
 
ISSN: 2038-6087

Working Paper
 

Dipartimento di 
Scienze Economiche 
Università di Cassino 8/2010

 

 

 
 

  

Marina Di Giacinto(1)   Bjarne Højgaard (2)   Elena Vigna(3) 

(1) Università degli studi di Cassino - Italy 

(2) Spar Nord Bank, Aalborg - Denmark 

(3) Università degli studi di Torino, CeRP and Collegio Carlo Alberto - Italy 

Optimal time of annuitization in the decumulation phase 

of a defined contribution pension scheme 

 

December 2010 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6275655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dipartimento di Scienze Economiche 
Università degli Studi di Cassino 
Via S.Angelo Località Folcara, Cassino (FR) 
Tel. +39 0776 2994734 Email dipse@eco.unicas.it 



Optimal time of annuitization in the decumulation

phase of a defined contribution pension scheme∗
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Abstract

In this paper, we consider the problem of finding the optimal time of annuitization
for a retiree of a defined contribution pension scheme having the possibility of choosing
her own investment and consumption strategy. We exploit the model introduced by
[7], who formulate the problem as a combined stochastic control and optimal stopping
problem. They select a quadratic loss function that penalizes both the deviance of the
running consumption rate from a desired consumption rate and the deviance of the
final wealth at the time of annuitization from a desired target.

We make extensive numerical investigations to address relevant issues such as opti-
mal annuitization time, size of final annuity upon annuitization, extent of improvement
when annuitization is not immediate and comparison between optimal annuitization
and immediate annuitization. We find that the optimal annuitization time depends
on personal factors such as the retiree’s risk aversion and her subjective perception
of remaining lifetime. It also depends on the financial market, via the Sharpe ratio
of the risky asset. Optimal annuitization should occur a few years after retirement
with high risk aversion, low Sharpe ratio and/or short remaining lifetime, and many
years after retirement with low risk aversion, high Sharpe ratio and/or long remaining
lifetime.

Moreover, we show rigorously that with typical values of the model’s parameters,
a pension system where immediate annuitization is compulsory for all individuals is
sub-optimal within this model. We measure the cost of sub-optimality in terms of loss
of expected present value of consumption from retirement to death, and we find that
the cost of sub-optimality, in relative terms, varies between 6% and 40%, depending on
the risk aversion. This result gives an idea about the extent of loss in wealth suffered
by a retiree who cannot choose programmed withdrawals, but is obliged to annuitize
immediately on retirement all her wealth.
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1 Introduction

In defined contribution (DC) pension schemes, the financial risk is borne by the member:
contributions are fixed in advance and the benefits provided by the scheme depend on the
investment performance experienced during the active membership and on the price of the
annuity at retirement, in the case that the benefits are given in the form of an annuity.
Therefore, the financial risk can be split into two parts: investment risk, during the
accumulation phase, and annuity risk, focused at retirement. In order to limit the annuity
risk – which is the risk that high annuity prices (driven by low bond yields) at retirement
can lead to a lower than expected pension income – in many schemes the member has
the possibility of deferring the annuitization of the accumulated fund. This possibility
consists of leaving the fund invested in financial assets as in the accumulation phase, and
allows for periodic withdrawals by the pensioner, until annuitization occurs (if ever). In
UK this option is named “income drawdown option”, in US the periodic withdrawals
are called “phased withdrawals” or “programmed withdrawals”. There are a number of
countries where programmed withdrawals are an option to retirees of DC schemes. These
include Argentina, Australia, Brazil, Canada, Chile, Denmark, El Salvador, Japan, Peru,
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UK. To the best of our knowledge, there are even substantially more countries where this
option is not available. These include Austria, Bulgaria, Colombia, Germany, Hong Kong,
India, Ireland, Italy, Luxembourg, Netherlands, Poland, Portugal, South Africa, Sweden,
Switzerland. An exhaustive recent survey regarding the list of several forms of payment
offered by pension schemes can be found in [2]. A pensioner who takes this option has
three degrees of freedom:

1. she can decide what investment strategy to adopt in investing the fund at her dis-
posal;

2. she can decide how much of the fund to withdraw at any time between retirement
and ultimate annuitization (if any);

3. she can decide when to annuitize (if ever).

The first two choices represent a classical inter-temporal decision making problem,
which can be dealt with using optimal control techniques in the typical [10] framework,
whereas the third choice can be tackled by defining an optimal stopping time problem.

Examples of works dealing with these three choices via the formulation of a combined
stochastic control and optimal stopping problem are [12], [15], [14] and [7].

Differently from the other mentioned papers, [7] solve the problem of optimal annu-
itization in the presence of quadratic, target-depending loss functions. By so doing, the
authors extend [5] and [6], where the optimal couple investment-consumption is found in
the presence of quadratic loss function. Moreover, the authors leave scope for further re-
search in many directions, both on the applicative side and on the theoretical one. In this
paper, we address some of them, with particular emphasis on applications. Our extensions
are twofold. Firstly, we carry out a broad sensitivity analysis of the results found by [7].
The main aim we have in mind is to provide a wide range of results regarding optimal
annuitization time and consequent size of annuity in most common situations. Secondly,
since optimality or not-optimality of immediate annuitization is shown to depend on the
combination of the model parameters (i.e. risk aversion, market and mortality assump-
tions), we show that in most cases a pension system where the only option available is
immediate annuitization is sub-optimal. Moreover, we measure the cost of sub-optimality
in terms of expected present value of consumption stream from retirement until death.

The reminder of the paper is organized as follows. Section 2 presents a review of the
actuarial literature on the decumulation phase of DC pension funds. Section 3 presents
the model exploited. Section 4 presents the performance analysis of results of the model.
Section 5 shows the sub-optimality of immediate annuitization and measures its cost from
the point of view of the member. Section 6 concludes.

2 Review of actuarial literature on decumulation phase

In the countries where the possibility of deferring ultimate annuitization is an option, the
pensioner who takes this option can decide what investment strategy to adopt in investing
the fund at her disposal, how much of the fund to withdraw at any time between retire-
ment and ultimate annuitization, and when to annuitize. The evidence that the option
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is actually taken by many pensioners is in apparent contrast with [17] fundamental work,
according to which retirees should annuitize immediately at retirement. By addressing the
three choices outlined above, the actuarial literature tries also to extend Yaari’s theorem
and to give convincing explanations to the so-called “annuity puzzle”. Whereas the income
drawdown option adds flexibility in the choices of the pensioner, and gives her the hope
of being able to buy later on a better annuity than the one purchasable at retirement, the
main drawback is that with self-annuitization the member bears the longevity risk, i.e.
the risk of outliving her own assets. Therefore, another relevant issue that arises when
the income drawdown option is chosen is the ruin probability, i.e. the probability that the
pensioner runs out of money when she is still alive.

A number of authors have dealt with the problem of managing the financial resources
of a pensioner after retirement and have investigated the alternatives available to a retiree
other than immediate annuitization. It is not an easy task to classify properly the many
papers that approach some or all of the four important issues outlined above, namely,
investment and consumption strategies, optimal annuitization time, ruin probability, also
because different methodologies have been adopted. Thus, we will first group them ac-
cording to the topic addressed, then according to the methodology. Papers that address
mainly the ruin probability are, e.g., [13] and [1]. Papers that explore different investment
strategies and/or different consumption paths, possibly analyzing also the ruin issue are,
e.g., [9], [16], [4], [5], [6]. Papers that add to their analysis also investigations on the
optimal annuitization time are, e.g., [11], [8], [3], [12], [15] and [14]. An approach based
on extensive simulations has been used by [9], [11], [1] and [3]. Stochastic optimal control
has been applied by [5], [6], [12], [15] and [14].

In this paper we focus on the optimal time of annuitization. It is then important to
review briefly the other contributions to this relevant topic. In [11] and [8], the basic
idea is that since the annuity price is calculated with the riskfree rate, in the first years
after retirement the equity risk premium pays more than the mortality credits (due to
annuitants who die earlier than average); therefore in the first years after retirement the
individual should invest and consume, and should annuitize when the mortality credits
become so large that it becomes worthwhile annuitize (“do-it-yourself-and-then-switch”
strategy). According to their simulations, in UK the maximum annuitization age of 75
(which is even 10 years greater than NRA1) is at least 5 years too low, and a Canadian
female aged 65 has 90% probability of beating the interest rate return until the age of 80.
[3] find that the optimal annuitization age is sensitive to the degree of risk aversion and
varies from NRA (for very high risk aversion) to 79–80 (for very low risk aversion). [5]
and [6] find that income drawdown option has to be preferred to immediate annuitization
when risk aversion is not too high and the risky asset is sufficiently good compared to the
riskfree one. [14] solve an optimization problem and find optimal investment/consumption
strategies and optimal annuitization time using logarithmic utility function. They find that
optimal annuitization age, which depends on the relative risk aversion and on the wealth
status, is typically higher than 70. [7] solve a similar problem with quadratic loss functions.
They find that optimal annuitization is mainly driven by risk profile of the retiree, level
of the fund and market conditions and in some typical situations should occur 6–7 years

1NRA stands for “normal retirement age”.
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after retirement, but may occur also 10–15 years after it.
It is our opinion that the problem of finding optimal investment and consumption

strategies and optimal annuitization time should be rigorously formulated as a combined
stochastic control and optimal stopping problem. Up to our knowledge, in the literature
this has been done only by [12], [15], [14], and [7]. While [12] minimize the probability
of financial ruin, [15] finds optimal choices in a very general expected utility setting, dis-
tinguishing between utility pre-annuitization and utility post-annuitization and selecting
as a special case the power utility function, and [14] maximize expected utility of life-
time consumption and bequest, with age-dependent force of mortality and power utility
function. Differently from these papers, [7] solve the problem of optimal investment and
consumption strategies as well as optimal annuitization time by selecting a quadratic loss
function. We briefly present their model in the next section.

3 The model

A pensioner has a lump sum of size which can be invested either in a riskless asset paying
interest at fixed rate or in a risky asset, whose price evolves randomly following a log-
normal process. We assume that the remaining lifetime of the pensioner is exponentially
distributed with constant force of mortality. The pensioner can choose the proportion of
the fund to be invested in the risky asset and the withdrawal from the fund until to the
time of annuitization. She is also able to select the time of eventual annuitization. The
size of the annuity purchasable with sum x is kx, where k > r. If the amount of money in
the fund is ever exhausted, no further investment or withdrawal is permitted, that means
that occurrence of ruin is prevented by the model’s design.

We use this notation:

• y(t) is the proportion of the fund invested in the risky asset at time t;

• b(t) dt is the income withdrawn from the fund between time t and time t+ dt.

• T is the time of annuitization;

• T0 is the time when the fund goes below 0;

• TD is the pensioner’s time of death, as measured from the time when the lump sum
is received;

• x(t) is the size of the fund at time t (where t < min(T, TD, T0));

This model investigates the problem using y(·) and b(·) as control variables, and T
as stopping time. The proportion invested in the fund, the income withdrawn, and the
annuitization time are chosen in such a way as to minimize the following quadratic cost
criterion

Jb,y,T (x) = Ex

[
v

∫ τ

0
e−(ρ+δ)t (b0 − b(t))2 dt+

we−(ρ+δ)τ

ρ+ δ
(b1 − kx(τ))2

]
, (1)

where:
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• Ex(·) = E(·|x(0) = x), i.e. the expectation value is conditioned to the current size
of the fund;

• τ = min(T, T0);

• v and w are positive weights which determine the relative importance in the cost
criterion of the payment before and after annuitization, respectively;

• ρ is a subjective discount factor;

• δ is the force of mortality which is assumed to be constant;

• b0 is the income target before purchasing the annuity;

• b1 is the amount that represents the targeted income after eventual annuitization;

• k is the amount of annuity which can be purchased with one unit of money.

The intertemporal budget equation x is

dx(t) =
[
x(t)

(
y(t)(λ− r) + r

)
− b(t)

]
dt+ σx(t)y(t)dB(t),

where r is the instantaneous rate of return from the riskless investment and λ is the
instantaneous rate of return from the risky investment with volatility σ. The standard
Brownian motion B(·) is the source of uncertainty that represents market risk.

The amount b0, the income target until the annuity is purchased, will in many cases
be equal to kx0, the size of the annuity which could have been purchased if the retiree had
annuitized immediately on retirement. The process x evolves until either it is advantageous
to annuitize or the fund falls to a negative value, in which case no further trading is
permitted. The loss associated with annuitization when the level of the fund is x ≥ 0, so
that the annuity pays kx per unit time, is

K(x) =
w

ρ+ δ
(b1 − kx)2. (2)

The ratio η = b1
b0

is a measure of risk propensity: the higher η, the higher the target,
the lower the risk aversion and vice versa. Obviously the targeted annuity b1 is always
assumed grater than income withdrawn b0, hence η > 1.

Should the fund hit b1
k , the pensioner would be able to buy a lifetime annuity with

income rate b1 and the penalty from that moment on would be null, which is what we
expect to be.

Clearly, if the fund is equal to b1
k the optimal decision is to annuitize. However, the

main novelty of the model is that optimal annuitization occurs also with a fund size x∗

lower than b1
k (see Section A.2). The intuition behind that is the following. When one

reaches a certain level close enough to the desired target, it is better to stop the self-
annuitization strategy and accept the low penalty given by (2), rather than keeping on
investing and facing the risk of departing even more from the desired level.

The region where it is optimal the self annuitization strategy turns out to be

U = (0, x∗) ∪
(
b1
k
,+∞

)
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that in the optimal stopping theory terminology is called “continuation region”. The
name of the region U is intuitive: if the wealth x is in the continuation region, then the
loss paid in case of annuitization is higher than that paid in case of continuation of the
optimization program, so that it is optimal to keep playing the game; vice versa, if one’s
wealth is outside that region, then the loss paid in case of annuitization is lower than that
paid playing the game, thus the game is over and the member annuitizes.

Quite remarkably, a complete solution of this optimal control model is given in [7].
While for a complete analysis of the mathematical model we refer to the original paper,
for the reader’s convenience we provide a synthetic description of the optimal solution in
appendix A.

4 The optimal annuitization time: performance analysis

In this section we carry out extensive simulations and scenario analysis in order to test the
performance of the optimal exercise policies calibrating the model with realistic market
parameters and mortality assumptions, and testing for different levels of risk aversion, i.e.
subjective preferences.

4.1 Basic assumptions and scenario generation

We consider a male retiree aged 60 and time horizon equal to T = 30. In fact, accordingly
to the existing actuarial literature (see section 2), ages of optimal annuitization range
typically between 70 and 80, and only rarely up to 85-90. It is therefore reasonable to
assume that if the pensioner has not annuitized at the age of 90, he will not do it later.
His initial wealth is x0 = 100. The riskfree asset in each scenario will be chosen at 3%.
For the annuity calculation, we make use of an Italian projected mortality table (RG48).
This set of assumptions corresponds to an immediate annuity value equal to b0 = 6.22.
The parameters of the problem are

r, λ, σ, δ, k, v, w, b1, ρ. (3)

In a realistic setting r, λ, σ characterize the investment opportunities and depend on the
financial market, δ depends on the demographic assumptions, and k depends on both the
financial and demographic hypotheses.

Parameters that can be chosen are the weights given to penalty for running consump-
tion, v, and to penalty for final annuitization, w, although it turns out that the relevant
quantity is the ratio of these weights, w

v . Another parameter chosen by the retiree is the
targeted level of annuity, b1, while it is reasonable to assume that the level of interim con-
sumption b0 is given and depends on the size of the fund at retirement. A typical choice
for b0 is the size of annuity purchasable at retirement with the initial fund x0. Thus,
typically b1 is multiple of b0, and the relevant quantity is η = b1

b0
> 1.

A parameter that is somehow arbitrary and somehow given is ρ, the intertemporal
discount factor: although subjective by its own nature, in typical situations cannot differ
too much from the riskfree rate of return r and in all our simulations it will be assumed

ρ = r.
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In this way the relevant quantity measuring the patience of the retiree for future events,
the value of time, is given by the sum ρ+ δ.

[7] show that, expectedly, what really counts in the applications, are some relevant
ratios of these values, that are

β,
b1
b0
,

w

v
, ρ+ δ. (4)

This allows us in the following to fix some of the values (3) and change some others to get
different values of the relevant quantities (4). In fact, they find that equal sign variations
of the first three quantities and opposite sign variation of the fourth one produce equal
qualitative variations to some relevant features of the problem solution (not reported
here because too technical and not useful in this context). In particular, they find that
everything else being equal, the ratio x∗

(b1/k)
, i.e. the width of the continuation region:

1. increases by increasing β;

2. increases by increasing b1
b0

;

3. increases by increasing w
v ;

4. generally slightly decreases by increasing ρ+ δ.

Indeed, it is reasonable to accept that a high Sharpe ratio can well be coupled with low
risk aversion, and also with high penalty in case of annuitization w.r.t. that paid in case
of running consumption. Moreover, it is natural to expect that a low ρ + δ is consistent
with a high w

v , because these choices are both led by high tolerance toward future income.
And vice versa.

In a first set of simulations, here not reported, we let all the relevant quantities vary
accordingly to the description. We have found out that the result do not differ very much
when the ratio w

v increases. For this reason, we have finally fixed the ratio w
v equal to

1. Results have turned out to be more sensible to the choice of r + δ that, as mentioned,
measures the weight given to future and present flows, i.e. the time value of money for
the retiree.

We fix four different scenarios, by starting with low values of the first two relevant
quantities and high value of the third one, and then progressively augmenting the first
two of them and reducing the third one, at the same time. The values of the relevant
quantities of the four scenarios, which we call A, B, C, and D, are reported in Table 1.

Table 1: Value of parameters in scenarios A, B, C, D.

A B C D

β 0.25 0.33 0.40 0.50

b1
b0

1.50 1.75 2.00 2.25

ρ+ δ 0.09 0.07 0.05 0.03
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Although, clearly, the set of combinations of different values of the relevant ratios is
potentially unlimited, and the model can be run with different combinations, here we focus
on these four scenarios, which we find representative for four different kinds of individuals:

• Scenario A would be suitable for individuals quite risk averse, who desire a pension
target only 50% higher than b0. They do not expose themselves too much to financial
risk, and gain a small value of β on the market. These individuals strongly prefer
current income to future income, probably due to a high estimate of the subjective
mortality rate.

• Scenario B reports preferences for individuals moderately risk averse, who target a
final pension 75% higher than b0. They find a β = 0.33 on the market, and give
more weight to the present rather than the future.

• Scenario C would be suitable for individuals with low risk aversion, who aim to double
their final annuity via programmed withdrawals. They are able to gain β = 40%
on the financial market and give approximately the same importance to future and
present income, taking into account also the mortality rate.

• Scenario D would be suitable to risk lovers, who aim to more than double the imme-
diate annuity b0, and get a very high value of β on the market. They put substantial
weight to future income, compared to present one, either due to low estimate of their
own mortality rate or due to strict preference for the future.

4.2 Simulations results

For each scenario, we run 1000 Monte Carlo simulations for the risky asset. Across the four
scenarios, we have fixed the 1000 trajectories of the Brownian motion. For each scenario,
we provide the following:

• histogram with the distribution of the optimal annuitization time T ∗, measured in
years from retirement (Figures 1(a), 2(a), 3(a), 4(a));

• histogram with the distribution of the final annuity A∗ achieved upon optimal annu-
itization; the final annuity A∗ has been calculated each time through the actuarial
fairness principle, using the RG48 mortality table and the interest rate r = 0.03;
each time, the actual age of annuitization has been used, consistently with what
would happen in the practice;

• distribution of optimal fund wealth evolution (via some percentiles);

• distribution of optimal consumption stream b∗, i.e. the optimal income withdrawal,
between retirement and annuitization time (via some percentiles);

• distribution of optimal investment strategy y∗, i.e. portfolio quote invested in the
risky asset, between retirement and annuitization time (via some percentiles);

• statistics of the optimal annuitization time T ∗ and of the size of annuity A∗ upon op-
timal annuitization, with consequent comparison with that achievable on immediate
annuitization (Tables 2, 4, 6, and 8);
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• some relevant information relative to extreme cases, such as:

– probability of optimal annuitization within one year from retirement,
Prob(T ∗ < 1),

– probability of optimal annuitization after the time-frame considered, Prob(T ∗ >
30),

– probability that the final annuity A∗ is lower or equal than b1, Prob(A∗ ≤ b1);
– probability of negative optimal consumption, Prob(b∗ < 0), and average time

of negative consumption, given that there is negative consumption (Tables 3,
5, 7 and 9).

Here by Prob(E) we mean the frequency over the 1000 simulations of the event E.

Summarizing, Figures 1(a), 1(b), 1(c), 1(d), 1(e) and Tables 2, 3 report results relative
to scenario A; Figures 2(a), 2(b), 2(c), 2(d), 2(e) and Tables 4, 5 those relative to scenario
B; Figures 3(a), 3(b), 3(c), 3(d), 3(e) and Tables 6, 7 those relative to scenario C; Figures
4(a), 4(b), 4(c), 4(d), 4(e) and Tables 8, 9 those relative to scenario D.

Remark 4.1 The statistics of optimal annuitization time and final annuity reported in
Tables 2, 4, 6, and 8 are conditional on T ∗ ≤ 30. When optimal annuitization does not
occur within the 30-years time-frame, T ∗ is set equal to 0, but its statistics is not reported
into the mentioned Tables, and the same for the statistics of the final annuity. In a similar
way, in Figures (a) and (b) of each scenario, that report the histograms of distribution
of T ∗ and final annuity A∗, the cases when optimal annuitization does not occur have
not been reported. On the contrary, all other Figures (i.e. Figures (c), (d) and (e) for
each scenario) report percentiles of optimal fund wealth and optimal policies over the 1000
scenarios. For this reason, there is no consistency in general between Tables 2, 4, 6, and
8 and Figures (c), (d) and (e).

Remark 4.2 Scenarios B, C and D are characterized by the same scale in all Figures,
whereas scenario A differs from the others relatively to Figures 1(a) and 1(b). This is due
to the much higher concentration of values around the mode of the distribution in scenario
A than in the other scenarios.

4.2.1 Scenario A

The whole parameters’ value for this scenarios are the following

r = 0.03, λ = 0.06, σ = 0.12, δ = 0.06, k = 0.085,

w = 1, v = 1, ρ = 0.03, b0 = 6.22, b1 = 9.33, x∗ = 104.24,

that imply

β = 0.25,
b1
b0

= 1.50, ρ+ δ = 0.09.
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Table 2: Statistics of the optimal annuitization time and the size of annuity in scenario A.

annuitization
time

size of annuity

mean 1.0312 6.8397

standard deviation 2.8087 1.2638

minimum 0.1923 6.4814

maximum 26.3077 25.9459

5th percentile 0.0192 6.4889

25th percentile 0.0769 6.5303

50th percentile 0.1731 6.5989

75th percentile 0.5962 6.7185

95th percentile 5.2173 7.5747

Table 3: Relevant information on extreme cases in scenario A.

Prob(T ∗ < 1) 77.00%

Prob(T ∗ > 30) 6.30%

Prob(A∗ ≥ b1) 2.24%

Prob(b∗ < 0) 2.40%

Mean time of b∗ < 0 (given b∗ < 0) 4.40 yrs

From Figures 1(a), 1(b), 1(c), 1(d), 1(e) and from Tables 2 and 3 (recalling also Remark
4.1), we can gather the following information:

• the most striking feature that can be observed is the timing of optimal annuitization,
T ∗: in most of the cases, T ∗ occurs only 1-2 years after retirement. In particular, in
77 cases out of 100 optimal annuitization occurs within one year from retirement;

• in 63 cases out of 1000 optimal annuitization does not occur within the time-frame
of 30 years after retirement;

• the size of final annuity A∗ upon optimal annuitization is always higher than the
pension achievable on immediate annuitization b0; however, the improvement does
not seem to be particularly significant, since in 75% of the cases the final annuity A∗

lies between 6.48 and 6.71, vs b0 = 6.22. This is due to the fact that annuitization
occurs too early and the price of annuity at that age is still too high, compared to
the value of k chosen, and this results into a low pension rate;
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• in 98% of the cases the annuity value turns out to be lower than b1. On the contrary,
in very few cases (2.24%) the annuity value turns out to be higher than b1 = 9.33:
this is due to annuitization occurring 20-25 years after retirement, when the old
age of the pensioner pushes downwards the price of the annuity, leading to a high
annuity value to be purchased with the wealth x∗;

• the results illustrated above are confirmed also by Figure 1(c), reporting the evolution
of optimal fund wealth: the fund reaches the upper barrier x∗ in more than 95% of
the cases immediately after retirement;

• the optimal consumption lies in most of the cases above b0, that is due to the fact
that, as mentioned, after annuitization the optimal consumption is always (slightly)
higher than b0; in 5% of the cases it lies always below b0, that is due to the cases
in which optimal annuitization occurs later, coupled with the fact that optimal
consumption is bound by the model to be lower than b0;

• the optimal investment strategy is 0 after optimal annuitization, that explains why
in Figure 1(e) most of the percentiles collapse to 0 a few years after retirement.
The trajectories that survive after 5 years post retirement seem to be very risky,
with approximately 150% of the wealth invested in the risky asset for the whole
time-frame of 30 years;

• optimal negative consumption occurs in 24 cases out of 1000, and on average con-
sumption remain negative for 4 years.

4.2.2 Scenario B

The whole parameters’ value for this scenarios are the following

r = 0.03, λ = 0.08, σ = 0.15, δ = 0.04, k = 0.085,

w = 1, v = 1, ρ = 0.03, b0 = 6.22, b1 = 10.89, x∗ = 126.78,

that imply

β = 0.33,
b1
b0

= 1.75, ρ+ δ = 0.07.
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(c) Optimal wealth.

0 5 10 15 20 25 30
0

5

10

15

TIME

b*

OPTIMAL CONSUMPTION

 

 

b
0

b
1

5° perc
25° perc
50° perc
75° perc
95° perc

(d) Optimal consumption.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

TIME

y*

OPTIMAL INVESTMENT STRATEGY

 

 

5° perc.
50° perc.
50° perc.
75° perc.
95° perc.

(e) Optimal amount invested in the risky asset.

Figure 2: Scenario B.
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Table 4: Statistics of the optimal annuitization time, size of annuity deriving from scenario
B.

annuitization
time

size of annuity

mean 8.1532 11.6771

standard deviation 7.2171 5.9555

minimum 0.5385 7.8838

maximum 29.9231 39.3369

5th percentile 1.2500 8.1209

25th percentile 2.6346 8.4399

50th percentile 5.4423 9.2200

75th percentile 11.6539 11.7757

95th percentile 24.3798 25.7227

Table 5: Relevant information on extreme cases in scenario B.

Prob(T ∗ < 1) 2.20%

Prob(T ∗ > 30) 25.30%

Prob(A∗ ≥ b1) 29.58%

Prob(b∗ < 0) 5.30%

Mean time of b∗ < 0 (given b∗ < 0) 2.84 yrs

From Figures 2(a), 2(b), 2(c), 2(d), 2(e) and from Tables 4 and 5 (recalling Remark
4.1) we can gather the following information:

• the timing of optimal annuitization, T ∗ is much more spread out than in scenario
A: on average, T ∗ occurs 8 years after retirement, and in 50% of the cases it occurs
after 5 years. In only 2 cases out of 100 optimal annuitization occurs within one
year from retirement and in 25% of the cases it occurs at a date later than 11 years
after retirement;

• in 253 cases out of 1000 optimal annuitization does not occur within the time-frame
of 30 years after retirement;

• the size of final annuity A∗ upon optimal annuitization is always higher than the
pension achievable on immediate annuitization b0; this time, the improvement is
more significant than in scenario A, since in 75% of the cases the final annuity A∗

lies between 7.88 and 11.77, vs b0 = 6.22. This is due to the fact that now optimal
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annuitization occurs at a later age than in scenario A and the price of annuity at
that age is sufficiently low to guarantee a mode than adequate improvement in the
pension rate;

• in 30% of the cases the annuity value turns out to be higher than b1 = 10.89: as
before, this is due to annuitization occurring 15-25 years after retirement, when the
relatively old age of the pensioner pushes downwards the price of the annuity, leading
to a high annuity value to be purchased with the wealth x∗;

• Figure 2(c) shows that the fund does not reach the upper barrier x∗ in slightly
more than 25% of the cases, whereas in 500 cases out of 1000 x∗ is reached within
approximately 8 years;

• clearly the optimal consumption lies below b0 in slightly more than 250 cases out
of 1000, due to the fact that optimal annuitization does not occur. However, when
optimal annuitization does occur the pension rate is sensibly higher than b0 and in
slightly less than 250 cases out of 1000 it is higher than b1;

• the optimal investment strategy is bounded between 0 and 1 in slightly more than
75% of the cases; short-selling occurs in less than 20% of the cases, but in 50 cases
out of 1000 strategies can be very risky, with riskiness increasing with time and
reaching in 5% of the cases 300% of the fund invested in the risky asset;

• optimal negative consumption occurs in 53 cases out of 1000, and on average con-
sumption remains negative for 2.8 years.

4.2.3 Scenario C

The whole parameters’ value for this scenarios are the following

r = 0.03, λ = 0.102 σ = 0.18, δ = 0.02, k = 0.085,

w = 1, v = 1, ρ = 0.03, b0 = 6.22, b1 = 12.44, x∗ = 146.12,

that imply

β = 0.40,
b1
b0

= 2, ρ+ δ = 0.05.
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Figure 3: Scenario C.
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Table 6: Statistics of the optimal annuitization time, size of annuity in scenario C.

annuitization
time

size of annuity

mean 14.1807 18.0114

standard deviation 7.3754 28.8639

minimum 2.0000 9.6208

maximum 30.0000 49.1624

5th percentile 4.3933 10.2426

25th percentile 7.8798 11.4980

50th percentile 12.7885 14.1752

75th percentile 19.7067 20.8759

95th percentile 27.5106 38.0239

Table 7: Relevant information on extreme cases in scenario C.

Prob(T ∗ < 1) 0.00%

Prob(T ∗ > 30) 34.10%

Prob(A∗ ≥ b1) 63.13%

Prob(b∗ < 0) 3.20%

Mean time of b∗ < 0 (given b∗ < 0) 2.01 yrs

From Figures 3(a), 3(b), 3(c), 3(d), 3(e) and from Tables 6 and 7 (recalling Remark
4.1we can gather the following information:

• the distribution of optimal annuitization, T ∗, has more or less the same dispersion
than in scenario B, but the mean is much higher: on average T ∗ occurs 14 years after
retirement, and in 50% of the cases it occurs after 13 years. Optimal annuitization
never occurs within one year from retirement and the minimum T ∗ is equal to 2
years. In 25% of the cases it occurs at a date later than 20 years after retirement;

• in 341 cases out of 1000 optimal annuitization does not occur within the time-frame
of 30 years after retirement; this too high percentage of individuals not annuitizing
before age 90 is the price to be paid when the target aimed is chosen to be very high;

• the size of final annuity A∗ upon optimal annuitization is always significantly higher
than the pension achievable on immediate annuitization b0; the improvement with
respect to b0 is now remarkable: in 75% of the cases the final annuity A∗ lies between
9.62 and 20.88, vs b0 = 6.22. This is effect of the two combined facts that x∗ is much

18



higher than before and that optimal annuitization occurs at a much later age, with
consequent very low price of the annuity;

• in 63% of the cases the annuity value turns out to be higher than b1 = 12.44: as
before, this is due to annuitization occurring 15-25 years after retirement, when the
relatively old age of the pensioner pushes downwards the price of the annuity, leading
to a high annuity value to be purchased with the wealth x∗;

• Figure 3(c) shows that the fund does not reach the upper barrier x∗ in more than
25% of the cases, whereas in 500 cases out of 1000 x∗ is reached within approximately
20 years;

• the optimal consumption lies below b0 in approximately 250 cases out of 1000, due
to the fact that optimal annuitization does not occur. However, when optimal annu-
itization does occur the pension rate is sensibly higher than b0, being almost always
higher than 10, and in slightly less than 500 cases out of 1000 it is higher than b1;

• the optimal investment strategy is bounded between 0 and 1 in slightly more than
75% of the cases; short-selling occurs in less than 20% of the cases, but in 50 cases
out of 1000 strategies can be risky, reaching in 5% of the cases 150% of the fund
invested in the risky asset; therefore, strategies seem to be less risky than in scenario
B;

• optimal negative consumption occurs in 32 cases out of 1000, and on average con-
sumption remains negative for 2 years.

4.2.4 Scenario D

The whole parameters’ value for this scenarios are the following

r = 0.03, λ = 0.13 σ = 0.20, δ = 0.005, k = 0.085,

w = 1, v = 1, ρ = 0.03, b0 = 6.22, b1 = 14.00, x∗ = 164.70,

that imply

β = 0.50,
b1
b0

= 2.25, ρ+ δ = 0.035.
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(c) Optimal wealth.
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Figure 4: Scenario D.
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Table 8: Statistics of the optimal annuitization time, size of annuity in scenario D.

annuitization
time

size of annuity

mean 19.6263 26.8969

standard deviation 6.1493 10.9322

minimum 5.3462 11.9479

maximum 30.0000 54.8383

5th percentile 9.6769 13.8827

25th percentile 14.1923 17.5521

50th percentile 19.5962 23.5142

75th percentile 24.6250 33.4876

95th percentile 29.0558 50.3146

Table 9: Relevant information on extreme cases in scenario D.

Prob(T ∗ < 1) 0.00%

Prob(T ∗ > 30) 50.09%

Prob(A∗ ≥ b1) 93.48%

Prob(b∗ < 0) 1.10%

Mean time of b∗ < 0 (given b∗ < 0) 2.05 yrs

From Figures 4(a), 4(b), 4(c), 4(d), 4(e) and from Tables 8 and 9 (recalling Remark
4.1) we can gather the following information:

• the most striking feature is the probability that optimal annuitization does not occur
in the 30 years time-frame: indeed, it is as high as 50.90%. In section 5 we will
argue that with such a high probability of failure to annuitizing in a reasonable time
horizon, this model should not be used.

• when T ∗ < 30, it occurs on average after 19 years from retirement, with a moderately
high dispersion; in 70% of the cases it occurs between 10 and 25 years from retire-
ment. Moreover, optimal annuitization never occurs within 5 years from retirement.
In 25% of the cases it occurs at a date later than 25 years after retirement;

• the size of final annuity A∗ upon optimal annuitization is dramatically higher than
the pension achievable on immediate annuitization b0: in case of optimal annuiti-
zation the minimum pension rate achieved is 11.94, that is almost the double than
b0 = 6.22, and the size of annuity between the fifth and the seventy-fifth percentiles
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ranges between 14 and 33, while in 25% of the cases it ranges between 33 and 50.
This is mainly due to the too high selected b1, that leads to an extremely high
value of x∗: in the most favorable scenarios, when x∗ is reached, the annuity size is
extremely high;

• the results on the size of annuity are confirmed also by the fact that in 93% of the
cases the annuity value turns out to be higher than b1 = 14;

• as expected, Figure 3(c) shows that the fund does not reach the upper barrier x∗ in
slightly more than 50% of the cases, whereas in 250 cases out of 1000 x∗ is reached
within approximately 20 years and in 50 cases out of 1000 x∗ is reached within
approximately 12 years;

• Figure 4(e) shows that the optimal consumption in 50% of the cases lies always below
b0: in the remaining 50% of the cases percentiles increase sharply due to optimal
annuitization that leads to optimal consumption in most cases well above b1;

• a somewhat unexpected feature is that the optimal investment strategy in 95% of
the cases is always bounded between 0 and 1; therefore, strategies seem to be more
stable than in the other scenarios;

• optimal negative consumption occurs in 11 cases out of 1000, and on average con-
sumption remains negative for 2 years.

4.3 Sensitivity analysis with different k

A relevant feature of the model is that the conversion coefficient k is fixed over time. This
is mainly due to the much harder nature of the problem, from the mathematical point
of view, if a more appropriate time-dependent k were to be chosen. The individual is
then bound to choose her own k at retirement. Different considerations affect this choice.
Typically, k should be linked to the sum of the two factors δs + ρ.

In fact, k should be somehow linked to the expected subjective remaining lifetime, that
is driven by δs: the lower δs, the longer the individual expects to live, the lower k, that in
turn leads to a higher wealth target b1

k . This is consistent with the fact that the individual
can wait until she obtains the desired annuity, because she thinks she will live long enough
to enjoy it. On the other hand, individuals with short subjective remaining lifetime (i.e.
high δs) would not find convenient to aim to a too high annuity target, because they
would face the risk of dying before having the possibility of receiving it. So, they will
choose a high k, leading to a low wealth target b1

k , that triggers optimal annuitization in
a reasonable time-frame.

A similar relationship links k and the tolerance towards future income, that is linked to
ρ: the smaller ρ, the higher the tolerance towards future, the more willing the individual
is to wait until the desired annuity can be achieved, so the lower the choice of k. And vice
versa.

It is therefore useful to make a sensitivity analysis also with respect to the factor k.
We have selected the scenario B and run the simulations with the two additional values
k = 0.08 and k = 0.09. We would like to remark that all the parameters of the model are
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equal across scenarios, except k. This seems to be relevant because it allows for consistent
comparisons in the presence of the same financial market conditions.

For brevity of exposition, we report here only a comparative table (Table 10) that
summarizes some statistics of optimal annuitization time and final annuity and reports
relevant information on extreme cases for the 3 scenarios, and the histograms reporting the
distribution of optimal annuitization time and the final annuity. All other Figures (relative
to optimal policies and optimal wealth) as well as the Table reporting the percentiles of
these distributions, available from the authors upon request, are not reported because
they do not add valuable information. Figures 5(a), 5(c), 5(e) report the histograms of
the optimal annuitization time, Figures 5(b), 5(d), 5(f) report the histograms of the size
of final annuity upon optimal annuitization.
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(a) Scenario B with k = 0.080.
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(b) Scenario B with k = 0.080.
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(c) Scenario B with k = 0.085.
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(d) Scenario B with k = 0.085.
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(e) Scenario B with k = 0.090.
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(f) Scenario B with k = 0.090.

Figure 5: The optimal annuitization time and final annuity in scenarios B with k =
0.080, 0.085, 0.090.
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Table 10: Relevant information in scenario B, with k = 0.080, 0.085, 0.090.

k = 0.080 k = 0.085 k = 0.090

mean T ∗ 11.0091 8.1532 5.7240

standard deviation T ∗ 7.6160 7.2171 6.4095

mean A∗ 14.3330 11.6771 9.6840

standard deviation A∗ 7.4077 5.9556 4.2089

Prob(T ∗ < 1) 0.00% 2.20% 13.20%

Prob(T ∗ > 30) 37.10% 25.30% 16.50%

Prob(A∗ ≥ b1) 52.30% 29.58% 17.00%

Prob(b∗ < 0) 5.50% 5.30% 4.60%

Mean time of b∗ < 0 (given b∗ < 0) 2.69 yrs 2.84 yrs 3.10 yrs

From Figures 5(a), 5(b), 5(c), 5(d), 5(e) and Table 10 we can gather the following
information:

• clearly, in all cases, results f the case k = 0.085 fall between those for k = 0.08 and
k = 0.09, so we will focus on commenting the extreme values only;

• as expected, the annuitization time is longer when k is smaller, reflecting the fact
that small k leads to high targeted wealth, and therefore longer achievement time,
also considering the feature that here all parameters of the model (included the
financial market) are equal across scenarios;

• in particular, with k = 0.09 it turns out optimal to annuitize within one year from
retirement in 13.20% of the cases, never with k = 0.08;

• on the other hand optimal annuitization does not occur within the 30 years’ time-
frame in 371 cases out of 1000 when k = 0.08, in only 165 cases out of 1000 when
k = 0.09;

• expectedly, mean and standard deviation of the final annuity are low with k = 0.09:
this is the effect of more cautious optimal investment strategies (here not reported)
that are the caused by a lower targeted wealth;

• on the contrary, there is high dispersion of the final annuity when k = 0.08, that
produces on the one side a fairly high probability of exceeding b1, on the other side
a high probability of not annuitization within 30 years;

• curiously, the dispersion of the optimal annuitization time does not vary very much
across scenarios.
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5 Sub-optimality of immediate annuitization

In this section, we show that in the majority of cases, a pension system where full or
partial annuitization is compulsory immediately at retirement is sub-optimal. The extent
and the cost of sub-optimality is measured by the comparison between expected present
value (EPV ) of consumption stream from retirement up to death in the two cases of
immediate annuitization (EPVIA) and optimal annuitization (EPVOA). The ambitious
aim behind this evidence would be to suggest appropriate adjustments to the existing
legislation in order to increase flexibility in choosing benefits after retirement, and allow
optimal choices for pensioners.

5.1 A rigorous criterion for optimality of immediate annuitization

In the model outline above, the sub-optimality of immediate annuitization turns out to
be easy to check. An easy and efficient criterion to this aim is provided by the following
theorem.

Theorem 5.1 In the model outlined in Section 3, for any initial wealth x ∈
[
0, b1k

]
, it is

optimal to annuitize immediately at retirement if and only if

φ ≤ 2rD
k

b1
, (5)

where D = b0
r −

b1
k and φ = ρ+ δ + β2 − 2r + k2 w

v(ρ+δ) .

Proof
(⇐) See [7], Lemma 7.

(⇒) If T ∗ = 0 for all x ∈
[
0, b1k

]
, then V (x) = K(x), where V and K respectively are

given by (6) and (2). Therefore,

LK(x) = inf
b,y

{
v (b0 − b)2 − (ρ+ δ)K + [−b+ (λ+ r)yx+ rx]K ′ +

1

2
σ2y2x2K ′′

}
≥ 0,

for all x ∈
[
0, b1k

]
. This, in turn implies that given the set U0 defined as

U0 = {x ∈ R : LK(x) < 0},

we have

U0 ∩
[
0,
b1
k

]
= ∅.

On the other hand, it is easy to show (see [7]) that if φ > 2rD k
b1

, then U0∩
[
0, b1k

]
6= ∅.

Then, necessarily

φ ≤ 2rD
k

b1
.

�
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We believe that the practical implications of Theorem 5.1 are really worth exploring.
In a pension system where immediate full or partial annuitization is the only option, which
is the current situation in Italy for instance, the lack of flexibility in choosing timing of
annuitization can be shown to be sub-optimal in a relatively immediate way.

We will show practical implications of the Theorem in two ways:

1. we check sub-optimality in the four scenarios fixed in the previous section. These
scenarios clearly do not exhaust all possible existing situations, but are by no means
representative of many typical ones;

2. in the six scenarios chosen, we calculate the cost of being sub-optimal. We do this by
calculating and comparing the expected present value of consumption stream from
retirement up to death in the two cases of immediate annuitization and optimal
annuitization.

5.2 Sub-optimality of immediate annuitization: application of the crite-
rion

Straight application of the definitions allows us to check that, as expected, in the four
scenarios chosen the criterion (5) is not satisfied. Therefore, Theorem 5.1 indicates that it
is not true that for each initial fund x(0) the optimal annuitization time is T ∗ = 0. This
does not mean that T ∗ = 0 is never optimal, for there are cases in which φ > 2krD/b1
and x(0) stays in the stopping region, leading to T ∗ = 0. This happens, for instance, if
one chooses a too low value of b1

b0
: results of simulations not reported here indicate that

this ratio cannot be too low, if the potentialities of programmed withdrawals want to be
completely exploited. For this reason, in the most conservative scenario (scenario A) we
have selected b1

b0
= 1.5. With lower values of b1

b0
it either happens that the initial wealth

lies in the stopping region between x∗ and b1
k that implies that immediate annuitization is

indeed optimal or, even worse from the modeling point of view, is higher than b1
k , rendering

the problem not interesting.
Thus, based on Theorem 5.1 and on current realistic values for the model’s parameters,

we argue that if the preferences and needs of pensioners can be represented by the model
exploited, then a system where immediate annuitization is compulsory and programmed
withdrawals are not an option is bound to be sub-optimal. Clearly, accordingly to the
Theorem and to the results not shown here, immediate annuitization turns out to be
optimal within this model for retirees with high risk aversion and ratio b1

b0
lower than

1.50. However, taken as a whole a pension system that imposes compulsory immediate
annuitization and lack of flexibility for the entire universe of retirees turns out to be
sub-optimal. It is indeed clear from the analysis performed in the previous section, that
programmed withdrawals allow the pensioner to exploit the potentialities of the financial
market and to succeed most of the times in achieving a final annuity higher than that
purchasable at retirement. The extent of improvement clearly depends on the risk aversion
and therefore on the scenario selected. In scenario A, the pensioner is better off in almost
all cases, but the improvement in pension rate is modest in entity. On the contrary, in
scenarios C and D, characterized by low risk aversion, the increase in the pension rate is
significantly higher, but the frequency of failure to annuitize within 30 years is high.
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The next section is devoted to measuring the extent of sub-optimality for the single
individual in the four scenarios selected previously.

5.3 Sub-optimality of immediate annuitization: cost of sub-optimality

In this section, we measure the cost of sub-optimality in terms of loss of expected present
value (EPV ) of consumption stream from retirement up to death. In particular, we calcu-
late EPV in the two cases of optimal annuitization (EPVOA) and immediate annuitization
(EPVIA) and make the difference. Henceforth, we will call the difference EPVOA−EPVIA
cost of sub-optimality, or sub-optimality cost (SC). In other words,

SC = EPVOA − EPVOA = cost of sub-optimality.

It is important to underline that we focus only on those trajectories for which optimal
annuitization has actually occurred between retirement and the time-horizon of 30 years.
The trajectories where the optimal fund fails to reach x∗ within the time-frame of 30
years have been assigned a 0 value to the SC, because the model does not require a
finite time-horizon and, more importantly, because optimal annuitization at a later age
would produce different results in terms of SC. Assignment of SC = 0 to all trajectories
where optimal annuitization does not occur is the explanation for a bar around 0 in the
histograms. However, in the statistics of SC (Table 11) we will not consider the zeroes
and will present the statistics only for the relevant cases in which T ∗ < 30.

In each scenario and for each trajectory, the EPV of consumption stream has been
calculated according to actuarial principles with the interest rate r for the financial basis,
and with the mortality table RG48 for the demographic basis. For the immediate annu-
itization option the flow to be discounted is equal to b0 at any time from retirement up
until age 110. For the optimal annuitization case, the flow to be discounted is equal to the
optimal consumption from retirement until age of optimal annuitization T ∗, to the actual
pension rate achieved from that time up to age 110.

To better give an idea of the improvement that can be achieved in case of optimal
annuitization, we define a new quantity, called the ”Relative SC”. this is defined as the
ratio between the average cost of sub-optimality and the EPV of immediate annuitization:

Relative SC =
Average(SC)

EPVIA
.

This quantity indicates by how much on average and in percentage the pensioner can
increase her reward (measured in terms of EPV of consumption) by adopting programmed
withdrawals with respect to immediate annuitization.

Figures 6(a), 6(b), 6(c), 6(d) report the histograms of the distribution of SC in sce-
narios A, B, C and D, respectively. Figures 7(a), 7(b), 7(c) report the histograms of the
distribution of SC in scenarios B (k=0.08), B(k=0.085) and B(k=0.09), respectively.
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(a) Scenario A.
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(b) Scenario B.
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(c) Scenario C.
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(d) Scenario D.

Figure 6: The sub-optimality cost deriving from scenarios A, B with k = 0.085, C and D
respectively.
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(a) Scenario B with k = 0.080.
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(b) Scenario B with k = 0.085.
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(c) Scenario B with k = 0.090.

Figure 7: The sub-optimality cost deriving from scenarios B with k = 0.080, 0.085, 0.090.
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Table 11 reports for each scenario:

• as a reminder, the probability that optimal annuitization occurs in the time-frame
(i.e. the number of trajectories considered in this analysis for each scenario divided
by 1000);

• some statistic of the cost of sub-optimality across the six scenarios generated so far;

• the probability that the cost of sub-optimality is positive;

• the quantity “Relative SC”.
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From Figures 6(a), 6(b), 6(c), 6(d), Figures 7(a), 7(b), 7(c), 7(d) and Table 11 we can
gather the following information:

• considering that the sum of the number of cases in which optimal annuitization does
not occur and number of cases characterized by SC > 0 (sum of the first two lines
of table 11) is almost approximately 99%, for each scenario we find that in all but
10 cases in which optimal annuitization occurs, the sub-optimality cost is positive,
meaning that the pensioner is better off when programmed withdrawals are adopted;

• the few cases when optimal annuitization does occur but SC < 0 are motivated by
the fact that the dynamic programming approach minimizes the expected loss (or
maximizes expected utility) and fails to capture very rare unfavorable scenarios (e.g.
extreme events);

• the extent of improvement with OA (or the extent of loss with IA) is measured by
the Relative SC, in the third line of the Table: it amounts to only 7% for scenario
A, to 29% for scenario B, 39% for scenarios C and D. As expected, the margin
of improvement increases when risk aversion of the individual decreases. This is
highlighted also by the comparison of the Relative SC with different k: higher k
produces smaller Relative SC, that increases when k reduces;

• the probability of failure in achieving x∗, as was already observed elsewhere, sharply
increases when aiming to higher targeted pension rate.

Table 12 below summarizes all relevant results for the six scenarios considered in this
analysis.
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Table 12 allows a broad comparison among all scenarios regarding all types of quantities
analyzed throughout the paper. Let us recall that the scenarios A, B, C and D are
descriptive of different risk aversion attitudes, with the A scenario representing the highest
and the D scenario reporting the lowest. The scenarios B with different k indicate different
ways of discounting future income and considering one own’s remaining lifetime: a high
k is characteristics of low tolerance towards the future and short remaining lifetime, and
vice versa. From the Table, we can gather the following intuitive results:

• in almost all cases in which programmed withdrawals are adopted successfully, mean-
ing that optimal annuitization occurs within the considered time-frame of 30 years
from retirement, the pensioner is better off with optimal annuitization than with
immediate annuitization;

• the extent of improvement in terms of expected present value of consumption stream
from retirement until death, measured by the Relative SC, increases when risk
aversion decreases;

• the optimal annuitization time increases when decreasing the risk aversion ;

• the probability of unsuccessful use of this model, meaning absence of annuitization
within 30 years from retirement, also increases when decreasing the risk aversion;

• the size of annuity achieved upon optimal annuitization also increases on average
when decreasing the risk aversion;

• reducing the value of k, due to higher expected remaining lifetime and high tolerance
towards the future has the same result as decreasing the risk aversion.

6 Conclusions

In this paper, we have investigated the optimal annuitization time post retirement by
application of the model introduced by [7].

In a first part of the paper, we have run extensive simulations to find the optimal
annuitization time in different representative scenarios. We have found the intuitive result
that the optimal annuitization time decreases with the risk aversion. In particular, we
find that it should occur on average 1-2 years after retirement when risk aversion of the
retiree is very high, 8-9 years after retirement with medium risk aversion, 14-15 years
after retirement when risk aversion is very low and should occur after 20 years or may
not happen at all if the individual is strongly risk lover. The optimal annuitization time
depends also on the subjective mortality rate, i.e. on the idea that the individual has about
her own remaining lifetime. With medium risk aversion, if the individual believes she will
live long, we find that she should annuitize on average after 11 years from retirement,
while she will annuitize after 5-6 years from retirement if she thinks her remaining lifetime
is short. We find this a reasonable result. Finally, we find the quite obvious result that
the size of final annuity upon optimal annuitization is always higher than that obtainable
on immediate annuitization. Expectedly, the size of annuity on average increases when
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the optimal annuitization time increases: in other words, it is seemingly worth to wait in
order to obtain a higher reward.

In a second part of the paper, we have made a thorough comparison between a system
with optimal annuitization time and one with compulsory immediate annuitization. We
have performed the comparison in two ways. Firstly, we have proved a theorem that gives a
necessary and sufficient condition for optimality of immediate annuitization. We have used
this theorem to state that if the preferences and needs of pensioners can be represented
by the model exploited, then a system where immediate annuitization is compulsory and
programmed withdrawals are not an option is sub-optimal. Secondly, we have measured
the extent of sub-optimality, in terms of loss of expected present value of consumption. We
have calculated the cost of sub-optimality as the difference between EPV of consumption
from retirement to death in the case of optimal annuitization and in the case of immediate
annuitization. With a very few exceptions, the cost of sub-optimality turns out to be
positive in all cases in which optimal annuitization occurs in the time-frame of 30 years
from retirement considered. In relative terms, the improvement in EPV of consumption
stream varies from 6% with high risk aversion up to 20− 30% with medium risk aversion,
and can be as high as 40% with low risk aversion. This clearly indicates by how much a
pensioner gives up part of her future wealth when she annuitizes immediately, with respect
to undertaking programmed withdrawals followed by optimal annuitization.

We regard this model as a decision-making tool sufficiently flexible to allow for the
majority of personal situations. Regarding its applicability by pension fund advisors –in
countries where programmed withdrawals are an option– we would like to mention two
things.

First, in order to help retirees to make conscious and optimal choices, pension fund
advisors should not forget to show them clearly the strict correspondence between the
choice of the model’s parameters and the statistics of the final outcome. One could be
tempted to conclude that the higher the propensity towards risk, the higher the reward by
adopting programmed withdrawals. This is partially true. In fact, one should not forget
that the probability of failure in achieving the wealth level that triggers annuitization (x∗)
increases remarkably when risk aversion decreases, that is somehow expected. Indeed,
the probability of failing to achieve the wealth level before age 90 is 34% with low risk
aversion, but can be as high as 50% with very low risk aversion.

Second, it seems particularly important to be able to control the probability of success
of adoption of this model, for three main reasons:

1. the improvement in EPV turns out to be positive only in those cases in which
optimal annuitization occurs; for the other cases there is evidence suggesting that it
would be negative;

2. it is likely that after a certain maximum age (here set equal to 90, but could be even
lower) the pensioner would not be willing to keep on adopting the ”do-it-yourself”
strategy, and would prefer to pass financial and longevity risk to an insurance com-
pany;

3. the legislation may ask a pensioner to annuitize her remaining wealth at a certain
limit age (as in UK, where annuitization is compulsory at the age of 75).
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Therefore, we think that the model should be used to help a pensioner deciding about
her post-retirement optimal decisions only when the probability of success is high enough,
according to her needs and, possibly, to legislation constraints. However, we believe that
the great flexibility of this model allows several attractive combinations of the parameters,
characterized by high enough probability of success within a reasonable time horizon.
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A Solution of the model

In this section, we present briefly the solution of the model introduced by Gerrard,
Højgaard and Vigna (2010). However, for a deeper analysis of the mathematical model,
we refer the reader to the above mentioned paper.

A.1 The HJB equation and the continuation region

Let V (x) denote the value function, i.e. the inferior of the expected loss given by (1).
Therefore

V (x) = inf
b,y,T

Jy,b,T (x). (6)

It is well known from the theory of optimal stopping time combined with stochastic
control (see for instance Øksendal (1998) or Peskir and Shiryaev (2006)) that the value
function must satisfy the following Hamilton-Jacobi-Bellman equation

V (x) = min

{
w (b1 − kx(τ))2

ρ+ δ
, V (x) + inf

b,y

[
v (b0 − b(t))2 − (ρ+ δ)V + Lb,yV

]}
, (7)

where

Lb,yV = [−b+ rx+ (λ− r)xy]V ′(x) +
1

2
σ2x2y2V ′′(x).

The HJB equation (7) in turn is equivalent to the two following variational inequalities

inf
b,y

[v(b0 − b)2 − (ρ+ δ)V (x) + Lb,yV (x)] = 0 and V (x) ≤ K(x) for x ∈ U (8a)

inf
b,y

[v(b0 − b)2 − (ρ+ δ)V (x) + Lb,yV (x)] ≥ 0 and V (x) = K(x) for x ∈ U c (8b)
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where the region U is defined by

U = {x ∈ R : V (x) < K(x)}.

Remark A.1 In the continuation region (see (8a)), the HJB equation is exactly the same
that one would have in a standard stochastic control problem, without optimal exit from
the optimization program. This is consistent with the fact that as long as one lives in U ,
she behaves optimally as though there were no exit time.

A.2 The dual problem and the boundary conditions

In the continuation region, the value function satisfies (see (8a))

1

2
β2

(V ′)2

V ′′
+

1

4v
(V ′)2 + (b0 − rx)V ′ + (ρ+ δ)V = 0, (9)

where β = λ−r
σ is the Sharpe ratio of the risky asset. Given the high-nonlinearity of the

PDE (9), Gerrard, Højgaard and Vigna (2010) make use of a methodology largely used in
stochastic control problems hard to solve with the guessing techniques. They transform
the original problem into a dual one, by introducing a new function X(z) to be the inverse
of −V ′

V ′
(
X(z)

)
= −z,

the HJB equation changes into

−1

2
β2z2X ′(z) +

1

4v
z2 −

(
b0 − rX(z)

)
z + (ρ+ δ)V

(
X(z)

)
= 0,

which differentiated with respect to z becomes

−1

2
β2z2X ′′(z)− (ρ+ δ + β2 − r)zX ′(z) + rX(z) = b0 −

z

2v
.

The general solution of this second-order Euler ODE is

X(z) =
b0
r
− z

2v(r − γ)
+ C1z

α1 + C2z
α2 , (10)

where C1 and C2 are constants to be determined by the boundary conditions, γ is a
shorthand notation and is given by

γ = ρ+ δ + β2 − r

and α1 and α2 are the two zeros of the quadratic

P (α) =
1

2
β2α2 + (γ − 1

2
β2)α− r, (11)

so that

α1, α2 =
−(γ − 1

2β
2)±

√
(γ − 1

2β
2)2 + 2rβ2

β2
. (12)
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The corresponding value function is

V
(
X(z)

)
=

z2

4v(r − γ)
− 1

ρ+ δ

[
A1C1z

1+α1 +A2C2z
1+α2

]
, (13)

where

A1 = r − 1

2
β2α1, A2 = r − 1

2
β2α2. (14)

Notice that the coefficientsA1 andA2 are both positive. In fact, the polynomial P given
by (11) satisfies P (2r/β2) > 0, so that αi < 2r/β2 for i = 1, 2, thus Ai = r − 1

2β
2αi > 0

for both i.
The optimal control functions can then be written as

y∗(X(z)) = −β
σ

zX ′(z)

X(z)
(15)

b∗(X(z)) = b0 −
z

2v
. (16)

Gerrard, Højgaard and Vigna (2010) find that the continuation region is given by

U = [0, x∗) ∪
(
b1
k
,+∞

)
, (17)

where

x∗ ≥ b1
k
− 2rD

φ
, (18)

with2

D =
b0
r
− b1
k
> 0 and φ = ρ+ δ + β2 − 2r + k2

w

v(ρ+ δ)
. (19)

Clearly, the difficult and crucial task – typical of this kind of problems – is to find x∗.
To this aim, one needs the boundary conditions. We also notice that this is a boundary
value problem, and therefore existence of solution is not guaranteed. Gerrard, Højgaard
and Vigna (2010) show that there are indeed three possible cases:

1. the parameters’ values are such that a certain set of boundary conditions are satisfied,
and we have a RP (Ruin Possibility) solution;

2. the parameters’ values are such that a certain set of boundary conditions are satisfied,
and we have a NR (No Ruin) solution;

3. the parameters’ values are such that there is no solution to the problem.

Since explaining the technicalities of the problem is beyond the scope of the present paper,
we here present the two sets of boundary conditions, without providing explanations. Both

2The fact that D > 0 is not due to mathematical constraints, but to the formulation of the problem. In
fact, it can be argued that a problem with D ≤ 0 is not interesting from an applicative point of view. See
Gerrard, Højgaard and Vigna (2010).
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sets contain the obvious boundary conditions on x∗. These are continuity and smoothness
(see Peskir and Shiryaev (2006)) of the value function at x∗

V (x∗) = K(x∗); (20)

and
V ′(x∗) = K ′(x∗). (21)

If we define z∗ by z∗ = −V ′(x∗), so that X(z∗) = x∗, then these two boundary conditions
(20) and (21) can be written in the form

−z∗=−2kw
ρ+δ (b1 − kx∗)

w
ρ+δ (b1 − kx∗)2 = z2∗

4v(r−γ) −
1
ρ+δ

[
A1C1z

1+α1
∗ +A2C2z

1+α2
∗

]
x∗= b0

r −
z∗

2v(r−γ) + C1z
α1
∗ + C2z

α2
∗ .

(22)

Moreover, defining z0 = inf{z > 0 : X(z) = 0} another common boundary condition is:

b0
r
− z0

2v(r − γ)
+ C1z

α1
0 + C2z

α2
0 = 0. (23)

What makes the difference between RP and NR solution is the boundary condition at z0.
The boundary condition at z0 corresponding to a RP solution, i.e. V (0) = K(0), is

z20
4v(r − γ)

− 1

ρ+ δ

[
A1C1z

1+α1
0 +A2C2z

1+α2
0

]
=

wb21
ρ+ δ

. (24)

A NR solution is characterized by the fact that V (0) ≤ K(0), and we require that when
the fund approaches 0, the fund is invested in the riskless asset only. This corresponds to:
X ′(z0) = 0. These conditions are translated into

α1C1z
α1−1
0 + α2C2z

α2−1
0 = 1

2v(r−γ)

z20
4v(r−γ) −

1
ρ+δ

[
A1C1z

1+α1
0 +A2C2z

1+α2
0

]
≤ wb21

ρ+δ .

(25)

The set of boundary conditions that characterizes a RP solution consists in (22), (23) and
(24), while the one that characterizes a NR solution consists in (22), (23) and (25). If
none of the specified sets of boundary conditions can be satisfied, there is no solution to
the problem.

A.3 The main theorem and its application

Gerrard, Højgaard and Vigna (2010) prove the following theorem.

Theorem A.2 Assume that D > 0 and that φ ≥ 2krD/b1. Suppose that there exist
constants C1, C2, z0 and z∗ with 0 < z∗ < z0 < ∞, such that the function X(z) given by
(10) satisfies the boundary conditions (22), (23) and either (24) or (25).

Then:
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(i) For each z ∈ (z∗, z0) there is a corresponding x ∈ (0, x∗) such that X(z) = x;

(ii) the function V given by

V (x) = 0, for x ≥ b1
k

V (x) = K(x), for x∗ ≤ x ≤ b1
k

V
(
X(z)

)
= z2

4v(r−γ) −
1
ρ+δ

[
A1C1z

1+α1 +A2C2z
1+α2

]
for z∗ ≤ z ≤ z0

is the optimal value function;

(iii) the optimal time to annuitize is τ∗ = inf{t : x(t) ∈ U c}, where the continuation set
U is given by

U = [0, x∗) ∪
(
b1
k
,∞
)

;

(iv) for values of x belonging to [0, x∗), the optimal controls are given by

y∗(t) = −λ− r
σ2
·

V ′
(
x(t)

)
x(t)V ′′

(
x(t)

) , b∗(t) = b0 +
1

2v
V ′
(
x(t)

)
.

The hard task of solving the problem consists in finding constants that satisfy the
assumptions of Theorem A.2. Gerrard, Højgaard and Vigna (2010) show a method of con-
struction of a solution starting from the parameters the problem. They state an algorithm
for numerical solutions and show that it leads either to RP, or to NR solution, or to no
solution. The algorithm that takes as input the value of the parameters of the problem,
gives as output the value of C1, C2, z0 and z∗, as well as the type of solution.
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