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Abstract: In this article, we present one of the first real-world empirical applications of

state-contingent production theory. Our state-contingent behavioral model allows us to

analyze production under both inefficiency and uncertainty without regard to the nature of

producer risk preferences. Using farm data for Finland, we estimate a flexible production

model that permits substitutability between state-contingent outputs. We test empirically,

and reject, an assumption that has been implicit in almost all efficiency studies conducted

in the last three decades, namely that the production technology is output-cubical, i.e., that

outputs are not substitutable between states of nature.
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Uncertainty and technical efficiency in Finnish

agriculture: a state-contingent approach

1 Introduction

There is a large literature on comparisons of productive efficiency, beginning with the work

of Farrell (1957). Assessments of the relative efficiency of agricultural producers have been

of particular interest for a number of reasons. First, because agricultural producers typically

own land and live on their farms, the standard assumption that market competition will

ensure that only efficient producers remain in a given industry is unlikely to be applicable,

and the process of adjustment is likely to cause social problems. Second, there exist a wide

range of policy interventions, such as education, training and extension programs, which

may be interpreted as attempts to increase the efficiency of agricultural production. Third,

policy questions relating to the existence and estimation of an optimal size, or minimum

efficient size, for farms have been debated in many countries.

All production is subject to uncertainty, but the risks associated with agricultural pro-

duction are particularly salient. Crop yields may be affected by the amount and timing of

rainfall, temperatures during the growing season, pests, diseases, hailstorms and fire among

many other factors. Hence, observed differences in outputs and inputs may reflect differences

in efficiency, differences in the outcomes of risky decisions, or both.

One common method for dealing with production uncertainty in efficiency comparisons

has been the estimation of stochastic frontier models (see among others, Battese, Ram-

baldi and Wan, 1997; Kumbhakar 2002; Karagiannis, Tzouvelekas and Xepapadeas, 2003;

Morrison Paul and Nehring, 2005). In the standard stochastic frontier model, maximum

likelihood estimation is used to partition deviations from an estimated production frontier

into two components: a one-sided stochastic term representing technical efficiency and a two-

sided term representing exogenous stochastic shocks. Implicitly, the production technology
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being modelled is stochastic.

In general equilibrium theory and finance theory, among other fields, it is more common to

model uncertainty in terms of a state-contingent technology. The origins of state-contingent

production theory, which considers that outputs are conditional on the states of nature (each

state representing a particular uncertain event) can be traced back to Arrow and Debreu

(1954). More recently, Chambers and Quiggin (2000) have shown that all the tools of modern

production theory, including cost and distance functions, may be applied to state-contingent

production technologies.

Chambers and Quiggin (2000) describe several different types of state-contingent pro-

duction technologies, including technologies they refer to as state-allocable. A feature of

state-allocable technologies is that producers can manage uncertainty through the allocation

of productive inputs to different states of nature. This concept is best illustrated by a sim-

plified example (Chambers and Quiggin, 2000, pp. 36–39). Consider a producer who makes

a pre-season allocation of a fixed amount of effort to construction of irrigation infrastructure

and/or flood-control facilities. If the producer allocates his pre-season effort to the devel-

opment of irrigation facilities instead of flood control, output will be relatively high if there

happens to be a drought (state 1) and low in the event of a flood (state 2). Conversely, if

pre-season effort is allocated mainly to flood control, output will be relatively high in state

2 and low in state 1. In this simple example, different pre-season allocations of the input

imply a trade-off between output realized in state 1 and output realized in state 2. That is,

the producer allocates the input to different states of nature in order to effect a substitution

between state-contingent outputs.

The state-contingent approach, by permitting the allocation of productive inputs to dif-

ferent states of nature, recognizes that actions (input choices) can have different consequences

in different states of nature. This is not a property of conventional stochastic production

theory, in which the role that inputs play remains the same regardless of which state occurs,

and which does not permit substitutability between state-contingent outputs. The different

types of state-contingent technology described by Chambers and Quiggin allow for more or

less substitutability between state-contingent outputs. A technology that does not permit

any substitutability between state-contingent outputs is referred to as output-cubical (such
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a technology is Leontief in state-contingent outputs).

Whereas, on the one hand, the theory of state-contingent production is now well estab-

lished, on the other hand, empirical implementation of the state-contingent approach is still

in its infancy. The most notable applications to efficiency analysis are O’Donnell and Griffiths

(2006), O’Donnell, Chambers and Quiggin (2010), Chavas (2008), and more recently Serra

et al. (2010). O’Donnell and Griffiths (2006) have used a Bayesian approach to estimate

an output-cubical state-contingent production frontier for rice farmers from the Philippines.

They show that, where state-contingent uncertainty plays a major role, the stochastic fron-

tier approach may lead to significant overestimation of the inefficiency of some producers.

Indeed, the part of the deviation from the frontier that was due to risk was misinterpreted

as inefficiency in the conventional stochastic frontier model. Chavas (2008) and Serra et

al. (2010) estimate a state-contingent cost function using aggregated data from the United

States (1949–1999 annual series). The results generated using this data provide empirical

support for an output-cubical technology.

O’Donnell, Chambers and Quiggin (hereafter OCQ) have used simulated data to esti-

mate a stochastic frontier which allows for state-allocable inputs. They show that, where

technically efficient producers make state-contingent production plans under conditions of

uncertainty, standard techniques of efficiency analysis such as Stochastic Frontier Analysis

(SFA) and Data Envelopment Analysis (DEA) may produce spurious findings of inefficiency.

Indeed, in a state-contingent framework, such producers are judged to have merely encoun-

tered a state of nature that is unfavourable, given their state-contingent production plan,

and need not necessarily be inefficient. For example, a producer may choose to use a low

level of pesticides because the expected return is negative. In states of nature leading to a

severe pest infestation, output will be low.1

Overall, this small set of empirical studies indicates that, in uncertain decision environ-

ments, conventional stochastic production frontier models can provide a restrictive and unre-

alistic representation of the production process, and can lead to significantly biased estimates

of measures of technical efficiency. In this article, we propose an empirical methodology to

1Kumbhakar (2002) shows the importance of controlling for both risk and inefficiency in an expected

utility framework.
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test whether the underlying production technology is output-cubical on real data. We specify

a CES-type production technology that encompasses well-known functional forms including

the Leontief and the Cobb-Douglas production functions. Our model is also a generaliza-

tion of the state-allocable model of OCQ in the sense that output in a particular state of

nature can still be non-zero even when none of the input has been allocated to that state

(such an input is said to be state-general).2 We show how this multiple-input state-allocable

model can be estimated within a frontier framework, which allows us to estimate levels of

input-allocability and technical efficiency using farm data from Finland.

The paper is organized as follows. The theoretical model, which is an extension of OCQ

(2010), is described in Section 2. In Section 3, we present the empirical application, including

a discussion of model specification, description of data, and discussion of estimation results.

Section 4 concludes.

2 Description of the technology

In OCQ (2010), the technology of production is modeled as follows:

ln qs = b−1(lnxs − ln as) (1)

where qs denotes output realized in state s ∈ Ω = (1, 2, . . . , S) and xs is the amount of input

x allocated to state s. OCQ assume that the producer chooses xs for all values of s before

the uncertainty is resolved (that is, before s is known). The unknowns satisfy b ≥ 1 and

as ≥ 0 for all s. The input is state-specific in the sense that output in state s is zero if no

input has been allocated to that state.

The parameters as can be thought of as technical parameters that are specific to the

production of output in state s. The parameter b is interpretable as the cost flexibility

associated with production in state s and, as will be explained below, will thus indicate the

extent to which the state-contingent outputs are substitutable. For fixed x, the marginal

rate of transformation (MRT) between ex post outputs in states s and s′ is given by:

2An overly restrictive feature of the single-input model of OCQ is that the (single) input is state-specific

in the sense that output realized in a particular state of nature will be zero if none of the input has been

allocated to that state.
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MRT = −
(
as
as′

)(
zs
zs′

)b−1

and hence the elasticity of transformation between any pair of ex-post outputs is a constant:

σ =

∣∣∣∣ d ln(zs/zs′)

d ln |MRT |

∣∣∣∣ =
1

1− b
.

As b → 1, the elasticity of transformation tends to infinity and the state-contingent pro-

duction transformation curve tends to a linear function which corresponds to perfect sub-

stitutability between state-contingent outputs. As b → ∞, the elasticity of transformation

converges to zero, no substitution between state-contingent outputs is possible (the state-

contingent transformation curve is Leontief in outputs) and the production technology is

output-cubical (OCQ, 2010).

This model proved useful with simulated data but it has some unrealistic properties

that limit its usefulness when analysing real data. First, the restriction b ≥ 1 implies the

technology exhibits non-increasing returns to scale. Second, the input is state-specific in the

sense that output in state s is zero if there is no input allocated to that state. Third, there is

only one input into the production process, this input being state-allocable. In this article,

we propose the following more flexible CES-type model:

qs = As

[
θbxb + δbsx

b
s +

K∑
k=1

γbzbk

]φ/b
(2)

where b 6= 0; φ > 0; As ≡ a
−1/b
s ≥ 0 and zk (k = 1, . . . , K) is a non-state-allocable input.

This functional form is more flexible in the sense that the technology can exhibit increasing,

constant or decreasing returns to scale (RTS) as φ is less than, equal to, or greater than one.

We consider one state-allocable input xs but we allow for output in state s to be non-zero

even if xs = 0 by incorporating in the production function the total input use x =
∑S

s=1 xs.

The parameter δ is a measure of how output in state s responds to an input allocation to

that particular state.3 Our model also contains some non-allocable inputs zk. Model (2) can

3In the empirical application, we will also test if output in state s responds to input allocations to states

other than s.
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also be equivalently written in the form:

ln qs = lnAs + φb−1 ln

[
θbxb + δbsx

b
s +

K∑
k=1

γbzbk

]
(3)

Some special cases are of interest:

• (Leontief) φ = 1, b→ −∞⇒ qs → As ×min(αx, βsxs, ζ1z1, . . . , ζKzK)

• (Cobb-Douglas) φ = 1, b→ 0⇒ qs → Asx
θxδss

∏K
k=1 z

γk

k

• (Conventional Frontier) φ = 1, As = A∀s; δs = 0; b→ 0⇒ qs → Axθ
∏K

k=1 z
γk

k

• (OCQ) θ = 0;φ = b−1; δs = 1; γk = 0∀k ⇒ qs = Asx
1/b
s

• (linear) φ = b = 1⇒ qs = As

[
θx+ δsxs +

∑K
k=1 γkzk

]

• (output-cubical) δs = 0⇒ qs = As

[
θbxb +

∑K
k=1 γ

b
kz

b
k

]φ/b
.

If the parameter b→ −∞, there is no substitution possibility between the state-contingent

outputs, and the state-contingent production transformation curve tends to a function which

is Leontief in outputs. If b → 0, the production function collapses to a Cobb-Douglas. In

these two cases, the state-specific state-allocable input (xs) enters into the production func-

tion. If b → 0 and allocation of inputs x between states is not taken into account (i.e.,

δs = 0), then the model collapses to a conventional frontier. The OCQ model as described

in (1) is obtained under the following restrictions: θ = 0;φ = b−1; δs = 1; γk = 0∀k. If

φ = b = 1, the technology is linear and exhibits constant RTS. Finally, if the allocation of

the input x across states is not taken into account (i.e., δs = 0), the model collapses to a

pure output-cubical production function.
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If b 6= 0, then the elasticities that measure output responses to increases in inputs as

obtained from the general CES-type model (3) are:

ηs ≡
∂ ln qs
∂ lnxs

=
∂ ln qs
∂xs

× xs =
φ
(
θbxb−1xs + δbsx

b
s

)
θbxb + δbsx

b
s +
∑K

k=1 γ
bzbk

(4)

ξsj ≡
∂ ln qs
∂ ln zj

=
∂ ln qs
∂zj

× zj =
φγbjz

b
j

θbxb + δbsx
b
s +
∑K

k=1 γ
bzbk

(5)

3 Empirical illustration

3.1 Specification of the model

Embedding model (3) in a stochastic framework yields:

ln q =
S∑
s=1

es lnAs + φb−1 ln

[
θbxb +

S∑
s=1

esδsx
b
s +

K∑
k=1

γbzbk

]
+ v − u (6)

where es is a dummy variable that takes the value 1 when nature chooses state s (and 0 oth-

erwise); the v’s are independently and identically distributed normal random variables with

zero means and variance σ2
v representing statistical noise; and the u’s are independently and

identically distributed half-normal random variables with scale parameter σ2
u representing

technical inefficiency. In our empirical work we parameterise the likelihood function in terms

of σ2 = σ2
u + σ2

v and λ = σ2
u/(σ

2
u + σ2

v). We estimate a conventional frontier model (CF), the

OCQ frontier model, and two special cases of our flexible frontier model corresponding to

the following values of the parameter b: 0 and 1, respectively called FLEX0 and FLEX1.4

These four models, which are specified such that they accommodate zero inputs, are written

as follows:

CF: ln q = lnA+ θ lnx+
K∑
k=1

γkhk ln zk + v − u

OCQ: ln q =
S∑
s=1

es lnAs +
1

b
ds lnxs + v − u

4The estimation of the parameter b is left for future research.
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FLEX0 : ln q =
S∑
s=1

es lnAs + θ lnx+
S∑
s=1

δsesds lnxs +
K∑
k=1

γkhk ln zk + v − u

FLEX1 : ln q =
S∑
s=1

es lnAs + φ ln

[
θx+

S∑
s=1

δsesdsxs +
K∑
k=1

γkhkzk

]
+ v − u,

where ds = I(xs > 0), hk = I(zk > 0) and I(.) is an indicator function that takes the

value 1 if the argument is true and 0 otherwise.5 The error term in model FLEX0 subsumes

any errors associated with the fact that this Cobb-Douglas model is only the limiting model

as b → 0 (i.e., is not exact). In every case there is interest in whether firms are fully

technically efficient (i.e., H0 : λ = 0). In the FLEX models, interest also centres on whether

the technology is output-cubical (i.e., H0 : δs = 0∀s).

3.2 Data

The data have been taken from the Finnish profitability bookkeeping records (which serve

as a basis for the European Commission’s Farm Accountancy Data Network survey) and

cover the 1998–2003 period. The data comprise annual farm-level observations on acreage

allocated to each crop, crop output, and expenditures on labour, pesticides and fertilizers.6

The sample used in our analysis considers specialized grain farmers from southern regions

in Finland, the main grain production area in the country. These data were complemented

by weather data (rainfall, temperature, and the starting date of the growing season) for

each province produced by the Finnish Meteorological Institute. Data on input and output

prices have been collected from Finnish Agriculture and Rural Industries, an annual report

of Finnish agriculture. Our sample is an unbalanced panel of 274 farmers from 17 provinces

over the 1998–2003 period, making a total of 1,020 observations. For greater details on the

data, see Koundouri et al. (2009).

Finnish farmers face different types of risk but production risk due to unstable weather

conditions (frost may occur in the middle of the summer) is recognized as the main source

5Thus, we replace logarithms of variables with zero whenever the variables take the value zero.
6As is often the case with agricultural data sets, expenditures on labour, pesticides and fertilizers are not

disaggregated by crop.
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of risk for cereal producers in Finland.7 Cereal producers have been found to be risk-

averse before Finland’s European Union (EU) accession in 1995 and risk-lovers after, due to

the increase in the non-random part of farm income generated by the policy change after

application of the Common Agricultural Policy (Koundouri et al., 2009).8 For the period

under consideration in this article (1998–2003), the risk premium has been estimated between

-1 and -2 percent of farmer’s profit (see Koundouri et al., Table 2). In this context, Finnish

farmers can be considered risk-neutral over the 1998-2003 period.

Because of the primary role of production risk, we define (based on our discussions with

Finnish grain specialists) the states of nature in terms of two meteorological variables: the

starting date of the growing season and the sum of rainfall in June. The starting date

of the growing season (measured as a number of days from January 1st) is defined as the

period of each year with daily mean temperatures above +5 Celsius degrees, which is the

temperature at which soil is sufficiently thawed for root activity to begin. The starting date

of the growing season is a relevant variable to be used in the definition of the states of nature

because the decision of which crop to grow is made in general one to two months before

sowing for the main reason that seeds have to be bought in advance. The comparison of

average crop yields under different conditions (early, average, and late start of the growing

season, and low, average and high sum of rainfall) permits identification of three states: a

state of nature that is most favourable to the growing of wheat (s = 1), a state of nature

that is most favourable to the growing of barley (s = 2), and a state of nature that is most

favourable to the growing of oats (s = 3), see Table 1.9

[Table 1 around here]

Table 1 reads as follows: an early start of the growing season combined with a low

[respectively average, and high] rainfall in June is most favourable to barley [resp. oats, and

7Liu and Pietola (2005) showed that yield volatility is large and dominates price volatility in the hedging

decisions of Finnish wheat producers.
8After entering the EU, target prices were replaced by substantially lower intervention prices while direct

area payments became the corner stone of agricultural support.
9The comparison of crop yields has been made on a sub-sample of observations since information on yields

is missing for some farmers.
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barley]. That is, the highest average yields are observed on average for barley [respectively

oats, and barley]. An average starting date of the growing season is always favourable to

wheat production. A late start of the growing season combined with a low [respectively

average, and high] rainfall is most favourable to barley [respectively wheat, and wheat].

Hence, for each observation (a farmer in a specific year), based on the observation of the

starting date of the growing season and the sum of rainfall in June in the province (we have 17

such provinces), we know whether the realized state of nature was wheat-favourable, barley-

favourable or oats-favourable. In Table 2, we report the number of farmers experiencing each

of the three states, for each year covered by our sample.

[Table 2 around here]

In our model, and due to data availability, only land (x) is regarded as state-allocable.

Land qualifies as a suitable state-allocable input because land allocation is a decision taken

at the beginning of the growing season, before the farmer knows which state of nature will be

realized. Also, it relies on the reasonable assumption that farmers allocate the land input to

the production of wheat, barley and/or oats, in line with subjective risk-neutral probabilities

attached to states of nature that are considered favourable to the production of each of those

crops. Land allocated to wheat, barley and oats is denoted x1, x2, and x3, respectively. For

each farmer and each year, we have x = x1 + x2 + x3, with xk ≥ 0 for k = 1, 2, 3. Basic

statistics of the main variables of interest are shown in Table 3.

[Table 3 around here]

In our model, the output variable is an implicit quantity index obtained by dividing the

total value of production of wheat, barley and oats by an output price index.10 The use of a

single output instead of a multi-output technology (in which barley, wheat, and oats outputs

would be considered separately) is a limitation of our analysis. This choice is explained by

10The use of a single output index (instead of a multi-output vector) is rather common. For example,

statistical agencies such as the USDA routinely aggregate many different crop outputs into a single crop

output index. Also Chavas (2008) and more recently Serra et al. (2010) have developed applications of the

state-contingent theory using annual data on US agriculture by considering one aggregate output.
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the lack of appropriate instruments that would be necessary to overcome the endogeneity

problem inherent to multi-output functional forms.

We consider four inputs: land (x), labour (which corresponds to total working hours in

crop production, including both hired labour and family labour) (z1), capital (defined as the

total value of fixed assets on the farm) (z2), fertilizers (z3) and plant protection (z4).
11

3.3 Estimation results

The estimation of the four models is made using Maximum-Likelihood, without taking into

account the panel form of the data.12

[Table 4 around here]

We report estimated coefficients and corresponding t-ratios for the four models: Con-

ventional Frontier (CF), OCQ, FLEX0, and FLEX1. The Akaike’s information criterion

(AIC), computed as 2× k− 2× logL (where k is the number of parameters and log-L is the

value of the log-likelihood function), indicates that the FLEX1 model is preferred. The null

assumption that the underlying technology is output-cubical (or equivalently that outputs

are not substitutable between states) corresponds to a test of δs = 0∀s in both the FLEX0

and FLEX1 models. This assumption is rejected at usual levels of significance for the two

models. Based on these results, the FLEX1 model is considered the best fit to our data,

followed by the FLEX0 model, the CF, and the OCQ model.13 Our result that the underly-

ing technology is not output-cubical contrasts with Chavas (2008) and more recently Serra

et al. (2010). However, the setting in these two papers differed from ours: they estimated

11Seed is potentially another important input. Unfortunately, our data do not contain expenditure on seed

as a separate item. Note however that, if sowing rates (i.e., kilograms of seed per hectare) for each crop are

constant across observations then seed does not need to be included as a separate input (because, in this

case, it would be proportional to the land input).
12We faced convergence problems when considering farmer-specific unobserved heterogeneity in our model.
13In Appendix, we report the estimated coefficients of the model in which land allocated to all three states

enter as possible drivers of output in state s. This model, estimated under the assumption that b = 0 and

b = 1, is called respectively FLEX0-EXT and FLEX1-EXT. The AIC criterion indicates that FLEX1-EXT

dominates FLEX0-EXT.
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cost-minimizing input choices (in a static framework in Chavas, and in a dynamic framework

in Serra et al.) with a state-contingent technology using aggregate data (for the US) and

allowed for two states of nature only.

The estimated coefficients for the FLEX0 and FLEX1 models are consistent with the-

oretical expectations, except for the δ coefficient on the oats-favourable state (δ3). This is

negative, implying that an increased allocation of land to oats, at the expense of wheat and

barley, will reduce output even in the oats-favourable state. Note however that the negative

coefficient on δ3 does not imply a negative marginal product for land allocated to oats, since

the coefficient on total land area x is positive.14

One possible explanation for the negative coefficient of the parameter δ3 is that land

allocated to oats production tends to be of relatively low quality. Finland is divided into

support regions which were defined when Finland entered into the European Union (EU) in

1995. These support regions were defined based on soil type and climatic conditions since

they determine the level of per hectare crop subsidies received by the farmers from the EU.

Our sample covers four of these support regions: A, B, C1 and C2. Crop yields are usually

higher in region A than in region B, and higher in B than in regions C1 and C2. In terms of

crop choice, wheat and barley dominate in region A: 59% of the land is allocated to wheat

and 35% is allocated to barley on average (the rest, 6%, is allocated to oats). In region B

and in region C1, 40% of the land is allocated to oats on average (and only 12% to wheat); in

region C2 (i.e. the region with the least favourable conditions for crop growing), 54% of the

land is allocated to oats. This problem might be addressed by making a quality adjustment

for land area. Unfortunately our data set does not provide sufficient information for this

purpose.

The coefficients (γ1, γ2, γ3, and γ4) of the non-allocable inputs (labour, capital, fertilizers

and plant protection) are all found to be positive and significant at usual levels in most

cases, but vary across specifications. The parameter θ is found to be different from 0 in all

models, which indicates that land in our model is state-general, in the sense that output in

14In fact, the marginal effect of land allocated to oats (x3) on output has the same sign as the output

elasticity and our estimates of all the output elasticities have indeed the expected positive sign (see Table

5).
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state s is non-zero even if none of the land has been allocated to that state. For example,

output will be strictly positive even for a farmer who planted only wheat and barley in an

oats-favourable state.

The null assumption that λ = 0 is rejected at usual levels of significance for every model,

showing evidence of technical inefficiency. The average technical inefficiency score is 0.63

in FLEX1 model, close to what is obtained using the FLEX0 model and the CF. On these

data, the average estimated technical inefficiency scores are found to be similar between state-

contingent models and more restrictive models (in particular the conventional frontier). This

may indicate that output shortfalls due to unfavourable states of nature are small compared

to output shortfalls due to technical inefficiency.

A simple comparison of the average technical inefficiency scores across the different mod-

els may be misleading, though. We looked more closely at the distribution of technical inef-

ficiency scores across the different models but, in what follows, we focus on the comparison

between technical inefficiency scores calculated from the CF model (the “conventional” ap-

proach) and those calculated from the FLEX1 model (the preferred model based on Akaike’s

criterion). We made some mean comparison tests and tests of equality of distributions of

technical inefficiency scores between favourable and unfavourable states. For each farmer and

each year, we know how much land was allocated to wheat, barley, and oats. We call wheat-

producers those farmers who allocated the largest share of their land to wheat. Barley- and

oat-producers are similarly defined. We consider that wheat producers in a particular year

encountered a favourable state if the realized state of nature was the one most favourable

to wheat-growing (same for barley and oats). Because the state-contingent model does take

uncertainty into account (and does allow for output substitution between states), we would

expect that technical inefficiency scores are about the same whatever the state of nature

(favourable or unfavourable). On the contrary, the CF approach does not account for uncer-

tainty and technical inefficiency scores are likely to be improperly calculated (in particular,

technical inefficiency scores are likely to differ between favourable and unfavourable states).

We test the null hypothesis that the average technical inefficiency score is the same between

favourable and unfavourable states of nature, separately for wheat producers, barley pro-

ducers, and oat producers. The mean comparison test using CF-based technical inefficiency
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scores always rejects the null that the two means are equal. The mean comparison test using

FLEX1-based technical inefficiency scores does not reject the null hypothesis at usual levels

of significance.

We then performed a Kolmogorov-Smirnov equality-of-distributions test for wheat and

barley producers (we have too few observations on oat producers in a favourable state for the

test to be meaningful). The test of equality of distributions confirms that the distribution

of CF-based technical inefficiency scores differs between favourable and unfavourable states

while the distribution of FLEX1-based technical inefficiency scores is not found to be statisti-

cally different between favourable and unfavourable states. So, on our data, the distribution

of technical inefficiency scores calculated with the CF model is significantly different between

favourable and unfavourable states, while it is not if calculated with the preferred FLEX1

model. These findings confirm that not taking uncertainty into account in the specification

of the technology may provide misleading technical inefficiency scores.

Estimated supply response elasticities and returns to scale are shown in Table 5.

[Table 5 around here]

We report (estimated) elasticities of output in the three states with respect to the amount

of land allocated to each of those states (ηsk for s, k = 1, 2, 3) as well as the elasticity of

output with respect to the four non-allocable inputs (εk for k = 1 to 4). The elasticities have

been evaluated at the sample means of x, z1, z2 , z3 and z4 (see Table 3 for mean values). In

the FLEX1 model, the state-specific elasticities of output vary between 0.14 and 0.47.15 In

each state (s = 1, 2, 3), the elasticity of output with respect to total land is close to 0.9, which

makes sense knowing that land is an essential input in crop production. The elasticities of

output with respect to capital and variable inputs (labour, fertilizers, and plant protection)

may seem low (they vary between 0.03 and 0.21), in particular if compared with output

elasticities obtained by Koundouri et al. (2009). However, the sum of all elasticities gives a

15We can see that the elasticity of output with respect to land allocated to state 2 is always higher than

the elasticity with respect to land allocated to state 1, which in turn is always higher than the elasticity

with respect to land allocated to state 3. This is because the elasticities are a function of land shares and

the average share allocated to state 2 is higher than the average share allocated to state 1 which is higher

than the average share allocated to state 3.
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returns to scale elasticity of about 1.2, which seems reasonable, and indicates that farms in

our sample are operating in the region of increasing returns to scale. In the near future, we

hope to be able to get data on state-contingent allocations of all inputs used in production,

which should provide more robust measures of the marginal productivity of variable inputs.

Note also that elasticities of output with respect to variable inputs estimated from the CF

model are of the same magnitude as the elasticities estimated from the preferred FLEX1

model.

4 Conclusions

In this article, we present one of the first real-world empirical applications of state-contingent

production theory. Our state-contingent behavioral model allows us to analyze production

under both inefficiency and uncertainty without regard to the nature of producer risk pref-

erences. Using farm data for Finland, we estimate a flexible production model that per-

mits substitutability between state-contingent outputs. Our model extends the theoretical

model described in OCQ (2010) by allowing for a state-general input as well as multiple

non-allocable inputs. In our application, we treat land as a state-allocable input, and we

specify four non-allocable inputs (labour, capital, fertilizers and pesticides). Uncertainty is

represented by three states of nature, defined in terms of climatic conditions (rainfall and

start of the growing season): a wheat-favourable state, a barley-favourable state, and an

oats-favourable state.

We test empirically, and reject, an assumption that has been implicit in almost all effi-

ciency studies conducted in the last three decades, namely that the production technology

is output-cubical. Our results indicate that a state-allocable state-contingent production

model is preferred to the more restrictive output-cubical state-contingent model, as well as

a conventional stochastic frontier.

The existence of a state-allocable production technology has a number of important

implications for agricultural production under uncertainty and for policy responses to the

problems of agriculture. First, the value of timely information about the state of nature is

maximized with a state-allocable technology. By contrast, under an output-cubical model,
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producers can respond to information by changing the scale of production but not by reallo-

cating inputs towards states of nature that appear more likely in the light of new information

(Chambers and Quiggin, 2007).

In policy terms, producers with a state-allocable production technology have a capacity

to manage production risk actively, and to integrate technological and financial approaches

to risk management (Chambers and Quiggin, 2004). Policies designed to mitigate risk should

complement, rather than substitute for the risk management strategies available to farmers.

The estimation of state-contingent technologies is in its infancy, but it has shown that

assumptions derived from an output-cubical model must be treated with care. This study

has shown, on the one hand, how data on the allocation of a single input (land) can be used

to derive insights into the nature of technology, and on the other hand, how much more

is needed. With improved data and estimation methods, our understanding of production

under uncertainty will be further enhanced.

Our analysis suffers from some caveats. First, the specification of the technology was

constrained by the lack of data and by problems to reach convergence when maximizing the

likelihood function. A multi-output technology may provide further insights but this requires

finding appropriate instruments to deal with the inherent endogeneity problem. Second, land

was the only input to be assumed state-allocable while farmers may also allocate labour or

plant protection products across states. We expect in the near future to be able to access

disaggregated data on input expenditure by crop or farm type of activity. This would allow

us to better represent farmers’ decisions when facing uncertainty and to calculate more

accurate output supply elasticities and technical inefficiency scores. A third caveat of our

empirical analysis is that the parameter measuring substitution between state-contingent

outputs could not be estimated. Finally, we were not able to control for the panel form of

the data by incorporating farmers’ unobserved individual effects. Our production technology

also did not explicitly account for technical change. These limitations should be addressed

in future research.
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Tables

Table 1: Definition of crop-favourable states

based on average crop yield (kg/ha)

Starting date

Crop Early Average Late

Barley 3,057 3,184 3,098

Low rainfall Oats 2,872 3,072 2,853

Wheat 2,985 3,392 2,717

Barley 3,349 3,329 3,381

Average rainfall Oats 3,597 3,294 3,265

Wheat 3,478 3,436 3,392

Barley 3,292 3,286 2,984

High rainfall Oats 3,138 3,288 2,987

Wheat 2,778 3,540 3,774

Table 2: Distribution of farmers across states, by year

Year Wheat-favourable Barley-favourable Oats-favourable Total

state state state

(s=1) (s=2) (s=3)

1998 123 16 28 167

1999 20 124 13 157

2000 26 33 102 161

2001 170 0 0 170

2002 150 0 20 170

2003 126 48 21 195

Total 615 221 184 1,020
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Table 3: Descriptive statistics of the main variables

Variable Unit Mean Std. Dev. Min Max

land (x) ha 38.58 30.94 1.61 233.78

land to wheat (x1) ha 11.53 20.53 0 157.07

land to barley (x2) ha 18.55 23.27 0 211.76

land to oats (x3) ha 8.49 10.42 0 89.15

labour (z1) hours/year 876 789 0 12319

capital (z2) quantity index 199,219 155,220 4,989 1,022,397

fertilizers (z3) quantity index 3,968 4185 0 27,837

plant protection (z4) quantity index 1,837 2,422 0 25,027
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Table 4: Estimation results

CF OCQ FLEX0 FLEX1

Est. t-ratio Est. t-ratio Est. t-ratio Est. t-ratio

A 3.372 13.065 - - - - - -
√
A1 - - - - - - 0.227 8.550
√
A2 - - - - - - 0.207 8.423
√
A3 - - - - - - 0.249 8.161

lnA1 - - 9.716 117.030 3.839 14.377 -2.967 n.a.

lnA2 - - 9.185 84.893 3.616 13.322 -3.146 n.a.

lnA3 - - 10.138 93.538 4.052 14.487 -2.782 n.a.

θ 0.910 33.305 - - 0.893 31.841 854.570 19.577

δ1 - - - - 0.054 4.444 239.320 4.109

δ2 - - - - 0.054 2.534 219.970 2.395

δ3 - - - - -0.068 -2.840 -225.070 -2.760

γ1 0.089 4.384 - - 0.089 4.491 1.467 1.608

γ2 0.208 8.288 - - 0.170 6.512 0.034 5.503

γ3 0.009 1.555 - - 0.008 1.428 0.519 2.093

γ4 0.025 3.826 - - 0.023 3.471 1.920 4.145

φ - - 0.323 15.229 - - 1.205 59.641

σ 0.723 31.954 1.410 24.784 0.697 32.361 0.703 32.904

λ 3.011 9.697 1.946 7.951 2.927 11.003 3.234 10.195

Log-L -637.002 -1423.751 -604.519 -592.754

AIC(a) 649.002 1431.751 626.519 622.754

LR for H0: OC(b) 30.842 26.958

p-value 0.000 0.000

TE 0.623 0.461 0.633 0.629

95% CI low. bound 0.215 0.060 0.228 0.222

95% CI upp. bound 0.979 0.962 0.980 0.979

(a) AIC = 2× k − 2× Log-L where k is the number of parameters.

(b) The H0 assumption of an output-cubical (OC) model corresponds to: H0 : δ1 = δ2 = δ3 = 0.
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Table 5: Supply response elasticities

and returns to scale (RTS)

CF OCQ FLEX0 FLEX1

Elasticities with respect to x1, x2 and x3

η1 0.272 - - -

η2 0.438 - - -

η3 0.200 - - -

η11 - 0.323 0.321 0.308

η12 - 0.000 0.429 0.387

η13 - 0.000 0.197 0.177

η21 - 0.000 0.267 0.234

η22 - 0.323 0.484 0.474

η23 - 0.000 0.197 0.172

η31 - 0.000 0.267 0.266

η32 - 0.000 0.429 0.427

η33 - 0.323 0.129 0.144

Elasticities with respect to z1, z2, z3 and z4

ξ1 0.089 0.000 0.089 -

ξ2 0.208 0.000 0.170 -

ξ3 0.009 0.000 0.008 -

ξ4 0.025 0.000 0.023 -

ξ11 - - - 0.031

ξ12 - - - 0.166

ξ13 - - - 0.050

ξ14 - - - 0.086

ξ21 - - - 0.031

ξ22 - - - 0.161

ξ23 - - - 0.049

ξ24 - - - 0.084

ξ31 - - - 0.035

ξ32 - - - 0.183

ξ33 - - - 0.055

ξ34 - - - 0.095

Returns to scale (RTS)

RTS 1.241 0.323 - 1.205

RTS1 - - 1.236 -

RTS2 - - 1.237 -

RTS3 - - 1.115 -
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Appendix

Table A1: Estimation results

FLEX0-EXT FLEX1-EXT

Est. t-ratio Est. t-ratio
√
A1 - - 0.080 1.853
√
A2 - - 0.066 1.892
√
A3 - - 0.082 1.745

lnA1 3.977 13.799 -5.046 n.a.

lnA2 3.648 12.519 -5.432 n.a.

lnA3 4.004 13.516 -4.999 n.a.

θ 0.880 23.311 11452.000 0.925

δ11 0.055 3.312 -2604.600 -0.688

δ12 0.010 0.601 -4240.600 -0.780

δ13 -0.013 -0.755 -4969.500 -0.827

δ21 -0.024 -1.040 -4763.600 -0.761

δ22 0.075 2.857 -600.660 -0.216

δ23 0.045 1.758 -2033.800 -0.532

δ31 0.056 2.087 -2653.700 -0.795

δ32 0.018 0.667 -4244.800 -0.876

δ33 -0.028 -0.911 -5343.900 -0.897

γ1 0.085 4.253 15.040 1.011

γ2 0.165 6.268 0.316 0.963

γ3 0.008 1.350 4.082 0.965

γ4 0.021 3.313 16.796 0.965

φ - - 1.169 47.438

σ 0.694 34.919 0.696 32.862

λ 2.965 11.766 3.168 9.969

Log-L -597.494 -585.837

AIC(a) 631.494 627.837

LR for H0: OC(b) 44.892 40.792

p-value 0.000 0.000

TE 0.634 0.632

95% CI lower bound 0.229 0.226

95% CI upper bound 0.980 0.980

(a) AIC = 2× k − 2× Log-L.

(b) H0 : δ1 = δ2 = δ3 = 0.
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