomes important.
The structure of P¶olya-Eggenberger urn models6 is the following: An urn contains cm

balls of m di®erent colours, c balls of each colour; balls are drawn at random and after
6In Berg (1985) and Gehrlein and Berg (1992) P¶olya-Eggenberger distributions are used to model
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each draw it is put back into the urn with s more balls of the same color; k draws are
made. Hence P¶olya-Eggenberger urn models are parametrized by c and s.

Let ki be the number of times balls of color i have been drawn then the probability of
(ki)mi=1 with

Pm
i=1 ki = k is (see Johnson and Kotz (1978))

Pr[k1; : : : ; km] =
k!

k1! : : : km!

mY

i=1

(c + s(ki ¡ 1)) : : : c
(cm+ s(k ¡ 1)) : : : cm

(2)

For s = c = 1 the uniform probability measure on distributions of balls is generated

Pr[k1; : : : ; km] =
k!

(m+ k ¡ 1) : : :m
=

0
@ m+ k ¡ 1

m¡ 1

1
A
¡1

Let ¸i = ki=k then (¸i)mi=1 is a point in the (m-1){simplex (ki)mi=1. Clearly the probability
measures on allocations of balls induces a probability measure on the (m-1){simplex, but

only 0
@ m+ k ¡ 1

m¡ 1

1
A

points are in the support of the probability measure. Indeed the selection procedures con-
sidered in the present paper can be obtained as limits of P¶olay-Eggenberger urn models.

Proposition 3 If s = 1 and k tends to in¯nity then the induced probability measure on
the (m-1){simplex converges to a probability measure with density

pc(¸) =
(cm¡ 1)!
[(c¡ 1)!]m

mY

i=1
¸c¡1i

in the weak topology.

Proof For s = 1, equation (2) is

P [k1; : : : ; km] =

0
@ cm+ k ¡ 1

cm¡ 1

1
A
¡1
mY

i=1

0
@ c+ ki ¡ 1

c¡ 1

1
A

for
Pm
i=1 ki = k. Let ¸ = (¸i)mi=1 2 Sm¡1 and suppose that

lim
k!1

ki;k
k

= ¸i:

homogeneity of a voting population, i.e. the degree of \similarity" of preferences of voters in a ¯xed
population.
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Then

pc[¸] = lim
k!1

(m¡ 1)!

0
@ m+ k ¡ 1

m¡ 1

1
APr[k1;k; : : : ; km;k]

=
(cm¡ 1)!
[(c¡ 1)!]m

mY

i=1
¸c¡1i

because the Lebesgue measure of Sm¡1 is 1=(m¡1)! if it is projected on m¡1 coordinates.
Q.E.D.

Remark According to lemma 1 the induced probability measure on the Sm¡1 simplex

is identical to the probability measure on allocations induced by the uniform probability
distribution on divisions into cm pieces.

P¶olya-Eggenberger urn models lead to an alternative interpretation of probability dis-
tributions on allocations: The commodity is divided into k pieces of equal size and; every

time a ball of color i is drawn individual i receives a piece of the commodity. Recall that
if a ball of color i is drawn then it is put back into the urn with s more balls of the same

color. Therefore if s=c is small then the initial distribution of balls is important compared
with the number of balls that are put into the urn after the draws and if s=c is large then
the number of balls that are put into the urn after the draws are important compared

with the the initial distribution of balls. Hence s=c seems to be a natural measure of the
degree of equalitarianism, i.e. the extent to which it is easier for a wealthy individual

than for a poor individual to become wealthier.
On the one hand, if s = 0 then the probability, that a ball of color i is drawn, does

not depend on the history of draws. In this case the multinomial distribution is obtained

Pr[k1; : : : ; km] =
1
mk

k!
k1! : : : km!

;

that converges to the Dirac measure concentrated on the egalitarian allocation as k tends

to in¯nity. On the other hand, if s is very large then the ¯rst draw almost completely de-
termines the allocation. In this case the probability distribution obtained is concentrated

on the m vertices of the Sm¡1 simplex hence it corresponds to a kind of \winner takes
it all" selection procedure. Neither case seems to be relevant from an empirical point

of view because they result in trivial distributions where one individual gets everything
while the others get nothing. This is the main reason to exclude these cases from the

present paper.
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5 Concluding Comments

In the present paper the stability of allocations has been studied from a combinatorial
point of view in a quite simple model where power of groups is related to their size as

in voting. Allocations were ranked according to their stability unfortunately this ranking
turned out not to be complete. However as the number of individual tends to in¯nity the

ranking becomes more and more complete. Indeed it was shown that every allocation can
be associated with an index such that the ranking of allocations by this index converge

to the ranking of allocations by stability in the sense that these two rankings deviate
only for groups of smaller and smaller or larger and larger relative size as the number of

individuals tends to in¯nity.
All allocations are unstable provided that groups of small relative size are allowed to

in°uence as in infra-majority voting, i.e. there is always somebody who wants another
allocation. Similarly all allocations are stable provided that groups of large relative size

are allowed to in°uence as in supra-majority voting, i.e. there is never unanimity to want
another allocation. Therefore if respect for minorities is interpreted as allowing groups of

small relative size to in°uence then there is a trade-o® between stability and respect for
minorities. The index for an allocation is more or less the in¯mum of the relative sizes

of groups that can be allowed to in°uence while keeping the allocation stable. Indeed if
the index for an allocation is close to zero then the allocation is stable even if groups of

very small relative size are allowed to in°uence and if the index is close to one then the
allocation is stable only if groups of very large relative size are allowed to in°uence. Hence

the index of an allocation is a measure of the degree of the trade-o® between stability and
respect for minorities.

Clearly the assumptions, i.e. the uniform distribution on the set of divisions, are very
important for the results of the present paper. The robustness of the results with regard

to other distributions, especially that the ranking of allocations by stability becomes more
and more complete as the number of individuals tends to in¯nity, remains to be explored.
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7 Appendix
As noted in the remark to proposition 2 and section 4, urn models are very useful in relation to the
present paper. First urn models are introduced and studied with emphasize on the notion of occupancy
and asymptotic properties. Second results in the present paper are established.

7.1 Urn Models and Occupancy
This subsection of the appendix is mainly expository (see Kolchin, Sevast'yanov & Chistyakov (1978)
and Johnson & Kotz (1978) for more details) and all results that are not established are stated and
established in either Kolchin, Sevast'yanov & Chistyakov (1978) or Johnson & Kotz (1978). Let m ¸ 2
be a natural number and let M = f1; : : : ;mg. Moreover let Mj be the set of all subsets of M with j 2 M

elements then there are

Ã
m
j

!
subsets in Mj .

For m distiguishable urns let ¹ = (pi)i2M be a probability measure on the set of urns, i.e. pi 2 R+

for all i 2 M and X

i2M

pi = 1;

and consider random distributions of r indistinguishable balls into the urns. The balls are supposed to
be distributed independently according to ¹, i.e. pi is the probability that a ball is assigned to the i'th
urn.

7.1.1 Empty Urns

For distributions of balls into urns, some urns are empty and some urns are occupied. Let X0 be the
number of empty urns, then the probability that n urns are empty is

Pr[X0 = n] =
m¡nX

j=0

(¡1)m¡n¡j

Ã
m ¡ j

n

!
P r

j (¹)

where

P r
j (¹) =

X

J2Mj

ÃX

i2J

pi

!r

;

as shown by an application of the inclusion-exclusion principle7, and the probability that at least n urns
are empty is

Pr[X0 ¸ n] =
m¡nX

j=0

(¡1)m¡n¡j

Ã
m ¡ j ¡ 1

n ¡ 1

!
P r

j (¹):

7See the proof of proposition 2
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The expected value and variance of the occupancy distribution are

E[X0] =
X

i2M

(1 ¡ pi)r

V ar[X0] = E[X0] ¡
X

i2M

(1 ¡ 2pi)r

+
X

i2M

X

j2M

((1 ¡ pi ¡ pj)r ¡ (1 ¡ pi)r(1 ¡ pj)r)

Clearly the expected value attains its minimum in the symmetric case where pi = 1=m for all i 2 M , this
case is called the classical occupancy distribution Pn(r;m) and

Pr[X0 = n] = Pn(r;m) =
m¡nX

j=0

(¡1)m¡n¡j

Ã
m
n; j

!µ
j
m

¶r

;

where Ã
m
n; j

!
=

m!
n! j! (m ¡ n ¡ j)!

is a trinomial number. Obviously for the classical occupancy distribution

E[X0] = m
µ

1 ¡ 1
m

¶r

V ar[X0] = m
µ

1 ¡ 1
m

¶r

+ m(m ¡ 1)
µ

1 ¡ 2
m

¶r

¡ m2
µ

1 ¡ 1
m

¶2r

:

7.1.2 Occupied Urns

Let Xa be the number of urns that contain exactly a balls after the distribution of r balls. In particular,
the expected value and the variance of the random variable Xa are

E[Xa] =

Ã
r
a

! X

i2M

pa
i (1 ¡ pi)r¡a

V ar[Xa] =

Ã
r
a

! X

i2M

pa
i (1 ¡ pi)r¡a

Ã
1 ¡

Ã
r
a

! X

i2M

pa
i (1 ¡ pi)r¡a

!

+

Ã
r

a; b

! X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi ¡ pj)n¡2a

¡
Ã

r
a

!2 X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi)n¡a(1 ¡ pj)n¡a:

Let Yc be the sum of c random variables, X0, ..., Xc¡1, Yc = X0 + : : : + Xc¡1.
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Lemma 2 The expected number of urns that contain less than c balls each is

E[Yc] =
c¡1X

a=0

mX

i=1

Ã
r
a

!
pa

i (1 ¡ pi)r¡a

where c · r.

Lemma 3 The probabilitiy that there are exactly n urns that contain less than c balls each is

P [Yc = n] =
m¡nX

j=0

(¡1)m¡n¡j

Ã
m ¡ j

n

!
Qr

c;j(¹); (3)

and the probabilitiy that there are at least n urns with less than c balls is

P [Yc ¸ n] =
m¡nX

j=0

(¡1)m¡n¡j

Ã
m ¡ j ¡ 1

n ¡ 1

!
Qr

c;j(¹); (4)

where

Qr
c;j(¹) =

X

J2Mj

c¡1X

k1=0

¢ ¢ ¢
c¡1X

km¡j=0

Ã
r

k1; : : : ; km¡j

!ÃX

i2J

pi

!r¡k m¡jY

h=1

pkh
ih

k =
m¡jX

i=1

ki

M n J = fi1; : : : ; im¡jg

Proof Only the probability that all urns in a speci¯ed subset of m ¡ j urns contain less than c balls has
to be computed because the probability that exactly m ¡ j urns contain less than c balls each follows
from an application of the inclusion-exclusion principle.

Consider m ¡ j urns then the probability that they contain less than c balls each is computed as
the sum over (khi)

m¡j
i=1 2 f0; : : : ; c ¡ 1gm¡j of the probabilities that there are khi balls in the hi'th urn

for all i 2 f1; : : : ;m ¡ jg. For (khi)
m¡j
i=1 the probability that there are khi balls in the hi'th urn for all

i 2 f1; : : : ;m ¡ jg is

c¡1X

k1=0

¢ ¢ ¢
c¡1X

km¡j=0

Ã
r

k1; : : : ; km¡j

!ÃX

i2J

pi

!r¡k m¡jY

h=1

(pih)kh

where

k =
m¡jX

i=1

ki

M n J = fi1; : : : ; im¡jg

Ã
r

k1; k2; : : : ; km¡j

!
=

r
k1! : : : km¡j ! (r ¡ (k1 + : : : km¡j))!

where the multinomial coe±cient is the number of possible distributions such that the hi'th urn contain
khi urns for all i 2 f1; : : : ;m ¡ jg. Q.E.D.
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Lemma 4 Suppose that r · cm ¡ 1 then

m¡1X

n=2

Pr[Yc ¸ n] = ¡1 + Qr
c;m¡1(¹):

Proof On the one hand for r · cm ¡ 1 and n = 0 the occupancy formula (3) implies that

1 +
m¡1X

j=1

(¡1)m¡jQr
c;j(¹) = 0; (5)

provided that Qr
c;m(¹) = 1. Hence if less than cm balls are distributed, then the probability that no urn

contain less than c balls is zero.
On the other hand

m¡1X

n=2

Pr[Yc ¸ n] =
m¡1X

n=2

m¡nX

j=1

(¡1)m¡n¡j

Ã
m ¡ j ¡ 1

n ¡ 1

!
Qr

c;j(¹)

=
m¡2X

j=1

(¡1)m¡jQr
c;j(¹)

m¡jX

n=2

(¡1)n

Ã
m ¡ j ¡ 1

n ¡ 1

!

=
m¡2X

j=1

(¡1)m¡jQr
c;j(¹)

pX

k=1

Ã
p
k

!

=
m¡2X

j=1

(¡1)m¡jQr
c;j(¹)

= ¡1 + Qr
c;m¡1(¹)

for p = m ¡ j ¡ 1 because
pX

k=0

(¡1)k+1

Ã
p
k

!
= 0:

according to Johnson & Kotz (1978). Q.E.D.

7.1.3 Asymptotic Properties

Let Za(m) be the normalized random variables of Xa(m), i.e. Za(m) = Xa(m)=m and let Vc(m) be the
sum of c normalized random variables, i.e. Vc(m) = Yc(m)=m =

Pc¡1
a=0 Za(m) then E[Za] = m¡1E[Xa]

and V ar[Za] = m¡2V ar[Xa]. In order to study the asymptotic properties of the Za(m)'s and the
Vc(m)'s as m converge to in¯nity the relation between the number of urns, the number of balls and the
distributions of balls has to be considered. Hence, let ¹ be a probability measure on the Borel sets of the
unit interval and pi(m) = ¹(Ii(m)) where

I1(m) =
·
0;

1
m

¸
and Ii(m) =

¸
i ¡ 1
m

;
i
m

¸

for all other i 2 M and all M 2 N. Let ® be the Lebesgue measure then a probability measure, ¯, is
absolutely continuous if and only if ¯(A) = 0 , ®(A) = 0 and it is singular if there exists B such that
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¯(B) = 1 and ®(B) = 0. According to the Lebesgue decomposition theorem (see Itô (1984)) there exists
a unique decomposition of ¹ into a convex combination of an absolutely continuous probability measure,
°, and a singular probability measure, ±, i.e.

¹ = w° + (1 ¡ w)±

where w 2 [0; 1].

Lemma 5 Suppose that

lim
m!1

r(m)
m

= s 2 R+ [ f1g

then
lim

m!1
E[Za(m)] =

Z

[0;1]

(sw°(t))a

a!
e¡sw°(t)dt

lim sup
m!1

mV ar[Za(m)] · 1 +
(2a)2(a+1)

s
:

Proof The mean values and the variances are treated in two separate parts.

\Mean Values" Suppose that t 2 Ii(m)(m) for all m 2 N then

lim sup
m!1

m¹(Ii(m)(m)) = lim inf
m!1

m¹(Ii(m)(m)) = w°(t) 2 R+

for almost all t 2 [0; 1] (see Itô (1984)). Therefore

lim
m!1

E[Za(m)] =
Z

[0;1]

(sw°(t))a

a!
e¡sw°(t)dt

because

E[Za(m)] =
1
m

Ã
r(m)

a

! X

i2M

pi(m)a(1 ¡ pi(m))r(m)¡a

=
1
m

Ã
r(m)

a

!
1

ma

X

i2M

(mpi(m))a(1 ¡ pi(m))r(m)¡a

and

limm!1

Ã
r(m)

a

!
1

ma =
sa

a!

limm!1(mpi(m)(m)) = w°(t)

limm!1(1 ¡ pi(m)(m))r(m)¡a = e¡sw°(t):
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\Variances" The variance can be bounded

V ar[Xa(m)] ·
Ã

r
a

! X

i2M

pa
i (1 ¡ pi)r(m)¡a

+

Ã
r(m)
a; b

! X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi ¡ pj)r(m)¡2a

¡
Ã

r(m)
a; b

! X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi)r(m)¡2a(1 ¡ pj)r(m)¡2a

+

Ã
r(m)

a

!2 X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi)r(m)¡2a(1 ¡ pj)r(m)¡2a

¡
Ã

r(m)
a

!2 X

i2M

X

j 6=i

pa
i pa

j (1 ¡ pi)r(m)¡a(1 ¡ pj)r(m)¡a:

The ¯rst term is less than E[Xa(m)], the sum of the second term and the third term is negative, because

(1 ¡ pi ¡ pj) · (1 ¡ pi ¡ pj + pipj) = (1 ¡ pi)(1 ¡ pj);

and the sum of the fourth term and the ¯fth term is less than

m2 (2a)2(a+1)

r(m)

µ
1 ¡ a

r(m)

¶2(r(m)¡2a)

:

Therefore

V ar[Za(m)] · 1
m

+
(2a)2(a+1)

r(m)

µ
1 ¡ a

r(m)

¶2(r(m)¡2a)

;

thus

lim sup
m!1

mV ar[Za(m)] · 1 +
(2a)2(a+1)

s
:

Hence V ar[Za(m)] = O(m) for s 2 R++.
In order to show that the sum of the fourth and the ¯fth term is less than

m2 (2a)2(a+1)

r(m)

µ
1 ¡ a

r(m)

¶2(r(m)¡2a)

;

¯rst note that
1 ¡ (1 ¡ pi)a(1 ¡ pj)a · a(pi + pj)

secondly note that if pi and pj solve

max pa
i pa

j (pi + pj)(1 ¡ pi)r(m)¡2a(1 ¡ pj)r(m)¡2a

s.t pi; pj 2 [0; 1]

then
a

r(m)
· pi = pj =

2a + 1
2(r(m) ¡ a) + 1

· 2a
r(m)

for r(m) ¸ 2a and thirdly use these bounds on the pi's to ¯nd an upper bound the sum of the fourth and
the ¯fth term. Q.E.D.
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Corollary 2 Suppose that

lim
m!1

r(m)
m

= s 2 R+ [ f1g

then

lim
m!1

E[Vc(m)] =
c¡1X

a=0

Z

[0;1]

(sw°(t))a

a!
e¡sw°(t)dt

lim sup
m!1

mV ar[Vc(m)] · c2
µ

1 +
(2(c ¡ 1))2c

s

¶
:

Proof First

lim
m!1

E[
c¡1X

a=0

Za(m)] =
c¡1X

a=0

Z

[0;1]

(sw°(t))a

a!
e¡sw°(t)dt

because E[V + W ] = E[V ] + E[W ]. Secondly

V ar[
c¡1X

a=0

Za(m)] ·
c¡1X

a=0

c¡1X

b=0

p
V ar[Za(m)]V ar[Yb(m)]

· c2
µ

1
m

+
(2(c ¡ 1))2c

r(m)

¶
;

therefore

lim sup
m!1

mV ar[
c¡1X

a=0

Za(m)] · c2
µ

1 +
(2(c ¡ 1))2c

s

¶
:

Hence V ar[
c¡1X

a=0

Za(m)] = O(m) for s 2 R++. Q.E.D.

If s > 0 then the corollary implies that for a ¯xed probability distribution on the unit interval the
distribution of Vc(m) converges to a degenerate distribution because the variance converges to zero. Hence
(Pr[Vc · z])z2[0;1] converges to the following \function"

dc(¹; z) =

8
>>>>>>><
>>>>>>>:

0 for z < E[Vc]

[0; 1] for z = E[Vc]

1 for z > E[Vc]

Hence for ¯xed c 2 N di®erent probability measures on the unit interval can be ranked by stochastic
dominance by comparing the mean values of the induced, normalized random variables. However for
m 2 N the induced probability measures on the unit interval cannot be ranked only by comparing
the mean values of the induced, normalized random variables because their distribution need not be
degenerate.

7.1.4 Comparisions of Distributions

Consider two probability measures on the unit interval, ¹ and º, by use of the construction in the previous
subsection these probability measures induces two distributions for every m 2 N. Clearly if m 2 N is
large compared to c 2 N then the distributions can be ranked by stochastic dominance { almost.
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Lemma 6 Suppose that a random variable, T 2 R, has mean value E 2 R and variance V 2 R++ then
the distribution, Pr : R ! [0; 1], satis¯es the following inequalities

Pr[T · t] · V
V + (E ¡ t)2

for t · E

Pr[T · t] ¸ (E ¡ t)2

V + (E ¡ t)2
for t ¸ E:

Proof Suppose that u · 0 and Pr[T ¡ E · u]u + (1 ¡ Pr[T ¡ E · u])v = 0 then V ¸ Pr[T ¡ E ·
u]u2 + (1 ¡ Pr[T ¡ E · u])v2 therefore

Pr[T ¡ E · u] · V
V + u2 :

Suppose that u ¸ 0 and (1 ¡ Pr[T ¡ E · u])u + Pr[T ¡ E · u]v = 0 then V ¸ Pr[T ¡ E ·
u]u2 + (1 ¡ Pr[T ¡ E · u])v2 therefore

Pr[T ¡ E · u] ¸ u2

V + u2 :

Q.E.D.

Corollary 3 Suppose that two random variables, S; T 2 R, have mean values ES; ET 2 R with ES · ET

and variances VS; VT 2 R++. If
(ES ¡ t)2(ET ¡ t)2 ¸ VSVT

then
Pr[T · t] ¸ Pr[S · t]

for t 2]ES ;ET [.

Proof Follows from

Pr[S · u] ¸ (u ¡ ES)2

VS + (u ¡ ES)2
¸ VT

VT + (u ¡ ET )2
¸ Pr[T · u]

by simple manipulations. Q.E.D.

Remark Consider two probability measures on the unit interval, ¹ and º, and c 2 N and suppose that
E[Z¹;c(m)] · E[Zº;c(m)]. If

(t ¡ E[Z¹;c(m)])(E[Zº;c(m)] ¡ t) ¸ 1
m

+
(2a)2(a+1)

r(m)

then
Pr[Z¹;c(m) · t] ¸ Pr[Zº;c(m) · t]

for t 2 [E[Z¹;c(m)]; E[Zº;c(m)]]. Hence for two probability measures on the unit interval if the mean values
of the two induced normalized random variables and m as well as r(m) are large then the distributions
can be ranked by stochastic dominance { almost.
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7.2 Proofs
Proof of proposition 2 The proof uses two intermediate results

Lemma 7 For N ½ M let SN(¸) ½ Sm¡1 be the set of allocations, ¸0, such that N ½ N(¸; ¸0). Then
for the distribution with density pc the measure of SN(¸) relative to the measure of Sm¡1 is

sc;N(¸) =
c¡1X

k1=0

¢ ¢ ¢
c¡1X

km¡j=0

Ã
cm ¡ 1

k1; : : : ; km¡j

!ÃX

i2N

¸i

!cm¡1¡k m¡jY

h=1

(¸ih)kh

k =
m¡jX

i=1

ki

M n N = fi1; : : : ; im¡jg

Proof Consider ¸ and let Á be de¯ned by

Ái =

8
>><
>>:

¸0
i ¡ ¸i for i 2 N

¸0
i for i 2 M n N

for ¸0 such that N ½ N(¸; ¸0). Then Ái ¸ 0 for all i and

mX

i=1

Ái = 1 ¡
X

i2N

¸i =
X

i2MnN

¸i

thus Á is in a (m-1){simplex of size X

i2MnN

¸i:

Clearly for c = 1 (the uniform distribution) the measure of a (m-1){simplex of size ½ relative to Sm¡1

is ½m¡1.
For c ¸ 2 the integral of the density over the relevant simplex has to be computed. Let N = f1; : : : ; ng

and suppose that the integral of
mY

i=2

¸c¡1
i

(c ¡ 1)!

over allocations in the (m ¡ 2){simplex of size ®, i.e.
Pm

i=2 ¸0
i = ®, that make the individuals f2; : : : ; ng

better o® than ¸ is
c¡1X

k2=0

¢ ¢ ¢
c¡1X

kn=0

¸k2
2

k2!
¢ ¢ ¢ ¸kn

n
kn!

(® ¡ Pn
i=2 ¸i)

c(m¡1)¡1¡
Pn

i=2
ki

(c(m ¡ 1) ¡ 1 ¡ Pn
i=2 ki)!

:
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Then the measure of the allocations in the (m-1){simplex of size ¯, which is de¯ned by
Pm

i=1 ¸0
i = ¯,

that make the individuals f1; : : : ; ng better o® is (® = ¯ ¡ ¸1)

c¡1X

k2=0

¢ ¢ ¢
c¡1X

kn=0

¸k2
2

k2!
¢ ¢ ¢ ¸kn

n

kn!

Z ¯¡
Pn

i=2
ki

¸1

c¡1X

k1=0

¸0
1

(c ¡ 1)!
(¯ ¡ ¸0

1 ¡ Pn
i=2 ¸i)c(m¡1)¡1¡

Pn

i=2
ki

(c(m ¡ 1) ¡ 1 ¡ Pn
i=2 ki)!

d¸0
1

=

c¡1X

k1=0

¢ ¢ ¢
c¡1X

kn=0

¸k1
1

k1!
¢ ¢ ¢ ¸kn

n
kn!

(¯ ¡ Pn
i=1 ¸i)

cm¡1¡
Pn

i=1
ki

(cm ¡ 1 ¡ Pn
i=1 kn)!

:

It remains to be shown that the integral of

mY

i=2

¸c¡1
i

(c ¡ 1)!

over allocations in the (m ¡ 2){simplex of size ®, i.e.
Pm

i=2 ¸0
i = ®, that make the individuals f2; : : : ; ng

better o® than ¸ is
c¡1X

k2=0

¢ ¢ ¢
c¡1X

kn=0

¸k2
2

k2!
¢ ¢ ¢ ¸kn

n

kn!
(® ¡ Pn

i=2 ¸i)c(m¡1)¡1¡
Pn

i=2
ki

(c(m ¡ 1) ¡ 1 ¡ Pn
i=2 ki)!

:

First note that the integral of
i=mY

i=n+1

¸0c¡1
i

(c ¡ 1)!

over the (m ¡ n ¡ 1){simplex de¯ned by
Pi=m

i=n+1 ¸0
i = ® ¡ ¸n is

(® ¡ ¸n)c(m¡n¡1)¡1

(c(m ¡ n ¡ 1) ¡ 1)!
:

Second a computation of the integral of

¸0c¡1
n

(c ¡ 1)!
(® ¡ ¸0

n)c(m¡n¡1)¡1

(c(m ¡ n ¡ 1) ¡ 1)!

over the set ¸0
n 2 [¸n; ®] gives the result. Q.E.D.

Lemma 8
iX

k=0

(¡1)k

Ã
n + i
n + k

!Ã
n + k ¡ 1

k

!
= 1:

Proof First the preceding formula may be rewritten as

iX

k=0

(¡1)k

Ã
n + i
i ¡ k

!Ã
n + k ¡ 1

n ¡ 1

!
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second exchange k with k0 = i ¡ k

iX

k0=0

(¡1)i¡k0
Ã

n + i
k0

!Ã
n + i ¡ 1 ¡ k0

n ¡ 1

!
:

If the standard binomial formula,

iX

k=0

(¡1)k

Ã
b ¡ k
b ¡ i

!Ã
a
k

!
=

Ã
b ¡ a

i

!
;

is applied with a = n + i, b = n + i ¡ 1 then

iX

k0=0

(¡1)i¡k0
Ã

n + i
k0

!Ã
n + i ¡ 1 ¡ k0

n ¡ 1

!
= (¡1)i

Ã
¡1
i

!
:

The basic identity, Ã
¡r
i

!
= (¡1)i

Ã
r + i ¡ 1

i

!
;

gives the result for r = 1. Q.E.D.

Proposition 2 can be established by use of lemma 7 and lemma 8. First the formula for uc;n(¸) has to be
established. The proof follows from the principle of inclusion and exclusion as in the original problem of
occupancy8 and it depends on induction on the index j.

The set Tn(¸) is the union of all sets SN(¸) for all N 2 Mn, i.e. Tn(¸) = [N2MnSN(¸). If the
relative pc-measures of these sets are added then the ¯rst element of expression (1) is obtained,

X

J2Mm¡n

sc;MnJ(¸); (6)

but these sets intersect, so some parts of are counted more than once. As an example, let N 0 be a set of
(n + 1) integers then it contains Ã

n + 1
n

!

sets of n integers. Therefore the volume of the set SN0(¸) has then to be discounted

Ã
n + 1

n

!
¡ 1 =

Ã
n
1

!
times then second element of expression (1) is obtained,

¡
Ã

n
1

! X

J2Mm¡n¡1

ÃX

i2J

¸i

!m¡1

: (7)

8Any standard proof of this result would hold here by noticing that, for any ¯xed subset N 2 M , the
probability that all urn in N contains less than c balls is equal to the probability that all families in N
end up being better o® when choosing an alternative allocation according to the density pc, given the
identi¯cation pi = ¸i. However since the principle of inclusion-exclusion is crucial in the present paper,
it seems adequate to give the argument.
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The induction hypothesis is that the volume corresponding to a set of (n + i ¡ 1) elements has to be
discounted

(¡1)i¡1

Ã
n + i ¡ 2

i ¡ 1

!

times from the initial quantity (expresion 6). Then the volume corresponding to a set of (n + i) integers
was counted

Ã
n + i

n

!

| {z }
in (6)

¡
Ã

n + i
n + 1

!Ã
n
1

!

| {z }
in (7)

+ : : : + (¡1)i

Ã
n + i

n + i ¡ 1

!Ã
n + i ¡ 2

i ¡ 1

!

times that is equal to

1 ¡ (¡1)i

Ã
n + i ¡ 1

i

!

times according to lemma (8). Hence a volume corresponding to a set of (n+i) integers has to be counted

(¡1)i

Ã
n + i ¡ 1

i

!
times more in order to be counted exactly one time.

This implies that

uc;n(¸) =
m¡nX

i=0

(¡1)i

Ã
n + i ¡ 1

i

!0
@ X

I2Mm¡n¡i

sc;MnI(¸)

1
A

hence if j = m ¡ n ¡ i the expression of proposition 2 is obtained. The volume of tc;n(¸) follows directly
because tc;n(¸) = uc;n(¸) ¡ uc;n+1(¸), thus9

m¡nX

j=0

(¡1)m¡n¡j

ÃÃ
m ¡ j ¡ 1

n ¡ 1

!
+

Ã
m ¡ j ¡ 1

n

!!

| {z }

=

Ã
m ¡ j

n

!

0
@ X

J2Mj

sc;MnI(¸)

1
A :

Hence the expression of proposition 2 is obtained. Q.E.D.

Proposition 2 implies that the results on urn models can be applied in order to establish theorem
1, observation 1 and observation 2. Thus if ¹ is replaced by ¸ and Pr[Vc(m) ¸ n] is replaced with
uc;m;n(¸m) then the proofs are applications of results on urn models.

Proof of theorem 1 Apply corollary 2. Q.E.D.

Proof of observation 1 Apply lemma 6. Q.E.D.

Proof of observation 2 Apply lemma 4. Q.E.D.

9Note that by convention

Ã
a
b

!
= 0 for a · b ¡ 1.
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