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Abstract

In this article we model production technology in a state-contingent framework. Our

model analyzes production under uncertainty without being explicit about the nature

of producer risk preferences. In our model producers’ risk preferences are captured

by the risk-neutral probabilities they assign to the different states of nature. Using a

state-general state-contingent specification of technology we show that rational pro-

ducers who encounter the same stochastic technology can make significantly different

production choices. Further, we develop an econometric methodology to estimate the

risk-neutral probabilities and the parameters of stochastic technology when there are

two states of nature and only one of which is observed. Finally, we simulate data based

on our state-general state-contingent specification of technology. Biased estimates of

the technology parameters are obtained when we apply conventional ordinary least

squares (OLS) estimator on the simulated data.
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Production under conditions of uncertainty is a central feature of economic reality, but one

that is often ignored by economists. The central difficulty has been that the most appeal-

ing theoretical representation of an uncertain technology has been regarded as empirically

intractable.

The first formal treatment of production under uncertainty was the general equilibrium

analysis put forward independently by Arrow (1953) and Debreu (1952). To deal with un-

certainty they introduced the concept of state-contingent commodities, whose realization is

contingent on the occurrence of a particular state of nature. Once this ingenious but simple

idea was established, all the tools developed for a deterministic world could be applied

readily to decision-making under uncertainty. Chambers and Quiggin (2000) show that

the duality methods of modern production theory are fully applicable to state-contingent

production and conclude that “the state-contingent approach provides the best way to think

about all problems involving uncertainty, including problems of consumer choice, the the-

ory of the firm, and principal-agent relationships”.

However, empirical application of state-contingent theory in a production context has

so far proven to be difficult. This is because of the fact that the ex ante production choices

of firms are not fully observed. As a result most of the data needed for applying standard

econometric methods are lost in unrealized states of nature. This problem is obscured in the

most popular approach to modelling uncertain production, based on a stochastic production

function (described by O’Donnell, Chambers, and Quiggin (2010) as an output-cubical

technology). In the stochastic production framework, the choice of a scalar input level,

along with a stochastic act of nature, determines output in every state of nature. Thus,

observation of output in a single identifiable state of nature is sufficient to identify both

the input choice and the output that would have been realized in any other state of nature.

However, if this restrictive assumption does not hold, standard estimation techniques will

yield systematically biased estimates of economic quantities of interest such as technical

efficiency scores (O’Donnell, Chambers, and Quiggin 2010).
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Recent efforts to estimate state-contingent technologies have involved predicting unob-

served states of nature and/or ex ante production choices. By combining these predictions

with observed input and output data it becomes possible to estimate the technology using

conventional econometric techniques. For example, O’Donnell and Griffiths (2006) use a

Bayesian finite mixtures approach to estimate unobserved states of nature and the parame-

ters of an output-cubical state-contingent technology. Chavas (2008) estimates the param-

eters of a more flexible state-contingent technology by estimating a cost function defined

over predicted state-contingent outputs. This paper develops an alternative approach for es-

timating flexible state-contingent technologies that obviates the need to predict unobserved

state-contingent outputs. The technology we consider is a generalization of the flexible

state-contingent production technology used in the simulation experiment of O’Donnell,

Chambers, and Quiggin (2010).

In their simulation experiment O’Donnell, Chambers, and Quiggin (2010) use a single

input and single output state-specific state-allocable specification of the technology. How-

ever, a state-specific state-allocable technology is too simplistic and such a representation

of technology is seldom observed in a real world production process. A limitation of the

state-specific state-allocable technology is that it assumes that the inputs are ‘state-specific’,

that is, input allocated to a given state of nature contributes to output only in that particular

state of nature. In this article we generalize O’Donnell, Chambers, and Quiggin (2010)

model by proposing an alternative functional form that provides a better representation of

real-world production technologies. Specifically, the proposed functional form represents

a state-general state-contingent technology that allows substitution of output between the

various states of nature. For a detailed discussion on various types of state-contingent

techologies, see Rasmussen (2003).

We assume that all firms use the same stochastic technology but they may have different

risk attitudes1 and information sets, and ex post they may operate in different production

environments. Firms maximize ex ante their preference function subject to stochastic tech-
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nology constraint; in other words they are assumed to act rationally, thereby leaving no

room for either technical or allocative inefficiency. Consequently we develop a parsimo-

nious parametric model to describe rational producers’ behaviour towards uncertainty.

Further, we show how to econometrically estimate this flexible state-contingent tech-

nology when inputs, realized output and the state of nature faced by firms are observed ex

post. Using noiseless simulated data we demonstrate that our estimation methodology can

be used to recover unknown parameters and other economic quantities of interest without

error. Finally, we apply conventional OLS estimator to the simulated data and discover that

it gives biased estimates of the parameters of the production technology.

Technology
We assume that all firms have access to a common stochastic production technology to

produce a stochastic output designated by z̃ = (z1,z2) , using deterministic input x ∈RRR+.

Nature resolves the uncertainty by choosing a state from a state space Ω. In our simulation

experiments we assume for the sake of simplicity that there are two possible states of nature,

so Ω = {1,2} , but the analysis presented in this article can be extended to state space

consisting of any arbitrary number of states of nature. We model production as a two period

game with nature, with periods denoted as 0 and 1 respectively. In period 0, the producer

allocates input x to the production process and in period 1 nature reveals the actual state of

nature contained in the state space Ω = {1,2}, and in the process determines the realized

output.

O’Donnell, Chambers, and Quiggin (2010) model production using a state-specific

state-allocable representation of technology where the input allocated to a specific state

of nature {s} is given by

(1) xs = aszs
b, s ∈Ω = {1,2}
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Assuming that the firms are rational and efficient, the total input used in the production

process in period 0 is the sum of the inputs allocated to each state of nature, that is

(2) x = x1 + x2 = a1z1
b +a2z2

b

In their (O’Donnell, Chambers, and Quiggin (2010)) specification the state-allocable

technology is state-specific, that is input x1 = a1z1
b is allocated exclusively to state of nature

{1} and input x2 = a2z2
b is allocated specifically to state of nature {2}. For example, if

this technology is used to model agricultural production, it would imply that crop yield in a

‘dry’ season will be zero if no input is allocated to irrigation infrastructure. Our experience

shows that this is not the case, that is crop yield in a ‘dry’ season will be low, but not zero,

if no pre-season labour is allocated to irrigation infrastucture. State-allocable technology is

too simplistic and such a representation of technology is seldom observed in a real world

production process. Hence, we model production using a state-general state-contingent

specification of technology.

We model production using a CES specification of technology, where the relationship

between the total input2 used across various states of nature and the ex post realization3 of

stochastic output is given by

(3) x = (a1z1
b +a2z2

b)γ/b

where the interpretation of parameter γ and b are discussed below, zs is the amount of

stochastic output produced in period 1 by employing x amount of non-stochastic input in

period 0. as ≥ 0 can be either interpreted as a technology parameter related to production

of output in state of nature {s} or it can be conceived as a realization of an unobserved

random variable determined by nature ex post. O’Donnell, Chambers, and Quiggin (2010)

specification of technology is a special case of our CES specification as (3) collapses to

(2) when γ = b. Here, it is important to bear in mind that the term arises purely due to

5



the stochastic process of production determined by nature and not as a consequence of any

measurement error or researchers’ ignorance about the particular functional form.

Whether the technology is state-allocable or state-general, when the total input used in

the production process is fixed, the substitution between state-contingent outputs is brought

about by re-allocating input among the various states of nature. In the case of state-specific

state-allocable technology, the substitution between state-contingent outputs is exclusively

accomplished by substituting inputs between various states of nature. But this may not be

true in the case of state-general technology because if the input is state-general, then it is

possible to produce output in a given state of nature even if no input is allocated to the

corresponding state of nature.

Properties of State-General State-Contingent Technology

In order to produce z1 when nature chooses state {1} and z2 when nature selects state

{2}, the producer must commit in period 0 a minimum input x = (a1z1
b +a2z2

b)γ/b. The

convex transformation defining technically feasible production space employing a total in-

put x is t(z1,z2,x) = g(z1,z2)− x, where g(z1,z2) = (a1z1
b +a2z2

b)γ/b. While inefficient

but technically feasible production choices are given by (z1,z2) : t(z1,z2,x)< 0, efficient

production choices are represented by (z1,z2) : t(z1,z2,x) = 0. Hence, the input distance

function4 for this stochastic technology is DI(x,z1,z2) =
x

g(z1,z2)
and the output distance

function is of CET (constant elasticity of transformation) form5 (See Powell and Gruen

1967): DO(x,z1,z2) = x−
1
γ g(z1,z2)

1
γ .

For a given normalized input price w > 0, the minimum cost of producing stochas-

tic output z̃ = (z1,z2) is c(w,z1,z2) = wg(z1,z2). In addition, the marginal cost of pro-

ducing unit output in every state of nature is wγas(a1 +a2)
γ−b

b , s ∈ Ω. For given (fixed)

amount of input x, the marginal rate of transformation between ex post outputs is MRT =

− (a1
a2
) ( z1

z2
)b−1 and the elasticity of transformation between any pair of ex post outputs is

σ = |d lnz1/z2
d MRT | =

1
1−b
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The parameter b is a transformation of elasticity of substitution and is referred to as

substitution parameter (see Arrow et al. 1961). We impose the parametric restriction b≥ 1

to ensure that the input isoquants in state-contingent output space have the right curvature

(they are concave when viewed from the origin). Different transformation curves (state-

contingent production possibility frontier) are generated by fixing total input x at different

levels. An increase in input x shifts the transformation curve out from the origin. The

transformation curve is negatively sloped as the specification of technology allows for sub-

stitutability between stochastic ex post outputs. The parameter γ represents economy of

scale. The technology exhibits increasing, constant or decreasing returns to scale.

The lowest admissible value of b is one; this implies an infinite elasticity of substitu-

tion and therefore straight-line isoquants, meaning ex post output is perfectly substitutable

between states of nature. Re-arranging equation (3) we have

(4) x1/γ = g(z1,z2)
1/γ = (a1z1

b +a2z2
b)1/b

As b→ ∞ the elasticity of transformation converges to zero, implying that no substitution

is possible between outputs in different states of nature. Taking limits on both sides of

equation (4) as b→ ∞, we have

(5) lim
b→∞

x1/γ = lim
b→∞

g(z1,z2)
1/γ = lim

b→∞
(a1z1

b +a2z2
b)1/b

Applying limiting argument originally due to Hardy, Littlewood, and Polya (1934) we can

re-write equation (5) as

(6) x→Max{z1
γ ,z2

γ}

Thus the ex post output in state {s} can be expressed in terms of ex ante input requirement

as

(7) zs = x
1
γ , s ∈Ω
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where x is not allocable across state. Equation (7) represents an output-cubical technology

and output-cubical stochastic production functions have been the foundation of stochastic

frontier analysis.

Efficient Firm Behaviour
We assume that the firms seek to maximize their utility function W (y) where y= (y1, ...,yS)

and ys = zs−wx, s ∈Ω is the ex post net return in the state of nature {s}. The utility func-

tion W is continuously differentiable, non-decreasing and quasi-concave in its arguments.

This form of utility function is quite general and it contains the family of expected utility

function in net returns as a special case. We further assume that the firms are technically

efficient, i.e., they lie on the production possibility frontier. This is further ensured by the

fact that the preferences are non-decreasing in net returns and that the technology proposed

above is smooth.

Given that the state {s} has been realized, the variables relevant to firms’ welfare in the

production problem are the committed (ex ante) input x in period 0 and realized (ex post)

stochastic output zs ∈RRR+ in period 1. We further assume that the state-contingent utility

function displays a degree of separability between input x committed prior to the realization

of the state of nature and the net returns (profits) accumulated when the state of nature {s}

is realized.

The first order conditions for efficient firm behaviour can be written as

(8) Max
z1,...,zS

{W (y) : DI (x,z;β )≥ 1}

where DI(x,z,βββ ) is the input distance function and W (.) is the welfare function having the

property Ws ≡ ∂W (y)
∂ys
≥ 0, s ∈ Ω. The first order conditions for efficient behaviour of firm

are given by

(9) πs−wm(zs,βββ s,x)≤ 0 ∀ s ∈Ω
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where m(.) is non-negative function state-contingent output zs, state-contingent technology

parameters βββ s and total input x applied to the production process and

(10) πs ≡
Ws(y)

∑
s∈Ω

Ws(y)
∈ (0,1)

The monotonicity of the welfare (utility) function in net returns ensures that ∑
s∈Ω

πs(y) =

1. πs is referred to as risk-neutral probability in state of nature {s}, as it represents the

subjective probability that a risk-neutral firm would require in order to make the same

production choices (produce the same ex post output using the same amount of input ex

ante) as a rational firm with preferences W .

Hence, the study of firms with a particular set of preferences actually boils down to

analyzing the behaviour of risk-neutral firms with varying subjective probabilities. This

further implies that while analyzing the behaviour of firms that are efficient, there is no

need to explicitly take into account their risk attitudes (whether they are risk averse or risk

lover).

Optimizing Behaviour in Two State Case

For our specification6 of technology given by (3), the firms optimization problem can be

written as:

(11) max
z1,...,zS

{W (y) : x≥ (∑
s

aszs
b)γ/b}

The first-order conditions for efficient firm behaviour are:

(12)
∂W (y)

∂ys
−w∑

s

∂W (y)
∂ys

∂x
∂ zs
≤ 0 s ∈Ω = {1,2} or

(13)
∂W (y)

∂ys
−w∑

s

∂W (y)
∂ys

∂ (∑
s

aszs
b)

γ/b

∂ zs
≤ 0 s ∈Ω = {1,2}
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Dividing both sides of equation (13) by ∑
s∈Ω

∂W (y)
/

∂ys and using equation (10) we have

(14) πs− γwaszs
b−1x

γ−b
γ ≤ 0 s ∈Ω = {1,2}

where the risk-neutral probability πs of a firm in state of nature {s} is given by equation

(10).

Adding the risk-neutral subjective probabilities given by (10), across all states of nature

gives us the efficient set7

(15) Ξ(w,x) = { (z1,z2) : 1− γwx
γ−b

γ ∑
s∈Ω

aszb−1
s ≤ 0 }

and the set for which strict equality holds in the above equation is referred to as the efficient

frontier. The efficient frontier represents the boundary of Ξ(w)and therefore it satisfies the

first order conditions (with equality) given by (9). Hence, we can write the efficient set as:

(16) Ξe f f (w,x) = { (z1,z2) : 1− γwx
γ−b

γ ∑
s∈Ω

aszb−1
s = 0 }

If the firms base their risk-neutral probabilities on the technology used in the various states

of nature, that is, if πs(y) ∝ as, then they will choose to produce the same output no matter

what state of nature is realized ex post. Let π j and πi be the risk-neutral probabilities in

state of nature { j} and {i} respectively. Then based on (14) the ratio of these subjective

probabilities for an efficient firm is

(17)
π j

πi
=

a jzb−1
j

aizb−1
i

If π j
πi
=

a j
ai

, then from (17) it must be the case that z j = zi ∀i, j ∈Ω. Therefore, the riskless

plan converges to (z1,z2) = (x
1
γ ,x

1
γ ) as b→ ∞.

The cost function is linear when the technology exhibits constant return to scale and

allows for perfect substitutability between ex post output. In this special case when γ = 1

and b = 1 the efficient set is equal to non-negative orthant, provided 1−w∑s∈Ω as ≤ 0. The

marginal return for non stochastically increasing the output in the direction of equal output
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ray is one, while the corresponding ex ante marginal cost is w∑s∈Ω as. Hence the efficient

set spans the non-negative orthant, which is Ξ(w) =RRR+
2 , as long as the marginal return

from increasing in the direction of equal output is strictly negative or zero. In the special

case where γ = b our model is identical to the model used in O’Donnell, Chambers, and

Quiggin (2010).

Based on their expectations (given by their risk-neutral probabilities πs(y)) about the

future states of nature or their attitudes towards risk (whether they are risk lover or risk

averse) or mixture of these two factors, different firms will end up on different points on

the efficient frontier. For any rational firm having a general welfare (utility) function W (y)

the relationship between state-contingent output and the subjective risk-neutral probability

can be derived by re-writing the first order condition given by (14) as

(18) zs = (
πs

γwas
)

1
b−1 x

b−γ

γ(b−1) , s ∈Ω = {1,2}

From (18) it follows that on the efficient frontier the output of a rational firm in any state of

nature increases with an increase in the risk-neutral probability in the corresponding state

of nature, provided b > 1. Again, (18) implies if b≥ γ and b > 1 then the state-contingent

output in period 1 increases with an increase in the total input allocated to the production

process in period 0.

Firms choose risk free output combination if their risk-neutral probabilities are propor-

tional to the technology in the corresponding state of nature, that is , πs ∝ as and hence the

output is given by

(19) zs = (
1

γw∑s∈Ω as
)

1
b−1 x

b−γ

γ(b−1) , ∀s ∈Ω = {1,2}

If π1
π2

> a1
a2

, then any rational firm will produce output z1 > z2 in period 1 by committing

input 0≤ x≤ a1
1

1−γ (wγ)
γ

1−γ in period 0 and if π1
π2

< a1
a2

, then it will produce z1 < z2 in period

1 by using input 0≤ x≤ a2
1

1−γ (wγ)
γ

1−γ in period 0.
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It is important to note that the output combination chosen by a risk-neutral firm having a

certain belief (risk-neutral subjective probabilities) about future states of nature, could have

been chosen by a risk averse (or risk loving) firm with a different set of subjective probabil-

ities. For example, consider a producer who maximizes her expected welfare (utility) and

ascribes probability p1 to state of nature {1}. Assuming that producer has an exponential8

utility function, her welfare function can be written as

(20) W (y) =−p1 exp(−λy1)− (1− p1)exp(−λy2)

where λ = −W ′′
W ′ represents the coefficient of absolute risk aversion (Arrow 1965; Pratt

1964). From the first order condition for (20) the risk-neutral probability in state {1} is

(21) π1 =
p1 exp(−λ z1)

p1 exp(−λ z1)+(1− p1)exp(−λ z2)

Rearranging (21) in terms of p1 we get

(22) p1 =
1

1+ 1−π1
π1

exp(−λ (z1− z2))

Equation (22) implies that any rational risk averse firm that has unit coefficient of risk

aversion, assigns a probability p1 to state of nature {1} and maximizes expected exponen-

tial utility over net return will produce the same output as a risk-neutral firm that has a

risk-neutral probabilty π1 in the corresponding state of nature.

Estimation Methodology
In many real world production processes we observe both realized state of nature and total

input allocated to different states of nature. O’Donnell, Chambers, and Quiggin (2010) de-

scribe such a production system where in the presence of uncertainty sugar-cane producers

face the choice of planting different varieties of sugar-cane depending on their expecta-

tions about future states of nature. Specifically, they have to decide between planting a

high yielding variety which is susceptible to disease and a low yielding variety that is re-
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sistent to damage from disease. In their application input allocations correspond to land

used in planting a different variety of sugar-cane, and realized state of nature is captured by

the degree of disease infestation. Therefore, both input allocations as well as realized state

of nature are observed ex post. In such empirical applications conventional techniques such

as stochastic frontier analysis (SFA) and data envelopment analysis (DEA) can be readily

used to estimate the parameters of the underlying production technology.

In some other applications the input allocations are observed but realized state of nature

is not observed. For example, medical doctors are often aware of various kinds of influenza

vaccines supplied by medical professionals to the patients (input allocations) but there is

no way they can observe how many of the patients are actually exposed to different traits of

influenza virus (realized state). In such cases, if the production technology is output-cubical

then the technology parameters can be estimated (for example O’Donnell and Griffiths

2006) in finite mixtures framework.

This article develops methodology for estimating the parameters of the production tech-

nology in a third empirical context, namely when there are two observable states of nature

but output9 in only one of two states is observed.

Underpinning our estimation methodology is the assumption that firms are rational and

technically efficient in production. For notational convenience we write equation (3) in a

more general form as

(23) x = f (z,βββ )

The rationality assumption means that an interior solution to the firms optimization problem

is given by

(24) πs = wm(zs,βββ s,x) ∀ s ∈Ω

where m(zs,βββ s,x) is function of state-contingent output zs, total input applied in the pro-

duction process x and parameter vector βββ s representing the state-contingent technology.
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Equation (24) is especially important for two reasons. First, if the inverse of m(zs,βββ s,x)

exists then we can express state-contingent outputs as a function of normalized input prices,

total input applied in the production process and risk-neutral probabilities:

(25) zs = m−1 (w−1
πs,βββ s,x

)
∀ s ∈Ω

Second, in the two-state case, equation (24) allows us to express risk-neutral probabilities

as functions of normalized input prices, realized states of nature, and observed outputs:

(26) π1 = e1 [wm(q,βββ 1,x)]+ e2 [1−wm(q,βββ 2,x)]

and

(27) π2 = e2 [wm(q,βββ 2,x)]+ e1 [1−wm(q,βββ 1,x)]

where es = 1 if state of nature s is realized ex post, s ∈Ω = 1,2 and 0 otherwise.

Equations (26) and (27) can be substituted into equation (25), and the result can then

be substituted into equation (23). This yields a possibly nonlinear relationship between

total inputs, normalized input prices, realized states of nature, observed outputs, as well as

the unknown parameters of the production technology. Estimation involves embedding this

relationship in a stochastic framework and applying an appropriate econometric estimator,

such as nonlinear least squares (NLS). Importantly, equation (24) cannot be used on its

own to recover the parameters of the technology. To see this, simply note that for any

(zs,βs) pair there exists a πs that will satisfy (24) exactly. This means that the parameters

and risk-neutral probabilities cannot be separately identified unless additional information

is introduced into the estimation process. In this article, this additional information comes

in the form of equation (23).
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Estimating Risk Neutral Probabilities and the Parameters of Technology

In terms of the quantities introduced so far, under the assumption that the firms are rational

we have

(28) πs− γwaszs
b−1x

γ−b
γ = 0 s ∈Ω = {1,2}

(29) zs = (
πs

γwas
)

1
b−1 x

b−γ

γ(b−1) s ∈Ω = {1,2}

(30) π1 = e1[γwa1qb−1x
γ−b

γ ]+ e2[1− γwa2qb−1x
γ−b

γ ]

(31) π2 = e1[1− γwa1qb−1x
γ−b

γ ]+ e2[γwa2qb−1x
γ−b

γ ]

Substituting for z1 and z2 using (29) in (3) we have

(32) x = {∑s∈Ω
as(

πs

γwas
)

b
b−1}

γ(b−1)
b(γ−1)

Taking logarithm on both sides of (32) and substituting for risk-neutral probabilities in (32)

using (28) and πs = 1− ∑
j∈Ω\{s}

π j; s ∈Ω = {1,2}, we have

(33) lnq− 1
γ

lnx+ e1{
1
b

lna1 + r1(q,w,x,βββ )}+ e2{
1
b

lna2 + r2(q,w,x,βββ )}= 0

where ri(q,w,x,βββ )= 1
b ln(1+

a j[
1−waiγqb−1x

γ−b
γ

wa jγ
]

b
b−1

x
b(b−γ)
γ(b−1)

aiqb ); i 6= j∈Ω= {1,2}, q= e1z1+e2z2

and βββ = (γ,b,a1,a2).

Since the risk-neutral probabilities must lie on a unit interval, we have the following

restriction on parameters in equation (33):

(34) 0≤ e1[γwa1qb−1x
γ−b

γ ]+ e2[1− γwa2qb−1x
γ−b

γ ]≤ 1
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An associated econometric estimating equation is:

lnqnt =
1
γ

lnxnt− e1nt{
1
b

lna1 + r1nt(qnt ,wnt ,xnt ,βββ )}

− e2nt{
1
b

lna2 + r2nt(qnt ,wnt ,xnt ,βββ )}+ vnt

(35)

And the corresponding restriction on each observation in the sample is given by:

(36) 0≤ e1nt [γwa1qnt
b−1xnt

γ−b
γ ]+ e2nt [1− γwa2qnt

b−1xnt
γ−b

γ ]≤ 1

where the subscripts n and t represent firms and time periods respectively (n = 1, ...,N; t =

1...,T ), and vnt is a random variable representing statistical noise.

Simulated Data
This section uses simulation methods to compare the performance of conventional estima-

tors with the NLS estimator developed above. The input demand x is derived by substitut-

ing equation (29) into equation (3) and the state-contingent outputs z1 and z2 are generated

using equation (29). The following equation expresses input demand in terms of the risk-

neutral probabilities and the technology parameters:

(37) x = [a1(
π1

a1wγ
)

b
b−1 +a2(

π2

a2wγ
)

b
b−1 ]

γ(b−1)
b(γ−1)

Therefore in table 1 the input demand x is simulated using (37) and state-contingent outputs

(z1,z2) are simulated using equation (29). In our simulation we assign equal probabilites

to each state of nature. The realized state of nature and the output corresponding to this

state of nature are listed in columns 6 and 7 respectively in table 1. Finally, the values of

the unknown parameters used to generate this table were b = 2, a1 = 1.5, a2 = 0.5 and

γ = 1.25.

Numerical Example Using Simulated Data

The case that interests us from the perspective of estimation is when state-contingent out-

put (zs), realized state of nature ({s}), total input (x) allocated to the production process
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and input price (w) are observed. This case is of empirical importance. For example, in

agricultural production, in addition to observing inputs used and realized crop yield, we

often also observe whether the season is ‘wet‘ or ‘dry’. In this case we use non-linear least

squares (NLS) to estimate the parameters of technology using (35).

The econometric equation for the conventional ordinary least squares (OLS) estimator

with Cobb-Douglas functional form can be written as

(38) ln(qnt) = e1[−α ln(a1)]+ e2[−α ln(a2)]+α ln(xnt)+ vnt

where e j = 1 if j ∈ {1,2} is the realized state of nature (otherwise e j = 0) and q = e1z1 +

e2z2. The subscripts n and t in (38) represent firms and time periods respectively (n =

1, ...,25; t = 1) and vnt is a random variable representing statistical noise.

We apply conventional OLS estimator10 to the simulated data shown in table 1. Esti-

mates of the technology parameters using OLS estimator given by (38) is compared with

NLS estimator given by (35). Table 2 shows that conventional OLS estimator provides

biased estimates of the production technology parameters. But the NLS estimator that

assumes a CES specification of technology exactly11 recovers the parameters of technol-

ogy with standard errors of zero. The associated risk-neutral probabilities and unobserved

state-contingent outputs were also recovered without error.

Elasticity of scale represents an economically important characteristic of any produc-

tion technology. For the conventional Cobb-Douglas and CES specifications the elasticity

of scale is given by parameters α and γ−1 respectively. In table 2 we observe that the

conventional OLS estimator performs badly in measuring elasticity of scale.

It is important to note that the problem is not with the conventional OLS estimator, but

the bias arises due to mis-specification of the stochastic technology. This can be seen by

considering a case where both state-contingent outputs z1 and z2 along with total input (x)

allocated to the production process are observed. This case is implausible because in the

real world only one state of nature is realized and data on outputs in the unrealized states
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of nature are lost. We consider this case purely for the sake of econometic estimation. In

order to estimate the parameters of technology we re-write (3) as follows:

(39) z1
b =

1
a1

xb/γ(1− a2z2
b

xb/γ )

Taking logarithm and on both sides of (39) and then dividing both sides of (39) by b we

have

(40) ln(z1) =−
1
b

ln(a1)+
1
γ

ln(x)+
1
b

ln(1− a2z2
b

xb/γ )

And the corresponding econometric estimation equation can be written as

(41) ln(z1nt) =−
1
b

ln(a1)+
1
γ

ln(xnt)+
1
b

ln(1− a2z2nt
b

xntb/γ )+ vnt

where the subscripts n and t represent firms and time periods respectively (n = 1, ...,25; t =

1) and vnt is a random variable representing statistical noise.

Even when both state-contingent outputs are observed (unrealistic case) conventional

OLS provides bias12 estimates of the technology parameters. Again, when we estimate

(41) assuming a state general specification technology given by CES functional form we

get exact estimates of the production technology parameters with zero standard errors.

Simulation Experiment

To further explore the nature of bias for each of the technology parameters using conven-

tional OLS estimator, we perform a simulation experiment. In the simulation experiment

we fix the risk-neutral probabilities shown in the second column in table 1 in each of the

N = 10,000 replications, but we allow each of the 25 firms to experience any of the two

possible states of nature ex post with probability 0.5.

We observe from tables 3 and 4 that the bias in the estimates of technology parameters

a1 and a2 is severe when technology exhibits high substitutability between state-contingent

outputs, that is when b = 1.1. For example, in table 3 we observe that when technology ex-

hibits decreasing returns to scale and high substitutability between state-contingent outputs,
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that is when γ−1 = 0.8 and b = 1.1, parameter a1 has an estimated mean of 2.1671E +122

and estimated standard error of 5.3210E + 123. Similarly, in table 4 we find that when

technology exhibits increasing returns to scale and high substitutability between state-

contingent outputs, that is when γ−1 = 1.25 and b = 1.1, parameter a2 has an estimated

mean of 2.6150E +73 and estimated standard error of 2.6128E +75.

In tables 3 and 4 we find the bias in technology parameters a1 and a2 is least when the

technology exhibits low degree of substitutability between state-contingent outputs, that

is b = 11. For example, in table 3 we observe that when technology exhibits increasing

returns to scale and low degree of substitutability between state-contingent outputs, that is

when γ−1 = 0.8 and b = 11, parameter a1 has an estimated mean of 0.9229 and estimated

standard error of 0.6195. Again, in table 4 we find that when technology exhibits decreasing

returns to scale and low degree of substitutability between state-contingent outputs, that is

when γ−1 = 1.25 and b = 11, technology parameter a2 has an estimated mean of 0.6949

and estimated standard error of 0.4383.

Again, we observe in table 5 that the bias in the estimates of elasticity of scale param-

eter γ−1 is least when technology exhibits low degree of substitutability between state-

contingent outputs, that is b = 11. For example, in table 5 when technology exhibits

low degree of substitutability between state-contingent outputs, that is b = 11, the esti-

mated means of elasticity of scale parameter for decreasing and increasing returns to scale

are 0.6600 and 1.4207 respectively and the corresponding standard errors are 0.1842 and

0.2291 respectively.

Finally, we plot the estimated probability density functions of a1, a2 and γ−1 in figures

1, 2 and 3 respectively. These pdf plots clearly indicate the nature of bias in the estimation

of the technology parameter.
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Conclusion
Representation of the production technology and the description of firm behaviour are the

two critical elements of the model. The production technology defines deterministic (ob-

served) input and stochastic output combinations that are technically feasible. Given this

particular nature of technology that firms have access to, their optimal production choices

are determined by their risk attitudes and beliefs involving the relative probabilities of dif-

ferent states of nature. In this article we model producer behaviour towards uncertainty and

derive the risk-neutral probibilities assigned to different states of nature.

An estimation methodology is developed in order to estimate parameters of technology

and producers’ risk-neutral probabilities. We then simulate data based on our CES spec-

ification of state-general state-contingent technology. Biased estimates of the technology

parameters are obtained using conventional ordinary least squares (OLS) estimator on the

simulated data. Since the simulated data does not have any measurement error, the source

of the measurement bias arises due to mis-specification of the underlying stochastic tech-

nology. Hence, the bias in the estimates of technology parameters cannot be attributed to

the conventional OLS estimators.

Finally, a simulation experiment is performed to determine the nature of bias in param-

eter estimates. We find that the estimation bias for the productivity parameter in each of

the two states of nature and the elasticity of scale parameter is minimum when technology

exhibits low degree of substitutability between state-contingent outputs.
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Notes

1Producers risk attitudes can be captured by the shape of their ex post utility function.

2The input in CES functional form is state general.

3Only one of the two possible state-contingent outputs is observed.

4The input distance function is defined as DI(x,z,βββ ) = max{ρ : x
/

ρ can produce z}.

Let ρ∗ be the maximum factor by which a firm can contract its input and still produce the

same output. That is g(z,βββ )− x/ρ∗ = 0. It follows that DI(x,z,βββ ) = x
/

g(z,βββ ).

5The family of CET production possibility schedule is algebraically identical to CES

isoquants, apart from the difference in the sign determining their concavity.

6This state-contingent production function closely resembles the conventional multi-

input and single output CES production function. In conventional representation of CES

production function, the output produced is expressed as a function of multiple input used

in the production process. In the CES type state-contingent production function given by

(3) the total input applied to the production process is expressed as a function of state-

contingent outputs.

7This is the definition given by Chambers and Quiggin (2000)

8Exponential utility function allows net returns to be both negative as well as positive.

9Also the inputs allocated to each of the two states of nature are unobserved, irrespective

of whether the technology is state-allocable or state-general.

10First ln(q) is regressed on state dependant constants and ln(x) and state dependant

constants c1 and c2 are estimated along with coefficient (c3) of ln(x). Then, a1 and a2 are
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derived using the transformation a1 = exp(−c1
/

c3) and a2 = exp(−c1
/

c3) respectively.

Finally the standard errors for a1 and a2 are computed using delta method.

11This result should not come as a surprise because the data was generated using this

CES specification and there was no noise added to the data.

12In this case the input is a function of the two state-contingent outputs and the functional

form is Cobb-Douglas.
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Figure 1: Estimated probability density of technology parameter a1
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Figure 2: Estimated probability density of technology parameter a2
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Figure 3: Estimated probability density of elasticity of scale parameter γ−1
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Tables
Table 1: Simulated Data:(a1,a2) = (1.5,0.5),b = 2,γ = 1.25,w = 0.5

Firm π1 x z1 z2 s zs

1 0.030 50.978 0.339 32.836 2 32.836
2 0.042 47.940 0.457 31.256 1 0.457
3 0.147 27.455 1.144 19.919 1 1.144
4 0.244 15.953 1.371 12.746 1 1.371
5 0.246 15.772 1.373 12.626 2 12.626
6 0.306 11.172 1.389 9.449 2 9.449
7 0.320 10.305 1.384 8.820 1 1.384
8 0.369 7.772 1.347 6.910 2 6.910
9 0.380 7.298 1.336 6.538 1 1.336

10 0.418 5.889 1.292 5.396 1 1.292
11 0.479 4.235 1.215 3.964 2 3.964
12 0.500 3.805 1.189 3.567 2 3.567
13 0.504 3.730 1.184 3.497 1 1.184
14 0.546 3.060 1.139 2.842 2 2.842
15 0.548 3.033 1.137 2.814 2 2.814
16 0.549 3.019 1.136 2.801 2 2.801
17 0.566 2.807 1.121 2.580 1 1.122
18 0.595 2.506 1.101 2.249 1 1.101
19 0.657 2.075 1.086 1.701 2 1.701
20 0.704 1.906 1.106 1.395 2 1.395
21 0.750 1.854 1.159 1.159 2 1.159
22 0.791 1.895 1.238 0.982 1 1.238
23 0.864 2.192 1.476 0.697 1 1.476
24 0.944 2.928 1.919 0.341 1 1.919
25 0.979 3.434 2.189 0.141 2 0.141
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Table 2: Parameter Estimates Using OLS and NLS estimators

True Value OLS Estimates NLS Estimates

a1 = 1.5 3.9406 1.5000
(2.6947) (0.0000)

a1 = 0.5 0.2805 0.5000
(0.4109) (0.0000)

b = 2 2.0000
(0.0000)

γ−1 = 0.8 α = 0.4056 0.8000
(0.1887) (0.0000)

Note: Standard errors are shown in parenthesis
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Table 3: Sample statistics for estimated technology parameter a1

True (a1 = 1.5,a2 = 0.5,γ−1,b) Mean Std. Dev Min Max

(0.8,2) 3.7537 1.4759 0.0000 19.8475
(0.8,11) 0.7956 0.4679 0.0089 1.9545
(0.8,1.1) 2.1671E+122 5.3210E+123 3.7221 1.4782E+125
(1.25,2) 1.2328 1.0454 0.3126 23.2493

(1.25,11) 0.9229 0.6195 0.2997 5.6889
(1.25,1.1) 5.7097E+115 5.7048E+117 0.2241 5.7000E+119
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Table 4: Sample statistics for estimated technology parameter a2

True (a1 = 1.5,a2 = 0.5,γ−1,b) Mean Std. Dev Min Max

(0.8,2) 0.5048 0.4815 0.0000 2.5796
(0.8,11) 0.6949 0.4383 0.0085 1.8888
(0.8,1.1) 3.8061E+28 1.3058E+30 0.0000 4.4798E+31
(1.25,2) 0.6444 0.6020 0.1588 20.3998

(1.25,11) 0.8575 0.5792 0.2913 5.5585
(1.25,1.1) 2.6150E+73 2.6128E+75 0.0174 2.6105E+77
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Table 5: Sample statistics for estimated elasticity of scale parameter γ−1

True (a1 = 1.5,a2 = 0.5,γ−1,b) Mean Std. Dev Min Max

(0.8,2) 0.4755 0.2441 0.0000 1.2209
(0.8,11) 0.6600 0.1842 0.2342 1.1015
(0.8,1.1) 0.5857 0.4423 0.0301 2.5072
(1.25,2) 1.6798 0.3250 0.6959 2.5497

(1.25,11) 1.4207 0.2291 0.8500 1.9542
(1.25,1.1) 4.1551 1.5576 0.0418 8.8157
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