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Abstract

In a three-period ¯nite competitive exchange economy with incomplete ¯nan-
cial markets and retrading, we show the generic existence of ¯nancial innovation
which decreases equilibrium price volatility (as well as innovation which increases
it). The existence is obtained under conditions of su±cient market incomplete-
ness. The ¯nancial innovation may consist of an asset which is only traded at
time zero, or retraded, and with payo®s only at the terminal date. The existence
is shown to be robust in the asset payo® space. Journal of Economic Litera-
ture Classi¯cation Numbers: C60, D52, G10. Keywords: incomplete markets,
¯nancial innovation, volatility.
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1. Introduction

This paper examines the robustness of the hypothesis that higher degrees of market
incompleteness induce higher equilibrium asset price volatility on ¯nancial markets.
Market volatility has been the focus of empirical tests of asset pricing models and busi-
ness cycle theories (the literature is huge and cannot be summarized here; an example
is Shiller (1981)). These studies mainly found excess volatility of stock returns, or
deviations of asset price volatility from the one determined by \fundamentals". Tradi-
tionally the benchmark volatility is derived from a complete-market, in¯nite-horizon
model of consumption and investment. Some authors (cfr. Allen and Gale (1994))
have attributed the excess volatility to the joint presence of liquidity e®ects and of
restrictions to ¯nancial markets participation, hence suggesting that a possible mis-
speci¯cation of the general competitive model lies in the assumption that ¯nancial
markets are perfect. Since market incompleteness is a form of restricted participation,
one could ask whether the increase in volatility is a phenomenon that generally ex-
tends to incomplete versus complete (or less incomplete) ¯nancial markets. Related to
these issues, questions have emerged about the e®ects of ¯nancial innovation on asset
price stability. Few studies have already speci¯cally examined ¯nancial innovation in
relation to price volatility from a theoretical viewpoint (Detemple and Selden (1991),
for option contracts, and Detemple (1996), Zapatero (1998), for general ¯nancial inno-
vation in a general equilibrium setting, with asymmetric information or heterogeneous
beliefs), although restrictions have been imposed on preferences or asset payo®s, that
is, dividend processes, as asset payo®s are referred to in those models.

In this paper we take advantage of a very simple model of discrete-time dynamic
trading of assets and multiple goods in a ¯nite economy to allow for general prefer-
ences, endowments and asset structures. In our setup, ¯nancial innovation is not the
result of optimizing behavior. We do not seek to explain why markets are incom-
plete or why new assets are introduced, but we take this as given and concentrate
on the equilibrium e®ects of having di®erent ¯nancial structures. We impose time
and state separability of preferences, and use von Neumann-Morgenstern expected
utilities. This is done for the sake of exposition, and because of the wide use of the
separable case in the ¯nance and macroeconomic literature. Any weaker version of
separability (such as time nonseparability, or a habit formation assumption) also gives
rise to the same results as the ones presented in this paper. The model we use covers
any ¯nite time horizon trading economy, even though here we focus on the three-
period case. Although a new ¯nancial asset generally plays a role as a hedging device
and as an information vehicle, the result in this paper does not address di®erential in-
formation economies. Rather, we concentrate on the spanning role of ¯nancial assets.
Future work should introduce asymmetric information in the model to capture the
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e®ects on price volatility of the information conveyed by ¯nancial innovation. Also,
¯nancial innovation in our model may not complete ¯nancial markets.1

With these maintained general speci¯cations, we show that, generically, there is
some ¯nancial innovation leading to a volatility decrease, while some other leads to
an increase in volatility. The intuition here is, along the lines of what is known in the
constrained suboptimality literature (see for example Citanna, Kajii and Villanacci
(1998)), that price e®ects induced by payo® changes may allow modifying asset prices
in such a way to control volatilities at pleasure. To get the result, we have to impose
some extra conditions on the economy. When uncertainty is represented by S states
of the world in each contingency, if H is the number of (types of) households in
the economy and J is the number of preexisting assets, our theorem holds when
S(S ¡ J) + S + 1 ¡ J ¸ H+J: If one allows for more periods, an analogous condition
must hold. Generally, similar conclusions can be drawn provided the uncertainty
in the economy is su±ciently large. This condition is generally su±cient, and also
tight within our di®erential framework of analysis, in the sense that this condition is
required to obtain robust (open sets of new assets have the same e®ect on open sets
of economies, for almost all initial economies) and predictable (locally one-to-one)
e®ects of ¯nancial innovation. The exact meaning of this will become apparent after
Lemma 4.1.

Hence, other things equal, ¯nancial innovation allows the (robust) controllability
of price volatility when uncertainty is high, and volatility-reducing ¯nancial innovation
can be found more easily when there is more uncertainty in the economy. Since more
states of nature typically induce more equilibrium volatility in ¯nancial markets to
start with, the main theorem also shows that the more volatile prices are expected to
be, the more controllable volatility is through ¯nancial innovation.

The last section of this paper shows that it is easier to reduce volatility through
¯nancial innovation when traders cannot rebalance their holdings of the new asset.
More precisely, in the case of impossibility of retrading the condition linking the num-
ber of states, households and assets is weaker than in the other case. Now, suppose
that over-the-counter ¯nancial contracts can be designed in a more customized way
and retrading of these contracts is more di±cult than on standardized contracts ex-
changed on organized markets. Then it can be argued that in the absence of greater
levels of uncertainty, it may be convenient to introduce hedging instruments over
the counter as opposed to widely retraded assets, when the intent is to control price
volatility of existing ¯nancial assets (and in the absence of other e®ects, such as
informational).

We give our results two interpretations. First, and regarding excess volatility and
1So this paper addresses situations studied by Zapatero (1998), where traders di®er in their beliefs,

but there is no true informational di®erence in the sense that a rational expectations equilibrium
would require, and not directly the results obtained in Detemple (1996) because we do not have
an asymmetric information economy. In the following presentation, we choose to expose the case
of heterogeneous preferences and homogeneous beliefs to simplify the exposition, although it is
immediate to see that the main geast of our theorem holds even in the presence of heterogeneous
beliefs.
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market incompleteness, we give conditions under which nothing so general can be de-
duced as \the more ¯nancial markets are incomplete, the higher the volatility". Such
statements may hold only in speci¯c incomplete, or otherwise restricted, markets (as
in Zapatero, for the ¯rst, and in Allen and Gale for the second case, e.g.). In fact,
our results suggest that when there is considerable uncertainty in the economy, more
incompleteness may be associated to lower volatility. Second, and regarding state-
ments on the destabilizing e®ects of ¯nancial innovation, we remark that any strong
conclusion against ¯nancial innovation strictly depends on the speci¯c parametric as-
sumptions. A small deviation from those assumptions may moderate the results (this
is a direct consequence of genericity in endowments, security payo®s and utilities).
We elaborate on a well-known example of preferences for which ¯nancial innovation
always yields no change in volatility, motivating the perturbation of utilities as a nec-
essary condition for robustness, and also showing that controlling volatility through
¯nancial innovation is not an obvious task even if we are allowed to introduce any
asset we please.

From a normative viewpoint, our robust controllability result may suggest that
¯nancial innovation can be used as an instrument of volatility control, perhaps but
not only by the monetary authority. This paper of course does not address the
informational requirements needed for the implementation of this policy instrument,
a topic linked to the recoverability literature in incomplete markets. Moreover, we can
say at least that the new ¯nancial asset may not necessarily take the form of a futures
contract or of a call or put option on the underlying asset. In this framework, an option
is characterized by a ¯xed functional form and by only one extra parameter, the strike
price. This seems not su±cient to guarantee robustness of volatility-reducing e®ects.2

Technically, this paper extends to a multiperiod setting the di®erential framework
developed in Cass and Citanna (1998) to study ¯nancial innovation in incomplete
markets, itself a rami¯cation of the long-debated issue of constrained suboptimality
(see Citanna, Kajii and Villanacci (1998)). We believe that the study of the e®ects
of ¯nancial innovation cannot be reduced to welfare comparisons, already addressed
in the literature (see Cass and Citanna, (1998), or Elul, (1995), for example). We
study the e®ects of innovation on price volatility, which cannot be de¯ned in the
standard two-period exchange economy. Moreover, the restrictions that naturally
arise on the payo® matrix representing ¯nancial markets with dynamic trading are
not encompassed by the previous theorems, and provide the structural motivation to
this work. Finally, in the volatility context we can extend the controllability result to
compare incomplete and (dynamically) complete markets, impossible in the case of
welfare analysis. The analysis of equilibrium volatility is meant to be illustrative of
more general issues whose study can be easily embedded in this framework, provided
they can be represented by a smooth function de¯ned over the equilibrium set.3

2In this sense, our results do not directly address the robustness of the work by Detemple and
Selden (1991) on option contracts.

3An example of which is the study of the robustness of the di®erences in the price level of one
asset depending on markets being complete or not, also known as the `precautionary savings' e®ect.
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2. The model

We consider a standard model of an intertemporal, competitive, pure-exchange econ-
omy with incomplete ¯nancial markets. Let t denote the time period, with t =
0; 1; :::T; where t = 0 is today, and t = T is the terminal date. Although the for-
malization encompasses any ¯nite-horizon economy, we will focus on the three-period
case, i.e., T = 2. Uncertainty is represented by 1 < S < 1 states of the world in each
period t > 0 and at each spot, or realization of previous uncertainty, indexed by s:
Although this is not strictly necessary, to simplify the notation we take the number
of states to be constant over time and at each spot. The following tree structure
represents uncertainty in this economy,

0 t = 0
Á j Â

Á1 ¢ ¢ ¢ s ¢ ¢ ¢ SÂ t = 1
Á Â Á Â

Á1 SÂ Á1 SÂ t = 2

The total number of states in the economy is therefore given by
PT

t=0 S
t
: In this

paper, we assume that all the information in the economy is publicly available. We
will assume that J ¯nancial instruments are tradable today and that S > J; so
¯nancial markets are incomplete, even dynamically. These instruments are long-term
securities, since they can be held until the terminal date T . Nevertheless, they can
be retraded in any period t < T: It is notationally convenient also to represent the
retraded instruments as independent assets i; where i = 0; ::; I; and I = J

PT¡1
t=0 S

t
.

We will also index states in di®erent periods all together as spots s; and will write
S + 1 =

P
t S

t
:

There are H households (also referred to as traders) indexed by h: At each date and
state, there are C commodities or goods indexed by c, with C > 14. The commodity
(and endowment) space is taken to be RG

++, where G = C(S+1). A typical household's
preferences are represented by the utility function uh : RG

++ ! R, which is assumed
to be smooth, di®erentially strictly increasing and di®erentially strictly concave, and
to have the closure of indi®erence surfaces contained in RG

++. Moreover, the utility
will be assumed of the form

uh(xh) =
SX

s=0

¼svh(xs
h), (2.1)

with ¼s > 0 and
P

s>0 ¼s = 1 + S. That is, we consider von Neumann-Morgenstern
preferences, with objective probabilities and time separable utility. The case of non-
separability (time and state) is easier to deal with, and follows from the proofs given

See Elul (1997), whose robustness conditions can be simpli¯ed using our framework.
4Contrary to Cass and Citanna (1998), robustness can be shown here also in the case when C = 1;

but the equations considered are slightly di®erent, and we do not give the computational details in
this paper.
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below. We choose to present the results with this speci¯cation because it is the most
widely used, although maybe not the most economically plausible. As for using ob-
jective probabilities, again this choice derives from the need of comparison between
our statements and those made in the related literature, and to simplify computa-
tions already burdensome. The conditions of Theorem 4.2 may be slightly altered by
a subjective probability speci¯cation (due to the need of keeping track of volatility
as perceived by each household, and therefore requiring a higher degree of market
incompleteness for the theorem to hold), but the general framework of analysis does
not change. Note that one can interpret ¼s as derived from a (stationary) probability
measure ¼ on the states s > 0 in the following standard way:

¼s =
½

¼(s) if 0 < s · S
¼(sjs0)¼(s0) s = 1 + s0S + s

where ¼(sjs0) is the conditional probability of state s in period t = 2 after state s0

occurs in period t = 1; and s; s0 2 S. ¼0 is interpreted as a simple intertemporal
preference parameter, not as a probability.

The space of households' endowments is E = (RG
++)H . The space of households'

utility functions is U = UH , where U is a subset of the C3(RG
++;R) mappings5,

endowed with the subspace topology induced by the compact-open topology assigned
to the whole space. With xh 2 RG

++, bh 2 RI , p 2 RG and q 2 RI we denote the
consumption bundle and the asset portfolio for household h, the commodity price
vector and the asset price vector, respectively. It will be convenient to take quantity
vectors as columns, and price vectors as rows.

The ¯nancial structure is represented by an (S + 1) £ I-dimensional matrix of
prices and payo®s R expressed in terms of a num¶eraire commodity, which we take to
be the last at each spot s, i.e., c = C. It is apparent that we are dealing here with
a special case of the usual standard incomplete market model, where the matrix R
assumes the following form

R = ª:

2
666666666666664

¡q0 0 0 0 0
y1(0) + q1 ¡q1 0 0 0
y2(0) + q2 0 ¡q2 0 0

... 0 0
. . . 0

yS(0) + qS 0 0 0 ¡qS

0 Y (1)
0 Y (2)

0
. . .

0 0 Y (S)

3
777777777777775

where
5More precisely, we need the functions to be three times continuously di®erentiable locally around

an equilibrium, although we consider them in the C2 topology for our genericity statements.
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ª: =

2
64

p0;C 0 : : :

0
. . . 0

: : : 0 pS;C

3
75

is an S + 1-dimensional square matrix of prices of the num¶eraire commodity, and
Y (s); with s = 0; 1; :::; S is an S £ J matrix of payo®s for the traded security. We
will assume that each Y (s) be in general position6. The argument of this paper
adapts to the one-asset case (J = 1) with this condition becoming Y (s) = Y À 0;
which is consistent with intertemporal models of stock and bond trading. Denote by
¡ ½ RSJ(S+1) the space of such matrices.

Note that an asset j 2 J in this economy promises to deliver ys;j(0) units of the
num¶eraire good in state s in period t = 1, and ys0;j(s) units of the num¶eraire in
state s0 in period t = 2 after s occurred in period t = 1, with s; s0 2 f1; ::; Sg: Hence
ys0

(s) = (ys0;j(s))j2J ; is the s0-th row of Y (s); for s = 0; 1; :::; S:
Here qs is a J £ 1 vector of prices, which are endogenously determined in equilib-

rium, and which correspond to `di®erent' assets as a function of the state. So, each
asset j 2 J is exchanged at price q0;j at t = 0; and at price qs;j in state s and period
t = 1; and qs = (qs;j)j2J ; for s = 0; 1; :::; S:

Finally, we denote by b0;j
h trader h's holdings of the j-th asset at time zero; and

by bs;j
h trader h's holdings of the same asset at time t = 1 in state s: However, in

what follows the natural identi¯cation of asset i with a pair (s; j) for s = 0; 1; :::; S
will be used, and each asset j will generate S + 1 `di®erent' assets, where bi

h denotes
the holdings of asset i for trader h.

We will parametrize each economy as an element of the pair E £U , endowed with
the product topology, with securities

³
Y (s)S

s=0

´
2 ¡: We will later use the notation

y(s) = (ys(0))S
s=1; for s = 0; 1; :::; S; and

y = [y(0); y(1); :::; y(S)]

for the payo® vector of a newly introduced asset; an element of RS:
This framework of analysis of dynamic trading in ¯nancial markets is common,

apart from slight di®erences in the timing of trading or payo® payments, to several
treatments of sequential trading in rational expectations models, and in particular
to a model by Du±e and Shafer (1986). It su±ces to note at this stage that the
economy is a dynamic one in the usual sense that trading occurs sequentially, but
plans are made once at time t = 0. Indeed, in the ¯rst period (t = 0), households
maximize utility given rational expectations about future prices, and the existing

6For a de¯nition of general position, see Mas-Colell (1985, p.13).
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¯nancial structure, making plans for trading commodities and assets today and to-
morrow. Then, today's trades are carried through, and households consume and hold
portfolios to transfer wealth in the future. Tomorrow, given the state of the world,
households ful¯ll their ¯nancial obligations, and then again trade commodities and
¯nancial instruments, and consume. At T = 2; again households ful¯ll their ¯nancial
obligations, trade commodities and consume. Formally, a ¯nancial equilibrium is a
vector ((xh; bh)H

h=1; p; q) such that:
(H) given p; q; households optimize, that is, for every h, (xh; bh) solves the problem

maximizexh;bhuh(xh)
subject to ª(xh ¡ eh) = Rbh,

where

ª =

2
64

p0 0 : : :

0
. . . 0

: : : 0 pS

3
75

is an (S + 1) £ C price matrix, eh 2 RG
++ is the household's endowment, and

(M) markets clear, that is,
P

h(xh ¡ eh) = 0
and

P
h bh = 0.

An equilibrium is represented in extended form by the system of equations7 consisting
of both the households' Kuhn-Tucker conditions and the market-clearing conditions,

...
Duh(xh) ¡ ¸hª = 0

¸hR = 0
¡ªzh + Rbh = 0

...P
h zh = 0P
h bh = 0,

(2.2)

where ¸h 2 RS+1
++ is the household's vector of Lagrange multipliers (i.e., marginal

utilities of wealth), zh = xh ¡ eh is the household's vector of excess demands.
We de¯ne volatility of the j ¡ th ¯nancial instrument as

vj = V ar0(qj) =
X

s

¼s(qs;j ¡ E0(qj))2

where E0(qj) =
P

s ¼sqs;j : In other words, we look at price volatility, as opposed to
return volatility. Return volatility can be studied with a slight modi¯cation of the

7The analysis in terms of extended systems was ¯rst exploited by Smale (1974) for pure walrasian
economies.
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de¯nition given above. Note that if ¼ depends on h; more than one de¯nition of
volatility has to be used simultaneously.

Existence of equilibrium for this model has essentially been analyzed by Du±e
and Shafer (1986). Retrading can potentially lead to a matrix R whose rank is less
than I: To see this, let Q be the S £ J matrix of security prices at time t = 1: The
problem of loss of rank, i.e., redundancy, arises because Y (0) + Q may not have full
rank. This will hold generically in endowments and security payo®s. Note that for
J = 1 the rank result follows immediately from the assumption that Y À 0, in which
case the existence proof follows from Geanakoplos and Polemarchakis (1986):

To state the existence result for J > 1, we parametrize economies by endowments
and securities only, ¯xing preferences once and for all.8 Let £ ´ E £ ¡ denote the
parameter space.

Proposition 2.1. (Du±e and Shafer, 1986) For an open and full-measure subset £¤

of £; a ¯nancial equilibrium exists. Moreover, if µ 2 £¤; all the equilibria are such
that rank R = I; and Y (0) + Q is in general position.

The proof of this Proposition is in essence identical to the one in Du±e and
Shafer, hence the reader is referred to that paper for the details. An argument already
adapted to this paper's notation is available from this author upon request. We now
turn to adjusting a framework formerly developed in Cass and Citanna for comparing
equilibria before and after the introduction of new assets.

3. Introducing a new asset into the economy

For the model described in Section 2, the basic idea of the analysis of the impact
of ¯nancial innovation on volatility can be easily reconduced to the framework for
the study of the welfare impact of ¯nancial innovation as found in Cass and Ci-
tanna (1998). Although it will become apparent that the logic of the analysis follows
very closely that paper, we stress that a straightforward application of the theorems
provided there is not possible in this multiperiod setup with separable utilities. To
reiterate, the steps of the analysis are identical, but the proofs di®er because of the
special structure of the payo® matrix R. Proofs of Lemmas 3.2, 4.1, of Theorem 4.2,
case b), and of the lemmas and theorem in Section 4.2 are similar but not encom-
passed by statements contained in Cass and Citanna. For instance, in order to derive
the condition on multipliers, Cass and Citanna assumed that either the last I rows of
the matrix had full rank (general nonseparable case), or that the payo® matrix was
in general position (additively separable utility, treated in their Appendix). Here we
tied our hands as for the speci¯cation of the R matrix, given the dynamic structure
of the model, and R is no longer in general position.

8So, for the time being, we keep u 2 U as ¯xed; parameterization by utility functions will appear
in the next section.
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Obviously, our proofs in this paper show that the general position of R is not
necessary to obtain results in this model9. Because of the similarities in the analyses
of the two problems (welfare impact and volatility impact), we will show how to
procede with the general logic, we will leave the unchanged proofs to the reader, but
will provide the di®ering proofs in the Appendix.

It is convenient to introduce some general notation for representing equations
(2.2). We ¯rst normalize the num¶eraire commodity price at each spot, given that
households' budget constraints are homogeneous of degree zero in ps;C , all s. Hence,
ps;C = 1, all s (for simplicity, hereafter we will rede¯ne q=p0;C as q). Moreover, we
drop S + 1 commodity market clearing conditions, say, those corresponding to the
num¶eraire commodity at each spot, by utilizing the analogue of Walras' law. Let zn

h
be zh less the num¶eraire commodity at each spot. Let pn be the commodity price
vector without the normalized components.

Let F1 : ¥n1 £ £¤ ! Rn1 be the mapping representing the left-hand side of
(2.2) after the above changes, where ¥n1 is the n1-dimensional space of endogenous
variables », with

» = ((xh; bh; ¸h)H
h=1; p

n; q)

and the economy is again parametrized by endowments and securities only. An equi-
librium in the original economy is then represented by the equation F1(»; µ) = 0.

We will consider a (smooth) function, de¯ned over the equilibrium manifold of
a (now multiperiod and) ¯ctitious economy, i.e. the economy where the new asset
is chosen so that at the original values of the endogenous variables it is redundant,
but traded. For the original economy and given a ¯xed µ 2 £¤, we can describe the
equilibria by the zeros of a mapping

F : ¥n1 £ T ! Rn

with n > n1, such that

F (»; ¿) = (F 0
1(»; ¿ ; µ); F2(»; ¿)),

where F 0
1 is going to be the mapping into Rn1 describing the same equations as those

of the original equilibrium, but modi¯ed according to the designer's intervention,
while F2 is going to be the mapping into Rn¡n1 describing the arbitrage-pricing and
market-clearing conditions for the new assets. T is the space of instrumental variables,
including both direct policy variables (new asset payo®s) and related market variables
(new asset prices and holdings).

9Since we can prove the lemmas and theorems essentially without changing conditions on S; I
and H; ex post this di®erence turns out not to substantially matter. Indeed, and to anticipate
the presentation of our results, in the Cass and Citanna paper the controllability is obtained if
S + 1¡ I ¸ H +H; while here if S + 1¡ I ¸ H + J (Theorem 4.2). The ¯rst H conditions account
for the new no arbitrage equations, and the last conditions (H there, J here) account for the number
of objectives to control.
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If we can show that there is a subvector of n ¡ n1 instrumental variables ¿ 00 for
which a regularity-like result can be established, that is,

rankD»;¿ 00F (»; ¿)
¯̄
¯
F (»;¿)=0

¿ 0=¹¿ 0

= n. (3.1)

where ¿ 0 is another subvector of ¿ ¯xed at the value ¿ 0 so to obtain the original
equilibrium, then the set

M = f(»; ¿) 2 ¥n1 £ T¹¿ 0 : F (»; ¿) = 0g

where T¹¿ 0 is an open neighborhood of ¹¿ 0 in T , is a smooth, ¯nite-dimensional manifold,
by a straightforward application of the preimage theorem (see Guillemin and Pollack
(1974, p. 21), for instance).

Our standard reference to » as \endogenous variables" is justi¯ed by the following
lemma, which is a well-known regularity result, and is therefore stated here without
proof.

Lemma 3.1. rankD»F1

¯̄
¯
F1(»;µ)=0

= n1 on a generic subset of £¤.

Generic here means in an open, full-measure subset, although in the next section,
when introducing volatilities in the analysis, we will use the term in a topological sense
only. One property of the Lagrange multipliers and two of equilibrium commodity
prices and asset price volatilities are summarized in the following lemma, and will be
quite useful in the ensuing analysis. Their demonstration basically involves routine
applications of a transversality theorem, hence the proof will be omitted. Let ¾(s) be
a permutation function of f0; 1; ::; Sg into itself.

Lemma 3.2. Consider the solutions to F1(»; µ) = 0: Then,

(i) rank[¸¾(s)
h ; 1 · h · H; 0 · ¾(s) · H ¡ 1] = H if H · S + 1 ¡ I and

(ii) Dqs;jvj = 2¼s(qs;j ¡ E0(qj)) 6= 0

(iii) ps0
is not colinear with ps00

; s0 6 =s00 > 0,

on a generic subset of £¤:

Notice that if J = 1; and it is assumed that Y À 0; we can always extract H spots
out of the last S

2
; since the ¯rst S + 1 = I rows of R form the required full-ranked

matrix.
It will be convenient to let

£u = fµ 2 £¤ j µ satis¯es Lemmas 3.1, 3.2g,

which is therefore also a generic subset of £¤. From now on, µ 2 £u:
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Now let G : M ! Rksuch that m 7! G(m) be a general function de¯ned over
the equilibrium manifold. Note that if m 2 M and ¿ 0 = ¹¿ 0, then G(m) is precisely
the value of the function at an equilibrium before innovation takes place. One such
function could be the utility vector, with k = H as in Cass and Citanna, or the price
level of traded securities or, as hereafter, the price volatility, with k = J . So it is
clear from their analysis that a (local) su±cient condition to obtain a decrease (or
increase) of volatility due to ¯nancial innovation is that G be a submersion at every
m 2 M with ¿ 0 = ¹¿ 0, that is, that

dGm : Tm(M) ! RJ

is onto for all such points. We can restate this condition in terms of the rank of a
suitable matrix, which can be expressed using the complementary condition in terms
of the system of equations

a0
·

DF
DG

¸

F (»;¿)=0
¿ 0=¹¿ 0

= 0

and a0a ¡ 1 = 0,

(3.2)

where a is an (n + J)-dimensional vector.
Financial innovation generated by altering the yields from redundant assets can

bring about an increase in volatility if the system of equations (3.2) has no solution.10
We will establish that this property obtains at every equilibrium for an open and dense
set of economies. Having accomplished this, we will show robustness in the space of
¯nancial innovations, that is openness of the set of volatility-reducing innovations.
It will simply follow from establishing that, for an open and dense set of economies,
some altered equilibrium (after volatility-reducing innovation) is regular, just as was
the original equilibrium.

4. E®ects on market volatility

When an asset is redundant, it has no e®ect on the market allocation. If such a new
asset is introduced into the economy, then (2.2) becomes

10Note that a necessary condition to have no solution to (3.2) is that dimT ¸ n¡n1+k; and this
will be veri¯ed in our case.
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...
Duh(xh) ¡ ¸hª = 0

¸hR = 0

¡ªzh + [R r]
µ

bh

b̂h

¶
= 0

...P
h zn

h = 0P
h bh = 0

...
¸hr = 0

...P
h b̂h = 0,

(4.1)

where b̂h; all h; q̂ and y are the new asset holdings, price and yields, and r =
µ

¡q̂
y

¶
.

The left-hand side of the equations (4.1) corresponds to our function F , when
(b̂; q̂; y) = ((b̂h; all h); q̂; y) is identi¯ed with ¿ . A designer can introduce a new asset
by choosing b̂; q̂ and y, with the constraint that b̂ and q̂ are equilibrium asset holdings
(so they satisfy market clearing) and equilibrium price for given yields y (so they
satisfy a no-arbitrage condition). That is, the constraints are

...
¸hr = 0

...
and

P
h b̂h = 0,

(4.2)

which would have to be appended to equations (2.2), while simultaneously modifying
the households' budget constraints accordingly. The full set of constraints facing the
designer is then described by equations (4.1). The dimension of the range of F just
equals the number of equations de¯ning an equilibrium with I + 1 assets. Note that
the designer uses H + 1 + S instruments (so that T = RH+1+S), of which (as many
as) H + 1 cannot be chosen independently, given equations (4.2).11

If the completely redundant asset y = 0 is introduced, arbitrage-pricing requires
that q̂ = 0 as well, so that market-clearing is the only e®ective restriction on b̂ (and
the planner is free to choose all but two of the remaining \policy" instruments, q̂ and
b̂h; some h). Thus, in the ¯ctitious equilibrium, a natural choice for the subvector of

11By this we mean that equations (4.2) restrict the choice of ¿ , so that in order for these equations
to be satis¯ed, H+1 elements of ¿ must be endogenously determined, once the others are ¯xed. The
elements of ¿ which are unrestricted are said to be `independent'.
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instrumental variables ¿ 0 is ¿ 0 = ((b̂h; h > 1); y), and for their particular values ¹¿ 0,
say,12

¹¿ 0 = ((¹bh; h > 1); ¹y) = (1; 0).

With these choices, and given Lemma 3.2 (i), we will now prove condition (3.1) by
selecting ¿ 00 as

¿ 00 = (b̂1; r¾(s); 0 · ¾(s) · H ¡ 1)),

For this and later purposes it is very convenient to partition

r = (r00; r000) = ((r¾(s); 0 · ¾(s) · H ¡ 1); (r¾(s);H · ¾(s)),

to conform with ¿ 00.

Lemma 4.1. For every µ 2 £u,

rankD»;b̂;r F
¯̄
¯ F (»;b̂;r)=0
b̂h=¹bh; h>1

y=¹y

= rankD»;b̂1;r00 F
¯̄
¯ F (»;b̂;r)=0
b̂h=¹bh; h>1

y=¹y

= n,

provided S + 1 ¡ I = S(S ¡ J) + S + 1 ¡ J¸ H.

Proof. See the Appendix.
It is not di±cult to see that, equipped with Lemma 4.1, we can apply the general

methodology outlined in the previous section to this case, and therefore establish that
G is a submersion at (»; ¿) with ¿ 0 = ¹¿ 0 for which F (»; ¿)

¯̄
¯
¿ 0=¹¿ 0

= 0 if and only if the
system of equations (3.2), now appearing as

a0
·

DF
DG

¸
F (»;b̂;r)=0
b̂h=¹bh;h>1

y=¹y

= 0

and a0a ¡ 1 = 0;

(4.3)

has no solution. This last is the result that we now verify for an open and dense set
of economies parameterized by both endowments and utility functions.

Intuitively, we are using H+1+S instruments to achieve J objectives, the changes
in volatility. The introduction of a new asset carries additional constraints in the form
of H arbitrage pricing equations and one asset market clearing condition. Note that
dimT = H +1+S ¸ H +1+J; where H +1 = n¡n1; which is equivalent to S ¸ J ,
obviously true in our context: However, the previous lemma indicates that this is not
enough. H instruments (the new asset holdings) are indeed useless, because they
only control market clearing. The remaining S + 1; the new asset price and yields,
are also constrained to spread their e®ect through elements of the orthogonal space of
R (through the ¸'s), losing I dimensions. Hence S + 1 ¡ I of these instruments must

12The argument, and only in Theorem 4.2, requires that ¹bh 6= 0, all h.
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be used to accomplish the control task, but they need to satisfy the H no arbitrage
equations as well. Therefore, S + 1 ¡ I ¡ H are really the independent instruments.
The following theorem shows that condition S + 1 ¡ I ¡ H ¸ J itself is necessary (in
our framework) and su±cient in order to show that the equilibrium volatility function
is locally onto.

Theorem 4.2. On an open and dense set £̂ ½ ££U , at any original equilibrium, G
is a submersion, so that there are new assets y0 and y00 whose introduction decreases
and increases volatility, respectively, provided S + 1 ¡ I ¸ H+J (that is, again,
S(S ¡ J) + S + 1 ¡ J ¸ H + J).

The proof of Theorem 4.2 is rather technical and is deferred to the Appendix.
From an economic viewpoint, only two aspects of the proof are worth mentioning
here. First, the proof shows that it would be possible to choose the new asset payo®s
out of the last spots, if these were in su±cient number. That is, if a stronger condition
holds, and S

2¡J(S+1) ¸ H+J; then the new asset payo®s can be chosen only at the
terminal date. When J = 1; no extra condition has to be explicitly imposed in order
to establish the dependence of the payo® speci¯cation on the terminal date, because
the condition occurs automatically. Second, in proving Theorem 4.2 we show that it
is always possible to take as \independent" the subvector of instrumental variables

¿ 000 = (r¾(s);H · ¾(s) · H + J ¡ 1).

and to ¯x r¾(s); for ¾(s) ¸ H + J; and bbh; for h > 1.13 Taking advantage of this last
observation, we can state and prove a corollary which shows the robustness of the
existence of volatility-reducing innovation. It will be convenient hereafter to simply
use ¿ in place of (b̂; r).

Corollary 4.3. On an open and dense set £̂¤ ½ £̂, at any original equilibrium,
there is some altered equilibrium which is (i) volatility-reducing and (ii) regular, as
well as some altered equilibrium which is (i) volatility-increasing and (ii) regular,
so that there are open sets of new assets Y 0 and Y 00 such that the introduction of
y0 2 Y 0 or y00 2 Y 00 can decrease or increase market volatility, respectively, provided
S(S ¡ J) + S + 1 ¡ J ¸ H + J.

Proof. See the Appendix.

4.1. Two examples of negligible economies

To convince the reader that utility perturbations are needed (that is, for density), we
have elaborated on a well-known example for one-period trading models (see Magill
and Quinzii, (1996)) of an economy with incomplete markets and linear-quadratic

13This is what \dropping the equations corresponding ¢ ¢ ¢" means, as used in the course of the
proof (see the Appendix).
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utility functions. The example shows that ¯xing speci¯c preferences leads to no
changes in asset prices due to ¯nancial innovation, therefore to no changes in volatility.

A second example is provided which shows: a) how our result deals with incomplete
vsus complete asset markets; b) why in the absence of aggregate risk completing
markets may reduce the volatility of the preexisting asset no matter what new asset
is introduced, but again that the situation is not robust to parameter speci¯cations.

First example
For this purpose, assume that uh takes the form

uh(xh) = ¼0
hv(x0

h) +
X

s>0

¼sfh(v(xs
h)), (4.4)

where v : RC
++ ! R is a smooth, di®erentially strictly increasing and concave, homo-

geneous of degree one function, and

fh(y) = ¡(1=2) (®h ¡ y)2

Then preferences are homothetic and spot-separable, and spot commodity equi-
librium prices are independent of the income distribution across agents and across
states. Then the portfolio choice only a®ects the level of consumption in each spot,
but not the commodity prices. Let ws = §hes

h be the level of aggregate endow-
ments in spot s; and consider the spot price normalization psws = 1; for all s: From
Dv(ws)ws = v(ws); all s; we get

ps = Dv(ws)=v(ws)

for all s; which shows that ps only depends on aggregate resources, not on income dis-
tribution (hence, and a fortiori, not on ¯nancial innovation): Therefore one can reduce
the trader's multi-commodity maximization problem to a one-commodity maximiza-
tion: after de¯ning ms

h = pses
h+rsbh; and noting that the optimal consumption vector

in spot s is given by xs
h = ms

hws; we transform (H) into

maxbh¼0
h~x0

h +
P

s>0 ¼sfh(~xs
h)

s: t: ~xh = !h + ~Rbh

with ~xs
h = v(ws)ms

h; !s
h = v(ws)pses

h and the s¡th row in ~R is ~rs = v(ws)rs: De¯ne
!1

h =
³
!1

h; ::!s
h; ::; !S

h

´
and !2

h(s) =
³
!(s¡1)S+1

h ; ::; !(s¡1)S+S
h

´
; for 1 · s · S: Also

de¯ne ¼0 = §h¼0
h; ® = §h®h; !1 = §h!1

h and !2(s) = §h!2
h(s): At this point, the

linear-quadratic assumption on uh leads to the following equilibrium asset prices

q0 =
1
¼0

¡
®1 ¡ !1¢0 ¦(0) [Y (0) + Q]

and
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qs =
1

® ¡ !s

¡
®1 ¡ !2(s)

¢0 ¦(s)Y (s)

where ¦(s) is the S¡dimensional square, diagonal matrix of conditional probabilities
given state s has occurred, s = 0; 1; :::; S: Neither of these expressions changes as we
add a new asset.

Second example
Consider an economy with H = 3; S = 2 and C = 2. Traders have identical

preferences described by the (state-dependent, but it does not matter for what we
want to show) utility function

P
s ¼s P

c(1=G¼s) log xs;c
h ; and endowments such thatP

h es;c
h =

P
h eh for all pairs (s; c) with s > 0; a ¯xed amount, while

X

h

e0;2
h = [(G ¡ 1)(G ¡ SC) ¡ SC]

X

h

eh=G;

and no restriction is imposed on endowments at time t = 0 for c = 1. Assume that to
start with there are J = 2 assets in the economy, with payo® matrix Y independent
of s and with rank equal to 2, and satisfying the condition

rank Y = rank [Y +
µ

1T Y
1T Y

¶
]

where 1T is a 2-dimensional row vector of ones.
Consider the walrasian model associated with this economy. It can easily be shown

that the following is the unique walrasian equilibrium price p̂: p̂s;c = 1 for all (s; c)
with s > 0; and for (0; 2), while

p̂0;1 = [(G ¡ SC)
X

h

eh ¡
X

h

e0;2
h ]=

X

h

e0;1
h

Let qs = 1T Y; all s; and q0 = 1T [Y +Q], so that markets are complete at these prices
(i.e., rank R = I). Then there exist bh 2 R2; all h; such that ª̂(x̂h ¡ eh) = Rbh and
1T R = 0; where ª̂ is the usual commodity price matrix at p̂; and x̂h is the walrasian
consumption: Letting ¸h = ¹h1 for all h; we see that p̂ is also the unique complete
markets equilibrium for this economy.

If J = 1; the incomplete market economy will typically result in equilibria where
¸s

h 6= ¸s0
h for some s 6= s0: That is, we keep preferences as given, and change endow-

ments but always constrain them to be identical in the aggregate as explained above,
and select only payo® matrices with strictly positive yields for all s. This is obtained
through a standard round of transversality (here we need to have one commodity at
time t = 0 not constrained to have ¯xed aggregate endowments).

Notice that in the complete market economy, qs = qs0
for all s; s0, so that asset

volatility is zero when markets are complete, and will be typically positive for the
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remaining asset when markets are incomplete. Finally, note that the absence of
aggregate risk can be accomodated in our setup, but it is not generic, and this is why
the example works, even though the condition for the application of the theorem is
satis¯ed: 1 + S ¡ I ¸ H + J; that is, 1 + 6 ¡ 3 ¸ 3 + 1:

4.2. Innovation with retrading

In this section we consider the e®ects on volatility of the introduction of a new security
that can be retraded at time t = 1: In the previous section we dealt with innovative
instruments that could not be retraded between today, time of the innovation, and the
terminal date. Although some hedging instruments which are traded over the counter
present this one-time trading feature, most newly traded securities are marketed in
exchanges where retrading is possible. It turns out that the general framework of
Section 3 is applicable to this case in a fruitful manner, and almost the same analysis
developed in Section 4 carries through. In particular Lemma 4.1 and Theorem 4.2
can be recovered when the new asset can be retraded, provided we change slightly
Lemma 3.2 (i). Since the proofs of the results are similar to those presented in the
previous sections, the details are omitted. The bottom line of this section is that
retrading makes controllability more di±cult, in the sense that the condition used to
obtain volatility-reducing (or volatility-increasing) innovation is stronger than with no
retrading. Introducing an asset with retrading corresponds to introducing S + 1 new
markets. Although we have more assets to use, the number of payo®s we control is
unchanged (totalling S), while the number of constraints increases, because retrading
requires more no arbitrage equations for the new asset.

Let R̂ be the matrix representing the payo®s and prices of the new ¯nancial instru-
ment. R̂ is just a copy of R; that is if we were to assume that J = 1; with arbitrary
payo®s Y; taken in general to be di®erent across time and states. Let rs = (¡qs; y(s)) ;
for s = 0; 1; :::; S: We need to append S + 1 market clearing equations and

¡
S + 1

¢
H

pricing equations to the original equilibrium system. As before, we will call F the
equilibrium function with these appended equations.

First, we need to strengthen Lemma 3.2. Let ¾0 be a permutation of the states
fs; sS + 1; sS + 2; :::; sS + Sg; for each s = 0; 1; :::; S; with generic element ¾0(s); that
is, a permutation of the set including the direct successors of a state s and this state.

Lemma 4.4. Consider the solutions to F1(»; µ) = 0. Generically in £¤, given any
set of the S direct successors of the state s = 0; 1; ::; S; and a permutation ¾0;

(ii) rank[¸¾0(s)
h ; 1 · h · H; 0 · ¾0(s) · H ¡ 1] = H ,

if 1 + S ¸ H + J:

Then we can prove the analogue of Lemma 4.1. Let rs = (rs00; rs000) = ((r¾0(s); 0 ·
¾0(s) · H ¡ 1); (r¾0(s);H · ¾0(s)) be a partition of each vector rs; for s = 0; 1:::; S:
Let b̂1 =

³
b̂01; b̂11; :::; b̂S

1

´
; the vector of the new security holdings for trader h = 1:
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After appropriately rede¯ning the set £u in the obvious way; we have the following
lemma.

Lemma 4.5. For every µ 2 £u,

rankD»;b̂;r F
¯̄
¯ F (»;b̂;r)=0
b̂h=¹bh; h>1

y=¹y

= rankD»;b̂1;r00 F
¯̄
¯ F (»;b̂;r)=0
b̂h=¹bh; h>1

y=¹y

= n,

provided 1 + S ¸ H+J .

The proof is based on the use of Lemma 4.4 and the fact that we can extract H
states following and including each state s = 0; 1; :::; S for which the multiplier matrix
has rank H.

Finally, Theorem 4.2 can be modi¯ed accordingly. We state here only one side
of the result, the volatility-reducing part, although the theorem shows that both
directions for volatility are possible.

Theorem 4.6. On an open and dense set ~£ ½ £ £ U, at any original equilibrium,
G is a submersion, so that in particular there is a new asset with retrading y, whose
introduction decreases volatility provided 1 + S ¡ J ¸ H+J.

The proof of this theorem would show that only the terminal payo®s need to be
chosen appropriately. Moreover, it is immediate to see that the condition 1+S ¡J ¸
H + J needs to hold only for those many states following one state in period t = 1:
In other words, if the number of states varied from node to node, a weaker condition
than the one used in the theorem could be adopted.
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5. Appendix

Proof of Lemma 4.1
The Jacobian matrix of F at a point as de¯ned above is

eq. / var. ¢ ¢ ¢ xh bh ¸h ¢ ¢ ¢ p q ¢ ¢ ¢ b̂h ¢ ¢ ¢ r
...

Duh¡¸hª D2uh 0 ¡ª0 ¡¤n
h 0 0 0

¸hR 0 0 R0 0 Q1
h 0 0

¡ªzh+[R r]
µ

bh

b̂h

¶
¡ª R 0 ¡Zn

h Q2
h j 0 ¹bhI

... jP
h zn

h In 0 0 0 0 j 0 0P
h bh 0 I 0 0 0 0 0
...

¸hr 0 0 0 0 0 0 ¸h
...P

h b̂h 0 0 0 0 0 1 0

where

In =

2
664

. . .
[I 0]

. . .

3
775 ,

¤n
h =

2
66664

. . .

¸s
h

·
I
0

¸

. . .

3
77775

and

Zn
h =

2
664

. . .
(zsn

h )0

. . .

3
775 ;

Q1
h =

2
6664

¡¸0
hI ¸1

hI ¢ ¢ ¢ ¸S
hI

0 ¡¸1
hI 0 0

... 0
. . . 0

0 0 0 ¡¸S
hI

3
7775
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and

Q2
h =

2
6666664

¡b0
h 0 ¢ ¢ ¢ 0

0 ¡b1
h + b0

h
. . .

...
...

. . . . . . 0
0 ¢ ¢ ¢ 0 ¡bS

h + b0h
0 0 0 0

3
7777775

Lemma 3.1 implies that the block in the upper left corner (corresponding to D»F 0
1 )

has full rank. But Lemma 3.2 (i) implies that, when S + 1 ¡ I ¸ H, the block in the
lower right corner (corresponding to Db̂;rF2 ) also has full rank; simply consider the
columns corresponding to the particular variables b̂1 and r00 (that is, corresponding
to Db̂1;r00F2). Hence, since the block in the lower left corner (corresponding to D»F2 )
is 0, the matrix D»;b̂1;r00F , and, a fortiori, the matrix D»;̂b;rF must have full rank.

Proof of Theorem 4.2
The proof is carried out in two steps.

Step 1 - Openness.
All we need to show is that the projection ¼ : ¥n1 £ T £ £ £ U ! £ £ U is proper
when restricted to the subset of the domain where

F (»; b̂; r; e; Y (s)S
s=0; u) = 0

b̂h = ¹bh; h > 1
and y = ¹y.

(5.1)

This follows from the fact that the set of solutions to equations (4.3) yields a closed
subset of the solutions to (5.1). Thus, given properness, the complement of its pro-
jection into the parameter space is open. But properness can be established through
a well-known argument (see Citanna, Kajii and Villanacci, Lemma 1, e.g.), whose
details we therefore omit.

Step 2 - Density.
Without loss of generality, we will assume that a (µ; u) is chosen in an open and dense
subset of £ £ U such that µ 2 £u; with all the stated properties. Moreover, we will
assume that at (µ; u) there is only one equilibrium. To establish density in ££U , we
show that the system (4.3) almost never has a solution for an open and full-measure
subset of fµg £ A, where µ 2 £u and A = ¢ ¢ ¢ £ Ah £ ¢ ¢ ¢ ½ (RG2

)H is the space
representing a ¯nite-dimensional parametrization of the households' utility functions
around u (again, see Cass and Citanna, e.g.).

The reader should keep in mind that we need to be able to perturb utility spot-
by-spot, at the same time keeping the functional form constant across spots. This
could be done if we had

xs0
h 6 =xs00

h ; s0 6 =s00 > 0, all h.
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But as we proved in Lemma 3.2 (iii), for di®erentially strictly concave (in fact, quasi-
concave) utility functions and on a generic subset of £,

ps0
is not colinear with ps00

; s0 6 =s00 > 0,

from which the required diversity in households' consumption follows directly.
Consider the system given by (4.3) in extensive form, that is, (5.1) and

...
HG ®hD2uh ¡ °hª + ±In = 0 (1)
HI °hR + ² = 0 (2)

H(S + 1) ¡®hªT + ¯hR0 = 0 (3)
...

(C ¡ 1)(S + 1)
P

h(®h¤n
h + °hZn

h) = 0 (4)
I

P
h(¯hQ1

h + °hQ2
h) + ¹Dqv = 0 (5)

...
H [1] ²̂ = 0 (6)

...
S + 1 [H + J ]

P
h(¹bh°h + ^̄h¸h) [

P
h( °#

h
¹bh + ^̄h¸#

h )] = 0 (7)
1 and ¹0¹ ¡ 1 = 0, (8)

9
>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(5.2)

where a0 ´ (¢ ¢ ¢ ; (®h; ¯h; °h); ¢ ¢ ¢ ; ±; ²; ¢ ¢ ¢ ; ^̄h; ¢ ¢ ¢ ; ²̂; ¢ ¢ ¢ ; ¹i; ¢ ¢ ¢), °h = (°#
h ; °##

h ) =
((°s

h; 0 · ¾(s) · H + J ¡ 1); (°s
h; ¾(s) ¸ H + J)) and ¸h = (¸#

h ; ¸##
h ) split ac-

cordingly (notation which is only used for the remainder of this argument) and on
the far left side we have displayed the number of equations. Equation (5.2.8) replaces
a0a ¡ 1 = 0 without loss of generality due to Lemma 4.1. Since they are all identical,
hence redundant, we drop H ¡1 equations corresponding, in particular, to all but the
¯rst of (5.2.6). Given that S+1¡I ¸ H+J; and consequently that S+1¡H¡J ¸ 0,
it follows that the equations (5.2) still outnumber the additional variables a by this
di®erence. So we can drop all but H + J of (5.2.7) { as indicated in square brackets
{ and still have one more equation than variables. Now observe that the restriction
on the domain in (5.2), that is, (5.1), is equivalent to

F1(»; µ; u) = 0;
b̂ = ¹b = (¡(H ¡ 1); 1; ¢ ¢ ¢ ; 1)

and r = ¹r = 0.

But since µ 2 £u, rankD»F1 = n1, while by construction, Da;AF1

¯̄
¯
F1(»;µ;u)=0

= 0. It

remains to show that the Jacobian matrix of the truncated subsystem in (5.2) (with
respect to (a;A)) has full rank, in order to apply the transversality theorem, and
to conclude that, generically in parameterized utility functions, the full system (4.3)
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has no solution. We need to consider few cases, since the matrix of derivatives of
equation (5.2.1) with respect to the elements of the symmetric matrix Ah has full
rank if ®s

h 6= 0; all s; but, for example, will have less-than-full rank if ®s
h = 0; for some

s; h. Here is where the general position of R; which we do not have, was heavily used
in Cass and Citanna.

Case a - ®s
h 6= 0, all s;all h.

In this case it is straightforward to verify that equations (5.2.1), all h, can be perturbed
independently by using the utility parameters A. Since ¹ only appears in equations
(5.2.5) and (5.2.8), while, in light of equation (5.2.8), ¹ can never be equal to zero, this
last can then be perturbed independently using ¹. Similarly, since ®h only appears
in equations (5.2.1), (5.2.8), (5.2.3) and (5.2.4), the last two, all h, can be perturbed
independently using ®: Use ®s;C

h ; all s, in (5.2.3), and ®s;c
h ; all s; all c 6= C, some

h; in (5.2.4). Continuing in the same manner, equations (5.2.5) can be perturbed
independently using ¯h; some h, while, obviously, equation (5.2.6) can be perturbed
independently using "̂. Finally, equations (5.2.2), all h, and (5.2.7) can be perturbed
independently using °##

h , all h, and ^̄h; all h; °#;s
h , for J spots s and some h; here we

appeal to the assumptions that: a) the ¯rst I rows of R (including the relabelled spots
S +1 ¸ ¾(s) ¸ H +J and therefore part ## of the vectors) form an I2¡dimensional,
full rank matrix ; b) by assumption, we have at least J elements °#

h ; and the ¸#
h 's

selected include the ones forming a matrix of rank H; c) ¹bh 6= 0, all h.

Case b - ®s
h = 0, some s; some h.

First, note that ®h = 0, some h cannot occur. In this case it is straightforward
to verify that ®h = 0; ¯h = 0 and °h = 0. Then ± = 0 and ² = 0; which implies
(®h; ¯h; °h) = 0 from demand regularity for all other h, and this implies from (5.2.5)
and Lemma 3.2.ii) that ¹ = 0; which contradicts equation (5.2.8).

Let S0
h = fs 2 f0; 1; :::; Sg : ®s

h = 0g, with S0
h 6= ;, some h, and

S = [hS0
h

S = \hS0
h.

We need to look at system (5.2) more closely. We rewrite its equations below, state
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by state:
s =2 S ®s

hD2
s;suh ¡ °s

hps + ±s [I0] = 0 (1a)
s =2 S0

h; s 2 S ®s
hD2

s;suh ¡ °s
hps = 0 (1b)

°hR + ² = 0 (2)
s =2 S0

h ¡®s
h (ps)0 + ¯h (rs)0 = 0 (3a)

s 2 S0
h ¯h (rs)0 = 0 (3b)

s =2 S
P

h:s=2S0
h
(®sn

h ¸s
h + °s

hzsn
h ) = 0 (4)P

h(¯hQ1
h + °hQ2

h) + ¹Dqv = 0 (5)
²̂ = 0 (6)

s =2 S
P

h( °s
h
¹bh + ^̄h¸s

h)] = 0 (7a)
s 2 S

P
h

^̄h¸s
h = 0 (7b)

and ¹0¹ ¡ 1 = 0. (8)

9
>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(5.3)

We have substituted for ®s
h = 0; discovering that this implies °s

h = 0 and ±s = 0
for these s 2 S0

h: This means that the corresponding equations (5.2.1) will drop for
these spots s 2 S0

h. Note that also some equations among (5.2.4) have (possibly, for
s 2 S) dropped out of the system. We have at least

P
h S0

h extra equations. If we
decide not to perturb the zeroed variables, we can drop some other equations, since
now the equations still outnumber the unknowns by more than one. Notice also that
equations (5.3.1) can be perturbed using the utility parameters Ah; equations (5.3.3a)
and (5.3.4) can be perturbed using the ®'s as before, and equations (5.3.6) using ²̂.
We are left with perturbing equations (5.3.2), (5.3.3b), (5.3.5), (5.3.7) and (5.3.8).

Let Rn0
h be the submatrix of R with rows corresponding to those spots s =2 S0

h; and
R0

h be the matrix with rows corresponding to spots s 2 S0
h; equations (5.3.3b) then

read ¯hR00
h = 0. At this junction, the choice of the equations to be dropped depends

on the rank of these two matrices. Let rank Rn0
h = I¤

h = minfI; 1 + S ¡ S0
hg and

rank R0
h = I¤¤

h = minfI; S0
hg; using the general position of Y: Of equations (5.3.3b),

S0
h ¡ I¤¤

h are redundant and must be thrown away. Therefore we have a surplus of at
least

P
h I¤¤

h (i.e., fewer) equations.
If S0

h = ;; some h; then his equations (5.3.3b) disappear, and equations (5.3.3),
(5.3.2) for this h and (5.3.7) are perturbed using this trader ®h; °h and ^̄; as in Case
a). Then we can use this trader's ¯h to perturb equations (5.3.5). The remaining
equations (5.3.2) and (5.3.3b) are perturbed as follows. Since there are

P
h I¤¤

h +P
s2S(C ¡1) extra equations, if I¤¤

h = I; we throw away equations (5.3.2) and use ¯h
to perturb ¯h = 0; implied by (5.3.3b). If I¤¤

h < I;then I¤¤
h = S0

h, and we can use ¯h
to perturb equations (5.3.3b), and perturb (5.3.2) using °h possibly (if I¤

h < I) after
throwing away S0

h of these equations. Equation (5.3.8) is perturbed using ¹.
So consider the case when S0

h 6= ;; all h:
1) If I¤¤

h = I ; all h, equations (5.3.3b) imply ¯h = 0: Then the system of equations
for each household is
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s =2 S ®s
hD2

s;suh ¡ °s
hps + ±s [I0] = 0 (1a)

s 2 S; s =2 S0
h ®s

hD2
s;suh ¡ °s

hps = 0 (1b)
°hR + ² = 0 (2)

s =2 S ¡®s
h (ps)0 = 0 (3a)

First, we throw away J equations (5.3.7), perturbing the remaining H using ^̄: Equa-
tion (5.3.8) is perturbed using ¹. Note that equations (5.3.5) are now

P
h °hQ2

h +
¹Dqv = 0: They can be rewritten as

£
°0
1 : : : °0

H
¤
2
64

¡b0
1

...
¡b0H

3
75

H£J

= 0

and

£
°s
1 : : : °s

H
¤
2
64

¡bs
1 + b0

1
...

¡bs
H + b0

H

3
75

H£J

+ ¹(Dqsv) = 0

for s = 1; :::; S: For each s; let J¤(s) be the rank of these matrices after deleting the
rows corresponding to °s

h = 0. In order to perturb equations (5.3.5) using °s
h, we

need to delete
PS

s=0[J ¡J¤(s)] of them. We observe that it can never be that °s
h = 0

for all h; for s > 0; since then ¹ = 0; contradicting Lemma 4.1. Hence J¤(s) ¸ 1;
for s > 0 (this uses the fact that bs

h 6= 0 or ¡bs
h + b0

h 6= 0; all h; s, generically in £¤;
through an argument similar to the ones in the proof of Lemma 3.2). This implies
I > J +

PS
s=0[J ¡ J¤(s)]: Take h = 1 and leave J + (J ¡ J¤)(S + 1) of equations

(5.3.2), and perturb them using ²i: Then we can throw away the I equations (5.3.2)
for h > 1; completing this subcase.

2) If I¤¤
h < I; for some, but not all h: When I¤¤

h0 = I for some h0, for one of them we
keep equations (5.3.2), which we perturb using ². Equations (5.3.3b) are eliminated,
thereby freeing the vector ¯h0 for use in equations (5.3.5). For all other h0; we can
throw away the I¤¤

h0 equations (5.3.2), and use the vector ¯h0 in equations (5.3.3b). For
h such that I¤¤

h < I; we throw away I¤¤
h = S0

h equations (5.3.2), obtaining a submatrix
of Rn0

h with 1+S¡S0
h rows and I¡S0

h columns, and since rows are more than columns,
the rank of this submatrix is I¤

h = 1 + S ¡ S0
h using the general position of Y ; we use

°h to perturb the remaining equations (5.3.2). Equation (5.3.3b) is perturbed using
¯h; and equation (5.3.8) using ¹. For equations (5.3.7), we can perturb the J (5.3.7a)
using °s

h, for some h such that s =2 S0
h; and perturb the rest with ^̄. Note that such

a °s
h is free because s =2 S if s is part of these equations, and because either °s

h is not
used to perturb (5.3.2), for h such that I¤¤

h0 = I; or we can always avoid using one
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such element if h is such that I¤¤
h < I, since S + 1 ¡ S0

h > I ¡ S0
h; completing the

subcase.
3) If I¤¤

h < I; all h : Then, as in the previous subcase, for h > 1 we throw
away I¤¤

h = S0
h equations (5.3.2), obtaining a submatrix of Rn0

h with more rows than
columns, and we use °h to perturb the remaining equations (5.3.2). For equations
(5.3.3b), we use ¯h. For h = 1; we keep equations (5.3.2) and perturb them with ²:
Then we throw away equations (5.3.3b), we use ¯1 to perturb equations (5.3.5). As
for equations (5.3.7a), again we use °s

h for h such that s =2 S; which we can always do
as explained in the previous subcase, and for equation (5.3.8) we use ¹.

This ends the proof of case b).
In this way, we have established density. It now follows that, in the (weakly)

generic set of economies for which G is a submersion, we can construct a new asset
y0 = ¢y0 6 =0 so that volatility increases in equilibrium, as well as a new asset
y00 = ¢y00 6= 0 so that volatility decreases.

Proof of the Corollary to Theorem 4.2.
We will focus on decrease of volatility, as the symmetric argument requires merely

reversing an inequality. Fix b̂h = ¹bh = 1; h > 1; and y¾(s) = ¹y¾(s) = 0; ¾(s) ¸ H + J .
Then, for µ̂ 2 £̂, consider the system of equations and inequalities describing pairs
of ¯ctitious and altered equilibria where the latter are both volatility-reducing and
regular, that is,

F (¹»; ¹¿; µ̂) = 0 or F1(¹»; µ̂) = 0
F (»; ¿; µ̂)

¯̄
¯ b̂h=¹bh;h>1
y¾(s)=¹y¾(s);¾(s)¸H+J

= 0

G(») ¿ G(¹»)
and detD»;b̂;q̂F (»; ¿; µ̂)

¯̄
¯ b̂h=¹bh;h>1
y¾(s)=¹y¾(s);¾(s)¸H

6= 0.

(5.4)

We will show that the projection of the solutions to (5.4) onto £̂ is open and dense.
The proof is carried out in two steps.

First, it is straightforward to verify that, by virtue of the particular choice for
¹bh; h > 1, the projection ¼ : ¥n1 £ ¥n1 £ T £ £̂ ! £̂ restricted to the set de¯ned
by the ¯rst pair of equations in (5.4) is a proper mapping. Openness then follows
directly from the fact that the denial of either of the second pair of inequalities in
(5.4) is a closed property in the same set.

Now let N¢»;¢¿ 00 be an open neighborhood of 0 in Rn1+(H+1), N¢¿ 000 be an open
neighborhood of 0 in RJ and N¢v be an open neighborhood of 0 in RJ ; intersected
with RJ

++. Then, for µ̂ 2 £̂ with µ 2 £u, consider the system of k0 + 1 = (n1 +
J + 2n) + 1 equations (representing di®erential volatility decrease with respect to a
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critical equilibrium)

» F1(»; bµ) = 0,
¢v ¡DG(»; ¹¿)D»;¿ 00F (»; ¹¿ ; bµ)¡1D¿ 000F (»; ¹¿ ; bµ)¢¿ 000 = ¢v,

¢»;¢¿ 00 F (» + ¢»; ¹¿ + ¢¿; bµ) = 0,
a;A a0D»;b̂;q̂F (» + ¢»; ¹¿ + ¢¿; bµ) = 0

and a0a ¡ 1 = 0

(5.5)

in the k0 \variables" (»;¢»;¢¿; a) 2 ¥n1 £ N¢»;¢¿ 00 £ N¢¿ 000 £ f0g £ Rn and ` =
J + G2HJ \parameters" (¢v;A) 2 N¢u £ A . It is only tedious to show that, by
virtue of the particular choice for ¹y¾(s); ¾(s) ¸ H + J , for N¢»;¢¿ 00 ; N¢¿ 00 and N¢v
(as well as A and O) su±ciently small, the Jacobian matrix of this system has full
rank (by perturbing each equation using the variables listed alongside). Hence we
can once again apply the transversality theorem, and conclude that, generically in
the \parameters", (5.5) has no solution. Density then follows from the fact that b£
is open. The remainder of the argument is based on the implicit function theorem.
Since it is always possible to restrict the analysis to the subset of utilities which have a
compact domain containing the total resources of the given economy, and this subset
is a Banach space, then (locally) the altered equilibrium depends smoothly on the
yields from the volatility-reducing new asset.
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