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The Lorenz-maximal core allocations and the kernel in some classes of

assignment games

Abstract: In this paper we prove that in the class of assignment games with a dominant

diagonal (Solymosi and Raghavan, 2001), Thompson’s fair division point (which is known

to be theτ-value) is the unique core allocation that is maximal with respect to the Lorenz

dominance relation and it coincides with the Dutta-Ray (1989) solution (or egalitarian so-

lution).

Secondly, strengthening the dominant diagonal condition,a new class of assignment

games is introduced where the profit obtained by each agent with her optimal partner is

at least twice as much as her potential profit with any other partner. For these assign-

ment games with a 2-dominant diagonal, Thompson’s fair division point is also the unique

element of the kernel, and thus the nucleolus.

Key words: assignment game, core, kernel, Lorenz domination

JEL: C71, C78

Resum: En aquest treball demostrem que en la classe de jocs d’assignació amb diagonal

dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb

el valor tau) és l’únic punt del core que és maximal respecte de la relació de dominància

de Lorenz, i a més coincideix amb la solució de Dutta i Ray (1989), també coneguda com

solució igualitària.

En segon lloc, mitjançant una condició més forta que la dediagonal dominant, in-

troduı̈m una nova classe de jocs d’assignació on cada agentobté amb la seva parella òptima

almenys el doble que amb qualsevol altra parella. Per aquests jocs d’assignació amb di-

agonal 2-dominant, el repartiment de Thompson és l’únic punt del kernel, i per tant el

nucleolo.



1 Introduction

Coalitional game theory aims to propose allocation rules that express some notion of fair-

ness or distributive justice in the division of the jointly obtained worth. Egalitarianism is

one notion of fairness and it is agreed that a least requirement to say a rule is egalitarian

is that it should be maximal according to the Lorenz criterion applied to some subset of

outcomes. See for instance Thomson (2011) for a recent application of Lorenz criterion to

the ranking of rules for the adjudication of conflicting claims.

The set of Lorenz-maximal core allocations is analyzed as a solution concept for bal-

anced coalitional games in Hougaard et al. (2001) and Arin and Iñarra (2001), combining

core selection with egalitarianism as a standard of fairness. This solution is defined as the

subset of core allocations that are not Lorenz dominated by another core element.

Before Hougaard et al. (2001), Dutta and Ray (1989) propose asolution concept

responding to egalitarianism under participation constraints (core-like constraints). This

means to select an egalitarian (Lorenz-maximal) allocation among those that are not blocked

by any subcoalition, where the term “block” is used in the sense that the subcoalition can

find an allocation according to its egalitarian rule that makes all its members just as well

off, and some member strictly better off. Thus, by a recursive procedure, the Lorenz core

of each coalition is constructed and then the Lorenz-maximal allocation in the Lorenz core

of the grand coalition is the Dutta-Ray solution.

The nucleolus (Schmeidler, 1969) is a single-valued solution concept for coalitional

games that responds to the Rawl’s egalitarian criterion applied not only to individuals but

to coalitions. According to Maschler et al. (1979), the nucleolus is fair in the sense that it

is “the result of an arbitrator’s desire to minimize the dissatisfaction of the most dissatis-

fied coalition”, where the dissatisfaction of a coalition ata payoff vector is the difference

between the worth of the coalition and its total payoff.

Sudhölter and Peleg (1998) apply the Lorenz criterion of egalitarianism over coalitions,

since they compare allocations by ordering their distributions of excesses by the Lorenz

domination, and find that the (pre)nucleolus is maximal in this Lorenz order. A general-

ization of this procedure in Arin and Feltkamp (2002) allowsto see that the Shapley value
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also responds to some egalitarian criterion over coalitions.2

In the present paper we focus on a particular class of coalitional games that are the

assignment games and see that, under certain conditions, different notions of egalitarianism

lead to the same allocation rule. The idea of applying Lorenzdominance to the assignment

market was posed in Hougaard et al. (2001). More recently, Roth et al. (2005) address

distributive justice issues in some matching problems by means of Lorenz dominance.

In an assignment market agents are partitioned in two disjoint sets, let us say buyers and

sellers (or firms and workers) and when a member of one group ispaired with a member

of the other group an additional value is created. From this situation, Shapley and Shubik

(1972) introduce a cooperative game where the worth that a coalition can attain is the ad-

dition of the values generated by all the pairs in an optimal matching. Since side-payments

are allowed, the problem is how to share among the agents the worth of an optimal match-

ing.

The first approach is to look for allocations of the total worth that no coalition can

improve upon. Shapley and Shubik prove that this is indeed possible (the core is non-

empty) and that to obtain a core allocation it is enough to exclude third-party payments

(that is, the paired agents must share exactly the value of their pairing) and impose pairwise

stability (in a core allocation no buyer-seller pair can produce together a value higher than

their actual join payoff). But the core of an assignment gamerarely consists of a single

point. It is then necessary to select some core element undersome criteria of fairness.

Thompson (1981) defines the “fair division point” as the midpoint between the core

allocation that is optimal for all the buyers and the one thatis optimal for all the sellers.

Thus, it applies symmetry to solve the bargaining problem among the two sides of the

market, treated each side as a whole. This fair division point of Thompson is proved

in Núñez and Rafels (2002) to coincide with theτ-value, this being a solution concept

introduced by Tijs (1981) for arbitrary coalitional games.

On the other hand, Rochford (1984) assumes that each optimally assigned pair of indi-

viduals engage in a bargaining problem (à la Nash) to determine how to distribute among

them the output of their partnership. Each pair is assumed tosolve this bargaining problem

2See Arin (2007) for a survey on egalitarian allocation rulesin coalitional games.
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invoking symmetry, the threats reflecting the other opportunities available in the market.

Then, the symmetrically pairwise-bargained allocations are those core allocationsz such

that all partners are in bargained equilibrium. This means that each optimally matched pair

splits equally what remains of their join value once each of them has taken her threat, that is,

the most she could gain in another partnership after her potential partner is paid according

to z. By Rochford (1984) and Driessen (1998), the set of symmetrically pairwise-bargained

allocations coincides with the kernel of the assignment game. But again, the kernel may not

reduce to a single point. An outstanding element of the kernel is the nucleolus (Schmeidler,

1969).

In fact, for assignment games, the aforementioned solutionconcepts are also known

to depend only on the core. That is, two assignment markets with the same core have the

sameτ-value, the same kernel and the same nucleolus (Núñez, 2004).

As a consequence of its definition, also the set of Lorenz-maximal core allocations

depends only on the core of the game and not on the characteristic function (the worth of

coalitions). This is the reason why Hougaard et al. (2001) say that it would be interesting

to study the Lorenz-maximal core allocations in assignmentgames.

It is immediate to realize that, for arbitrary coalitional games, when the allocation that

splits equally the worth of the grand coalition among the agents belongs to the core, then

it is the unique Lorenz-maximal core allocation. But for assignment games, this equal-

share allocation being in the core is quite restrictive, since it implies that in the market

all optimally matched pairs attain the same value. Instead,the allocation in which each

two optimally paired agents split equally the value of theirpartnership seems a natural

division to be considered in an assignment market, at least when it belongs to the core of

the assignment game.

In the class of assignment games with a dominant diagonal (Solymosi and Raghavan,

2001), it is known that the aforementioned allocation coincides with Thompson’s fair divi-

sion point, and thus it lies in the core. The aim of this paper is to analyze when this solution

to the assignment game fulfills as many standards of fairnessas possible.

In Section 3 we find that, for square assignment games with a dominant diagonal (which

means that the join profit of any agent with her optimal partner is the most she could make
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with any other partner), Thompson’s fair division point notonly belongs to the core but

also coincides with the Dutta-Ray solution, and moreover itLorenz dominates all other

core allocations. In section 4 a class of assignment games isconsidered where the join

profit of any agent with her optimal partner is at least twice as much as her join profit in

any other partnership. We conclude that for this class of assignment games, which we name

2-dominant diagonal assignment games, although the core can be considerably ample, the

game is somehow “determined” since the kernel and the Lorenz-maximal core allocations

coincide and reduce to the nucleolus, which also coincides with Thompson’s fair division

point and the Dutta-Ray solution.

2 Definitions and notations

Let N = {1,2, ...,n} denote a finite set of players, and 2N the set of all possible coalitions

or subsets ofN. The cardinality of coalitionSis denoted by|S|. Given two coalitionsSand

T, S⊆ T denotes inclusion whileS⊂ T denotes strict inclusion.

A cooperative game in coalitional form(a game) is a pair(N,v), wherev : 2N −→ R,

with v( /0) = 0, is the characteristic function which assigns to each coalition S the worth

v(S) it can attain. If no confusion arises, a game(N,v) is denoted by simplyv.

Given a game(N,v), a payoff vector isx∈ R
N, wherexi stands for the payoff to player

i ∈ N. The restriction of a payoff vectorx to a coalitionS is denoted byx|S. Given two

payoff vectorsx,y∈ R
N, we writey≥ x if yi ≥ xi for all i ∈ N, andy > x whenevery≥ x

and moreover there existsi ∈ N such thatyi > xi . An imputationis a payoff vectorx that

is efficient,∑i∈N xi = v(N), and individually rational,xi ≥ v({i}) for all i ∈ N. The set of

all imputations of a game(N,v) is denoted byI(v), and whenI(v) 6= /0 the game is said to

beessential. Theexcessof a coalitionSat an imputationx∈ I(v) is v(S)−∑i∈Sxi .

A solution conceptdefined on the set of games with player setN is a rule that assigns to

each such game a subset of efficient payoff vectors. The best known set-solution concept

for coalitional games is the core. Thecore of the game is the set of payoff vectors that

are efficient and coalitionally rational, that is,∑i∈Sxi ≥ v(S) for all S⊆ N. A game with a

non-empty core is abalanced game. Typically, the core of a game contains infinitely many
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payoff vectors. This forces to select some particular core allocation following some idea

of fairness. Among others, given a game(N,v), a well known single–valued core selection

is the nucleolus(Schmeidler, 1969). The nucleolus of a game(N,v) is the imputation

ν(v) that lexicographically minimizes, over the set of imputations, the vector of excesses

arranged in non-increasing order.

Thekernel(Davis and Maschler, 1965), is another set-solution concept for cooperative

games. The kernel,K (v), of an essential cooperative game(N,v) is always nonempty

and it contains the nucleolus. Thus, for balanced games, there always exist imputations in

the intersection of the core and the kernel which could be selected in front of other core

allocations if we agree with the standard of fairness that supports the kernel.

For zero–monotonic games,3 as it is the case of assignment games, the kernel can be

described by

K (v) = {z∈ I(v) | sv
i j (z) = sv

ji(z) for all i, j ∈ N , i 6= j } ,

where the maximum surplussv
i j (z) of player i over another playerj with respect to the

imputationz is defined by

sv
i j (z) = max

{
v(S)− ∑

k∈S

zk

∣∣∣∣∣S⊆ N , i ∈ S, j 6∈ S

}
.

We will just write si j (z) when no confusion regarding the gamev can arise. Then, for

zero-monotonic games, the kernel can be viewed as those imputations for which any two

players are equally powerful concerning their mutual threats.

A different standard of fairness is that provided by the Lorenz domination. This bi-

nary relation compares payoff vectors by means of how evenlydistributed are the agents’

payoffs, and is favorable to agents with lower payoffs. Formally, for anyx ∈ R
N, denote

by x̂ = (x̂1, . . . , x̂n) the vector obtained fromx by rearranging its coordinates in a non-

increasing order, that is, ˆx1≥ x̂2≥ . . .≥ x̂n. For any two vectorsy,x∈R
N with y(N)= x(N),

we say thaty weakly Lorenz dominates x, denoted byy�L x, if ∑k
j=1 ŷ j ≤ ∑k

j=1 x̂ j , for all

k∈ {1, . . . ,n}. We say thaty Lorenz dominates x, denoted byy≻L x, if at least one of the

above inequalities is strict.

3A game (N,v) is zero-monotonic if for any pair of coalitionsS,T, S ⊂ T ⊆ N it holds v(S) +

∑i∈T\Sv({i}) ≤ v(T).
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Given a subset of payoff vectors,A⊆R
N, we denote byE(A) the set ofLorenz-maximal

elementsin A, that is,E(A) = {x ∈ A | there is noy ∈ A such thaty ≻L x}. If (N,v) is a

balanced game, Hougaard et al. (2001) and Arin and Iñarra (2001) propose the Lorenz-

maximal core elements,L(v) = E(C(v)), as a set-solution concept. SinceC(v) is a non-

empty compact set,L(v) is non-empty.

But Dutta and Ray (1989) argue that if we pursue egalitarianism as standard of fairness,

we should not restrict to core allocations since an allocation outside the core is disregarded

because it is blocked by some viable coalition, but we do not require the blocking payoff

vector to be egalitarian (in the sense of Lorenz undomination) for the blocking coalition.

To this end, they define theLorenz coresof coalitions. The Lorenz core of a singleton

coalition isL({i}) = {v(i)}. Now suppose that the Lorenz cores for all coalitions of cardi-

nality k or less have been defined, where 1≤ k < n. The Lorenz core of a coalitionS⊆ N

of cardinalityk+1 is defined by

L(S) =



x∈ R

S

∣∣∣∣∣∣
∑i∈Sxi = v(S) and there is noT ⊂ Sand

y∈ E(L(T)) such thaty > x|T



 , (1)

where recall thaty> x|T means thatyi ≥ xi for all i ∈ T, with at least one of these inequali-

ties being strict. It follows from this definition that the Lorenz core of coalitionN contains

the core:C(v) ⊆ L(N).

Given(N,v) a game, theDutta-Ray solutionis DR(v) = E(L(N)). Duta and Ray (1989)

prove thatDR(v) is either empty or a singleton. Moreover, for convex games,4 the Dutta-

Ray solution exists (an algorithm to calculate it is provided), it belongs to the core and

Lorenz dominates any other core allocation.

The assignment model

A two-sided assignment market(M,M′,A) is defined by a finite set of buyersM, a finite set

of sellersM′, and a nonnegative matrixA=
(
ai j

)
(i, j)∈M×M′ . The real numberai j represents

the profit obtained by the mixed-pair(i, j) ∈ M×M′ if they trade. Let us assume there are

|M|= mbuyers and|M′|= m′ sellers, andn= m+m′ is the cardinality ofN = M∪M′. Any

4A game(N,v) is convex ifv(S)+v(T) ≤ v(S∪T)+v(S∩T), for all S,T ⊆ N.
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subsetR⊆ M∪M′ defines a submarket(M∩R,M′∩R,A|R), whereA|R is the restriction of

matrixA to the rows and columns that correspond to agents inR.

A matchingµ ⊆ M ×M′ betweenM andM′ is a bijection fromM0 ⊆ M to M′
0 ⊆ M′,

such that|M0| =
∣∣M′

0

∣∣ = min{|M| , |M′|} . We write (i, j) ∈ µ as well asj = µ (i) or i =

µ−1( j) . The set of all matchings is denoted byM (M,M′) . If m = m′, the assignment

market is said to be square.

A matchingµ ∈ M (M,M′) is optimal for the assignment market(M,M′,A) if for

all µ ′ ∈ M (M,M′) we have∑(i, j)∈µ ai j ≥ ∑(i, j)∈µ ′ ai j , and we denote the set of optimal

matchings byM ∗
A (M,M′) .

Shapley and Shubik (1972) associate to any assignment market (M,M′,A) a cooperative

game in coalitional form, with player setN = M ∪M′ and characteristic functionwA, de-

fined by: forS⊆M andT ⊆M′,wA(S∪T) = max
{

∑(i, j)∈µ ai j | µ ∈ M (S,T)
}

, M (S,T)

being the set of matchings betweenSandT. The core of the assignment game is always

non-empty, and it is enough to impose coalitional rationality for one-player coalitions and

mixed-pair coalitions:

Core(wA) =



(u,v) ∈ R

M
+ ×R

M′

+

∣∣∣∣∣∣
∑i∈M ui +∑ j∈M′ v j = wA(N) ,

ui +v j ≥ ai j , for all (i, j) ∈ M×M′



 , (2)

whereR+ stands for the set of non-negative real numbers. It follows from (2) that, ifµ is

an optimal matching, unassigned agents receive zero payoffand, moreover,

if (i, j) ∈ µ thenui +v j = ai j . (3)

There exists abuyers-optimal core allocation, (u,v), where each buyer attains her max-

imum core payoff and each sellers his minimum one, and asellers-optimal core allocation,

(u,v), with the converse situation. By Roth and Sotomayor (1990),

ui = wA(N)−wA(N\{i}) for all i ∈ M, and

v j = wA(N)−wA(N\{ j}) for all j ∈ M′.

Notice that, ifµ is an arbitrary optimal matching of(M,M′,A), we obtain from (3) that

ui = aiµ(i) − vµ(i) for all i ∈ M assigned byµ andv j = aµ−1( j) j −uµ−1( j) for all j ∈ M′

assigned byµ, while agents unmatched byµ have a null minimum core payoff. Thefair

division pointis defined by Thompson (1981) as the midpoint between these two extreme
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core allocations, and it is proved in Núñez and Rafels (2002) to coincide with theτ-value5

of the assignment game:

τ(wA) =
1
2
(u,v)+

1
2
(u,v).

As for the kernel of assignment games, it turns out that it is always included in the

core,K (wA) ⊆ C(wA), (Driessen, 1998). Moreover, if(u,v) ∈C(wA), then(i) si j (z) = 0

wheneveri, j ∈ M or i, j ∈ M′, and(ii) if i ∈ M and j ∈ M′, thensi j (z) is always attained at

the excess of some individual coalition or mixed–pair coalition:

si j (u,v) = max
k∈M′\{ j}

{−ui ,aik −ui −vk}.

As a consequence, given(u,v)∈C(wA), we get that(u,v)∈K (wA) if and only ifsi j (u,v) =

sji(u,v) for all (i, j) belonging to all the optimal matchings, since the remainingequalities

hold trivially (see Rochford, 1984).

All the solution concepts so far reviewed for the assignmentgame are tightly related to

the core, in the sense that two assignment games with the samecore have the sameτ-value,

the same kernel and the same nucleolus (Núñez, 2004).

By adding dummy players, that is, null rows or columns in the assignment matrix, we

can assume from now on, and without loss of generality, that the number of sellers equals

the number of buyers, and in this way the assignment matrix issquare. When necessary,

we denote theith seller byi′, so that it can be distinguished from theith buyer, which is

denoted byi.

A square assignment game is said to have adominant diagonal(Solymosi and Ragha-

van, 2001) if, once fixed an optimal matching on the main diagonal,µ = {(i, i) | i ∈ M}, it

holds, for alli ∈ M,

aii ≥ max{ai j ,a ji}, for all j ∈ M \{i}. (4)

This means that the matrix entries related to optimal pairs by µ are row and column max-

ima. If an assignment game has a dominant diagonal, then the payoff vectors((aii)i∈M,0)∈

5The τ-value is a single-valued solution defined by Tijs (1981) for arbitrary coalitional games. It is a

compromise solution that may lie outside the core, althoughfor assignment games it always selects a core

allocation.
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R
M ×R

M′
belongs to the core and thus it coincides with the buyers-optimal core alloca-

tion (u,v). Similarly, (u,v) = (0,(aii)i∈M) ∈ R
M ×R

M′
. In fact, an assignment game has

a dominant diagonal if and only if the minimum core payoff of each agent is zero. As a

consequence, the property of having a dominant diagonal does not depend on the selected

optimal matching.

The class of assignment games with a dominant diagonal is a quite large class of as-

signment games that has specific properties such as the stability of the core, where we refer

to stability in the sense of von Neumann and Morgenstern.

3 Dominant diagonal assignment games and Lorenz-maximal

core allocations

The study of the Lorenz-maximal core allocations of the assignment game was posed in

Hougaard et al. (2001). For arbitrary assignment games, theset of Lorenz-maximal core

allocations may contain infinitely many points. The next example illustrates this situation.

Example 1. Let us consider a family of assignment markets with set of buyers M= {1,2},

set of sellers M′ = {1′,2′} and assignment matrices

Aε =


 1 1

0 1− ε




where0 < ε <
1
2.

For all 0 < ε <
1
2, there exists only one optimal matchingµ = {(1,1),(2,2)}. The core

is the triangle with vertices

A = (u,v) = (1,1− ε;0,0) ,B= (u,v) = (ε,0;1− ε,1− ε) and C= (1,0;0,1− ε),

and its projection to the space of the buyers’ payoffs is depicted in Figure 1

We claim that the set of Lorenz-maximal core allocations L(wA) is the segment with

extreme points

D =

(
1
2
,
1
2
− ε;

1
2
,
1
2

)
and E=

(
1+ ε

2
,
1− ε

2
;
1− ε

2
,
1− ε

2

)
.
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A

B

C

D

E

H

I

J

Eλ

F

u1

u2

1

1− ε

Figure 1:

Notice that the upper extreme point E coincides with the Thompson’s fair division point.

To check that indeed L(wA) = [D,E], we will make use of a remark in Hougaard et al.

(2001) that is based on Theorem 108 in Hardy et al. (1934) and states that, when we ask

whether a payoff vector Lorenz dominates another payoff vector with its same efficiency

level, we can omit those components that are coincident for the two vectors. We then

proceed in four steps:

1. Let P= (u1,u2;1− u1,1− ε − u2), with 1
2 ≤ u1 ≤ 1 be an arbitrary point in the

segment[D,A], that is u2 = u1− ε. If P′ = (u′1,u2;1−u′1,1− ε −u2), with u1 < u′1,

is an arbitrary core element in the same horizontal line as P,we have that P≻L P′,

since from u′1 >
1
2 we get u′1 > 1−u′1 and then apply the remark in Hougaard et al.

(2001).

2. Let Eλ =
(
λ ,

1−ε
2 ;1−λ ,

1−ε
2

)
, with 1+ε

2 < λ ≤ 1, be a core element in the same

horizontal line as E. Any other core allocation in the same vertical line as Eλ is

Lorenz dominated by Eλ . Formally, if H = (λ ,u2;1−λ ,1− ε −u2) where0≤ u2 ≤

λ − ε and u2 6= 1−ε
2 , then Eλ Lorenz dominates H. To see this simply apply the

remark in Hougaard et al. (2001) and notice that
(1−ε

2 ,
1−ε

2

)
≻L (u2,1− ε −u2) for
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any0≤ u2 ≤ λ − ε and u2 6=
1−ε

2 .

Notice that a consequence of 1 and 2 is that the allocation E Lorenz dominates

all other core allocations in the convex hull of E, I, C and A. Moreover, from 1,

allocations in[D,E] Lorenz dominate those other in the triangle with vertices D,E

and J

3. An argument analogous to the previous one shows that D Lorenz dominates all the

core elements in the convex hull of D, B, F and C different fromitself.

4. Finally, two different points in the segment[D,E] do not Lorenz dominate one an-

other. To this end, notice that an arbitrary point in this segment is

z(λ ) = λ
(

1
2
,
1
2
− ε;

1
2
,
1
2

)
+(1−λ )

(
1+ ε

2
,
1− ε

2
;
1− ε

2
,
1− ε

2

)

=

(
1
2

+
ε
2
(1−λ ),

1
2
−

ε
2
(1+λ );

1
2

+
ε
2
(λ −1),

1
2

+
ε
2
(λ −1)

)

with0≤ λ ≤1. Then,ẑ(λ )=
(1

2 + ε
2(1−λ ), 1

2 + ε
2(λ −1), 1

2 + ε
2(λ −1), 1

2 −
ε
2(1+λ )

)
,

and notice thatẑ(λ )1 is a decreasing function ofλ while ẑ(λ )1 + ẑ(λ )2 + ẑ(λ )3 =

3
2 + ε

2(λ −1) is an increasing function ofλ .

The main result in this section is that if the assignment game(M∪M′,wA) has a dom-

inant diagonal (see (4)), then the set of Lorenz-maximal core allocations reduces to only

one point. Moreover, this allocation will be proved to be theThompson’s fair division point

(or theτ-value) and also the Dutta-Ray solution. Notice that the above example shows that

our first statement is tight in the sense that if the assignment matrix fails to have a domi-

nant diagonal, even if it is by an small amountε > 0, then the set of Lorenz-maximal core

allocations may not be a singleton.

Theorem 2. Let (M ∪M′,wA) be a square assignment game with a dominant diagonal.

Then, the set of Lorenz-maximal core allocations L(wA) reduces to Thompson’s fair divi-

sion pointτ(wA). Moreover, the Dutta-Ray solution exists and

L(wA) = {τ(wA)} = DR(wA).
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Proof. We assume, without loss of generality, thatµ = {(1,1),(2,2), . . .,(m,m)} is op-

timal anda11 ≥ a22 ≥ . . . ≥ amm. Under the assumption of dominant diagonal, the op-

timal core allocations for each side of the market are(u,v) = ((aii)i∈M,0) and (u,v) =

(0,(aii)i∈M) and thusτ(wA)i = τ(wA)i′ = aii
2 for all i ∈ M. To simplify notation, let us

write τ = τ(wA). Then, the vector obtained fromτ by rearranging its coordinates in non-

increasing order iŝτ =
(a11

2 ,
a11
2 , . . . ,

amm
2 ,

amm
2

)
. In order to prove thatτ is the unique Lorenz-

maximal core allocation we first prove that vectorτ weakly Lorenz dominates every other

point in the core.

Let it bez=(u,v)∈C(wA). To see that̂τ1+· · ·+ τ̂i ≤ ẑ1+· · ·+ ẑi for all i ∈{1,2, . . . ,2m},

let us first consider the case in whichi is even, that is,i = 2k for somek ∈ {1,2, . . . ,m}.

Then,

τ̂1+ · · ·+ τ̂2k = a11
2 + a11

2 + · · ·+ akk
2 + akk

2

= a11+ · · ·+akk

= u1+v1 + · · ·+uk +vk

≤ ẑ1+ ẑ2 + · · ·+ ẑ2k−1 + ẑ2k,

(5)

where the last equality follows from (3) and the inequality from the definition of vector ˆz,

wherez= (u,v).

Let us now consider the case in whichi is odd. Notice that fori = 1, we havêτ1 =

a11
2 ≤ ẑ1. Otherwise, if̂z1 <

a11
2 , we have bothu1 <

a11
2 andv1 <

a11
2 , which contradicts

z= (u,v) ∈C(wA).

For i = 2k+1 with k∈ {1,2, . . . ,m−1}, from (5) it follows

τ̂1+ · · ·+ τ̂2k ≤ ẑ1+ . . .+ ẑ2k.

Assume

τ̂1+ · · ·+ τ̂2k + τ̂2k+1 > ẑ1+ . . .+ ẑ2k + ẑ2k+1. (6)

Thenτ̂2k+1 > ẑ2k+1. On the other hand, again from (5) and the assumption that themarket

is square, we havêτ1 + · · ·+ τ̂2k+2 ≤ ẑ1 + · · ·+ ẑ2k+2. This last inequality, together with

(6), impliesτ̂2k+2 ≤ ẑ2k+2. But then, sincêτ2k+1 = τ̂2k+2, we havêτ2k+2 = τ̂2k+1 > ẑ2k+1 ≥

ẑ2k+2 ≥ τ̂2k+2, which is a contradiction. Hence, for alli ∈ {1,2, . . . ,m} we havêτ1+ · · ·+

τ̂i ≤ ẑ1+ · · ·+ ẑi , and we conclude thatτ �L zwhich means thatτ(wA) is Lorenz-maximal

in the core.

14



To show uniqueness, suppose there exists some otherz= (u,v) ∈C(wA) such that̂τ =

ẑ. Also, for our convenience, let us writeτ = (τu,τv) ∈ R
M ×R

M′
, where, for alli ∈

{1,2, . . . ,m}, τu
i denotes the payoff to theith buyer andτv

i denotes the payoff to theith

seller. Then, by the assumption̂τ = ẑ, we haveτ̂1 = a11
2 = ẑ1. Let us see that in fact

ẑ1 = u1. Otherwisêz1 = a11
2 > u1 and thenv1 >

a11
2 , which impliesẑ1 >

a11
2 and this is a

contradiction. Thus,τu
1 = a11

2 = ẑ1 = u1. Sinceu1 +v1 = a11 andu1 = a11
2 , we havev1 =

a11
2 = τv

1. But then,̂τ3 = ẑ3 = a22
2 . As before, if̂z3 = a22

2 > u2 thenv2 >
a22
2 , which implies

ẑ3 >
a22
2 , that is a contradiction. Then,̂z3 = u2 = a22

2 and thusτu
2 = u2 and consequently

τv
2 = v2. By repetition of the same argument, we obtain(τu,τv) = (u,v) = zand thus prove

that the Thompson’s fair division point is the unique Lorenz-maximal core allocation.

Let us now prove that, under the dominant diagonal assumption, Thompson’s fair divi-

sion point also coincides with the Dutta-Ray solution.

Let P = {S1,S2, . . . ,Sl} be the partition ofN = M∪M′ defined as follows:

S1 = {i ∈ N | τi ≥ τk for all k∈ N},

S2 = {i ∈ N\S1 | τi ≥ τk for all k∈ N\S1},

...

Sl = {i ∈ N\ (S1∪· · ·∪Sl−1) | τi ≥ τk for all k∈ N\ (S1∪· · ·∪Sl−1)}.

If l = 1, thenτi = wA(N)
|N| for all i ∈ N, and thusDR(wA) = {τ}. If l > 1, notice that, for all

k, r ∈ {1,2, . . . , l} and alli ∈ Sk and j ∈ Sr it holds:

a) if k = r, thenτi = τ j (i.e. aii = a j j ),

b) if k < r, thenτi > τ j (i.e. aii > a j j ),

c) the restriction of vectorτ to coalitionSk is
(

wA(Sk)
|Sk|

, . . . ,
wA(Sk)
|Sk|

)
.

To see statement c), notice that by its own definition and the dominant diagonal condition,

for all k ∈ {1,2, . . . , l}, Sk is composed of a subset of pairs in the optimal matchingµ =

{(i, i) | i ∈ M}. Thus, the restriction of the optimal matchingµ to Sk is optimal in the

submarket with set of agentsSk and as a consequenceτi = aii
2 = wA(Sk)

|Sk|
for all i ∈ Sk.
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Sinceτ ∈C(wA), we can guarantee thatτ ∈ L(N). If τ were not the Dutta-Ray solution,

then there would existz∈ L(N) such thatz≻L τ, that is to say

ẑ1 ≤ τ̂1 = a11
2 ,

ẑ1+ ẑ2 ≤ τ̂1+ τ̂2 = a11,

· · · · · · · · ·

ẑ1 + ẑ2+ · · ·+ ẑ2m ≤ τ̂1+ τ̂2 + · · ·+ τ̂2m,

(7)

with at least one strict inequality.

Notice that, sinceτ andzare both efficient, ifzj ≥ τ j for all j ∈ N then we would have

z= τ, in contradiction withz≻L τ. As a consequence, the setJ = { j ∈ N | zj < τ j} must be

non-empty. Take thenq∗ = min{k∈ {1,2, . . . , l} | J∩Sk 6= /0} and choose anyj∗ ∈ J∩Sq∗ .

We claim that

zj ≤ τ j for all j ∈ Sq∗. (8)

Indeed, ifq∗ = 1, for all j ∈ S1 it follows from (7) thatzj ≤ ẑ1 ≤ τ̂1 = τ j . If q∗ > 1, from

zj ≤ τ j for all j ∈ S1 and the definition ofj∗ andJ we getzj = τ j for all j ∈ S1. Then, from

(7) we have ˆz|S1|+1 ≤ τ̂|S1|+1. The repetition of the same argument leads tozj = τ j for all

j ∈ S1∪· · ·∪Sq∗−1. Then, taking into account (7), a) and b) we obtain, for allj ∈ Sq∗,

zj ≤ ẑ|S1∪···∪Sq∗−1|+1 ≤ τ̂|S1∪···∪Sq∗−1|+1 = τ j .

So, let it beT = Sq∗. Then, by c),τi =
wA(T)
|T| for all i ∈ T impliesτ(T) = wA(T) and

together withτ ∈ C(wA) implies thatτ|T belongs to the core of the subgame(T,wA|T
),

which is known to be included in the Lorenz-core of coalitionT, that is,τ|T ∈C(wA|T
) ⊆

L(T). But τ|T is the equal-split allocation of the subgame(T,wA|T
) and thus{τ|T} =

E(L(T)). Then, sinceτ j∗ > zj∗, where j∗ ∈ T, and by (8)τi ≥ zi for all i ∈ T, we conclude

thatz 6∈ L(N) and reach thus a contradiction. This means thatτ is the Dutta-Ray solution

DR(wA) = {τ(wA)}.

It is known that, for arbitrary assignment games, the Dutta-Ray solution may not ex-

ist, since an example is provided in page 621 in Dutta and Ray (1989). Thus, under the

dominant diagonal assumption, not only the existence of theDutta-Ray solution of the

assignment game is guaranteed, but we also obtain that it lies in the core. In this sense,
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the behavior of the Dutta-Ray solution in the class of assignment games with a dominant

diagonal resembles that in the class of convex games (it belongs to the core and Lorenz

dominates any other core allocation), although dominant diagonal assignment games are in

general far from being convex games.

From Theorem 2 we can also deduce a characterization of Thompson’s fair division

point for arbitrary assignment games. It is known from Núñez and Rafels (2009) that the

core of an arbitrary assignment game is the translation, by the vector(u,v) of minimum

core payoffs, of the core of another assignment game, say(M∪M′,wAe), that has a dom-

inant diagonal:C(wA) = {(u,v)}+C(wAe). The analogous translation property trivially

holds for Thompson’s fair division point:τ(wA) = (u,v)+ τ(wAe).

By Theorem 2,τ(wAe) is the unique Lorenz-maximal core allocation and the Dutta-

Ray solution of the game(M ∪M′,wAe). But this result cannot be translated toτ(wA)

since, as pointed out by Dutta and Ray (1989), the Lorenz domination is not preserved by

translation. However, we can say thatτ(wA) is the unique core element that allocates in

an egalitarian way what remains ofwA(M∪M′) after having paid the vector of minimum

rights(u,v).

More precisely, for any arbitrarily fixed vectorm∈ R
N, let us define them-Lorenz

domination inR
N by: for all x,y∈ R

N, x≻Lm y if and only if x−m≻L y−m. Then, the

following corollary holds.

Corollary 3. Let (M ∪ M′
,wA) be a square assignment game, m= (u,v) the vector of

minimum core payoffs andτ(wA) the Thompson’s fair division point. Then,τ(wA) ≻Lm

(u,v) for all (u,v) ∈C(wA).

We have seen in this section that, for assignment games with adominant diagonal, the

Thompson’s fair division point fulfills the fairness standards of the Dutta-Ray solution and

the Lorenz undomination. What about the standards represented by the kernel and the

nucleolus?
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4 The kernel of 2-dominant diagonal assignment games

Even in the case of assignment games with a dominant diagonal, the kernel may contain

infinitely many allocations. Take for instance a square glove market withm≥ 2, where

the kernel is known to coincide with the core segment. In thisexample Thompson’s fair

division belongs to the kernel, but it is not difficult to find instances of assignment games

with a dominant diagonal and such that Thompson’s fair division point is not in the kernel.

Example 4. Let it be the2×2 assignment game defined by the matrix

A =


 8 5

3 8


 .

The above market has a dominant diagonal but Thompson’s fairdivision point isτ(wA) =

(u1,u2;v1,v2) = (4,4;4,4) and does not belong to the kernel, since

s11′(τ(wA)) = max{−u1,a12−u1−v2} = −3,

s1′1(τ(wA)) = max{−v1,a21−u2−v1} = −4.

In fact, in this example, the kernel reduces to one point,K (wA) = {(41
3,32

3;32
3,41

3)}, and

as a consequence this is also the nucleolus of the game.

In Rochford (1984) the payoff vectors in the kernel of the assignment game are char-

acterized as the set of fixed points of a function defined in terms of the threats (which can

be interpreted as the bargaining ranges outside the core). An alternative characterization is

given in Driessen (1999) by applying Brouwer’s Fixed Point Theorem to a function defined

in terms of the length of bargaining ranges within the core. To obtain our result we need to

work a little on the function used in Driessen’s characterization.

Let (M∪M′,wA) be a square assignment game andCu(wA) = {u∈R
M | there existsz=

(u,v) ∈ C(wA)} be the projection ofC(wA) to the set of the buyers’ payoffs. For each

u∈Cu(wA) we denote byzu = (u,v) the unique element inC(wA) that projects tou. Then,

Cu(wA) is a complete lattice with respect to the usual order inR
M, that is, givenu,u′ ∈ RM,

u≤ u′ if and only if ui ≤ u′i for all i ∈ M.

Let us now consider the functionf : Cu(wA) −→ Cu(wA) defined, for allu ∈ Cu(wA)

and alli ∈ M, by

fi(u) = ui +
1
2

[
siµ(i)(zu)−sµ(i)i(zu)

]
, (9)
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whereµ is an arbitrarily fixed optimal matching of(M,M′,A). Then, by Driessen (1999),

if z= (u,v) ∈C(wA), we have

z= (u,v) ∈ K (wA) ⇔ f (u) = u.

If we assume, without loss of generality, that the optimal matchingµ is placed on the main

diagonal,µ = {(i, i) | i ∈ M}, then we can write, for anyz= (u,v) ∈C(wA),

sii ′(z) = max
k∈M\{i}

{−ui ,aik −ui −vk} = −ui + max
k∈M\{i}

{0,aik −akk+uk},

si′i(z) = max
k∈M\{i}

{−vi ,aki −uk−vi} = −aii +ui + max
k∈M\{i}

{0,aki −uk}

and obtain, for anyu∈Cu(wA),

fi(u) = ui +
1
2

[sii ′(zu)−si′i(zu)] (10)

=
1
2

aii −
1
2

max
k∈M\{i}

{0,aki−uk}+
1
2

max
k∈M\{i}

{0,aik −akk+uk}. (11)

It is not difficult to check (and it is left to the reader) thatf is a non-decreasing function

onCu(wA), with respect to the usual order onR
M. Then, as a result of Tarski’s Fixed Point

Theorem6 the kernelK (wA) of the assignment game is a complete lattice.

Now, in order to guarantee the inclusion of Thompson’s fair division point in the kernel,

we strengthen the dominant diagonal condition.

Definition 5. A square assignment game(M∪M′,wA) is said to have a2-dominant diag-

onalif and only if, once placed an optimal matchingµ on the main diagonal, for all i∈ M,

it holds

aii ≥ 2max{ai j ,a ji} for all j ∈ M \{i}. (12)

If an optimal matching is placed on the main diagonal, a square assignment game has

a 2-dominant diagonal if and only if each agent achieves at least twice as much profit with

his optimal partner as with any other possible partner. Notice that, trivially, if an assign-

ment game has a 2-dominant diagonal, then it also has a dominant diagonal. Moreover,

6If (S,≤) is a complete lattice andf : S−→ San increasing function, then, the setE of fixed points off

is non-empty and(E,≤) is also a complete lattice.
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Definition 5 does not depend on the optimal matchingµ that is placed on the diagonal.7

It is straightforward to see that if the assignment game has a2-dominant diagonal, then

τ(wA) =
((aii

2

)
i∈M ,

(aii
2

)
i∈M

)
belongs to the kernel. Indeed, for alli ∈ M,

sii ′(τ(wA)) = max
k∈M\{i}

{
−

aii

2
,aik −

aii

2
−

akk

2

}
= −

aii

2
,

si′i(τ(wA)) = max
k∈M\{i}

{
−

aii

2
,aki−

akk

2
−

aii

2

}
= −

aii

2
.

It turns out that, when the assignment game has a 2-dominant diagonal, thenτ(wA) is

in fact the unique allocation in the kernel.

Theorem 6. Let (M∪M′,wA) be a square assignment game with a 2-dominant diagonal

andµ = {(i, i) | i ∈ M} an optimal matching. Then, the kernel reduces to Thompson’sfair

division point, that is

K (wA) =

{((aii

2

)
i∈M

,

(aii

2

)
i∈M

)}
.

Proof. Let it be z= (u,v) ∈ K (wA), 0∈ R
M anda = (aii)i∈M ∈ R

M. Then, 0≤ u ≤ a.

Besides, the fact thatu is a fixed point of the functionf defined in (9) impliesf n(u) = u

for all n ≥ 1. Thus, sincef is non-decreasing, we havef n(0) ≤ u ≤ f n(a) and we only

have to prove that both sequences{ f n(0)}n≥1 and{ f n(a)}n≥1 converge to
(aii

2

)
i∈M.

Let us first consider the sequence{ f n(0)}n≥1.

7We claim that if(M ∪M′,wA) has a 2-dominant diagonal with respect toµ and there exists another

optimal matchingµ ′, then, for alli ∈ M, eitherµ(i) = µ ′(i) or aiµ(i) = 0. If L = {i ∈ M | µ(i) = µ ′(i)}

we can restrict to the submarket with set of agents(M \ L)∪ (M′ \ µ(L)). So, let us assume without loss

of generality thatµ(i) 6= µ ′(i) for all i ∈ M. Let then beK = {i ∈ M | aiµ(i) = 0}. If K = M we are done.

Otherwise notice that from the dominant diagonal condition, we haveai j = 0 for all i ∈ K and j ∈ M′, and

ai j = 0 if j ∈ µ(K) and i ∈ M. As a consequence, the restrictions ofµ andµ ′ to (M \K)×M′ are both

optimal matchings for the submarket(M \K,M′,A|(M\K)∪M′). But then, taking into account the 2-dominant

diagonal condition, we have

∑
i∈M\K

aiµ(i) ≥ 2 ∑
i∈M\K

aiµ ′(i) = 2 ∑
i∈M\K

aiµ(i),

which implies thataiµ(i) = 0 for all i ∈ M \K, in contradiction withK 6= M. Once proved the claim it easily

follows that(M∪M′,wA) also has a 2-dominant diagonal with respect toµ ′.
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Notice that forn = 1, by substitution in (11), and taking into account the 2-dominant

diagonal condition, we obtain, for alli ∈ M,

f 1
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{aki} ≥
aii

2
−

1
2

max
(l , j)∈M×M′

{al j}. (13)

Now we prove by induction onn≥ 2 that, for alli ∈ M,

f n
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{
0,aki − f n−1

k (0)
}

, (14)

and

f n
i (0) ≥

aii

2
−

1
2n max

(l , j)∈M×M′
{al j}. (15)

Let us first prove (14) and (15) forn = 2.

Again by substitution in (11),

f 2
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{
0,aki− f 1

k (0)
}

+
1
2

max
k∈M\{i}

{
0,aik −akk+ f 1

k (0)
}

(16)

=
aii

2
−

1
2

max
k∈M\{i}

{
0,aki− f 1

k (0)
}

(17)

where the second equality follows because the 2-dominant diagonal condition implies, for

all k∈ M \{i},

aik −akk+ f 1
k (0) = aik −akk+

akk

2
−

1
2

max
l∈M\{k}

{alk} ≤ 0.

Moreover, for alli ∈ M, from equation (17), (13) and the 2-dominant diagonal condition,

f 2
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{
0,aki− f 1

k (0)
}

≥
aii

2
−

1
2

max
k∈M\{i}

{
0,aki −

akk

2
+

1
2

max
(l , j)∈M×M′

{al j}

}
≥

aii

2
−

1
22 max

(l , j)∈M×M′
{al j}.

Let us assume, by induction hypothesis, that, for allk ∈ M and alln ≥ 3, f n−1
k (0) =

akk
2 − 1

2 maxl∈M\{k}
{

0,alk − f n−2
l (0)

}
and f n−1

k (0) ≥ akk
2 − 1

2n−1 max(l , j)∈M×M′{al j}. First,

for all i ∈ M and taking into account the 2-dominant diagonal condition,

f n
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{
0,aki − f n−1

k (0)
}

+
1
2

max
k∈M\{i}

{
0,aik −akk+ f n−1

k (0)
}

=
aii

2
−

1
2

max
k∈M\{i}

{
0,aki − f n−1

k (0)
}

+
1
2

max
k∈M\{i}

{
0,aik −akk+

akk

2
−

1
2

max
l∈M\{k}

{
0,alk − f n−2

l (0)
}}

=
aii

2
−

1
2

max
k∈M\{i}

{
0,aki − f n−1

k (0)
}

.
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Notice that the above equation implies thatf n
i (0) ≤ aii

2 for all i ∈ M and alln≥ 3.

Also,

f n
i (0) =

aii

2
−

1
2

max
k∈M\{i}

{
0,aki− f n−1

k (0)
}

≥
aii

2
−

1
2

max
k∈M\{i}

{
0,aki −

akk

2
+

1
2n−1 max

(l , j)∈M×M′
{al j}

}

≥
aii

2
−

1
2n max

(l , j)∈M×M′
{al j},

where the first inequality follows from the induction hypothesis and the second one from

the 2-dominant diagonal condition.

Now, from aii
2 − 1

2n max(l , j)∈M×M′{al j} ≤ f n
i (0) ≤ aii

2 , for all n≥ 1, it follows that, for

all i ∈ M, limn→∞ f n
i (0) = aii

2 .

Let us now consider the sequence{ f n(a)}n≥1. Similarly, making use of (11) and the

2-dominant diagonal condition, we prove thatf 1
i (a) = 1

2aii +
1
2 maxk∈M\{i}{aik} and, for

all n≥ 2,

f n
i (a) =

aii

2
+

1
2

max
k∈M\{i}

{
0,aik −akk+ f n−1

k (a)
}

, (18)

and

f n
i (a) ≤

aii

2
+

1
2n max

(l , j)∈M×M′
{al j}, (19)

and then deduce that, for alli ∈ M, limn→∞ f n
i (a) = aii

2 .

Finally, from f n
i (0) ≤ ui ≤ f n

i (a), taking limits asn goes to infinity, we obtain, for all

i ∈ M,
aii

2
= lim

n→∞
f n
i (0) ≤ ui ≤ lim

n→∞
f n
i (a) =

aii

2
,

which impliesui = aii
2 for all i ∈ M.

The above result, that is, the reduction of the kernel to a single point, is tight in the

sense that it cannot be guaranteed for assignment games satisfyingaii ≥ kmax{ai j ,a ji} for

all j ∈ M \{i} andk < 2, beingµ = {(i, i) | i ∈ M} an optimal matching. This is shown by

the next example.

Example 7. Let us consider a family of assignment markets with set of buyers M= {1,2},

set of sellers M′ = {1′,2′} and, for each0 < ε ≤ 8, assignment matrix

Aε =


 8 4

4+ ε 8


 .
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We show that in all these markets the kernel does not reduce toa unique point.

Let us see that the segment with extreme pointsB=
(
4− ε

2,4;4+ ε
2,4

)
andC=

(
4,4+ ε

2;4,4− ε
2

)

is contained in the kernel. Let, forλ ∈ [0,1],

xλ =
(

4−
ε
2

λ ,4+
ε
2
(1−λ );4+

ε
2

λ ,4−
ε
2
(1−λ )

)

be an arbitrary element in this segment. Then,

s11′(xλ ) = max
{
−4+

ε
2

λ ,−4+
ε
2

}
= −4+

ε
2
,

s1′1(xλ ) = max
{
−4−

ε
2

λ ,−4+
ε
2

}
= −4+

ε
2
.

and

s22′(xλ ) = max
{
−4−

ε
2
(1−λ ),−4+

ε
2

}
= −4+

ε
2
,

s2′2(xλ ) = max
{
−4+

ε
2
(1−λ ),−4+

ε
2

}
= −4+

ε
2
,

which impliesxλ ∈ K (wA) for all λ ∈ [0,1]. Thus, the condition of 2-dominant diagonal

cannot be weakened and still guarantee the reduction of the kernel to a single point.

In fact, it can be proved that the kernel of the above example reduces to the segment

[B,C].

Since for all 0< ε < 4 the above assignment game has a dominant diagonal, by Theo-

rem 2 the set of Lorenz-maximal core allocations reduces to the Thompson’s fair division

point that is (4,4;4,4) and does not belong to the kernel. Hence, this example also shows

that, for arbitrary assignment markets,L(wA) andK (wA) may be disjoint.

Let us remark to end this section that, for assignment games with a 2-dominant diago-

nal, it has been established in the paper (Theorems 2 and 6) that the best-known core-based

solutions, that is to say the kernel, the Lorenz-maximal core allocations, the nucleolus, the

Dutta-Ray solution and theτ-value recommend the same allocation, which is Thompson’s

fair division point. Thus, for this class of assignment games the Thompson’s fair division

is supported by the different standards of fairness of all these game-theoretical solutions.

Corollary 8. Let (M∪M′,wA) be a square assignment game with a 2-dominant diagonal.

Then

L(wA) = K (wA) = {ν(wA)} = {τ(wA)} = DR(wA).
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5 Concluding remarks

In the first part of the paper (Section 3) we have proved that, for those assignment games

with a dominant diagonal, the Thompson’s fair division is the unique Lorenz-maximal core

allocation and coincides with the Dutta-Ray solution. The proof relies on the fact that, as

a consequence of the dominant diagonal assumption, Thompson’s fair division point is the

allocation where, given an optimal matchingµ, each pair optimally matched byµ shares

equally the join profit achieved, that is,ui = vµ(i) =
aiµ(i)

2 for all i ∈ M, and this payoff

vector lies in the core.

But there are instances where this allocation
((

aiµ(i)

2

)
i∈M

,

(
aiµ(i)

2

)
i∈M

)
also lies in the

core, although the assignment game does not have a dominant diagonal. In these cases, the

same proof as in Theorem 2 guarantees that this is the unique Lorenz-maximal core allo-

cation and coincides with the Dutta-Ray solution, but may not coincide with Thompson’s

fair division point.

This is the situation in the following example with set of buyers M = {1,2}, set of

sellersM′ = {1′,2′}, and assignment matrix

A =


 9 8

7 7


 .

There is only one optimal matching,µ = {(1,1′),(2,2′)} and notice that the market does

not have a dominant diagonal. Thompson’s fair division point is τ(wA) = (5,31
2;4,31

2). The

allocation where each optimal pair shares equally the achieved profit is(41
2,31

2;41
2,3

1
2) and

it can be checked that it belongs to the core. Thus, the Dutta-Ray solution isDR(wA) =

{(41
2,3

1
2;41

2,31
2)}, that differs from Thompson’s fair division point. Notice that this exam-

ple also shows that, for arbitrary assignment games, Thompson’s fair division point need

not be a Lorenz-maximal core allocation: in this exampleDR(wA) ≻L τ(wA).

However, by Corollary 3 we know that if we subtract the vectorof minimum core pay-

offs,m= (u,v) = (1,0;0,0), from both allocations, thenτ(wA)−(u,v)≻L DR(wA)−(u,v),

that is,τ(wA) ≻Lm DR(wA). In this sense, and in the case of arbitrary assignment markets,

some egalitarian principle, once the minimal rights have been paid, supports Thompson’s

fair division point.
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[11] Núñez M (2004) A note on the nucleolus and the kernel ofthe assignment game.

International Journal of Game Theory 33: 55–65.

25
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