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Abstract
We prove existence of equilibria with proportional transaction costs

on asset trading, using homotopy methods.
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Introduction
We prove existence of equilibria with proportional transaction costs on asset

trading, using homotopy methods. The issue of existence of such equilibria is
also related to the existence of bid-ask spread equilibria, or equilibria with taxes
and transfers.

Proportional transaction costs are among the most widely used fees in real
world …nancial trading. Transaction costs have a signi…cance at the individual
level, as they are shown to reduce trading, and at the aggregate level, as they
modify asset prices and welfare.

Macroeconomics has explored transaction costs as a reason to explain added
consumption and asset price volatility. However, most of the macroeconomic
analysis of the problem considers quadratic costs (see Heaton and Lucas (1996),
e.g.). While technically more attractive, that formulation is considered econom-
ically less convincing. The partial equilibrium or no arbitrage analysis of trans-
action costs is copious, especially in continuous-time …nance models of portfolio
choice (see Magill and Costantinides (1976), Davis and Norman (1990), Jouini
and Kallal (1995), Cvitanic and Karatzas (1996) are only few signi…cant ex-
amples). The general equilibrium equivalent is scarce of sources. Foley (1970)
studied the case of spot commodity markets; Hahn (1973) and Starrett (1973)
extended the analysis to forward commodity markets, while Arrow and Hahn
(1999) recently addressed asset markets in equilibrium. In these papers transac-
tion costs are real, in the sense of requiring explicit or implicit use of commodities
for purchases or sales. On the other hand, Préchac (1996) introduces nominal
transaction costs on asset trading. However, all these contributions either do
not deal with equilibrium existence issues, or avoid comparative statics exer-
cises.1 With homotopy methods, existence can be established through the use

1 In Arrow and Hahn (1999), say, the constrained optimality analysis is done only for
economies where asset markets are active.
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of an extended system of equations which paves the way to comparative statics
exercises.

A technical di¢culty prevents the comparative statics analysis of the propor-
tional or …xed transaction costs case. The main technical di¢culty is twofold:
possible nonconvexities in the budget set, and nondi¤erentiability of the budget
line. We show how a degree proof can nevertheless be e¤ectively applied in
this context. We can then exploit the di¤erential structure of the equilibrium
system to study its generic properties, in particular the constrained optimality
of equilibrium.

Nonconvexities arise when buying prices are lower than selling prices, or
with …xed fees. The main idea is that nonconvexities can be studied through
a traditional argument (see Starr (1969), say). Using a continuum of identi-
cal agents, we get rid of the e¤ects of nonconvexities in the constraint set in
the individual optimization problem. The insuing discontinuities in individual
demand are integrated out by convexifying the aggregate demand function.

Nondi¤erentiabilities in the budget constraint arise when bid-ask spreads are
positive, and also with …xed fees. They are treated using an argument which
breaks down the optimization problem in several, but …nite, convex and dif-
ferentiable programming problems, and compares their solution at equilibrium.
Again using the continuum of agents assumption, individuals indi¤erent across
any of the …nitely many solutions are arbitrarily assigned to anyone of these
equivalent choices. In the aggregate, corresponding fractions of the population
are determined, which sum up to the total size of the population.

In this sense, the concept of equilibrium with proportional transaction costs
is reminiscent of a combined notion of Nash and competitive equilibrium for
large economies (Minelli and Polemarchakis (1999)). It can be seen as an in-
stance of more general setups where optimization problems mix discrete and
continuum choice components.

It should be noted that the above-mentioned studies of transaction costs
or taxes eliminate the possibility of transaction (or tax) arbitrage by assuming
that costs (bid-ask spreads) and asset payo¤s are both positive (see Jouini and
Kallal (1995) and Préchac (1996), say). While many real assets have positive
future payo¤s (such as equity), many derivative products may well have neg-
ative payo¤s and even negative expected (subjective) value in the absence of
transaction costs. This fact is widely recognized in incomplete markets mod-
els, where no sign restriction is imposed on the asset payo¤ matrix. Therefore,
a nominally positive bid-ask spread can translate into a real negative spread.
Also in the case of equity trading, negative spreads are sometimes possible in
real life situations.2 Bid-ask spreads or transaction costs are adjusted more
slowly than asset payo¤s or changes in expectations relative to asset payo¤s,
due to information arrival. With multiple market makers, it may happen that

2For instance, Harris and Schultz (1997) report that Nasdaq’s SOES for trading displays
as a regular problem the presence of arbitrageurs called SOES bandits by market makers.
These traders ‘make money by spotting minor pricing discrepancies’, and by executing trades
across market makers. These kinds of problems are tackled exactly by imposing restricted
participation.
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traders see selling prices above buying prices. This is why the case of ‘buying’
prices lower than ‘selling’ prices should also be considered. From a normative
viewpoint, it has been recently shown that negative bid-ask spreads can Pareto
improve upon zero transaction costs equilibria when markets are incomplete (see
Citanna, Polemarchakis and Tirelli (2000)). Hence, the case of negative spreads
should also be considered based on its normative property.

We provide a uni…ed approach to deal with all cases of zero, negative and
positive spreads. To avoid transaction cost (or tax) arbitrage, a no arbitrage
condition must be imposed, such as permitting only one side of trading at each
time, either the purchase or the sale of the asset. Market participation is there-
fore restricted when spreads are nonpositive.

Notation
2 < H < 1 (types of) traders, h
1 < S < 1 states, s
C > 1 physical commodities, c
G = C(S + 1)
1 · I < 1 …nancial assets, i
xs;c

h = consumption of commodity c in state s by trader h
es;c
h = corresponding endowment

bi
h = quantity of asset i in trader h’s portfolio, bh

bi+
h = max(0; bi

h)
bi¡
h = min(0; bi

h)
¿ i = transaction cost (tax or subsidy) on asset i
wh = lump-sum transfer to (or pro…t share of) trader h
ps;c = c-th commodity price in state s; ps the price vector in state s
qi = price of asset i
Y = the payo¤ matrix (S rows, I columns)
ys = the s-th row of Y

The Model
The notion of equilibrium is standard in two-period, …nite exchange economies

with incomplete …nancial assets. For each trader, we assume that the commodity
space is RC

++ for each spot, and RG
++ overall. Preferences are representable by a

utility function uh : RG
++ ! R which is smooth, di¤erentially strictly increasing,

di¤erentially strictly quasi-concave and with indi¤erence surfaces having closure
contained in RG

++. Endowments are in the commodity space. Let E = RHG
++ be

the endowment space, and Uh be the space of utility functions, endowed with
the topology of C2-uniform convergence. Let U = £hUh. An economy will be
a pair (e; u) 2 E £ U .

Traders exchange commodities and …nancial assets. There are spot markets
for physical commodities at each date and state. Financial asset trading oc-
curs at s = 0. The I …nancial assets have state-contingent payo¤s tomorrow,
represented by the matrix Y and expressed in units of commodity c = C, the
numéraire commodity, as in Geanakoplos and Polemarchakis (1986). We assume
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that rank Y = I · S. Asset markets can be incomplete, but no redundancies
are allowed.

Asset trading occurs at a cost. This cost in general could take di¤erent
forms. For instance, a trader may be asked to pay a …xed fee every time he
enters a transaction, irrespective of the sign or size of the exchange. Or the cost
could be proportional to the amount traded, whether an asset is purchased or
sold.

In this paper, the cost is paid only if the asset is purchased, and it is propor-
tional to the value of the amount bought. Buying asset i costs ¿ i, with ¿ i > ¡1.
A case of interest is when ¿ > 0 (and q > 0). So, if trader h wants to buy asset
i, i.e., bi+

h > 0, he has to pay a higher price than if he sells it. This price dif-
ferential, or bid-ask spread, is meant to represent a transaction cost. Of course,
this could be motivated by some form of asymmetric information between the
exchange house and the trader. We do not try to explain such spread in the
model. Instead, we take it as given and explore its e¤ects on equilibrium.

Transaction costs are collected by an exchange house. Each trader receives
an amount of money wh which is interpreted either as a lump-sum transfer or
as the trader’s share of the exchange house’s pro…ts from running the exchange
operations. These pro…ts come from the collected transaction costs, and are
measured in the numéraire commodity.

Trader h’s budget constraint is then:
p0(x0

h ¡ e0
h) +

P
i[q

i(1 + ¿ i)bi+
h + qibi¡

h ] ¡ p0;Cwh = 0
ps(xs

h ¡ es
h) = ps;Cysbh; for all s > 0

also written more compactly as

¡ªzh + ªCRbh + ªCWh = 0 (1)

where zh = xh ¡ eh, Wh = (wh; 0; ::; 0)T and

ª =

2
64

p0 0

0
. . . 0
0 pS

3
75

is (S + 1) £ G-dimensional; and ªC is the similar (S + 1)2-dimensional matrix
containing only the commodity C prices on the diagonal; …nally

R =
·

¡:::[qi(1 + ¿ i)I(bi+
h ) + qiI(bi¡

h ) + mi(1 ¡ I(bi+
h ) ¡ I(bi¡

h ))]
Y

¸

I() being the indicator function.3
The more general case, a cost for trading ¿ i paid whether a trader buys or

sells the asset, could also be studied. Then this cost would appear added to
3 I(x) = 1 if x > 0, and I(x) = 0 otherwise. Here mi is a real number in the interval£
qi; qi(1 + ¿ i)

¤
(assuming qi(1 + ¿ i) > qi; or equal to zero otherwise) when bih = 0.
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both the buying and selling price. If the buying and selling prices are equal, the
trader’s …nancial trading balance is then

P
i[q

i(1+¿ i)bi+
h +qi(1¡¿ i)bi¡

h ]: In fact,
one could also easily consider a transaction cost di¤erent for purchases and sales.
If the buying and selling prices are di¤erent, then having same transaction cost
but di¤erent prices corresponds to the current formulation. Far from adding any
conceptual or technical di¢culty, the general case only adds notational burden
to the model, and therefore it will not be considered here.

It should also be noted that we are implicitly imposing the restriction that
individual trade occurs only on one side of the market, either buying or selling,
and not both. This is without loss of generality when qi > 0, and ¿ i ¸ 0, so
qi(1 + ¿ i) ¸ qi. As one can easily show, no trader would want to be on both
sides of the market at the same time with these prices. When qi < 0, then the
bid-ask spread is reversed even if ¿ i > 0, and this constraint is not without loss
of generality: transaction costs allow pro…ts from buying and selling at the same
time. To eliminate this possibility, we impose that no such trades are possible.
We want to leave open the possibility that such negative bid-ask spreads exist,
as previous work shows that they can be Pareto-improving (as mentioned in the
Introduction).

From now on, ps;C = 1 all s; this is the standard commodity-C normalization
spot by spot.

Equilibrium with transaction costs (¿ ;w) requires that:
(H) trader h maximizes uh(xh) s.t. (1) taking prices, transaction costs and

transfers as given (and of course payo¤s and endowments);
(M) markets clear, i.e.,

P
h zh = 0 and

P
h bh = 0; and

(T ) zero pro…ts for the exchange house, or
P

i qi¿ i(
P

h bi+
h ) =

P
h wh.

Condition (T ) is consistent with a notion of competition among exchange
houses. Nothing excludes that the left-hand side in this equation be negative,
hence wh can also be negative.

It should be noted that in (1) there is a discontinuity at bi
h = 0 when

¿ i 6= 0. This discontinuity is the cause of nondi¤erentiability at bi
h = 0 and of

possible nonconvexity of the budget constraint. However, these problems will
be bypassed by the construction below. First, we describe the equilibrium set
in the absence of transaction costs, when ¿ = 0 and w = 0. The results for this
case essentially mimick those in Citanna, Polemarchakis and Tirelli (2000), and
are presented here for the sake of completeness.

Zero and quasi-zero transaction costs equilibria
At ¿ = 0 and w = 0, the equilibrium is nothing but a standard …nancial

equilibrium; hence we have the following preliminary result.

Lemma 1 At ¿ = 0 and w = 0, an equilibrium exists for all economies (e; u) 2
E £ U . (see Geanakoplos and Polemarchakis (1986).)

The equilibrium at ¿ = 0 and w = 0 can be represented as a system of
equations (including the redistribution equation for (T )):
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...
Duh ¡ ¸hª = 0 (1)

¸hR = 0 (2)
¡ªzh + Rbh + Wh = 0 (3)

...P
h zn

h = 0 (4)P
h bh = 0 (5)

¡P
i qi¿ i(

P
h bi+

h ) +
P

h wh = 0 (6)

(2)

where ¸h 2 RS+1
++ is a vector of Lagrange multipliers, for all h. Call this system

F (»; ¿ ; e; u) = 0 where » = ((xh; bh; ¸h) ; p; q).
We compute the derivative of the equilibrium system with respect to the

endogenous variables and controls at ¿ = 0 and w = 0, or D»;¿;wF . We notice
that this matrix has full row rank when restricting attention to all the columns
excluding the derivatives with respect to ¿ and w; and all rows except the
last one (denote this matrix by D»F n). This is standard regularity of zero
transaction costs equilibrium.

When restricting attention to columns up to one corresponding to the deriva-
tive with respect to wh; some h (or ¿ i some i); D»;¿;wF is square and has full
rank at ¿ = 0 and w = 0 for a generic set of economies, as it is easily shown.
Formally, we state this result as a lemma (the proof is standard and omitted).
Let ¿ = (¿ 0; ¿ 00) with ¿ 0 = ¿ i some i, and similarly w = (w0; w00) with w0 = wh
some h.

Lemma 2 At ¿ = 0 and w = 0, at any equilibrium:
i) D»F n(»; 0; e; u) has full rank for an open, full-measure subset of endow-

ments E¤.
ii) bi

h 6= 0 all i; h and qi 6= 0 in an open, full-measure subset of endowments
E¤¤ ½ E¤.

iii) At ¿ = 0 and w = 0, D»;¿ 0[w0]F (»; 0; e; u) has full rank for an open,
full-measure subset of endowments E¤¤¤ ½ E¤¤.

As a corollary to this Lemma, we have existence of equilibria for small
(¿ ; w) 6= 0.

Lemma 3 A solution to F (»; ¿ ; e; u) = 0 exists for all (¿ ; w) 2 Te;u ½ RH+I ,
an open set, for all economies (e; u) with e 2 E¤¤¤.

Proof. See Citanna, Polemarchakis and Tirelli (2000).¤
Note that Lemma 3 does not show existence for any (¿ ; w) ; no matter how

big. For a general existence proof, i.e., for any ¿ ; w, we need to bypass the
previously noted lack of continuous di¤erentiability of the equilibrium system
when bi

h = 0 and ¿ i 6= 0. That global existence is nevertheless possible is shown
in the next section.
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We conclude this section with an accessory result, which is useful in studying
the properties of transaction cost equilibria. It states that, typically in incom-
plete markets economies with zero transaction costs, there is su¢cient variation
of traders’ evaluation of commodity price e¤ects.

Lemma 4 At ¿ = 0 and w = 0; at any equilibrium when S + 1 ¡ I ¸ H, the
matrix

2
64

¸0
1z

0;1
1 ¢ ¢ ¢ ¸H¡1

1 zH¡1;1
1

...
...

¸0
Hz0;1

H ¢ ¢ ¢ ¸H¡1
H zH¡1;1

H

3
75

has full rank H in a generic subset E¤¤¤¤ ½ E¤¤¤.

Proof. Straightforward: see Citanna, Polemarchakis and Tirelli (2000),
say.¤

Lemma 4 can be used to establish nice properties of transaction cost equi-
librium. It means that there is su¢cient heterogeneity across traders in equi-
librium.

Global existence
In the previous section we noted that existence of equilibria with transaction

costs and transfers could be obtained locally around zero, by using an implicit
function theorem argument. While that technique (Lemma 3) is su¢cient for the
constrained suboptimality analysis of standard incomplete markets equilibrium,
it leaves open the question of general existence of equilibria for arbitrary ¿ ; w.
We close the gap in this section. Somewhat surprisingly, we will show existence
by means of a degree proof. As we mentioned earlier, the di¢culty arises as
the budget constraint is either nondi¤erentiable or nonconvex, precisely at the
individual no trade point, when buying and selling prices are di¤erent. At …rst
sight, this seems to prevent the use of the Kuhn-Tucker conditions and of the
extended system of equations to represent an equilibrium. Hence it looks as if
degree theory could not be applied to the extended system, which is so useful
to study the constrained optimality of equilibrium (see Citanna, Polemarchakis
and Tirelli (2000) for the case ¿ = 0).

However, it turns out that the extended system can be e¤ectively used, by
patching together several, but …nitely many di¤erential problems which together
represent the individual optimum.4

We consider solving L = 2I di¤erential problems for each trader, each for
one combination of constraints on purchases and sales of assets, everything else
equal. That is, all these problems are solved at the same commodity and asset
prices, and at the same transaction costs and transfers. For each l, let bi;l

h be

4This mirrors Theorem 2.2 in Jouini and Kallal (1995), which establishes that the nonlinear
no arbitrage equations can be written as a collection of linear equations, one for each admissible
no arbitrage positive linear functional.
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the holding of asset i for trader h. There is going to be a subset of assets I+(l)
de…ned as

I+(l) = fi 2 I j bi;l
h ¸ 0g

and a subset I¡(l) de…ned as

I¡(l) = fi 2 I j bi;l
h · 0g

Let

ebi;l
h =

½
bi;l
h if i 2 I+(l)

¡bi;l
h otherwise

Hence, we solve the utility maximization problem at prices p; q, transaction costs
¿ and transfers wh with the additional nonnegativity constraints ebi;l

h ¸ 0, all i.
Notice that when qi(1+ ¿ i) > qi these restrictions are without loss of generality
because traders only consider being on one side of the market for each asset at
the optimum. When the bid-ask spread is negative, this entails the additional
no arbitrage restriction that trades can only be made at most on one side of
the market, for each asset. In both cases, we proceed as follows. Once we have
solved the L di¤erential problems, we compute the indirect utility for each case,
utilities are compared and problem l is selected if it yields the highest possible
utility. Consumption and asset portfolios are chosen correspondingly. Note that
there may be multiple l satisfying the utility maximizing condition. Then we
let µl

h be the weight assigned to problem l, with µl
h 2 [0; 1] and with

P
l µ

l
h = 1.

Then µl
h > 0 only if problem l is a utility maximizer, and µl

h = 1 if problem l is
the only utility-maximizing choice.

It is obvious that this procedure equivalently solves the original utility maxi-
mization problem (H). The advantage of this method of solution is that it leads
to an equilibrium representation through a system of equations.

To illustrate what happens, consider an economy with H = 2, C = 1;
I = 2 = S; two Arrow securities, and no consumption at time zero. This is a
standard walrasian economy, where purchases and sales have di¤erent prices,
qi(1 + ¿ i) and qi; respectively. The budget line is:

X

i

[qi(1 + ¿ i)I(bi+
h ) + qiI(bi¡

h )]bi
h = 0

and bi
h = xi

h ¡ ei
h, for i = 1; 2. If ¿2 = 0 and ¿1 > 0, the budget line has a kink

at xh = eh, but it is convex. If Arrow securities have negative payo¤s, their
prices q will be negative, and the situation with ¿1 > 0 corresponds to one with
standard Arrow securities and ¿1 < 0. In this case, the budget constraint has
a kink at the no trade point, and it is nonconvex. In both cases, direct use of
the …rst order conditions seems impossible. However, it is easily observed that
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each trader solves the equivalent (discrete) choice problem of looking for the
optimum assuming b1

h ¸ 0, and then assuming b1
h · 0, and …nally comparing

the indirect utilities and choosing the highest. When ¿1 > 0, the utility will
be the same only if we are at the no trade. In this case, for an open set of
preferences the solution will not be a tangency condition, and both ®1

h and ®2
h

will be positive. Note that µl
h could be strictly less than one and greater than

zero. However, since x1
h = x2

h = eh; this is immaterial at the market clearing
level. When ¿1 < 0, the no trade case cannot occur. On the other hand, it
may occur that uh(x1

h) = uh(x2
h) even though x1

h 6= x2
h. In this situation, a

correct choice of µl
h is necessary for the interpretation. Hence we shall think

of µl
h as the proportion of traders of type h choosing trading strategy l; with a

continuum of traders of type h. So equilibria for ¿ i < 0 some i (and Y > 0)
will be approximate equilibria in large but …nite economies. Note also that the
system will typically (in utilities) not be in this situation.

A second issue in de…nition of equilibrium is the value of wh, which cannot be
too large when negative, otherwise it forces traders to negative consumption.5 In
order to deal with this problem, a lower bound on wh must simply be imposed,
such that

wh + e0;C
h > 0:

In fact, we will specialize to the uniform redistribution case, where wh =
(1=H)¼, so that

P
h wh = ¼, the total pro…t (or loss) from collecting trans-

action fees ¿ . The general case of nonuniform wh can also be dealt with, and
more easily as we would have extra variables, to be treated as parameters.

Let ! = (¿ ; e), and let !¤ = (¿¤; e¤) be a ‘test’ point. The lower bound
condition here must hold for ¼. Also letting t 2 [0; 1] be a homotopy parameter,
we can represent an equilibrium for arbitrary ! as the solution to the following
system of equations at t = 0:

5Since traders take wh as given, equilibria with wh < 0 may not satisfy individual ratio-
nality. However, the requirement wh ¸ 0 can be added without any substantial change, as we
show below.

9



...
Duh(xl

h) ¡ ¸l
hª = 0 (1)

¡¸0;l
h qi(1 + ¿ i;l

h (t)) + ¸1;l
h yi + e®i;l

h = 0; all i (2a)
minf®i;l

h ;ebi;l
h + tg = 0; all i (2b)

¡ª(xl
h ¡ eh(t)) + Rbl

h + Wh(t) = 0; (3)
¡t + uh(xl

h) ¡ uh(xL
h ) + ºl

h ¡ ºh = 0 (4)
minfºl

h; µl
hg = 0 (5)

minfºh; 1 ¡ P
l 6=L µl

hg = 0 (6)
...P

h[
P

l µ
l
h(xln

h ¡ en
h(t))] = 0 (7)P

h(
P

l µ
l
hbl

h) = 0 (8)
¡P

i qi¿ i(t)(
P

h bi+
h ) +

P
h wh(t) = 0 (9)

min(¯; ¼ + a(t)) = 0 (10)

(E)

Equations (1)¡(3) hold for all l = 1; :::; L, all h, and represent the Kuhn-Tucker
conditions for problem l; equations (4) and (5) hold for l 6= L, all h, equation (6)
holds for all h; together, they represent how we patch together all the L problems
to solve for (H) using a di¤erential approach; equations (7) ¡ (9) are nothing
but the market clearing and zero net pro…t conditions; …nally, equation (10)
guarantees that each trader always has a positive endowment of the numéraire
commodity.

As for the notation, bi+
h = maxf0;Pl µ

l
hbi;l

h + tg; ®i;l
h is the Lagrange multi-

plier associated to the corresponding nonnegativity constraint on ebi;l
h , with

e®i;l
h =

½
®i;l

h if i 2 I+(l)
¡®i;l

h otherwise

The homotopy links the arbitrary ! to the test point !¤, through

¿ i;l
h (t) =

½
¿ i(t) if i 2 I+(l)

0 otherwise

and ¿ i(t) = (1 ¡ t)¿ i + t¿ i¤, eh(t) = (1 ¡ t)eh + te¤
h, Wh(t) = (wh(t); 0; ::; 0)T ;

where wh(t) = wh + (1 ¡ t)¯=H, all h. Here ¯ is a slack variable, as well as ºl
h

and ºh. Finally, a(t) = minh e0;C
h (t)=2.6

Note that an equilibrium is expressed as the zeros of the continuous function
F (»; t;!) = 0 computed at t = 0. Here F represents the left-hand side of (E),
and

6 If one wishes to have wh ¸ 0; we can simply impose this condition on ¼ and substitute
(10) with min(¯; ¼ + ta(t)) = 0. Everything else goes through unchanged.
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» = ((xh; bh; ¸h; ®h; ºh; ºh; µh)h; pn; q; ¼; ¯) 2 ¥

¥ is an open subset of a Euclidean space, and dim¥ is equal to the number of
equations in (E). Moving t away from zero deforms the equilibrium system into
a system of equations which is better suited for analysis and takes the arbitrary
! to the test point !¤; when t = 1. We will show that this homotopy satis…es
all the assumptions to claim that the degree modulo 2 of the function F at the
test point, i.e., deg2(Ft=1; f0g); is the same as the degree computed at t = 0;
therefore at the function representing a transaction cost equilibrium and for
arbitrary parameters !.

To prove existence we compute deg2(Ft; f0g) for t = 1 (see Lloyd, (1978)).
We proceed by …nding …rst the test point !¤. Let ¿¤ = 0. Note that this is
now a standard incomplete markets economy. Let u¤ be any utility satisfying
the maintained assumptions, and let e¤ = ePO 2 RGH

++ ; a corresponding Pareto
optimal allocation for total resources r 2 RG

++. That is, ePO solves

maxu¤
1(x1) s:t:

u¤
h(xh) ¸ uh h > 1P

h xh · r
(PO)

where uh 2 u¤¡1
h (R++), h > 1. At this Pareto optimum, which exists and is

unique for all r; u2; ::uH , there is a unique set of multipliers pPO and ¹PO
h such

that

Du¤
1(ePO

1 ) ¡ pPO = 0
¹PO

h Du¤
h(ePO

h ) ¡ pPO = 0 h > 1
u¤

h(ePO
h ) = uh h > 1P

h ePO
h = r

(3)

We then show that there is only one zero of the function F1; that is, at !¤.

Lemma 5 There is a unique array »¤ such that F (»¤; 1;!) = 0.

Proof. We compare equations (3) with equations (1) and (7) in (E). Given
the price normalization ps;C = 1, we uniquely identify from (3) ¸s;l1¤

1 = (ps;C)PO

and ps;c¤ = (ps;c)PO=(ps;C)PO in equations (1) ; for l1 = 1; :::; L; h = 1. We also
uniquely identify ¸l¤

h = (1=¹PO
h )¸1¤

1 ; for all l and all h > 1: Then (1) and (7)
have a unique solution with xl¤

h = e¤
h; all l, all h, and prices and multipliers as

above. Note that in (7) the solution is independent of µl
h. Equations (3), s > 0,

are satis…ed with bl¤
h = 0, all l; h; due to rank Y = I. Now from equation (2b),

®l¤
h = 0 and from equation (2a) ; qi¤ = (¸1¤

h =¸0¤
h )yi; all i: Therefore, equations

(3) for s = 0 imply wh = 0 all h, or ¼¤ = 0. From (11), ¯¤ = 0.

11



Finally, from equation (4) and since uh(xl¤
h ) = uh(xL¤

h ), all l, we have ºl¤
h ¡

º¤
h > 0, so that ºl¤

h > 0, and µl¤
h = 0; all l 6= L, and from (6), º¤

h = 0, implying
ºl¤

h = 1; all l 6= L and all h. Finally, µL¤
h = 1, all h.

Notice that the function F1 is actually continuously di¤erentiable in ». Let
A = D»F (»¤; 1;!): We now want to show that the only solution »¤ has nice
regularity properties.

Lemma 6 A has full rank.

Proof. To see this, compute the derivative A and premultiply by the vector
¢», to get:

D2uh(xl¤
h )¢xl

h ¡ ª¤T ¢¸l
h ¡ ¤l¤

h ¢pn = 0 (1)
¡¸0¤

h ¢qi + riT ¢¸l
h = 0 (2a)

¡ª¤¢xl
h + R¢bl

h = 0 (3)
Duh(e¤

h)(¢xl
h ¡ ¢xL

h ) ¡ ¢ºl
h = 0 (4)P

h ¢xLn
h = 0 (7)P

h ¢bL
h = 0 (8)

where ri = (¡qi¤; yi)T . We will show that the only solution to this system of
equations is ¢» = 0. Note that ¢®i;l

h = 0 from (2b) ; ¢µl
h = 0 all l 6= L, from

(5) (hence ¢µL
h = 0); ¢ºh = 0 from (6). Also, ¢¼ = 0 from (9) ; ¢¯ = 0 from

(10) (so ¢wh = 0 all h). We premultiply equation (1) by ¢xlT
h ; and divide by

¸0
h to get

¢xlT
h D2uh(xl¤

h )=¸0¤
h ¢xl

h ¡ ¢xlT
h ª¤¢¸l

h=¸0¤
h ¡ ¢xlT

h ¤¤¢pn = 0 ((10))

where we note that ¤l¤
h =¸0¤

h = ¤¤ independent of h, as ¸l¤
h and ¸1¤

1 are colinear at
the test economy, all l; h. From (2a), we have ¡¢blT

h ¢q+¢blT
h RT ¢¸l

h=¸0¤
h = 0,

and where RT = (ri)i. Combining with (3), we have ¡(¢¸lT
h =¸0¤

h )ª¤¢xl
h +

¢qT ¢bl
h = 0. Substituting in (10), we have

¢xlT
h Duh(xl¤

h )=¸0¤
h ¢xl

h ¡ ¢blT
h ¢q ¡ ¢xlT

h ¤¤¢pn = 0 (4)

Now, from equations (7) and (8), premultiplying by (¤¤¢pn)T and ¢qT respec-
tively, we get

P
h(¤¤¢pn)T ¢xL

h = 0 and
P

h ¢qT ¢bL
h = 0. Summing over h in

(4) for l = L, we obtain

X

h

¢xLT
h D2uh(xL¤

h )=¸0¤
h ¢xL

h ¡
X

h

¢bLT
h ¢q ¡

X

h

¢xLT
h In¢p = 0

or

12



X

h

¢xLT
h D2uh(xL¤

h )=¸0¤
h ¢xL

h = 0

while ¢xLT
h D2uh(xL¤

h )=¸0¤
h ¢xL

h < 0 if ¢xL
h 6= 0, all h; by di¤erential strict

concavity of uh: Then ¢xL
h = 0 all h; and from equation (1) and the price

normalization ¢¸L
h = 0, so that ¢pn = 0; ¢q = 0 and ¢bL

h = 0; using (2a)
and (3). It is now immediate to show, using (1) ¡ (3) and di¤erential strict
concavity that ¢xl

h = 0 and that ¢¸l
h = 0 and ¢bl

h = 0; all l 6= L, all h. From
(4), ¢ºl

h = 0; all l; h. To conclude, ¢» = 0, as we wanted to show.
Hence we know that deg2(F1; f0g) = 1. We are left to show that we can

correctly homotope this function to all functions Ft at all parameter values !,
without changing the degree. For this, we have the following lemma.

Lemma 7 The set F¡1(0) is compact.

Proof. We show that the set is sequentially compact: starting from an
arbitrary sequence f»n; tng1

n=1 ½ F¡1(0); we show that it has a subsequence (to
simplify notation, the sequence itself) converging to (»; t), with (»; t) 2 F¡1(0).

[Equation numbers refer to system (E).] First, since tn 2 [0; 1], tn ! t.
Similarly, fµln

h g converges to µl
h 2 [0; 1], all l; h.

Suppose that µ1
h = 1; all h. Then from equation (7), fx1n

h g converges since
it is bounded above by total resources and below by zero. From equation (10) ;
e0;C

h (tn) + wh(tn) > 0 all n; h, and it is bounded away from zero. Using the
boundary condition on utilities, it must be that x1

h À 0; all h. From equation
(1) and the price normalizations, f¸1n

h g converges to ¸1
h À 0. Then from the

same equation, for c 6= C, fpng converges to p À 0. Using the assumption that
rank Y = I, from equation (3) for s > 0 we get convergence of fb1n

h g; all h.
From (2a), for no i 2 I+(1); qin ! ¡1, and for no i 2 I¡(1), qin ! 1.
Suppose there is i 2 I+(1) such that qin ! 1. Then, bi;1

h = ¡t, since
otherwise from (2b) we get ®i;1n

h ! 0, a contradiction. If t = 0, there must be
l0 6= 1 such that xl0

h = x1
h all h, and i 2 I¡(l0) (this is because bi;1

h = 0), so that
qin ! 1 contradicts (2a). So assume t > 0.

We have that qin(1+¿ i)bi;1n
h ! ¡1 . Since at s = 0; jPi qin(1+¿ i;1)bi;1n

h j <
M for some …nite M and su¢ciently large n; all h > 2, there is i0 such that
qi0n(1+¿ i0;1)bi0;1n

h ! 1, for h > 1: Suppose that qi0n ! 1. But then i0 2 I+(1);
and bi0;1n

h ! bi0;1
h = ¡t, which contradicts qi0n(1 + ¿ i0;1)bi0;1n

h ! 1. [Here we
use that ¿ i > ¡1; all i.] Suppose that qi0n ! ¡1; then i0 2 I¡(1); and bi0;1n

h !
bi0;1
h = t, again same contradiction. Therefore, if i 2 I+(1); qin ! qi. Similar

reasoning shows that qin ! qi even when i 2 I¡(1), hence fqng converges.
From (3) and convergence of fx1n

h g; fpng; fqng and fb1n
h g we get convergence

of fwn
h + (1 ¡ tn)¯ng.

Now suppose that t = 1. Since at t = 1 there is only one solution »¤ and
the function F is continuous both in » and t, convergence is guaranteed, and in
particular of f¼ng (from (3)) and f¯ng (from (10); observe that ¼¤ = 0).
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Suppose that 1 > t ¸ 0. Using (3) and (10), again we get convergence of
fwn

hg and f¯ng.
Now it is standard to see that

¡
xln

h ; bln
h

¢
converges for l 6= 1, given con-

vergence of prices and transfers. Moreover, from the boundary condition and
equation (11), once more xl

h À 0, all l; h. From (1) we get ¸ln
h ! ¸l

h À 0 all
l; h, and from (2a), ®ln

h ! ®l
h ¸ 0.

From convergence of µ1
h ! 1, º1n

h ! º1
h = 0, and ºn

h ! ºh, all h; so that
fºln

h g converges as well, all l; h and ºln
h ! 0, ending this case.

Second, suppose that µ1
h = 0. Then we get as before convergence of xln

h ;
some l 6= 1, to a strictly positive vector; of ¸l

h; bl
h all h and p. The rest of the

argument follows as above.
Finally, the cases where 0 < µ1

h < 1, all h, as well as where µ1
h has a value

di¤erent across traders, follow from the previous ones.
To conclude, we have the following existence theorem.

Theorem 8 For any economy (e; u); an equilibrium with transaction costs ¿
exists.

Proof. Since ¥ is open, hence a boundaryless manifold, dim¥ is equal
to the number of equations in (E), F (:;!) is continuous, and the space of
! satisfying our assumptions is path-connected, Ft is a continuous homotopy.
Using Lemma 7, deg2(Ft; f0g) is well-de…ned and identical for all t 2 [0; 1] and all
!. Lemmas 5 and 6 show that deg2(Ft=1(:;!); f0g) = 1, hence following Lloyd
[14] deg2(Ft(:;!); f0g) = 1 for t = 0 and all !. Concluding, an equilibrium with
transaction costs ¿ exists for all economies e; u.

This theorem provides the rigorous basis for studying comparative statics
issues in asset markets with transaction costs, the subject of further research.
One weakness of the theorem is that the payo¤ matrix has exogenous rank, …xed
at I, the number of assets. To study the e¤ects of transaction costs on trading
decisions, we need to extend the framework to allow for the possibility that the
rank depend on endogenous variables, such as future asset prices. Again, this
can be the subject of further research.
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