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Abstract
We study a market search equilibrium with aggregate uncertainty, pri-

vate information and heterogeneus beiefs. Traders initially start out opti-
mistic and then update their beliefs based on their matching experience in
the market, using the Bayes rule. It is shown that all separating equilibria
converge to perfect competition in the limit as the time between matches
tends to 0. We also establish existence of a separating equilibrium.

Keywords: Markets with search frictions, aggregate uncertainty, het-
erogeneous beliefs, optimism, bargaining, foundations of Walrasian equi-
librium

1 Introduction
Stories about how market prices reveal information and implement efficient al-
location of resources are of general interest to economists. Textbook discussions
often invoke a Walrasian auctioneer in support of the price taking paradigm, yet
he or she is notably absent in most real markets, which are often decentralized
and involve search frictions.

Models in which traders search, meet pairwise and bargain have proven very
useful for our understanding how many decentralized markets operate.1 It is
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in Shanghai and the 2010 Fall Midwest Theory Meeting at the University of Wisconsin, as
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1991.
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1For example, such models have been used to study labor markets, housing markets and

over-the-counter financial markets; see Nobel Prize Report (2010) for many illuminating ex-
amples of markets with search frictions.
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well known that the frictions of search and private information make an efficient
allocation in general unattainable even when there are many buyers and sellers
in the market. However, an efficient allocation may arise in the limit as frictions
vanish, implying that markets with small frictions are approximately Walrasian
and efficient.

This paper proposes a new way of looking at price formation in decentralized
markets with aggregate uncertainty, an important feature of many decentralized
markets.2 In this paper, we consider the simplest form of aggregate uncertainty:
even though traders know their own willingness to pay for the good (have private

values), initially they don’t know the aggregate market demand and supply. As
a consequence, the traders need to learn at what prices to trade through their
market experiences.

We present a tractable model of a bilateral search market with rich two-sided
private information and aggregate uncertainty, in which learning occurs through
being not matched and efficiency obtains in the limit as frictions vanish. Our
model is based on a private-information replica of Mortensen and Wright (2002)
using a notion of search market equilibrium with private information introduced
in Satterthwaite and Shneyerov (2007, 2008).3

Continua (or oceans) of buyers and sellers arrive to the market each period
..., −1, 0, 1, .... The period length is a small τ > 0. Each trader can trade a single
unit of an indivisible good, and there are search frictions due to time discounting
and participation cost. These frictions are proportionate to τ and vanish as
τ → 0. In the beginning of each period, the traders who are in the market are
matched in pairs and make take it or leave it offers to each other with equal
probability.4 The bargaining transpires under two-sided private information. If
the bargaining results in trade, both traders leave the market, else the current
match is dissolved and they remain.

We assume that the aggregate uncertainty of the market is represented by
a state µ ∈ {L, H}, where 0 < L < H. This corresponds to the popular press
notions of a buyer or seller markets. The H and L values of µ reflect a high
or low value of the Walrasian price pW (µ), with pW (L) < pW (H). Formally,
the distributions of valuations v and costs c, GB (·|µ) and GS (·|µ), depend on
µ and the Walrasian price pW (µ) is determined through the intersection of the
corresponding demand and supply functions:

GS (pW |µ) = 1 − GB (pW |µ) .

In our model, while traders are rational and Bayesian, their beliefs are not

derived from a common prior.5 Regardless of the true state µ, the entering
2For example, see Rogerson, Shimer, and Wright (2005) for a discussion of its relevance in

labor markets.
3Such a model has recently been investigated by Shneyerov and Wong (2010a,b).
4This is the random-proposer protocol of Rubinstein and Wolinsky (1985). Several papers

in the literature have considered other bargaining protocols, notably the k-double auction (k-
DA) with grid-restricted price offers. Some references are given below. However, for a k-DA
with unrestricted price offers, Shneyerov and Wong (2010b) show existence of non-convergent
equilibria even without aggregate uncertainty as here.

5With a common prior concerning µ, the analysis of dynamic matching and bargaining
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Figure 1: Fundamental market imbalance caused by excess entry of optimistic
buyers when µ = H.

buyers believe that they are in the buyer market, µ = L, while entering sellers
believe they are in the seller market, µ = H. In other words, similar to Yildiz
(2003), traders on both sides of the market start out with optimistic prior beliefs,
and therefore initially agree to disagree about the state of the market. As they
continue in the market, they may conclude that their original beliefs are wrong
and switch to pessimistic beliefs: the buyers to believing that µ = H, while the
sellers, to believing µ = L.

How do the traders discover the true state? The crucial element of our learn-
ing process is a simple matching technology whereby each period the shorter side
of the market is fully matched, while the longer side is matched with probability
less than 1. Our belief updating mechanism then implies that there is excessive
entry by the traders who believe in the wrong state. This in turn will lead to an
unbalanced market, with wrong believers on the long side. Once not matched,
the wrong believers will update their optimistic beliefs, become pessimistic and
trade.

Thus, in addition to the negative same-side search externality, in our model
there is also a positive same-side externality because, say, additional buyers
speed up the learning process of all buyers. See Figure 1 that graphically de-
scribes this basic story when τ is very small, the true state is µ = H and it is
therefore the optimistic buyers who hold the wrong beliefs.

Our analysis focuses on what we call separating equilibria. In these equilibria,
only traders who share the same (true) belief about the state µ, can trade. When

games with aggregate uncertainty is difficult due to a complicated nature of Bayes beliefs. For
example, traders would need to update beliefs not only about the true state, but also about
the beliefs of other traders etc. There is no parsimonious notion of a state variable describing
beliefs. However, the common prior assumption is neither necessary nor always desirable.
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the beliefs diverge, the traders are unable to reach mutually acceptable price
and are unable to trade. Consequently, optimistic buyers can only trade with
pessimistic sellers, and vice versa. When τ is small, there are incentives in place
to support such an equilibrium. For example, buyers who are optimistic will
prefer to wait for a pessimistic seller rather than trade with an optimistic seller
at a higher price. This is because the cost of waiting will be small relative to
the benefit of a lower price. Similar logic applies to the optimistic sellers. On
the other hand, the pessimistic traders will have known the state and will not
wait for a deal that they are sure does not exist in the market. The only delay
they might have comes from private information in bargaining.

With small frictions, we show that traders who have a correct belief µ will
propose or accept a price close to pW (µ). This means two things. First, the
former optimists on the long side with valuations far below (or costs far above)
pW (µ) will exit. Second, the pessimistic traders on the long side now share the
same beliefs with optimistic traders on the short side and will trade with them.
Provided that the state discovery by optimists is quick, their stock in the market
is small, and price discovery happens quickly followed by trade (almost) at the
right price pW (µ). Thus we prove that, as τ → 0, all separating steady-state
equilibria converge to the Walrasian outcome in state µ. The traders’ utilities
converge to their Walrasian counterparts, as if they knew the true state from the
beginning. In the limit, there is both full information revelation and efficiency.

In addition to this convergence result, we also show that when both the
discount rate and τ are sufficiently small, there exists a unique separating equi-
librium with a full trade property: every meeting between the traders who share
the same belief about the state results in trade.

We are unaware of any published papers that have obtained convergence re-
sults under aggregate uncertainty with private values as here. Recently, Lauer-
mann, Merzyn, and Virag (2010) have also considered a model with aggregate
uncertainty. As in Satterthwaite and Shneyerov (2008), in their model the sell-
ers conduct auctions among the buyers they are matched with. However, their
model is different in that (i) buyers (sellers) are assumed to be homogeneous in
their valuations (costs), and (ii) sellers are assumed to be non-strategic. The
buyers do not know the state of the market, and then learn through unsuccessful
bids. Over time, the buyers become more pessimistic and bid more aggressively.
It is shown that the equilibrium allocation converges to the competitive alloca-
tion as friction vanish.

Several authors have considered steady-state models with common value un-
certainty, and double auction bargaining with a grid restricted set of price offers.
In such a model, Wolinsky (1988) assumes two-sided incomplete information and
obtains a negative convergence result, while Serrano and Yosha (1993) assume
one-sided incomplete information and show existence of a convergent equilib-
rium. In addition, Blouin and Serrano (2001) consider a market with one-time
entry of agents and obtain strong negative results concerning convergence.6 In

6However, recently, Gottardi and Serrano (2005) revisit the issue and obtain some positive
results in a somewhat different model.

4



addition, the seminal contributions of Reny and Perry (2006) and Pesendorfer
and Swinkels (1997, 2000) provide foundations for a rational expectations equi-
libria in static models of centralized double-auction trade with interdependent
values.

Most other papers have adopted a private values paradigm with no aggre-
gate uncertainty; a non-exhaustive list includes Butters (1979), Gale (1986),
Gale (1987), Gale (2000), Rubinstein and Wolinsky (1985),Wolinsky (1988),
Wolinsky (1990), Rubinstein and Wolinsky (1990), McLennan and Sonnenschein
(1991),Dagan, Serrano, and Volij (1998), Dagan, Serrano, and Volij (2000),
De Fraja and Sakovics (2001), Moreno and Wooders (2002), Serrano (2002),
Mortensen and Wright (2002), Satterthwaite and Shneyerov (2007), Satterth-
waite and Shneyerov (2008), Atakan (2009), Lauermann (2009), and Shneyerov
and Wong (2010a,b).

The structure of the paper is as follows. Section 2 introduces the model.
Section 3 presents the convergence result within a more tractable class of full
trade equilibria, and also establishes the existence of equilibria for small τ .
Section 4 extends the convergence result to all separating equilibria.

Finally, to lend further support to extreme optimistic beliefs, in the con-
cluding Section 5 we show that the model can be extended to include a prior
choice stage based on the “change of paradigm” framework recently proposed
in Ortoleva (2010). In this extended model’s equilibrium, we argue that traders
will choose their priors to be optimistic.

2 Model and Theorem
We study the steady state of a market with two-sided incomplete information
and an infinite horizon. In it heterogeneous buyers and sellers meet once per
period (t = . . . , −1, 0, 1, . . .) and trade an indivisible, homogeneous good. The
length of each period is τ . At the beginning of each period measure τ of sellers
and buyers is born and the newborn traders contemplate entering the market.

The agents in our model are potential buyers and sellers of a homogeneous,
indivisible good. Each buyer has a unit demand for the good, while each seller
has unit supply. All traders are risk neutral. Potential buyers are heterogeneous
in their valuations (or types) v of the good. Potential sellers are also hetero-
geneous in their costs (or types) c of providing the good. For simplicity, we
assume v, c ∈ [0, 1].

We now introduce the main element of our model, the state of the market
µ. The sate µ can take two values, high (H) and low (L) and is drawn by
nature once and for all. The H and L values of µ reflect a high or low value
of the Walrasian price pW (µ), pW (L) < pW (H). Formally, the distributions of
valuations v and costs c, GB (·|µ) and GS (·|µ), depend on µ and the Walrasian
price pW (µ) is determined through the intersection of the corresponding demand
and supply functions:

GS (pW |µ) = 1 − GB (pW |µ) .
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Each trader privately knows his valuation v if he is a buyer or cost c if he
is a seller. However, the traders do not observe µ. The prior distributions of
(v, c, µ) are different for buyers and sellers. Specifically, we assume that the prior
distributions of µ put all the weight on µ = L for the buyers and µ = H for the
sellers, while the conditional distributions GB (·|µ) and GS (·|µ) are the same.
We also assume that these distributions have densities gB (·|µ) and gS (·|µ) that
are supported on [0, 1] and uniformly bounded from below there,

inf
v∈[0,1]

gB (v|µ) ≡ g
B

> 0, inf
c∈[0,1]

gS (c|µ) ≡ g
S

> 0.

The instantaneous discount rate is r ≥ 0, and the corresponding discount
factor is Rτ = e−rτ . Each period consists of the following stages.

1. The mass τ of potential buyers and sellers are born. Conditional on the
true state of the market µ ∈ {H, L}, the new-born buyers draw their
valuations v i.i.d. from GB (·|µ) and the newborn sellers draw their costs
c i.i.d. from GS (·|µ).

2. Entry (or participation, or being active): The new-born potential buyers
and sellers decide whether to enter the market. Those who enter together
with the current pools of traders in the market compose the set of active
traders.

3. The active buyers and sellers incur participation costs τκ.

4. The active buyers and sellers are randomly matched in pairs. The shorter
side of the market is matched completely, while the longer side is appro-
priately rationed. The mass of the matches is given by min {B (µ) , S (µ)},
where B (µ) and S (µ) are the steady-state masses of active buyers and
active sellers currently in the market. The probability that a buyer is
matched is min

�
1, S(µ)

B(µ)

�
, and he is equally likely to meet any active seller.

Symmetrically, the seller’s matching probability is min
�

1, B(µ)
S(µ)

�
, and she

is equally likely to meet any active buyer. The matching is anonymous.

5. If a type v buyer and a type c seller trade at a price p, then they leave the
market with payoff v − p, and p − c respectively. If bargaining between
the matched pair breaks down, both traders can either stay in the market
waiting for another match as if they were never matched, or simply exit
and never come back.

6. Bargaining: Once a pair of buyer and seller is matched, they bargain
without observing the type of their partner. The bargaining protocol is
random-proposal take-it-or-leave-it offer : with probability 1/2, the seller
makes a take-it-or-leave-it offer to the buyer, then the buyer chooses either
to accept or reject. And with probability 1/2, the buyer proposes and the
seller responds. We also assume the market is anonymous, so that the
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bargainers do not know their partners’ market history, e.g. how long they
have been in the market, what they proposed previously, and what offers
they rejected previously.

Our notion of market search equilibrium parallels that of Satterthwaite and
Shneyerov (2007) and Shneyerov and Wong (2010a,b). In a market equilibrium,
traders take search (continuation) values WB , WS of traders and market dis-
tributions of their types, Φ, Γ, as given, i.e. unaffected by their own actions.
The search values determine the participation (entry) strategies of buyers and
sellers, and their responding strategies ṽ, c̃ in any given meeting. The respond-
ing strategies and the market type distributions Φ, Γ together determine the
best-response price offer strategies of buyers and sellers. Our exposition in this
section focuses on the differences pertinent to our new model.

Heterogeneous beliefs play a key role in our model. Let µB , µS ∈ {L, H} be
the belief of a buyer or seller about µ. In the equilibrium we are describing,
µB , µS will only take two values L or H. Denote the stock of active buyers who
hold a belief µB when the true state is µ as B(µB |µ). Likewise, the stock of
sellers with a belief µS when the true state is µ is denoted as S (µS |µ). Note
that B(µ) = B(L|µ) + B(H|µ) and S(µ) = S(L|µ) + S(H|µ). Obviously, there
will be a distribution of the types (valuations for buyers and costs for sellers)
in the above mentioned stocks of traders in the steady state. Whenever the
corresponding stocks are positive we denote the distribution of active buyer and
seller types as Φ (·|µB , µ) and Γ (·|µS , µ).7

Belief Updating Mechanism. The newborn traders are assumed to start
out optimistically, µB = L for the buyers and µS = H for the sellers. The
traders will only change their beliefs if they did not succeed in meeting a partner
in the previous period. If that happened, the traders will switch to pessimistic
beliefs, i.e. buyers will have µB = H, while the sellers will have µS = L. These
beliefs are fully Bayesian and consistent, provided the equilibrium satisfies the
following fundamental imbalance condition.

7In our equilibrium, trader’s strategies are functions of their first-order beliefs about the
state (and of their own types). They do not include explicitly higher-order beliefs about µ. In
our market context, the agents are non-atomic and therefore face 0 probability of meeting with
each other in the market again. So in our model, the relevant higher-order beliefs would be
necessarily about the state of the market, i.e. the buyers’ beliefs about the market distribution
of sellers beliefs’ about µ, the buyers’ beliefs about the sellers’ beliefs about the distribution
of buyers’ beliefs about µ in the market, and so on. We assume that these beliefs are true,
i.e. that they coincide with the true equilibrium market distributions. For example, consider
optimistic buyers, µB = L. Their (second-order) beliefs about the sellers’ beliefs are assumed
to be derived from the steady-state equilibrium seller stocks S(H|L) and S(L|L). The buyers’
third-order beliefs are assumed to be equal to B(L|H) and B(H|H) for the stock of sellers
with belief µS = H and to B(L|L) and B(H|L) for the stock of sellers with belief µS = L.
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Condition 1 (Fundamental Imbalance Condition) The optimists with wrong

beliefs about the state are on the long side of the market:

B(H) > S(H), S(L) > B(L).

At the end of this section, we verify that our equilibrium in fact satisfies
Condition 1. Under this condition, no meeting in any given period is a 0 prior
probability event for any optimistic buyer or seller. If such event occurs, the
Bayes rule does not apply and the trader’s updated belief about µ can in princi-
ple be anything. We assume that the trader will update to a pessimistic belief.

Denote as WB (v|µB) and WS (c|µS) the beginning-of-period subjective mar-
ket utilities of type v buyer and type c seller. These market utilities are defined
for all traders and for all types v, c ∈ [0, 1], even for those who in equilibrium
are not active. The strategy of participating in the market will depend on µi.
In our equilibrium, the sets of participating buyer and seller types,

AB (µB) = {v : WB (v|µB) ≥ 0} , AS (µS) = {c : WS (c|µS) ≥ 0} (1)

are intervals,

AB (µB) = [v (µB) , 1] , AS (µS) = [0, c̄ (µS)] .

The types v (µB) and c̄ (µS) are called marginal participating types of buyers
and sellers.

As in Satterthwaite and Shneyerov (2007) and Shneyerov and Wong (2010a,b),
the market utilities are taken as exogenous to the stage bargaining game, and
are determined in the market equilibrium. If we normalize the no trade outcome
as yielding 0 utilities to the traders, the maximal price and the minimal price
that the buyer and seller are willing to accept respectively, or in other words
their dynamic types (similar to Satterthwaite and Shneyerov (2007)), will be

ṽ (v|µB) = v − Rτ WB (v|µB) , c̃ (c|µS) = c + Rτ WS (c|µS) . (2)

This is because say a buyer with valuation v will, in a Perfect Bayesian equilib-
rium and given his belief µB , accept any price p such that v−p ≥ Rτ WB (v|µB).
The market distributions of c̃ (c|µS) and ṽ (v|µB) in state µ are

Γ̃ (c|µS , µ) ≡
ˆ

{x:c̃(x|µS)≤c}
dΓ (x|µS , µ) , Φ̃ (v|µB , µ) ≡

ˆ
{x:ṽ(x|µB)≤v}

dΦ (x|µB , µ) .

We require that c̃ (·|µS) and ṽ (·|µB) are non-decreasing functions, and only
consider separating equilibria, i.e. those in which even the most enthusiastic
optimist buyers cannot hope to trade even with the least enthusiastic optimist
sellers. In other words, in our equilibrium traders only trade with partners who
hold the same belief about the state of the market; i.e. optimistic buyers only
trade with pessimistic sellers and vice versa. Formally, we require the following
separation property to hold.
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Figure 2: Separating equilibrium.

Assumption 1 (Separation Property) In a separating equilibrium, we have

ṽ (1|L) < c̃ (0|H) . (3)

The separation property implies

v(L) < �v(1|L) < c̃(0|H) < v(H),
c̄(L) < �v(1|L) < c̃(0|H) < c̄(H).

Figure 2 depicts a separating equilibrium of our model.
Each trader optimally chooses his or her proposed price within the support

of the distribution of the dynamic types of the partners who share with the
trader the same belief about the state,

pB (v|µB) ∈ arg max
p∈[0,1]

S (µB |µB)
S(µB) (ṽ (v|µB) − p) Γ̃ (p|µB , µB) (4)

pS (c|µS) ∈ arg max
p∈[0,1]

B (µS |µS)
B(µS) (p − c̃ (c|µS))[1 − Φ̃ (p|µS , µS)]. (5)

Notice that in equilibrium, the buyers choose prices below their dynamic types,
while the sellers choose prices above their dynamic types

pB (v|µB) ≤ ṽ (v|µB) , pS (c|µS) ≥ c̃ (c|µS) .
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Let UB (v|µB) and US (c|µS) be the expected utilities in the bargaining game,
over and above the market values:

UB (v|µB) = 1
2

S (µB |µB)
S(µB) (6)

· {(ṽ (v|µB) − pB (v|µB)) Γ̃ (pB (v|µB) |µB , µB)

+
ˆ

{c:pS(c|µB)≤ṽ(v|µB)}
(ṽ (v|µB) − pS (c|µB))dΓ (c|µB , µB)}

US(c|µS) = 1
2

B (µS |µS)
B(µS) (7)

· {(pS (c|µS) − c̃ (c|µS)) (1 − Φ̃ (pS (c|µS) |µS , µS))

+
ˆ

{v:pB(v|µS)≥c̃(c|µS)}
(pB (v|µS) − c̃ (c|µS)) dΦ (v|µS , µS)}

We also call them the interim utilities from trading.
The intuition for these equations is as follows. For example, consider an op-

timistic buyer (µB = L) who only trades with a pessimistic seller. The market
proportion of pessimistic sellers is, from the buyer’s point of view, S(µB |µB)

S(µB) .
With probability 1/2, the buyer is the proposer with price pB (v|µB). The
buyer will make a surplus of ṽ (v|µB) − pB (v|µB) over and above the market
continuation value if the offer is accepted by the seller, which happens with
probability Γ̃ (pB (v|µB) |µB , µB) (again from the buyer’s point of view). Alter-
natively, with probability 1/2, it is the pessimistic seller who is the proposer,
with price pS (c|µB). Such a price is accepted whenever pS (c|µB) ≤ ṽ (v|µB).

With these in hand, we now write the subjective Bellman equations for
WB (v|µB) and WS (c|µS).

WB (v|µB) = min
�

1,
S(µB)
B(µB)

�
UB (v|µB) + Rτ max {WB (v|µB) , 0} − τκ, (8)

WS (c|µS) = min
�

1,
B(µS)
S(µS)

�
US (c|µS) + Rτ max {WS (c|µS) , 0} − τκ. (9)

The sets of participating types AB (µB) and AS (µS) are determined according
to (1). On the equilibrium path, WB (v|µB) ≥ 0. Off the equilibrium path,
WB (v|µB) < 0 and a buyer who entered will have his search cost sunk for one
period and will exit by the end of the period. Likewise for the sellers.

The subjective Bellman equations require some explanation. The first thing
to notice is that the traders have point belief. So a buyer who is optimistic
believes with probability one that the true state is L. Given her current belief
she believes that in the next period, the state will be the same as her believed
state with probability 1. Therefore, in the subjective continuation pay-off, the
posterior belief is the same as the prior. Thus we have a very simple Markovian
structure where the “state variable” is the traders’ belief about the state of the
market.
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To close the description of our equilibrium, we provide the steady-state equa-
tions for the distributions of trader types in the market. To state these equa-
tions, we need the true trading probabilities qB(v|µB,µ) and qS(c|µS , µ) in state
µ for buyers and sellers with beliefs µB and µS respectively. Recall that in our
equilibrium, traders only trade with partners who share the same, correct belief
about the state. The trading probabilities are determined in parallel to (6) and
(7),

qB(v|µB,µ) = 1
2

S (µB |µ)
S(µ) (10)

·
�

Γ̃ (pB (v|µB) |µB , µ) +
ˆ

{c:pS(c,µB)≤ṽ(v|µB)}
dΓ (c|µB , µ)

�

qS(c|µS , µ) = 1
2

B (µS |µ)
B(µ) (11)

·
�

(1 − Φ̃ (pS (c|µS) |µS , µ)) +
ˆ

{v:pB(v,µS)≥c̃(c|µS)}
dΦ (v|µS , µ)

�

The steady state equations take the following form. Consider the buyers
first. For the optimistic buyers (µB = L),

τ · dGB(v|µ) =
�
min

�
1,

S(µ)
B(µ)

�
qB(v|L, µ) +

�
1 − min

�
1,

S(µ)
B(µ)

���
(12)

·dΦ(v|L, µ)B(L|µ)

For the pessimistic buyers (µB = H),
�
1 − min

�
1,

S(µ)
B(µ)

��
B(L, µ)dΦ(v|L, µ) (13)

=






min
�

1, S(µ)
B(µ)

�
qB(v|H, µ)dΦ(v|H, µ)B(H|µ), if v ∈ [v (H) , 1]

dΦ(v|H, µ)B(H|µ), if v ∈ [v (L) , v (H))

Let us now explain the above two equations in detail. For the first equation
(12) the left-hand side is the per-period mass of buyer types v who enter the
market when the true state is µ. The term B(L|µ) is the stock of optimistic
buyers who are in the market in state µ. These are the buyers who initially hold
the optimistic belief. The r.h.s. consists of two parts–the mass of optimistic
buyer types v who are matched and trade successfully this period and the mass
of optimistic buyer types v who are not matched and become pessimistic. The
term qB(v|L, µ) denotes the probability that a buyer of type v with belief L,

successfully trades in the market. Recall that min
�

1, B(µ)
S(µ)

�
is the probability

of a buyer being matched in state µ. The r.h.s. of equation (12) therefore,
reflects the outflow of buyers from the mass of optimistic buyers in each period.
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For the second equation (13) the l.h.s. is the mass of buyers per-period
who have turned pessimistic. Some of these buyers will exit the market which
happens if the valuation of a buyer v ∈ [v (L) , v (H)). This explains the second
term on the r.h.s. If, on the other hand, a buyer’s valuation v ∈ [v (H) , 1], the
buyer stays in the market and then such a buyer will only exit through trade.
This explains the first term on the r.h.s.

We now state the parallel equations for the sellers. For the optimistic sellers
(µS = H),

τ · dGS(c|µ) =
�
min

�
1,

B(µ)
S(µ)

�
qS(c|H, µ) +

�
1 − min

�
1,

B(µ)
S(µ)

���
(14)

· dΓ(c|H, µ)S(H|µ)

For the pessimistic sellers (µS = L),
�
1 − min

�
1,

B(µ)
S(µ)

��
S(H|µ)dΓ(c|H, µ) (15)

=






min
�

1, B(µ)
S(µ)

�
qS(c|L, µ)dΓ(c|L, µ)S(L|µ), if c ∈ [0, c̄(L)]

dΓ(c|L, µ)S(L|µ), if c ∈ [c̄ (L) , c̄ (H))

Finally, the Fundamental Imbalance Condition follows from the following
simple observation. Suppose the true state is µ = H. The Separation Property
implies that optimistic sellers trade with optimistic buyers (who have beliefs
µ = H). In a steady-state equilibrium with trade, therefore, there must be
a non-empty stock of pessimistic buyers. Since such buyers can only arise if
the optimistic buyers have meeting probability less than 1, this implies that
S(H) < B(H). Similar logic shows that S(L) > B(L) when µ = L..

2.1 What does convergence to perfect competition mean?
Statement of the main theorem

The targets for convergence are the Walrasian utilities of the traders in state µ:

W ∗
B

(v|µ) ≡ max {v − pW (µ) , 0} , W ∗
S

(c|µ) ≡ max {pW (µ) − c, 0} .

In a frictional market (τ > 0), there is an unavoidable utility loss due to costly
search and discounting, and buyers and sellers will realize smaller utilities. De-
note the true market utility of a buyer (seller) with belief µB (µS) in state µ
as wB (v|µB , µ) (wS (c|µS , µ)). As in e.g. Satterthwaite and Shneyerov (2007),
convergence to efficiency means that the utilities of the traders in the entering
cohorts converge to their Walrasian levels in state µ.

Because the traders in the entering cohorts are optimistic, we only need to
demonstrate convergence of the utilities of the optimistic traders. The optimistic

12
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buyers or sellers with correct beliefs about the true state will have their market
utilities equal to the subjective utilities,

wB(v|L, L) = max{WB(v|L), 0},

wS(c|H, H) = max {WS (c|H) , 0} ,

while the ones with wrong beliefs have their true utilities determined from the
recursive equations

wB (v|L, H) = Rτ

�
1 − S (H)

B (H)

�
max {WB (v|H) , 0} (16)

+ Rτ

S (H)
B (H)wB (v|L, H) − κτ,

wS (c|H, L) = Rτ

�
1 − B (L)

S (L)

�
max {WS (c|L) , 0} (17)

+ Rτ

B (L)
S (L) wS (c|H, L) − κτ.

(Recall that in our equilibrium, the traders with wrong beliefs are on the long
side of the market, so S(H)

B(H) , B(L)
S(L) < 1.) The intuition for (16) and (17) is

that, first, optimistic traders with wrong beliefs do not trade in any meeting,
and second, they learn the true state µ when they do not meet a partner in
the present period. The latter event occurs with with probability 1 − S(H)

B(H) for
buyers when µ = H and with probability 1 − B(L)

S(L) for sellers when µ = L, and
then the true market utilities coincide with the believed ones.

The following lemma provides additional equilibrium properties that are also
useful for understanding our main Theorem 1 . Refer to Figure 2.

Lemma 1 In any separating equilibrium,

c̃ (0|µB) < v (µB) , c̄ (µS) < ṽ (1|µS) . (18)

The expected mechanism payoffs for the marginal buyers and sellers are just

sufficient to cover their expected search costs until the next meeting:

UB (v (µB)) = τκ

min
�

1, S(µB)
B(µB)

� , (19)

US (c̄ (µS)) = τκ

min
�

1, B(µS)
S(µS)

� . (20)

The Walrasian price pW (µ) must be in between the marginal types:

pW (µ) ∈ [min {c̄ (µ) , v (µ)} , max {c̄ (µ) , v (µ)}] . (21)

14



The proposing strategies pB (·|µ) and pS (·|µ) are non-decreasing on AB (µB)
and AS (µS) respectively. Moreover, pB (v|µB) < ṽ (v|µ), pS (c|µ) > c̃ (c|µ) and

pB (v|µB) ∈ [c̃ (0|µB) , c̄ (µB)] , pS (c|µS) ∈ [v (µS) , ṽ (1|µS)] .

The trading probability qB(v|µB , µ) is strictly positive and non-decreasing in v
on AB (µB), while qS(c|µS , µ) is strictly positive and non-increasing in c on

AS (µS).

The main result of our paper is the following theorem. To emphasize the
dependence of equilibrium objects on τ , we will often index them by τ , e.g.
pBτ , pSτ etc.

Theorem 1 As τ → 0, all separating equilibria converge to perfect competi-

tion: (a) the marginal participating types of buyers and sellers converge to the

Walrasian prices that correspond to their beliefs,

v
τ

(µB) → pW (µB) , c̄τ (µS) → pW (µS) ,

(b) the prices pBτ (v|µB) and pSτ (c|µS) offered by buyers and sellers also con-

verge to the Walrasian prices,

sup
v∈ABτ (µB)

|pBτ (v|µB) − pW (µB)| → 0,

sup
c∈ASτ (µS)

|pSτ (c|µS) − pW (µS)| → 0,

and (c) the market utilities of the entering optimistic traders wBτ (v|µB , µ) and

wSτ (c|µS , µ) converge to the utilities that traders would realize under perfect

competition,

sup
v∈[0,1]

|wBτ (v|µB , µ) − W ∗
B

(v|µ)| → 0,

sup
c∈[0,1]

|wSτ (c|µS , µ) − W ∗
S

(c|µ)| → 0.

Recursive equations (16) and (17) can be solved for the true market utilities
to yield (indexing the objects by τ to emphasize their dependence on the length
of the time period)

wBτ (v|L, H) =
Rτ

�
1 − Sτ (H)

Bτ (H)

�
max {WBτ (v|H) , 0} − κτ

1 − Rτ

Sτ (H)
Bτ (H)

,

wSτ (c|H, L) =
Rτ

�
1 − Bτ (L)

Sτ (L)

�
max {WS (c|L) , 0} − κτ

1 − Rτ

Bτ (L)
Sτ (L)

.
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Consider µ = H and focus for concreteness on a buyer. As τ → 0, Rτ → 1, so
the above equation for wBτ implies that it converges to the Walrasian level,

wBτ (v|L, H) → W ∗
B

(v|H),

if:

1. Conditional on meeting a seller, the terms of trade are (approximately)
fixed as Walrasian, i.e. the price is fixed at pW (µ);

2. For a pessimistic buyer, the probability of meeting a seller, Sτ (H)
Bτ (H) , in

each period stays bounded away from 0 as τ → 0. This assures that the
expected time until such meeting tends to 0; and

3. For an optimistic buyer, the probability of learning the true state in each
period, 1− Sτ (H)

Bτ (H) , does not vanish as τ → 0. This assures that the expected
time until learning the true state tends to 0.

The proof of Theorem 1, contained in the following sections of the paper, es-
sentially consists of the verification of the above conditions for convergence.
Specifically, note that (a) and (b) in the theorem imply that, asymptotically as
τ → 0, trade occurs at the right (Walrasian) price, as needed for (1) above. Also
note that the conditions 2 and 3 above pull in opposite directions. That is, in
order to quickly meet a seller, it is necessary that the stock of optimistic buyers
in the market is not too large, for these buyers clog the market and make it
difficult for the pessimistic buyers to match. But, if there are too few optimistic
buyers in the market, then it becomes difficult for them to learn the true state
(from the no meeting event), for they will be meeting sellers too frequently.

In proving that the the trade occurs at approximately the right price when
τ is small, we will make frequent use of the following lemma that derives the
slopes of the responding strategies. 8

Lemma 2 The responding strategies ṽ (·|µB) and c̃ (·|µS) are absolutely contin-

uous functions and have slopes equal a.e.v ∈ AB (µB) and c ∈ AS (µS)

ṽ�(v|µB) = 1 − Rτ

1 − Rτ + Rτ min
�

1, S(µB)
B(µB)

�
qB (v|µB , µB)

, (22)

c̃�(c|µS) = 1 − Rτ

1 − Rτ + Rτ min
�

1, B(µS)
S(µS)

�
qS (c|µS , µS)

. (23)

Since Rτ → 1 as τ → 0, Lemma 2 implies that the responding strategies
will become flat in the limit as τ → 0, provided the probabilities of meeting and
trading in each period are not vanishing. In fact, market balance conditions
imply that they will converge to the Walrasian price.

8This lemma parallels Lemma 1 in Shneyerov and Wong (2009).
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The proof of Theorem 1 for all separating equilibria is given in Section 4. But
in order to understand exactly how the difficulties mentioned above get resolved,
we first present a proof for a class of equilibria, the so called full trade equilibria.
These equilibria have the virtue of allowing for (almost) explicit solutions, which
is also useful for establishing the existence of separating equilibria.

3 Convergence of Full Trade Equilibria and Ex-
istence

In this section, we construct an equilibrium with a full trade property: each
meeting between a buyer and the seller who share the same belief about µ
results in trade, and show that all such equilibria converge to efficiency. When
there is no aggregate uncertainty (i.e. µ is known to all traders), a full trade
equilibrium is fully described in Shneyerov and Wong (2010a). Here we recall the
main properties of such equilibria, with an emphasis on differences pertaining
to our current setting.

A full trade equilibrium (see Figure 4) is characterized by the property that
the traders can do no better than propose at the level of the marginal partner’s
type

pB (v|µB) = c̄ (µB) (v ∈ AB (µB)) , (24)
pS (c|µS) = v (µS) (c ∈ AS (µS)) . (25)

This implies
v (µ) > c̄ (µ) .

In the seller’s market, µ = H, the stock of pessimistic sellers is 0. There are
three relevant stocks of buyers.

1. B0 (L|H), the stock of optimistic buyers with v ∈ [v (L) , v (H)], who will
exit voluntarily after not being matched

2. B1 (L|H), the stock of optimistic buyers with v ∈ [v (H) , 1], who will only
exit through trade, once again after becoming pessimistic

3. B (H|H), the stock of pessimistic buyers, who exit the market only by
trading

Equations (12) - (15) in the preceding section imply the following mass balance
conditions for the stocks of buyers in a steady state equilibrium, which we only
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Figure 4: Full trade equilibrium.

state for µ = H.

τ · [1 − GB (v (H) |H)] = (1 − S(H)
B (H) )B1 (L|H) , (26)

τ · [GB (v (H) |H) − GB (v (L) |H)] =
�

1 − S(H)
B (H)

�
B0 (L|H) , (27)

�
1 − S(H)

B (H)

�
B1 (L|H) = S(H)

B (H) q̄B (H) B (H|H) , (28)

and

B (H|H) + B1 (L|H) + B0 (L|H) = B (H) , (29)

where q̄B (H) is the average trading probability of the pessimistic buyers con-
ditional on being matched. In a full trade equilibrium,

q̄B (H) = 1.

Refer to Figure 3. Equation (26) above states that the inflowing mass of
buyers with v ∈ [v (H) , 1] in a given period is equal to the outflowing mass
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of optimistic buyers with v ∈ [v (H) , 1] in the market who change their beliefs
to pessimistic ones upon not meeting a seller, which happens with probability
1 − S(H)

B(H) . Equation (27) is a parallel statement for the inflowing mass of buyers
with v ∈ [v (L) , v (H)], which is equal to the outflowing mass of buyers with v ∈
[v (L) , v (H)] who have chosen to exit the market immediately once unmatched.
Equation (28) states that the inflowing mass of pessimistic buyers is equal to
the mass of buyers that leaves the market through trading, which happens
with probability S(H)

B(H) q̄B (H). Equation (29) simply re-iterates the fact that the
total steady-state stock of buyers B (H) is comprised of B0 (L|H), B1 (L|H)
and B (H|H).

Also, in any separating equilibrium, since , the following mass balance equa-
tions must hold:

1 − GB (v (H) |H) = GS (c̄ (H) |H) , (30)

This is because the traders on the shorter side of the market can only exit
through trade, and only traders who share the same belief about µ, trade. For
example, when the state is µ = H, the outgoing flow of sellers is GS (c̄ (H) |H)
each period. Since traders leave in matched pairs, it is equal to the outgoing
flow of pessimistic buyers. But the incoming flow into the stock of pessimistic
buyers is equal to 1−GB (v (H) |H). The steady-state requirement implies (30).

We now turn to the indifference conditions of the marginal participating
types of buyers and sellers. The marginal trader types v (µB) and c̄ (µS) must
be indifferent between entering or not entering. Since the buyers only trade
(with optimistic sellers) when they become pessimistic, we have from (19)

S (H)
B (H)

1
2 (v (H) − c̄ (H)) = τκ. (31)

In other words, the marginal buyers meet sellers with probability S (H) /B (H)
and with probability 1/2 offer c̄ (H), which is accepted by any active seller they
meet. Their expected profit from a meeting is just sufficient to cover their
participation cost τκ incurred over a period.

Since in our equilibrium S (H) < B (H) (to be verified later), the sellers
always meet a buyer; but they only trade if they meet a pessimistic buyer.
Their indifference condition (from (20)) is

B (H|H)
B (H)

1
2 (v (H) − c̄ (H)) = τκ (32)

These two equations, together with four steady state conditions (26) − (29)
for trader stocks and the mass balance equation (30) give us a system of 7 charac-
terizing equations. Parallel equations can be written when the state of the mar-
ket is µ = L, where the definitions of the seller stocks S0 (L|L) , S1 (H|L) , S (H|L)
mirror those of B0 (H|H) , B1 (L|H) , B (L|H), and the counterpart of (30) is

1 − GB (v (L) |L) = GS (c̄ (L) |L) . (33)
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(We omit the equations for state µ = L to save on notation.) In total, this
gives us a system of 2 · 7 = 14 equations for 14 unknowns

B (H) , S (H) , B0 (H|H) , B1 (L|H) , B (L|H) , v (H) , c̄ (H) ,

B (L) , S (L) , S0 (L|L) , S1 (H|L) , S (H|L) , v (L) , c̄ (L) .

Proposition 1 below invokes The Implicit Function theorem to show the
existence of a unique solution to this system. Recall the steady state balance
conditions (30) and (33). They allow us to define a function

φ(z|µ) ≡ G−1
S

[1 − GB(z|µ)|µ]

that gives the marginal seller’s type given the marginal buyer’s type z in a
steady state of the market. In particular, the equilibrium marginal types are
related as

c(µ) = φ(v(µ)|µ).

Definition 1 For any two real-valued functions xτ : R+ → R+, we say that xτ

is asymptotically proportionate to τ , and write xτ � τ if, as τ → 0, the ratio

xτ /τ is bounded away from both 0 and infinity, i.e. limτ→0 inf xτ /τ > 0 and

limτ→0 sup xτ /τ < ∞.

Proposition 1 The system of equations characterizing a full trade equilibrium

reduces to

1
2 (v

τ
(H) − φ (v

τ
(H) |H)) = τ · κ

�
1 +

�
1 − GB (v

τ
(L) |H)

1 − GB (v
τ

(H) |H)

�
, (34)

1
2 (v

τ
(L) − φ (v

τ
(L) |L)) = τ · κ

�
1 +

�
GS (φ (v

τ
(H) |H) |L)

GS (φ (v
τ

(L) |L) |L)

�
. (35)

There exists a unique solution (v
τ

(H) , v
τ

(L)) for all sufficiently small τ ≥ 0.

Moreover, as τ → 0, for µ ∈ {H, L},

v
τ

(µ) = pW (µ) + O (τ) ,

c̄τ (µ) = pW (µ) − O (τ) ,

and all trader stocks are asymptotically proportionate to τ :

Bτ (H) , Sτ (H) , B0
τ

(H|H) , B1
τ

(H|H) , Bτ (H|H) � τ,

Bτ (L) , Sτ (L) , S0
τ

(L|L) , S1
τ

(H|L) , Sτ (H|L) � τ.

In general, this solution may or may not be a separating equilibrium, because
the nonlinear system does not impose all equilibrium conditions. First, we
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need to verify the Fundamental Imbalance Condition (Assumption 1). This
is immediate because, in state µ = H, dividing the buyer’s entry indifference
condition (31) by the seller’s (32), we obtain

S(H) = B(H|H)
< B(H),

and in parallel, when the state is µ = L, B(L) < S(L).
In addition, we need to show that (i) the marginal participating types do not

have an incentive to deviate to making offers that would be accepted with prob-
ability less than 1; and (ii) that the separation property holds. The remaining
Lemmas 3 and 4 establish these properties for sufficiently small τ and r. For
these results, we impose the following standard assumption that will assure the
quasi-concavity of the expected profit functions in the proofs.

Assumption 2 The Myerson virtual type functions

JB (·|µ) ≡ v − 1 − GB (·|µ)
gB (·|µ) , JS (·|µ) ≡ c + GS (·|µ)

gS (·|µ)

are non-decreasing.

Lemma 3 If τ < 1, then the marginal types v (H) and c̄ (H) do not have an

incentive to deviate if

r < log
�

1 + 2κ min
�

g
B

, g
S

��
. (36)

Lemma 4 There exist τ̄ , r̄ > 0 such that the separation property is satisfied for

all (r, τ) such that both r ∈ [0, r̄] and τ ∈ (0, τ̄ ].

To gain intuition, let µ = H, and recall that according to Lemma 2, in a full
trade equilibrium, the responding strategies, e.g buyers’, are

ṽ�(v|µB) = 1 − Rτ

1 − Rτ + Rτ min
�

1, S(µB)
B(µB)

�
qB (v|µB , µB)

= 1 − Rτ

1 − Rτ + Rτ min
�

1, S(µB)
B(µB)

� ,

Because all trader stocks are asymptotically proportionate to τ according to
Proposition 1, the perceived meeting probability

min
�

1,
S (µB)
B (µB)

�
=

�
Sτ (H)
Bτ (H) , µB = H

1, µB = L

remains bounded away from 0 as τ → 0. Therefore, the responding strate-
gies become progressively flatter and in the limit become exactly horizontal. In
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addition, the same Proposition 1 implies that the gaps between the marginal
participating types converges to 0. Together, these observations imply the Sep-
aration Property.

Also, it implies that the buyers with marginal types face diminishing incen-
tives to reduce their price offers, because the probability of these offers rejected
increases. Similarly, the sellers face diminishing incentives to increase their price
offers. However, the “no deviation” result in Lemma 3 is not immediate since
the profit at stake for the marginal types, equal to the difference between the
seller’s and buyer’s marginal type, is proportionate to τ and therefore also be-
comes small. The proof of Lemma 3 (in the Appendix) shows that, still, the
first effect dominates.

We now show how Proposition 1 and Lemmas 3 and 4 together immediately
imply Theorem (1). For concreteness, assume µ = H. Recall our discussion
in the previous section: we need to show that (i) the trades occur at prices
that converge to the Walrasian price in the limit; (ii) the pessimistic buyer’s
probability to meet a seller, Sτ (H)

Bτ (H) , is bounded away from 0 as τ → 0; and
(iii) the optimistic buyer’s probability of learning the true state in each period,
1 − Sτ (H)

Bτ (H) , is bounded away from 0. But all are immediate given the result in
Proposition 1. (i) follows directly from the fact that price offers converge to
the Walrasian price. To see (ii) and (iii), note that since all trader stocks are
asymptotically proportionate to τ , the ratio Sτ (H)

Bτ (H) stays bounded away from
both 0 and 1 as τ → 0.

4 All Separating Equilibria Converge to Perfect
Competition

In this section, we generalize our convergence result to the class of all separating
equilibria, thus providing a complete proof of our main result, Theorem 1. The
proof of this result is split into several lemmas. Recall that only the meetings
where the traders share the same beliefs about the state can lead to trade in a
separating equilibrium. Let’s call these "serious" meetings, and let

�∗
B

(µ) = min
�

S (µ|µ)
S(µ) ,

S (µ|µ)
B (µ)

�
, �∗

S
(µ) = min

�
B (µ|µ)
B(µ) ,

B (µ|µ)
S (µ)

�

be the "serious" meeting probabilities for buyers and sellers. The next lemma
that establishes a lower bound on either �∗

B
or �∗

S
and is crucial for our results.

Lemma 5 There exists a constant � > 0 that doesn’t depend on τ such that

max {�∗
B

(µ) , �∗
S

(µ)} ≥ �. (37)

We next prove the following lemma that establishes a bound on the entry
gap (if it exists) in terms of �∗

B
and �∗

S
(refer to Figure 2).
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Lemma 6 We have

max{0, v
τ

(µ) − c̄τ (µ)} ≤ 2τκ

max {�∗
B

(µ) , �∗
S

(µ)} . (38)

As a corollary of Lemmas 5 and 6, we show that the entry gap (if there is
any) converges to 0. This proves part (a) of Theorem 1.

Corollary 1 The entry gap converges to 0:

lim
τ→0

max {0, v
τ

(µ) − c̄τ (µ)} = 0.

The following lemma establishes an upper bound for ṽτ (1|µ)− c̃τ (0|µ) (refer
to Figure 2).

Lemma 7 We have

ṽτ (1|µ) − c̃τ (0|µ) ≤ τ · 2r + κ

κ
(4r + κ) 1

�
. (39)

Lemmas 5 and 7 imply the following important corollary, which proves part
(b) of Theorem 1.

Corollary 2 We have

ṽτ (1|µ) − c̃τ (0|µ) = O (τ) as τ → 0.

This corollary allows us to show that traders’ search values converge to
their Walrasian counterparts if their beliefs about the state are true. For v ∈
[v (µ) , 1], max {WBτ (v|µ) , 0} = WBτ (v|µ) and from the definition ṽ (v|µ) =
v − Rτ WBτ (v|µ) we have

W ∗
B

(v|µ) − Rτ WBτ (v|µ) = ṽ (v|µ) − v (µ) + v (µ) − pW (µ)
= O (τ)

where the last equality follows from Lemma 7. For v ∈ [0, v (µ)], max {WBτ (v|µ) , 0} =
0, and W ∗

B
(v|µ) > 0 only if v ∈ [pW (µ) , v (µ)], where W ∗

B
(v|µ) = O (τ) since

v (µ) − pW (µ) = O (τ) again by Lemma 7. Therefore

max {WBτ (v|µ) , 0} − W ∗
B

(v|µ) = O (τ) (v ∈ [0, 1]) (40)

and a parallel argument shows

max {WSτ (c|µ) , 0} − W ∗
S

(c|µ) = O (τ) (c ∈ [0, 1]) . (41)

Remark 1 In fact, the convergence above is uniform over [0, 1] because the

functions max {WBτ (·|µ) , 0} and max {WSτ (·|µ) , 0} are uniformly Lipschitz

by Lemma 1, with slopes within [0, 1] ,and pointwise convergence of a sequence

of uniformly Lipschitz functions implies uniform convergence.
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Finally, we now prove part (c) of Theorem 1. That is, the true search
values of optimistic buyers and sellers with wrong beliefs, wBτ (v|L, H) and
wSτ (c|H, L), also converge to W ∗

B
(v|µ) and W ∗

S
(c|µ) respectively. We will need

the following result establishing upper bounds on the probabilities of meeting a
serious trading partner.

Lemma 8 There exists �̄ ∈ (0, 1) such that

�∗
B

(H) ≤ �̄, �∗
S

(L) ≤ �̄.

Recalling �∗
B

(H) = S(H)
B(H) , the recursive equation (16) for wBτ (v|H) implies

wBτ (v|L, H) = Rτ (1 − �∗
B

(H)) max {WBτ (v|H) , 0} − κτ

1 − Rτ �∗
B

(H) ,

wBτ (v|L, H) − max {WBτ (v|H) , 0} = − 1 − Rτ

1 − Rτ �∗
B

(H) max {WBτ (v|H) , 0}

− κτ

1 − Rτ �∗
B

(H) .

Similarly,

wSτ (c|H, L) = Rτ (1 − �∗
S

(L)) max {WSτ (c|L) , 0} − κτ

1 − Rτ �∗
S

(L) ,

wSτ (c|H, L) − max {WSτ (c|L) , 0} = − 1 − Rτ

1 − Rτ �∗
S

(L) max {WSτ (c|L) , 0}

− κτ

1 − Rτ �∗
S

(L) .

Since Rτ → 1 as τ → 0, if the probabilities �∗
B

(H) and �∗
S

(L) stay bounded
away from 1 as τ → 0 by Lemma 8, we have

sup
v∈[0,1]

|wBτ (v|L, H) − WBτ (v|H)| → 0, (42)

sup
c∈[0,1]

|wSτ (c|H, L) − WSτ (c|L)| → 0, (43)

Since wBτ (v|L) = WBτ (v|L) and wSτ (c|H) = WSτ (c|H), (42) and (43) to-
gether with (40) and (41) imply part (c) of Theorem 1.

5 Concluding remarks
A limitation of our analysis is that the entering cohorts of buyers and sellers are
assumed to have extreme optimistic priors: the buyers believe the market is in
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the low state, while the sellers believe it is in the high state. Here we propose
an extended model in which the optimistic priors arise endogenously.

We consider a model based on the “change of paradigm” framework recently
proposed by Ortoleva (2010). Assume that buyers and sellers may have multiple
priors, with the set of priors restricted to {πL, πH}, where the prior πL puts full
weight on state L, and πH puts full weight on state H:

πH = δ{H}, πL = δ{L}.

The traders start out with a prior over priors ℵ that puts positive weight on
both πH and πL. ℵ is assumed to be common among the traders. We adopt
a version of Ortoleva (2010) in which the agent first chooses his prior π, and
then updates it whenever the Bayes rule applies. If, however, a zero probability
event occurs and the Bayes rule does not apply, then the agent changes his/her
paradigm: he/she updates the prior over priors ℵ instead (to which the Bayes
rule does apply), and then chooses a prior from the support of the updated ℵ.

To resolve the initial indeterminacy in the choice of the priors, we now
augment our original model with an initial prior choice stage. We claim that,
at least for τ sufficiently small, our game now has an equilibrium in which the
buyers and sellers will initially choose their respective optimistic priors, and
then play according to an equilibrium described in the previous sections of our
paper.

Suppose, by the way of contradiction, that one trader, say a buyer, deviates
from this proposed equilibrium strategy. Because the players are non-atomic
and are matched anonymously, this deviation will never be detected by other
players. Therefore, as before, if the optimistic prior πL is chosen by the buyer,
then the event n of not meeting a seller has zero probability. So the buyer will
now first update his prior over priors ℵ. Since ℵ puts positive weight on both
πH and πL, the Bayes rule applies. Following Ortoleva (2010), the buyer will
form a Bayesian update ℵB(πH |n) according to

ℵB(πH |n) = ℵ (πH) · πH(n)
ℵ (πH) · πH(n) + ℵ (πL) · πL(n) = 1

where the last equality follows because πL(n) = 0. Thus, the buyer’s update
ℵB (·|n) will assign full probability mass to the pessimistic prior πH . If, on
the other hand, the buyer initially chooses the pessimistic prior πH , then the
probability of the event n is positive and the prior is never updated. Similar
reasoning applies to the case of a seller.

As the updating rule in this extended model coincides with the one we used
to have, the buyer will believe that his expected utility upon entry is WB (v|H)
if he chooses the prior πH , and WB (v|L) if he chooses the prior πL. Our
Proposition 1 implies that, as τ → 0, the expected utilities converge to their
Walrasian values:

max{WB(v|µ̂B), 0} → max{v − pW (µ̂B), 0} (µ̂B = H, L).
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Because pW (L) < pW (H), we see that such a deviation is not profitable for
sufficiently small τ : for all v ∈ [0, 1], WB(v|L) ≥ WB(v|H). Similarly, we can
show that a seller’s deviation is not profitable, which completes the argument
showing that in this extended model’s equilibrium, buyers and sellers choose to
be optimistic.
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Appendix
Proof of Lemma 1. For (18), note that otherwise say the marginal buyers v (µB)
would not be able to trade profitably with even the lowest cost sellers who share
the same belief, because the latter would prefer to search for a better match in
the market. Next, since WB(v (µB) |µB) = WS(c̄ (µS) |µS) = 0, the marginal
participating types are equal to the corresponding dynamic types: c̄ (µS) =
c̃ (c̄ (µS) |µS), v (µB) = ṽ (v (µB) |µB). Evaluating (8) and (9) at v = v (µB)
and c = c̄ (µS), we obtain(19) and (20). To show (21), note that because
the demand and supply functions intersect at p = pW (µ), the mass balance
equations equations (30) and (33) imply that pW (µ) must in between c̄ (µ) and
v (µ). The proof of the remainder of this lemma parallels that of Lemma 2
in Shneyerov and Wong (2009) and is omitted. However, the intuition is as
follows. The proposing strategies must be non-decreasing by standard single-
crossing arguments. Individual rationality implies that the price offers are below
reservation values for the buyers and above reservation values for the sellers. The
buyer’s equilibrium offer cannot be smaller than c̃ (0|µB), since otherwise it will
be surely rejected by any active seller. Also, any offer over and above c̄ (µ)
will surely be accepted by any active seller, so in equilibrium, no buyer will
choose to make an offer greater than c̄ (µ). Similar logic shows that pS (c|µS) ∈
[v (µS) , ṽ (1|µS)]. Q. E. D.

Proof of Lemma 2. A formal proof would be parallel to the proof of Lemma
1 of Shneyerov and Wong (2009) and is omitted for the sake of brevity. To gain
the intuition for e.g. (22), assume that WB (·|µB) is differentiable on AB . Then
the Envelope Theorem applied to taking into account the fact that prices are
chosen optimally according to (4), yields for any v ∈ AB ,

U �
B

(v|µB) = ṽ� (v|µB) qB (v|µB , µB)
= (1 − Rτ W �

B
(v|µB)) qB (v|µB , µB) . (44)

Differentiating the recursive equation (8) and substituting the slope U �
B

(v) from
(44), we have

W �
B

(v|µB) = min
�

1,
S (µB)
B (µB)

�
U �

B
(v|µB) + Rτ W �

B
(v|µB)

= min
�

1,
S (µB)
B (µB)

�
(1 − Rτ W �

B
(v|µB)) qB (v|µB , µB) + Rτ W �

B
(v|µB)

for v ∈ AB (µB). Solving the above equation for W �
B

(v|µB) yields the integrand
that appears in (22).

Proof of Proposition 1. Equations (31) and (32) imply that in a full trade
equilibrium, the stock of pessimistic buyers is equal to the stock of sellers,

B (H|H) = S (H) . (45)
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Equations (26) and (27) imply

B0 (L|H) = GB (v (H) |H) − GB (v (L) |H)
1 − GB (v (H) , H) B1 (L|H) (46)

= β · B1 (L|H)

where
β ≡ GB (v (H) |H) − GB (v (L) |H)

1 − GB (v (H) |H) > 0.

Equation (28) is equivalent to
�
B1 (L|H) + B0 (L|H)

�
B1 (L|H) = B (H|H)2 ,

which upon the substitution of (46) for B0 (L|H) can be solved for B (H|H),

B (H|H) = (1 + β)1/2 B1 (L|H) . (47)

Substituting (46) and (47) into (26) gives us the solution for B1 (L|H) and

B1 (L|H) = τ · [1 − GB (v (H) , H)] 1 + β + (1 + β)1/2

1 + β
, (48)

and the other stocks B0 (L|H), B (H|H) are then determined from (46) and
(47). The probability of meeting a pessimistic buyer is

θB (H|H) = B (H|H)
B (H)

= (1 + β)1/2

1 + β + (1 + β)1/2

=
�

1 +

�
1 − GB (v (L) |H)
1 − GB (v (H) |H)

�−1

.

The entry equation, say (32) in µ = H is then equivalent to

1
2 (v (H) − c̄ (H)) = τ · κ

�
1 +

�
1 − GB (v (L) |H)
1 − GB (v (H) |H)

�
. (49)

For µ = L we obtain in parallel

1
2 (v (L) − c̄ (L)) = τ · κ

�
1 +

�
GS (c̄ (H) |L)
GS (c̄ (L) |L)

�
. (50)

The marginal types must also satisfy the mass balance conditions (30) and (33),
and for µ ∈ {H, L},

pW (µ) ∈ [v (µ) , c̄ (µ)] . (51)
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Equations (49) and (50), together with the mass balance conditions (30)
and (33), form a system of four equations for 4 unknowns, now denoted as
(v

τ
(H) , c̄τ (H) , v

τ
(L) , c̄τ (L)). For τ = 0, these equations imply

v0 (µ) = c̄0 (µ) = pW (µ) .

The Implicit Function Theorem implies that τ̄ > 0 exists such that a solution
exists for all τ ∈ [0, τ̄ ] provided the Jacobian of this system is nonzero. Moreover,
as τ → 0, the marginal types converge to the corresponding Walrasian prices,
v(H), c̄(H) → pW (H) and v(L), c̄(L) → pW (L).

To evaluate the Jacobian, it is convenient to reduce this system by eliminat-
ing c̄ (µ) from equations (30) and (33):

c̄ (µ) = G−1
S

(1 − GB (v (µ) |µ) |µ)
≡ φ (v (µ) |µ) ,

where the mapping φ (·|µ) : [pW (µ) , 1] → [0, pW (µ)] (smoothly extended to an
open εneighborhood of pW (µ)) has the derivative at pW (µ) equal to

φ� (pW (µ) |µ) = −gB (pW (µ) |µ)
gS (pW (µ) |µ) < 0. (52)

Now the system of equations for (v (H) , v (L)) becomes

1
2 (v (H) − φ (v (H) |H)) − τ · κ

�
1 +

�
1 − GB (v (L) |H)
1 − GB (v (H) |H)

�
= 0, (53)

1
2 (v (L) − φ (v (L) |L)) − τ · κ

�
1 +

�
GS (φ (v (H) |H) |L)
GS (φ (v (L) |L) |L)

�
= 0. (54)

The Jacobian of this system at τ = 0 is
����

1
2 (1 − φ� (pW (H) |H)) 0
0 1

2 (1 − φ� (pW (L) |L))

����

= 1
4 (1 − φ� (pW (H) |H)) (1 − φ� (pW (L) |L))

> 0,

where the inequality in the last line follows from (52). Q. E. D.

For notational expedience, from now on we denote the matching probabilities
as

�B (µ) ≡ min
�

1,
S (µ)
B (µ)

�
, �S (µ) ≡ min

�
1,

B (µ)
S (µ)

�
.

Also define the market fractions of buyers (sellers) with belief µB (µS)

θB(µB |µ) ≡ B(µB |µ)
B(µ) , θS(µS |µ) ≡ S(µS |µ)

S(µ) .
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Proof of Lemma 3. Without loss of generality, let’s assume that the state is
µ = H.

First, we focus on the incentives of the sellers (a symmetric argument will
apply for the buyers, with obvious changes). The expected profit contingent on
proposing λ ≥ v (µ) is

πS (c̄ (µ) , λ|µ) = (λ − c̄ (µ))
�
1 − Φ̃ (λ|µ, µ)

�
,

and its slope is

∂πS (c̄ (µ) , λ|µ)
∂λ

=
�
1 − Φ̃ (λ|µ, µ)

�
− (λ − c̄ (µ)) Φ̃� (λ|µ, µ) (55)

= −Φ̃� (λ|µ, µ)
�
J̃B (λ|µ) − c̄ (µ)

�

where J̃B (λ|µ) is the “virtual type” that corresponds to the distribution of
dynamic types Φ̃ (·|µ, µ),

J̃B (λ|µ) ≡ λ − 1 − Φ̃ (λ|µ, µ)
Φ̃� (λ|µ, µ)

.

Notice that Φ̃ (λ|µ, µ) = Φ
�
ṽ−1(λ|µ)|µ, µ

�
. Contingent on meeting a seller,

pessimistic buyers trade with probability 1 regardless of their type. Therefore,
their distribution of types in the market is a truncation of the inflow distribution,

1 − Φ(v|µ, µ) = 1 − GB(v|µ)
1 − GB(v (µ) |µ)) (v ≥ v (µ)) .

From Lemma 1, the dynamic type ṽ (v|µ) is a linear function with the slope

ṽ� (v|µ) = 1 − Rτ

1 − Rτ + Rτ �∗
B

(µ)

(recall that the probability of meeting a seller is equal to S (H) /B (H), while
S (H) = B (H|H) from (45)). Since ṽ (v (µ) |µ) = v (µ), we can explicitly solve
for the responding strategy,

ṽ (v|µ) = (1 − Rτ ) v + Rτ �∗
B

(µ) v (µ)
(1 − Rτ ) + Rτ �∗

B
(µ) . (56)

From (56), the inverse responding strategy is

ṽ−1 (λ) = (1 − Rτ ) + Rτ �∗
B

1 − Rτ

λ − Rτ �∗
B

v (µ)
1 − Rτ

.

Then
1 − Φ̃ (λ|µ, µ) =

1 − GB

�
ṽ−1 (λ|µ) |µ

�

1 − GB (v (µ) |µ) ,
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φ̃ (λ|µ, µ) = dṽ−1 (λ|µ)
dλ

gB

�
ṽ−1 (λ|µ) |µ

�

1 − GB (v (µ) |µ)

= (1 − Rτ ) + Rτ �∗
B

1 − Rτ

gB

�
ṽ−1 (λ|µ) |µ

�

1 − GB (v (µ) |µ) ,

and

J̃B (λ|µ) ≡ λ − 1 − Φ̃ (λ|µ, µ)
φ̃ (λ|µ, µ)

= λ − 1 − Rτ

(1 − Rτ ) + Rτ �∗
B

1 − GB

�
ṽ−1 (λ|µ) |µ

�

gB (ṽ−1 (λ|µ) |µ)

= λ − 1 − Rτ

(1 − Rτ ) + Rτ �∗
B

ṽ−1 (λ|µ)

+ 1 − Rτ

(1 − Rτ ) + Rτ �∗
B

�
ṽ−1 (λ|µ) −

1 − GB

�
ṽ−1 (v|µ) |µ

�

gB (ṽ−1 (λ|µ) |µ)

�

= Rτ �∗
B

v (µ)
(1 − Rτ ) + Rτ �∗

B

+ 1 − Rτ

(1 − Rτ ) + Rτ �∗
B

JB

�
ṽ−1 (λ|µ) |µ

�
.

Equivalently,

J̃B (λ|µ) = 1
(1 − Rτ ) + Rτ �∗

B

(57)

·
�
(1 − Rτ ) JB

�
ṽ−1 (λ|µ) |µ

�
+ Rτ �∗

B
v (µ)

�
.

Substituting (57) in the slope formula (55), we obtain

∂πS (c̄ (µ) , λ|µ)
∂λ

= −Φ̃� (λ|µ, µ) { 1
(1 − Rτ ) + Rτ �∗

B

(58)

· ((1 − Rτ ) JB

�
ṽ−1 (λ|µ) |µ

�
+ Rτ �∗

B
v (µ)) − c̄ (µ)}.

Clearly, a deviation to λ < v (µ) is not profitable, so we only need to consider
λ > v (µ). A necessary condition for such a deviation to be not profitable is
that ∂πS (c̄ (µ) , λ|µ) /∂λ ≤ 0 at λ = v (µ), i.e. the expression in the brackets
on the right-hand side of equation (58) is non-negative when λ = v (µ). This is
also sufficient because of the assumed monotonicity of JB (·|µ) (Assumption 2).
This gives us the inequality

(1 − Rτ ) JB (v (µ) |µ) + Rτ �∗
B

v (µ)
(1 − Rτ ) + Rτ �∗

B

− c̄ (µ) ≥ 0.

We now show that this inequality is satisfied for small r. We can rewrite it as

v (µ) − c̄ (µ) − (1 − Rτ )
(1 − Rτ ) + Rτ �∗

B

1 − GB (v (µ) |H)
gB (v (µ) |H) ≥ 0. (59)

Now �∗
B

= θB (H|H) for µ = H, and from either (31) or (32) we have v (µ) −
c̄ (µ) = 2τκ/θB (H|H). Substituting these into (59) and replacing 1−GB(v(µ)|H)

gB(v(µ)|H)
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with an upper bound 1/g
B

, and (1 − Rτ ) + Rτ θB (H|H) with Rτ θB (H|H), we
have a stronger inequality that is sufficient for no deviation:

2τκ

θB (H|H) − (1 − Rτ )
Rτ θB (H|H)

1
g

B

≥ 0.

Alternatively,
1 − e−rτ

τe−rτ
≤ 2κg

B
. (60)

The l.h.s. of the above equation, (erτ − 1) /τ , is an increasing function of τ
because erτ − 1 is a convex, increasing function of τ taking value 0 at τ = 0.
Therefore, if τ ≤ 1, it is sufficient to require

er − 1 ≤ 2κg
B

,

or equivalently
r ≤ log

�
1 + 2κg

B

�
.

A similar argument applied to marginal sellers yields r ≤ log
�

1 + 2κg
S

�
, from

which (36) in the statement of the Lemma follows. Q. E. D.

Proof of Lemma 4. First note that v (H) > pW (L) and c̄ (L) < pW (H).
These and the stead state mass balance equations imply

1 − GB (v (H) |H) = GS (c̄ (H) |H) ≥ GS (pW (L) |H) ,

GS (c̄ (L) |L) = 1 − GB (v (L) |L) ≥ 1 − GB (pW (H) |L) .

From (49) and (50), these bounds in turn imply the following bounds on the
entry gaps for µ = H and µ = L:

v (H) − c̄ (H) ≤ τa, v (L) − c̄ (L) ≤ τa (61)

These bounds imply that v (L) and c̄ (H) are within O (τ) distance from the
Walrasian prices for the corresponding states:

v (L) ≤ pW (L) + τa, (62)
c̄ (H) ≥ pW (H) − τa. (63)

Now that the slopes of the responding strategies are bounded from Lemma
1, e.g. for the buyers

ṽ�(v|µB) = 1 − Rτ

1 − Rτ + Rτ �B (µB) qB (v|µB , µB)

≤ 1 − Rτ

Rτ κτ

= erτ − 1
τ

1
κ

≤ er − 1
κ
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where the first inequality follows from κτ ≤ �B (µB) UB (v|µB) ≤ �B (µB) qB (v|µB),
which is implied by the Bellman equation (8) and the definition of UB in (6),
while the second inequality follows from the fact that (erτ −1)/τ is the definition
of Rτ and the fact that τ ≤ 1. A similar bound obtains for slope of the sellers’
responding strategy:

c̃� (c|µS) ≤ er − 1
κ

.

These two bounds together with (62) and (63) imply

ṽ (1|L) ≤ pW (L) + aτ + er − 1
κ

,

c̃ (0|H) ≥ pW (H) − aτ − er − 1
κ

.

Then the separating property c̃ (0|H) ≥ ṽ (1|L) holds if

aτ + er − 1
κ

≤ 1
2 (pW (H) − pW (L)) .

It is sufficient to impose a stronger inequality

2 max
�

aτ,
er − 1

κ

�
≤ 1

2 (pW (H) − pW (L)) ,

or, equivalently, the conditions

τ ≤ τ̄ ≡ min
�

1,
1

4aκ
(pW (H) − pW (L))

�
, (64)

r ≤ r̄ ≡ log
�

1 + κ

2 (pW (H) − pW (L))
�

, (65)

where

a ≡ 2κ max
�

1 +
�

1
GS (pW (L) |H) , 1 +

�
1

1 − GB (pW (H) |L)

�

Q. E. D.

Proof of Lemma 5. To economize on notation, in this proof we suppress
index τ . We prove the result for µ = H only; the proof for µ = L is parallel.
Equation (28) implies

B1 (L|H) =
S(H)
B(H)

1 − S(H)
B(H)

B (H|H)
B (H) B (H) q̄B (H)

= �∗
B

(H)
1 − �∗

B
(H)�∗

S
(H) B (H) q̄B (H) . (66)
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Dividing (27) by (26) we have

B0 (L|H)
B1 (L|H) = GB (v (H) |H) − GB (v (L) |H)

1 − GB (v (H) |H)
≡ M (H) . (67)

Therefore, from (29)

(1 + M (H)) B1 (H|H) + B (H|H) = B (H) ,

which implies
B1 (H|H) = m (H) (B (H) − B (H|H)) , (68)

where
m (H) ≡ (1 + M (H))−1 . (69)

Substituting (68) into (66) and dividing by B (H) − B (H|H),

m (H) = �∗
B

(H)
1 − �∗

B
(H)

�∗
S

(H)
B (H) − B (H|H)B (H) q̄B (H)

= �∗
B

(H)
1 − �∗

B
(H)

�∗
S

(H)
1 − �∗

S
(H) q̄B (H) (70)

Since q̄B (H) ≤ 1,

max
�

�∗
B

(H)
1 − �∗

B
(H) ,

�∗
S

(H)
1 − �∗

S
(H)

�
≥ m (H)1/2 .

Since x �→ x/ (1 − x) is an increasing on (0, 1) function, this in turn implies

max {�∗
B

(H) , �∗
S

(H)}
1 − max {�∗

B
(H) , �∗

S
(H)} ≥ m (H)1/2 ,

or

max {�∗
B

(H) , �∗
S

(H)} ≥ m (H)1/2

1 + m (H)1/2 ≥ 1
2m (H)1/2 , (71)

where the last inequality follows from m (H) < 1. Now

m (H) ≥ 1
1 + 1

1−GB(v(H)|H)

= 1
1 + 1

GS(c̄(H)|H)

≥ 1
1 + 1

GS(pW (L)|H)

≥ 1
2GS (pW (L) |H) (72)
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where the equality follows from the mass balance condition (30) and the second
to last inequality follows because in a separating equilibrium c̄ (H) ≥ pW (L).
Combining (71) and (72) and using

√
2 < 2 gives (37) with

� = 1
4 (GS (pW (L) |H))1/2 .

Q. E. D.

Proof of Lemma 6. The buyer with type v
τ

(µ) can offer c̄τ (µ), and this
offer will be accepted by any seller with c < c̄τ (µ). This strategy guarantees
him the expected payoff 1

2 �∗
B

(v
τ

(µ) − c̄τ (µ)). The equilibrium condition (19)
then implies κτ ≥ 1

2 �∗
B

(v
τ

(µ) − c̄τ (µ)). Similarly, we can show that κτ ≥
1
2 �∗

S
(v

τ
(µ) − c̄τ (µ)), and therefore

v
τ

(µ) − c̄τ (µ) ≤ τ · min
�

κ
1
2 �∗

B
(µ)

,
κ

1
2 �∗

S
(µ)

�
,

from which (38) follows. Q. E. D.

Proof of Lemma 7. To economize on notation, in this proof also we suppress
index τ .

Step 1: We claim that

ṽ (1|µ) − c̃ (0|µ) ≤ r + κ

κ
min {v (µ) − c̃ (0|µ) , ṽ (1|µ) − c̄ (µ)} (73)

We only prove the first inequality,

ṽ (1|µ) − c̃ (0|µ) ≤ r + κ

κ
(v (µ) − c̃ (0|µ)) ; (74)

the proof of the other inequality is parallel. First note that pB (v (µ) |µ) ≥
c̃ (0|µ). Since qB is non-decreasing, (19) then implies �BqB(v|µ, µ)(v (µ) −
c̃ (0|µ)) ≥ κτ whenever v ∈ [v (µ) , 1]. Then for almost all v ∈ [v (µ) , 1],

�BqB(v|µ, µ) ≥ κτ

v (µ) − c̃ (0|µ) ,

and therefore

ṽ�(v|µ) = 1 − Rτ

1 − Rτ + Rτ �BqB(v|µ, µ) ≤ rτ

�BqB(v|µ, µ) ≤ r

κ/(v (µ) − c̃ (0|µ)) .

where the first inequality follows from the concavity of the function 1 − e−x.
Hence

ṽ (1|µ) − v (µ) =
ˆ 1

v(µ)
ṽ�(v|µ)dv ≤ r

κ/(v (µ) − c̃ (0|µ)) ,
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ṽ (1|µ) − v (µ)
v (µ) − c̃ (0|µ) ≤ r

κ
,

v (µ) − c̃ (0|µ)
ṽ (1|µ) − c̃ (0|µ) = 1

1 + (ṽ(1|µ)−v(µ)
v(µ)−c̃(0|µ)

≥ 1
1 + r

κ

= κ

r + κ
,

from which (74) follows.
Step 2: We claim that

(a): c̃� (c|µ) ≤ τ
4r (r + κ)

κ

1
�∗

S
(µ) ,

(b): ṽ� (v|µ) ≤ τ
4r (r + κ)

κ

1
�∗

B
(µ) .

Again by symmetry, we only provide a proof for (a) only, the other one is
parallel. Let

y ≡ min{c̄ (µ) , v (µ)} − c̃ (0|µ) . (75)

Consider a type c seller with c̃(c|µ) ≤ c̃ (0|µ) + y/2. By proposing the price
v (µ), she can guarantee the expected payoff of 1

2 θB (µ|µ) [v (µ) − c̃(c|µ)], since
this offer is accepted in equilibrium by any buyer with v > v (µ) who shares
the same belief µ. Therefore the equilibrium expected payoff in the bargaining
game is bounded from below by 1

2 θB (µ|µ) [v (µ) − c̃(c|µ)]:

qS (c|µ, µ) [p̄S(c|µ) − c̃(c|µ)] ≥ θB (µ|µ)
2 [v (µ) − c̃(c|µ)] ,

where p̄S(c|µ) is the expected price conditional on trading. Since v (µ)−c̃(c|µ) ≥
v (µ) − (c̃ (0|µ) + y/2), and our definition of y implies that y ≤ v (µ) − c̃ (0|µ),
it follows that v (µ) − c̃(c|µ) ≥ (v (µ) − c̃ (0|µ)) /2 and therefore

qS (c|µ, µ) [p̄S(c|µ) − c̃(c|µ)] ≥ θB (µ|µ)
2

v (µ) − c̃ (0|µ)
2 .

Since no offer above ṽ (1|µ) will be accepted in equilibrium by a buyer with
belief µ, pS(c|µ) ≤ ṽ (1|µ). Since c̃ (c) is non-decreasing by Lemma 2, we must
also have c̃(c|µ) ≥ c̃ (0|µ), and therefore

qS (c|µ, µ) ≥ θB (µ|µ)
4

v (µ) − c̃ (0|µ)
ṽ (1|µ) − c̃ (0|µ) ,

qS (c|µ, µ) ≥ θB (µ|µ) κ

4 (r + κ) ,
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where the last inequality follows from applying the bound from Step 1,
v (µ) − c̃ (0|µ)

ṽ (1|µ) − c̃ (0|µ) ≥ κ

r + κ
.

Then from (23) in Lemma 2,

c̃� (c|µ) = 1 − Rτ

1 − Rτ + Rτ �SqS (c|µ, µ) ≤ rτ

�SqS (c|µ, µ)
≤ rτ

�SθB (µ|µ) 1
2

κ

2(r+κ)

= τ
4r (r + κ)

κ

1
�∗

S
(µ) .

Step 3: We now combine the bound on the entry gap in Lemma with steps
1 and 2 of this proof to show (39) . From (73) in step 1, we have

ṽ (1|µ) − c̃(0|µ) ≤ r + κ

κ
min {v (µ) − c̃ (0|µ) , ṽ (1|µ) − c̄ (µ)}

≤ r + κ

κ
max {v (µ) − c̄ (µ) , 0}

+ r + κ

κ
min {c̄ (µ) − c̃ (0|µ) , ṽ (1|µ) − v (µ)}

Lemma implies max {v (µ) − c̄ (µ) , 0} → 0, while the bounds in step 2 imply

ṽ (1|µ) − v (µ) ≤ max
v∈AB

ṽ� (v|µ)

≤ τ
4r (r + κ)

κ

1
�∗

B
(µ) ,

c̄ (µ) − c̃ (0|µ) ≤ max
c∈AS

c̃(0|µ)

≤τ
4r (r + κ)

κ

1
�∗

S
(µ) .

Therefore

ṽ (1|µ) − c̃(0|µ) ≤ 2τ
4r (r + κ)

κ
min

�
1

�∗
B

(µ) ,
1

�∗
S

(µ)

�
+ r + κ

κ

2τκ

max {�∗
B

(µ) , �∗
S

(µ)}

= τ · 2r + κ

κ
(4r + κ) 1

max {�∗
B

(µ) , �∗
S

(µ)}

≤ τ · 2r + κ

κ
(4r + κ) 1

�
.

Q. E. D.

Proof of Lemma 8. Recall equation (70) in the proof of Lemma 5:

m (H) = �∗
B

(H)
1 − �∗

B
(H)

�∗
S

(H)
1 − �∗

S
(H) q̄B (H) ,
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and recall that m (H) ≤ 1. Therefore

�∗
B

(H)
1 − �∗

B
(H)

�∗
S

(H)
1 − �∗

S
(H) q̄B (H) ≤ 1,

�∗
B

(H)
1 − �∗

B
(H) ≤ 1

�
∗
S(H)

1−�
∗
S(H) q̄B (H)

≤ 1
�∗

S
(H) q̄B (H) ,

�∗
B

(H) ≤ 1
1 + �∗

S
(H) q̄B (H) . (76)

We next establish lower bounds on �∗
S

(H) and q̄B (H). To this end, (19) and
(20) together with the definition of UB and US imply

�∗
B

(H) qB (v (H) |H) ≥ κτ

ṽτ (1|H) − c̃τ (0|H) (77)

≥ κ

2 r+κ

κ
(4r + κ) 1

�

≥ κ2�

2 (r + κ) (4r + κ)
≡ γ ∈ (0, 1) ,

where the second inequality follows from Lemma 7. Exactly the same lower
bound holds for the sellers,

�∗
S

(H) qS (c̄ (H) |H) ≥ γ. (78)

Since qB (·|µB) is a non-decreasing function, qB (v (H) |H) ≤ q̄B (H) and (77),
(78) together imply

q̄B (H) , �∗
S

(H) ≥ γ.

Substituting the above bound in (76), we get

�∗
B

(H) ≤ 1
1 + γ2

≡ �̄.

A parallel argument shows that exactly the same bound applies for the sellers
when the state is µ = L, �∗

S
(L) ≤ �̄. Q. E. D.
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