
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TECHNICAL UNIVERSITY  INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

M.Sc. Thesis  by 

Tuğçe KATİPOĞLU, B.Sc. 

(501051807) 

Date of submission : 7 May 2007 

Date of defence examination: 11 June 2007 

                                 Supervisors (Chairman): Prof.Dr. Derin ORHON 

Assoc. Prof.Dr. Emine UBAY ÇOKGÖR 

Members of the Examining Committee: Prof.Dr.  Nazik ARTAN  

Prof.Dr. Dilek HEPERKAN 

Assoc. Prof.Dr. Zeynep Petek ÇAKAR 
ÖZTEMEL 

JUNE 2007 

 

EVALUATION OF ACCLIMATION AND INHIBITORY IMPACT OF 
2,6-DIHYDROXYBENZOIC ACID ON THE BIODEGRADATION OF 

PEPTONE UNDER AEROBIC CONDITIONS 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

2,6 DİHİDROKSİBENZOİK ASİTİN AKLİMASYON VE  
İNHİBİTÖR ETKİSİNİN AEROBİK ŞARTLAR ALTINDA 

YÜKSEK LİSANS TEZİ 

Müh. Tuğçe KATİPOĞLU 

HAZİRAN 2007 

Tezin Enstitüye Verildiği Tarih :    7 Mayıs 2007 

              Tez Danışmanı : Prof.Dr. Derin ORHON 

 Doç.Dr. Emine UBAY ÇOKGÖR 

Diğer Jüri Üyeleri: Prof.Dr. Nazik ARTAN 

 Prof.Dr. Dilek HEPERKAN 

 Doç.Dr. Zeynep Petek ÇAKAR ÖZTEMEL 



 iii

ACKNOWLEDGEMENTS 

I would like to express my gratitude to valuable advisors Prof. Dr. Derin ORHON 

and Prof. Dr. Emine UBAY ÇOKGÖR for their support and understanding during 

my thesis. 

I would like to thank to Assist. Prof. Dr. Özlem KARAHAN, Assist. Prof. Dr. Nevin 

YAĞCI, Dr. Assist. Prof. Dr. Güçlü İNSEL, Reserach Assistant Dr. Tuğba ÖLMEZ, 

Reserach Assistant İlke PALA, for their support during experiments. Duygu Canan 

ÖZTÜRK, Ayşegül ACAR, for making the experiments amuzing. 

I would like to express my special thanks to Hüseyin Oytun YAZAN for always 

being with me during my studies. 

And finally, I am particularly indebted to my family for always being on my side, 

supporting me and trusting in me, whole my life and during my tough work. I would 

like to dedicate this work to my dear parents and my sister. 

 

 

January 2007                                                                                 Tuğçe KATİPOĞLU 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv

TABLE OF CONTENTS  
       Page No  
ABBREVIATIONS vi 

LIST OF TABLES vii 

LIST OF FIGURES viii 

SYMBOL LIST x 

SUMMARY xii 

ÖZET  xiii 

1.  INTRODUCTION 1 

1.1. Aim 1 

1.2. Scope 1 

2.  LITERATURE REVIEW 3 

2.1. Xenobiotics 3 

2.1.1. Definition of Xenobiotics 3 

2.1.2. Sources of Xenobiotics 4 

2.1.3. Fate of Xenobiotics 4 

2.1.4. Aerobic Biodegradation of Xenobiotics 5 

2.1.5. Anaerobic Biodegradation of Xenobiotics 6 

2.1.6. Acclimation of Microorganisms to Xenobiotics 6 

2.2. Olive Oil Industry 8 

2.2.1. Olive Mill Wastewater 8 

2.2.2. Treatment Strategies 10 

2.3. Biodegradation of Phenolic Compounds 10 

2.3.1. Inhibition Effect of Phenolic Compounds 13 

2.3.2. Substrate Utilization of Mixed Cultures 14 

2.3.3. Biodegradation of 2,6-Dihydroxybenzoic acid 14 

2.4. Biodegradation Tests 16 

2.5. Activated Sludge Modeling 17 

2.5.1. Activated Sludge Model No. 1 18 

2.5.2. Activated Sludge Model No. 3 21 

3.  MATERIALS AND METHODS 26 



 v

3.1. Reactor Operation 26 

3.2. Analytical Techniques 27 

3.2.1. Biodegredation Test 28 

3.2.1.1. Principle of TS EN ISO 9888 28 

3.2.1.2. Experimental Procedure 29 

3.2.2. Respirometric Analysis 29 

4. RESULTS AND DISCUSSION 32 

5. CONCLUSION 67 

REFERENCES 69 

CURRICULUM VITAE 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

ABBREVIATIONS 

ASM  : Activated Sludge Model 

OMW   : Olive Mill Wastewater 

2,6 DHBA : 2,6 dihydroxybenzoic acid 

ASM  : Activated Sludge Model 

VSS  : Volatile Suspended Solids 

SS  : Total Suspended Solids 

SRT  : Sludge Retention Time 

TOC  : Total Organic Carbon 

DOC  : Dissolved organic carbon 

VFA  : Volatile suspended solids 

TKN  : Total Kjeldahl Nitrogen 

TON  : Total Organic Nitrogen 

PHA  : Polyhydroxyalkanoate 

COD  : Chemical oxygen demand 

 

 

 

 

 

 



 vii

LIST OF TABLES  

  Page No 

Table 2.1 Olive Mill Wastewater Characteristics …………………............…   9 
Table 2.2  Studies of 2,6 Dihydroxybenzoic Acid on Pure Cultures ….......… 15 
Table 2.3  Simplified Matrix Representation of ASM1 Involving 

Endogenous Decay........................................................................... 
 
21 

Table 2.4  Simplified matrix representation of ASM3 for organic carbon 
removal……………………………………………………………. 

 
24 

Table 2.5  Matrix Representaion of Modified ASM3 Structure……………… 25 
Table 3.1  Composition of OECD Nutrient Solution………………………… 26 
Table 3.2  Experimental Conditions Conducted……………………………… 30 
Table 3.3  Monitored Data for Experimental Runs…………………………... 31 
Table 4.1 The Peptone Mixture Reactor Characteristics at Steady State……. 32 
Table 4.2  Characteristics of the Peptone Mixture Reactor under Steady State 

Conditions………………………………………………………… 
 
48 

Table 4.3  Results of Biodegradation Test…………………………………… 60 
Table 4.4  Estimated Dual Hydrolysis Model Parameters for Run 1.1 and 

Run 2.1 (ASM No:1)……………………………………………… 
 
64 

Table 4.5  Estimated Model Parameters for Run 1.1-Run 2.1. (ASM No:3)… 65 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 



 viii

LIST OF FIGURES  

  Page No 

Figure 2.1 
 
Figure 2.2 
Figure 2.3 
Figure 2.4 
Figure 3.1 
Figure 4.1 
 
Figure 4.2 
Figure 4.3 
Figure 4.4 
Figure 4.5 
Figure 4.6 
 
Figure 4.7 
Figure 4.8 
Figure 4.9 
Figure 4.10 
Figure 4.11 
Figure 4.12 
Figure 4.13 
Figure 4.14 
Figure 4.15 
Figure 4.16 
Figure 4.17 
Figure 4.18 
Figure 4.19 
Figure 4.20 
Figure 4.21 
Figure 4.22 
Figure 4.23 
Figure 4.24 
Figure 4.25 
Figure 4.26 
Figure 4.27 
 
Figure 4.28 
Figure 4.29 
Figure 4.30 

: Alternative Pathways for Aerobic Degradation of Aromatic 
Compounds ................................................................................. 

: Molecular Structure of 2,6 Dihydroxybenzoic Acid .................. 
: Processes for Heterotrophic and Nitrifying Bacteria in ASM 1. 
: Processes for Heterotrophic Organisms in ASM 3…………... 
: Calibration Curve for Determination of 2,6 DHBA………….. 
: Monitoring Results of the Peptone Mixture Reactor (SRT=10 
days)…………………………………………………………... 

: Filtered COD and DOC Concentrations versus Time (Run 1.1) 
: PHA versus Time (Run 1.1).........................................................
: pH versus Time (Run 1.1)............................................................
: OUR Data versus Time (Run 1.1)............................................... 
: Monitoring Results of the Peptone Mixture and 2,6 DHBA 
Reactor......................................................................................... 

: COD Concentration versus Time (Run 1.2)................................ 
: DOC Concentration versus Time (Run 1.2)................................ 
: 2,6 DHBA Concentration versus Time (Run 1.2)....................... 
: pH versus Time (Run 1.2)........................................................... 
: OUR Data versus Time (Run 1.2)............................................... 
: COD Concentration versus Time (Run 1.3)................................ 
: DOC Concentration versus Time (Run 1.3).................................
: 2,6 DHBA Concentration versus Time (Run 1.3)........................
: pH versus Time (Run 1.3)........................................................... 
: OUR Data versus Time (Run 1.3)............................................... 
: COD Concentration versus Time (Run 1.4)................................ 
: DOC Concentration versus Time (Run 1.4)................................ 
: 2,6 DHBA Concentration versus Time (Run 1. 4)...................... 
: pH versus Time (Run 1.4)........................................................... 
: OUR Data  versus Time (Run 1.4).............................................. 
: COD Data versus Time (Run 1.5)............................................... 
: DOC Concentration versus Time (Run 1.4).................................
: 2,6 DHBA Concentration versus Time (Run 1.5)........................
: pH versus Time (Run 1.5)........................................................... 
: OUR Data versus Time  (Run 1.6).............................................. 
: Monitoring Results of the Peptone Mixture Reactor (SRT=2 
days)............................................................................................. 

: COD and DOC Concentration versus Time (Run 2.1)............... 
: PHA versus Time (Run 2.1)........................................................ 
: pH versus time (Run 2.1)............................................................ 

12 
   
16 
19 
22 
27 
 
32 
33 
34  
34 
35 
 
35 
36 
36 
37 
37 
38 
39 
39 
40 
40 
41 
42 
42 
43 
43 
44 
45 
45 
46 
46 
47 
 
48 
49 
49 
50 



 ix

Figure 4.31 
Figure 4.32 
 
Figure 4.33 
Figure 4.34 
Figure 4.35 
Figure 4.36 
Figure 4.37 
Figure 4.38 
Figure 4.39 
Figure 4.40 
Figure 4.41 
Figure 4.42 
Figure 4.43 
Figure 4.44 
Figure 4.45 
Figure 4.46 
Figure 4.47 
Figure 4.48 
Figure 4.49 
Figure 4.50 
Figure 4.51 
Figure 4.52 
Figure 4.53 
Figure 4.54 
 
 

: OUR Data versus Time (Run 2.1)............................................... 
: Monitoring Results of the Peptone Mixture Reactor (θx=2 
days)……………………………………………………………. 

: COD Concentration versus Time (Run 2.2).................................
: DOC Concentration versus Time (Run 2.2).................................
: 2,6 DHBA Concentration versus Time (Run 2.2)....................... 
: pH versus Time (Run 2.2)........................................................... 
: OUR Data versus Time (Run 2.2)............................................... 
: COD Concntration versus Time (Run 2.3)................................. 
: DOC Concentration versus Time (Run 2.3)................................ 
: DOC Concentration versus Time (Run 2.3)................................ 
: 2,6 DHBA Concentration versus Time (Run 2.3)……………... 
: pH versus Time (Run 2.3)……………………………………... 
: OUR Data versus Time (Run 2.3)................................................
: COD Concentration versus Time (Run 2.4).................................
: DOC Concentration versus Time (Run 2.4)................................ 
: 2,6 DHBA Concentration versus Time (Run 2.4)....................... 
: pH versus Time (Run 2.4)........................................................... 
: OUR Data versus Time (Run 2.4)............................................... 
: COD versus Time for Biodegradation Test (TS EN ISO 9888). 
: Biodegradation of 2,6 DHBA (TS EN ISO 9888)...................... 
: ASM1 Simulation (Run 1.1)....................................................... 
: ASM3 Simulation of (Run 1.1)................................................... 
: ASM1 Simulation of (Run 2.1)....................................................
: ASM3 Simulation (Run 2.1).........................................................

 

50 
 
51 
51 
52 
52 
53 
53 
54 
55 
55 
56 
56 
57 
58 
58 
59 
59 
60 
61 
61 
62 
62 
63 
63 
 

 

 

 

 

 

 

 



 x

SYMBOL LIST 

 

bH : Endogenous decay coefficient 
De : Total elimination of test compound 
Ds : Primary elimination of test compound 
Dt : Degradation of test compound 
fES : Fraction of soluble inert product 
fEX : Fraction of inert particulate metabolic product 
fI : Fraction of inert particulate metabolic product 
fSI : Fraction of soluble inert COD generated in biomass decay 
kh : Maximum spesific hydrolysis rate for SH  
khx : Maximum spesific hydrolysis rate for XS 
KNH : Ammonium saturation as nutrient 
KO : Half saturation coefficient of oxygen 
KS : Half saturation constant of substrate 
KSTO : Half saturation coefficient of storage 
kSTO : Maximum storage rate  
KX : Half saturation coefficient for SH 
KXX : Half saturation coefficient for XS 
OUR : Oxygen utilization rate 
SH : Rapidly hydrolysable COD 
SHCO : Bicarbonate concentration 
SI : Soluble inert COD 
SNH : Ammonia concentration 
SO : Dissolved oxygen concentration 
SS : Soluble readily biodegradable COD 
XA : Autotrophic biomass 
XH : Heterotrophic biomass 
XI : Particulate inert COD 
XP : Inert particulate product  
XS : Slowly hydrolysable COD  
XSTO : Storage products 
YH : Heterotrophic yield 
YH1 : Heterotrophic yield coefficient for direct growth 
YH2 : Heterotrophic yield coefficient for growth on stored polymers 
YSTO : Storage yield 
θx : Sludge age 
ρcB1 : COD/DOC concentration in blank at 3h±30 min 
ρcBt : COD/DOC concentration in blank at time t 
ρcT0 : DOC concentration in test suspension at time t0 
ρcT1 : COD/DOC concentration in test suspension at 3h±30 min 

Hμ
)  : Maximum growth rate for heterotrophs 



 xi

H1μ)  : Maximum growth rate for heterotrophs on SS 

H2μ)  : Maximum growth rate for heterotrophs on XSTO 
ρcTt : COD/DOC concentration in test suspension at time t 
ρS : Concentration of test compound in test suspension at time t 
ρT : Concentration of test compound in abiotic control at time t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

SUMMARY 

In this study, acclimation of activated sludge taken from a biological treatment plant 
to 2,6 dihydroxybenzoic acid which is generated from olive mill wastewater was 
investigated. Inherent biodegradation of 2,6 dihydroxybenzoic acid was observed in 
a inherent biodegradation test. Activated sludge from a treatment plant was 
acclimated to a synthetic peptone mixture, and operated at high and low sludge ages. 
Acclimation of activated sludge from the same origin to 2,6 dihydroxybenzoic acid 
with peptone mixture was performed and monitored through respirometric studies as 
well as conventional parameters. Results were evaluated in comparison with peptone 
acclimated systems. Inhibitory effects of 2,6 dihydroxybenzoic acid to peptone 
degradation was observed for different sludge ages. However, acclimation of 
activated sludge to this compound was achieved after a certain operating period. The 
different sludge ages on the acclimation process was evaluated in terms of 
degradation of peptone and 2,6 dihydroxybenzoic acid. The only peptone fed systems 
of different sludge ages were evaluated in terms of kinetic characteristics estimated 
by using a multi-component model. 
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ÖZET 

Bu çalışmada, bir biyolojik arıtma tesisinden alınan aktif çamurun zeytin yağı 

endüstrisi kaynaklı 2,6 dihidroksibenzoik asite aklimasyonu incelenmiştir. 2,6 

dihidroksibenzoik asitin biyolojik arıtılabilirliği bir biyolojik ayrışma testi ile 

desteklenmiştir. Bir arıtma tesisinden alınan aktif çamur pepton içerikli sentetik 

atıksuya aklime edilerek yüksek ve düşük çamur yaşlarında çalıştırılmıştır. Aynı 

nitelikteki aktif çamura sentetik atıksu ile 2,6 dihidroksibenzoik asit aklimasyonu 

birlikte uygulanmış; respirometrik çalışmalar ve konvansiyonel parametrelerle sistem 

izlenmiştir. 2,6 dihidroksibenzoik asitin, farklı çamur yaşlarında pepton giderimi 

üzerinde inhibitör etkisi olduğu görülmüştür. Belirli bir işletim periyodu sonunda 

aktif çamurun bu karışıma aklimasyonu gözlenmiştir. Bu maddenin aklimasyonu, 

farklı çamur pepton ve 2,6 dihidroksibenzoik asit giderimleri kullanılarak 

değerlendirilmiştir. Sadece pepton ile beslenen sistemlerde çok bileşenli modeller 

kullanılarak farklı çamur  yaşlarının etkisi kinetik özellikler kapsamında 

değerlendirilmiştir. 
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1.  INTRODUCTION 

1.1. Aim 

Biodegradation of xenobiotic compounds are of great concern in recent years. 

Sources of these compounds are chemicals, which are commercially available in 

increasing amounts, and mainly industrial activities that end up with discharges to 

the environment after they are used as raw materials or additives.   

Because of their synthetic and toxic origin, production in high amounts, 

carcinogenetic effects, and persistence in the environment, they receive considerable 

attention. Moreover, their low concentration, which is difficultly determined in the 

environment, possibility of unknown and toxic effects on organisms and biological 

treatment systems cause biodegradation studies to focus on these compounds.  

The aim of the study is to investigate biodegradation of a xenobiotic named 2,6 
dihyroxybenzoic acid generated in high amounts in olive mill industry. Additionally, 
sludge ages of 2 and 10 days and acclimation period effects will be investigated 
together with respirometric evaluation in detailed.   

1.2. Scope 

In this study, acclimation of activated sludge taken from Paşaköy Wastewater 

Treatment Plant will be used for the biodegradation studies of a selected xenobiotic, 

named 2,6 dihydroxybenzoic acid from olive mill wastewater. Inherent 

biodegradation of 2,6 dihydroxybenzoic acid was investigated and supported by an 

inherent biodegradation test. Activated sludge with a certain sludge age was 

acclimated to Peptone synthetic wastewater having similar characteristics of 

domestic sewage. The acclimation process was performed to investigate the 

reference behavior of activated sludge without 2,6 dihydroxybenzoic acid addition to 

wastewater. Acclimation to 2,6 dihydroxybenzoic acid was monitored through 
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respirometric studies. In parallel chemical oxygen demand, dissolved organic carbon, 

2,6 dihydroxybenzoic acid and some other conventional parameter analysis were 

measured. The acclimation process and experimental studies were repeated for 

activated sludge in a rapidly growing system having smaller sludge age, which is 2 

days. The evaluation of different sludge ages on the acclimation process was 

performed by using multi-component model. 
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2. LITERATURE REVIEW 

2.1. Xenobiotics 

2.1.1 Definition of Xenobiotics 

Xenobiotics are chemicals, which are not produced normally by organisms. The term 

is the combination of Greek words; xenos and bios. They are not synthesized 

normally in an organism resulting in no expectation to be present in living 

organisms. Xenobiotics are introduced to the environment artificially and are defined 

as substances, which are foreign to life (Schmidt Bleel et al, 1989). A naturally 

produced compound can be a xenobiotic when it is taken up by a living organism. 

The chemicals found in much higher concentrations are also defined as xenobiotics. 

The xenobiotic term includes not only drugs and carcinogens but also chemicals, 

petrochemicals, pesticides, and plastics as stated by Schmidt and Haberland in 1989. 

It is generally used for phenolic componds, dioxins, polychlorinated biphenyls and as 

their effect on the biota. The number of chemicals, which are commercially 

available, is about 40,000 with an increase of 2000 number in each year (1989). 

There are approximately more than 100000 xenobiotics. These compounds are of 

rising environmental concern, due to their toxic and carcinogenic effects, adverse 

health effects to humans and animals, and high persistence in the environment and 

biological systems. Xenobiotics are used in many industrial production processes as 

raw materials or additives and end up in waste streams, which are eventually 

discharged into the environment. Thus, the assessment of their toxicity and the 

evaluation of their effects on the treatment systems are of great significance. 

Difficulty in determination of xenobiotics exists due to very low concentrations in 

the environment. 
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2.1.2. Sources of Xenobiotics  

Xenobiotics are introduced to the environment by either domestic discharges or 

industrial discharges. Xenobiotics originate from variety of sources including 

industrial discharges, pesticide applications, formation of unintentional by-products 

through low temperature combustion and herbicide production, pharmaceuticals and 

personal care products, use of household chemicals, rainfall runoff, water from 

atmospheric washout, traffic emissions and erosion of building materials (Ross and 

Birnbaum, 2003). Olive mill wastewater is one of the important sources of 

xenobiotics in the environment. 

2.1.3. Fate of Xenobiotics  

In case a persistent xenobiotic is the sole carbon source in a system, it is not able to 

be utilized by biomass. Biomass remains intact with the xenobiotic without growth 

corresponding to prolonged lag period. The compound is not able to be degraded 

until there is a biochemical adjustment and induction. These processes constitute 

acclimation procedure. During acclimation procedure, biomass initially has no 

degradation capacity. As the time proceeds, it gains gradually acquisition capacity of 

degrading the persistent organic compound. The contact time of biomass and the 

xenobiotic have an important role in acclimation period (Singleton, 1994; Buitron 

and Gonzalez, 1996; Mangat and Elefsiniotis, 1999). 

In mixed cultures, acclimation to an organic compound can be either a result of the 

selection of specialized organisms or as reported (Wiggings et al., 1987; Hu et al., 

1996; Hu et al., 1998) in literature. Moreover, it was shown that, the acclimation 

capacity was related to the genetic information within biomass (Buitron and 

Gonzalez, 1996; Buitron et al., 1998). 

In soil, the degradability of organopollutants is depended on several factors including 

essential substrate supply such as C, N, P, S, favorable state of external conditions 

including O2, H2O, pH, temperature, and bioavailability of the organopollutants 

(Jördening et al., 2005).     

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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2.1.4. Aerobic Biodegradation of Xenobiotics 

Aerobic biodegradation is the combination of biologically catalyzed reductions and 

they suggest two major processes such as growth and cometabolism. By growth 

process, organic pollutants are used as sole carbon source and electron donors for the 

generation of energy. This process results in mineralization of organic compounds. 

Cometabolism process is defined as the metabolism of an organic compound in the 

presence of a growth substrate, which microorganisms use as primary carbon source 

(Jördening et al., 2005).     

Rapid and complete biodegradation of majority of organic pollutants are possible 

under aerobic conditions. Microorganisms involved in biodegradation under aerobic 

conditions have some characteristics. These microorganisms should access chemical 

compounds, which are related to properties of themselves. Oxidative processes are 

the initial intracellular attack on organic pollutants involving activation and 

incorporation of oxygen by oxygenases and peroxidases. Furthermore, degradation 

pathways results in intermediates of central intermediary metabolites, which are 

present in tricarboxylic acid cycle. Acetyl CoA, succinate, pyruvate and sugars are 

examples of central metabolites for biosynthesis (Jördening et al., 2005).     

Furthermore, one of the important mechanisms in the breakdown of many 

compounds is the removal of the halogen atoms. The removal process is defined as 

dehalogenation involving several mechanisms, by which halogen atoms are removed 

from the molecules. Dehalogenation of compounds is possible under either anaerobic 

conditions developed as reductive dehalogenation or aerobic conditions. However, 

some compounds including chlorinated benzenes appear to be only dehalogenated 

under aerobic conditions. Pesticides and halogenated 1 and 2 carbon compounds are 

examples of reductive dehalogenation. Some of the compounds can be degraded 

under both conditions (Jördening et al., 2005). 

Although many bacteria are able to metabolize organic pollutants in soil from 

polluted areas, which include aliphatic and aromatic hydrocarbons, polycyclic 

aromatic hydrocarbons and chlorinated compounds, mixed bacterial community has 

the most powerful ability of degradation of organics in soil (Jördening et al., 2005). 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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The bacterial species that are able to degrade organic pollutants are found among 

both gram-positive and gram-negative bacteria. Pseudomonas spp., such as 

Pseudomonas putida and Pseudomonas fluorescens (Houghton et al., 1994), and 

Comomonas, Burkhoderia and Xanthomonas genera, Alcaligenes sp., 

Flavabacrerium/Cytophaga group are gram-negative bacteria degrading organic 

pollutants. Rhodococcuc spp. such as Nocardia spp., Mycobacterium spp., 

Corynebacterium spp., and Arthrobacter spp., Bacillus spp. are organisms present in 

gram-positive bacteria, which are capable of degradation.    

2.1.5. Anaerobic Biodegradation of Xenobiotics 

Anaerobic biodegradation of xenobiotic compounds has been subject to extensive 

research during the last years. Many anaerobic bioreactors and remediation systems 

have been developed to effectively eliminate harmful impacts of xenobiotics on the 

environment. There are several reasons explaining the importance of anaerobic 

biodegradation of xenobiotic compounds. High-energy costs of aerobic processes 

due to oxygen supply to the systems, and high sludge production compared to 

anaerobic systems are reasons of operating anaerobic systems. Moreover, some 

xenobiotic compounds such as tetrachloroethylene, polychlorinated biphenyls 

(PCBs), and nitro-substituted aromatics can be biodegraded by only anaerobic 

bacteria. In some cases, anaerobic degradation is required prior to aerobic processes. 

(Zhang and Bennett, 2005). 

2.1.6. Acclimation of Microorganisms to Xenobiotics 

Many xenobiotic compounds simply pass through wastewater treatment systems 

without significant reduction due to intrinsic limitations as stated by Hu et al. (2005). 

The limitations include lack of cell uptake, lack of proper enzymes initiating attack 

to these compounds, and thermodynamically unfavorable reactions. Hence, 

acclimation of microorganisms to the compounds is essential. Acclimation of 

microbial community involves selection of microorganisms containing existing 

enzymes and pathways or development of new catabolic pathways for the removal of 

xenobiotics.  
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When the capacity of catabolic metabolism is considered, the dominance of a 

particular strain degrading the pollution can be observed rarely. Thus, uneven 

fraction of the biomass has a potential to degrade a xenobiotic. The degradation 

capacity changes depended on the degree of induction of catabolic enzymes that 

enable microorganisms to degrade these compounds. However, the degree of 

induction is not known. Thus, the kinetic measurements in mixed cultures are based 

on “black box” approach. Kinetic parameters are selected for the total biomass not 

for its active part. In case of substrate mixture utilization, the cells grow not only 

with single carbon source leading to high probability of partially induced catabolic 

enzymes (Kovarova-Kovar et al., 1998). 

Degradation of most of the pollutants are achieved or they are eliminated as a result 

of cell amount increase in the environment. On the other hand, the enzymes are 

induced in potential degraders of the chemical for biodegradation. Both of the factors 

influence the time required which varies from minutes to hours (Kovarova-Kovar et 

al., 1998). 

In order to examine the effect of acclimation on biodegradation of selected synthetic 

organic chemicals including benzoate and related aromatic compounds, 3-

nitrobenzoate, 4-chlorobenzoate, 4-chlorophenol and 2,4-dichlorophenol by 

unacclimated and acclimated biomass some of the studies were conducted by Hu et 

al. (2005). The results indicated that the biomass acclimation to benzoate, 3-

nitrobenzoate and 4-chlorophenol were possible with high biodegradation rates after 

long-term exposure in sequencing batch reactors. Moreover, some biodegradation of 

structurally similar synthetic organic compounds such as 4-chlorobenzoate and 2,4-

dichlorophenol were achieved. It was concluded that biodegradation of only benzoate 

was possible by unacclimated biomass as many degradation pathways existed and 

biodegradation capability was linked to its presence in domestic sewage. The 

biomass from the treatment plants can be considered that they are acclimated to 

benzoate. Thus, biomass acclimation is crucial for the degradation of xenobiotic 

compounds (Hu et al., 2005). 
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2.2. Olive Oil Industry 

Olive oil is produced from olive trees in numerous small plants, which operate 

seasonally. Olive trees yields 15-40 kg olive oil production per year. The worldwide 

olive oil production is reported 2546306 tons in 25000 olive mills in 2002. Olive oil 

production is distributed to Mediterranean region with 97%, European Union 

countries with 80–84% and to Middle East, the USA, Argentina and Australia 

(Paraskeva et al., 2006). Olive oil production of Turkey is reported 850000 t in 2005 

(FAOSTAT, 2007).  

2.2.1. Olive Mill Wastewater 

Discontinuous press or centrifugation method is used for olive oil production 

(Paraskeva et al., 2006). The production process results in an aqueous phase. In 

Mediterranean countries, generation of olive mill wastewater increases in each year 

that is more than 30 million m3 (Fiestas and Borja, 1992). This aqueous phase is 

combination of water content of fruit, water used in washing and production process 

of original olives. Olive mill wastewater is an aqueous effluent that includes high 

organic fraction such as sugars, tannins, acids, pectins, lipids, phenols and 

polyphenols and other organic compounds (Balice et al., 1990; Hamdi, 1993). 

Phenolic compounds are classified into three groups such as mono-cyclic aromatic 

molecules, including hydroxylated-and/or methoxylated-benzoic acids, phenylacetic 

acid and phenylpropenoic acid (Ronchero et al., 1974; Ehaliotis et al., 1999). After 

polymerization of phenolic compounds, the molecular weight of these compounds 

increases. These polymerized forms are recalcitrant to biodegradation, which cause 

toxicity of OMW (Capasso et al., 1995; Beccari et al., 1996; Martirani et al., 1996). 

The wastewater generation of olive milling process is between 0.5–1.5m3 per 1000 

kg of olives, which is closely related to the processes applied. The centrifugation 

process produces 1–1.5 m3 wastewater per 1000 kg of olives. The discontinuous 

process produces less wastewater with higher concentration such as 0.5–1 m3 

wastewater per 1000 kg compared to its alternative. (Hamdi et al., 1996, Paixao et 

al., 1999, Rinaldi et al., 2003). 

Olive mill wastewater characteristics vary depended on the method of extraction, 

type and maturity of olives, region of origin, climatic conditions and 
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cultivation/processing methods. Wastewater from olive oil industry has a strong 

organic content as given in Table 2.1 (Niaounakis et al., 2004). Its high lignin and 

tannin content give dark color to the wastewater. Long-chain fatty acids, phenolic 

compounds including simple phenols and flavonoids, or polyphenols which are 

resulted from polymerisation of the simple phenols constitute major characteristic of 

OMW. Since these compounds are toxic and present with recalcitrant compounds, 

treatment is imperative (Paixao et al., 1999; Paixao et al., 2002; Rinaldi et al., 2003). 

 

 

Table 2.1: Olive Mill Wastewater Characteristics 

Parameter Value 

COD 45-170 g/L 

BOD5 35–110 g/L 

SS 1–9 g/L 

Phenolic compounds 

(Phenols, flavonoids, polyphenols) 
0.5–24 g/L 

Color 
52270–180000 

Pt-Co units 

pH 3.9–5.1 

TOC 53.32–74.9 g/L 

TKN 0.94–1.30 g/L 

Phenolic acids 0.3–0.66 g/L 

Tannins 3.8–9.68 g/L 

Pectins 1.83–4.67 g/L 
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2.2.2. Treatment Strategies 

Applications of olive mill wastewater treatment include discharge into nearby rivers, 

lakes or seas, storage/evaporation in lagoons, and disposal. However, these 

applications result in environmental problems such as water body and soil pollution, 

odor and underground seepage (Paraskeva et al., 2006). In addition, seasonal 

production of olive oil in small enterprises and family businesses cause unaffordable 

on site-treatment of OMW.   

Since biological processes are able to remove organic matter and nutrients by 

environmentally friendly, reliable, and cost-effective manner, they have been used 

for treatment of wastewaters. However, the selection of the microorganisms 

employed and in their adaptation to treating olive mill wastewater is important 

because phenolic substances present in OMW are inhibitory to microorganisms 

(Niaounakis et al., 2004, Caputo et al., 2003, Mantzavinos et al., 2005). Aerobic 

treatment is one of the commonly used technologies in OMW treatment for which 

acclimatization period for the microorganisms is required. Studies on activated 

sludge treatment reported COD removal rates of 80–85% and HRTs in the range of 

20–25 days. There are studies, which are focused on aerobic degradation of OMW in 

completely mixed batch activated sludge reactors after the adaptation of 

microorganism. Benitez et al., reported that (1997, 1999) 58–68% removals of COD 

was achieved in case 65–98 gr COD/L was fed to the systems. The COD removal 

efficiency was given as 80% in the presence of 22 gr COD/L where 90% phenol was 

observed. BOD removal of 45–77% for retention times of 2,5–4,5 days was reported 

in literature (Velioglu et al., 1992) Similar results were seen in wetland systems (Del 

Bubba et al 2004). 

2.3. Biodegradation of Phenolic Compounds  

Organic compounds are utilized by either unity of catabolic or cometabolic processes 

by microorganisms. In catabolic concepts, some manmade compounds are similar to 

natural compounds that enable microorganisms to degrade these chemicals. These 

manmade aromatic compounds include benzene, phenol, toluene, aniline, 

phenanthrene, benzoate, p-hydroxybenzoate, alkylphenol, m-Nitrobenzoate, 
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phthalate. Aromatic compounds are converted into natural intermediates of 

degradation such as catechol and protecatechuate (Jördening et al., 2005).  

Biodegradation of aromatic compounds in catabolic processes is possible by 

regulating metabolism of bacteria. Exposure to aromatic or structurally related 

compounds enables induction and synthesis of sufficient amount of key enzymes 

needed for degradation for these chemicals (Ramos et al, 1997). The group of 

reactions involved in aromatic substrate degradation are hydroxylation, oxygenolytic 

ring cleavage, isomerization, and hydrolysis (Jördening et al., 2005). 

Biodegradation of phenolic compounds is reported to be possible by aerobic bacteria. 

The biodegradation pathway of phenolic compounds can be either through 

hydroxylation of aromatic ring or by ortho or meta cleavage pathway. There are 

enzymes such as dioxygenases that catalyze the incorporation of both atoms of 

dioxygen into their substrates. The most important properties of these enzymes are 

that they are widely distributed in nature and are involved in both anabolic and 

catabolic processes (Harayama et al., 1992).  

One of the important catabolic process involved in phenolic compound degradation 

is catecholic metabolite formation which is the typical substrate of the latter reaction. 

In this process hydroxyl substituents are possessed on two adjacent carbon atoms 

followed by cleave reactions. Cleavge is generally catalyzed by metalloenzymes of 

one of two functional classes. Intradiol dioxygenases cleave ortho to the hydroxyl 

substituents and typically depend on nonheme Fe(III) (Harayama et al., 1992). 

cis,cis-muconate which is a product of ortho cleavage is transformed into an enol-

lactone  form and hydrolyzed to oxoadipate. Oxoadipate, which is a dicarboxylic 

acid, is activated by transfer to CoA. Formation of succinate and acetyl-CoA is 

observed by thiolytic cleavage (Jördening et al., 2005).   

In contrast, extradiol dioxygenases cleave meta to the hydroxyl substituents and 

typically depend on nonheme Fe(II). Although these distinctions may appear to be 

minor, they are in fact a manifestation of enzymes that have completely different 

structures and exclusively utilize different mechanisms (Harayama et al., 1992). meta 

cleavage yields 2-hydroxymuconic semialdehyde. It is converted to formate, 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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acetaldehyde, and pyruvate by hydrolytic enzymes. Products of ortho and meta 

cleavage are metabolized in central metabolism of bacteria (Jördening et al., 2005). 

 

 

Figure 2.1: Alternative Pathways for Aerobic Degradation of Aromatic Compounds 

(Jördening et al., 2005). 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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Cometabolic degradation constitutes the alternative degradative pathways for many 

organopollutants. Cometabolism is the transformation process of a substance when 

there is a growth substrate. In the presence of a particular substrate, microorganisms 

are able to oxidize a second substrate, cosubstrate. Other type of microorganisms in 

mixed cultures utilizes oxidized form of cosubstrate. The enzymes and cofactors 

such as hydrogen donors for oxygenases that are involved in cometabolism are key 

factors in this mechanism (Jördening et al., 2005).  

Pseudomonas sp. and rhodococci are among the bacteria that have high degradation 

potential because of inducible enzymes and substrate specifity they have (Jördening 

et al., 2005). Pseudomonas sp. CF600 is one of the organisms utilizing phenols and 

methyl-substituted phenols. It uses phenol, cresols, or 3,4-dimethylphenol (3,4-dmp) 

as the sole carbon and energy source by converting them into catechol (Powlowski et 

al.,  1994). 

2.3.1. Inhibition Effect of Phenolic Compounds 

Biodegradation kinetics of phenol and mixture of substrates including glucose and 

pentachlorophenol were studied by Autenrieth et al. (1991) in short term and long 

term experiments with large SRTs. The results indicate that phenol concentrations 

grater than 50 mg/L, inhibit the biodegradation rates. Moreover, pentachlorophenol 

cometabolism in the presence of phenol was reported. 

Inhibition effects of phenols and phenolic compounds are reported on specified 

bacterial strains. Although Pseudomonas putida (MTCC 1194) is able to degrade 

phenol in water in the range of 100±1000 ppm, the inhibition effects are observed 

above the concentration of 500 ppm (Bandyopadhyay et al., 1998).  

There are studies on kinetics of pure cultures. Reardon, et al. studied the kinetics of 

Pseudomonas putida F1 growing on benzene, toluene, phenol, and their mixtures 

(2000). The comparison of mathematical models pointed out that these aromatics are 

each able to act as carbon and energy sources for this strain. The Monod model 

results indicated that phenol caused a small degree of substrate inhibition on P. 

putida F1. The rate of consumption of one substrate was affected by the presence of 

the others in mixture experiments which enzymatic catabolism pathways were the 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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same. It was shown that phenol had a little effect on the degradation of other 

substrates. 

2.3.2. Substrate Utilization of Mixed Cultures 

Monod kinetics, which were used for pure cultures and single substrates are used for 

describing mixed cultures for defining their behavior in the presence of single or 

complex substrates. (Kovarova-Kovar et al., 1998). In case of mixed cultures, the 

growth parameters involved in kinetics represent the overall values of different and 

many types of strains. Moreover, they are affected by the concentration of different 

substrates and microbial composition. Thus, kinetic parameters such as Hμ
) and KS 

are not constants but are variables reflecting physiological state of the strains 

responsible for growth and substrate consumption (Kovarova-Kovar et al., 1998). 

The presence of contaminants in mixtures may cause many problems since some of 

the compounds in the mixture can inhibit the removal or degradation of another 

compound (Egli, 1995). The impact of constituents of mixtures was observed in 

many fields of degradation, including toxic chemical mixtures, wastewater treatment, 

and fermentation. Moreover, the chemicals may affect each other in a positive or 

negative way. In case of homologous carbon and energy sources presence, 

biodegradation of the compound can be positive similar to increased growth at low 

substrate concentrations (McCarty et al., 1984; Schmidt and Alexander, 1985). In 

addition, induction of degradative enzymes is possible (Alvarez and Vogel, 1991). 

Many researchers reported negative effects of mixed substrates. Chang et al. stated 

that competitive inhibition is an example of negative interaction (1993). Bartels et 

al., also reported the formation of toxic intermediates by nonspecific enzymes.   

2.3.3. Biodegradation of 2,6-Dihydroxybenzoic acid  

2,6 dihydroxybenzoic acid is one of phenolic compounds in olive mill wastewater. It 
has been reported several studies for the degradation of this compound in pure 
cultures as given in Table 2.2. These studies mainly focused on biodegradation in 
anaerobic conditions. Studies show that aerobic biodegradation of this compound is 
possible by a certain strain of organisms in case it is exposed to this compound 
through conversion to resorcinol. It is followed by aromatic nucleus cleavage and 
beta cleavage (Kluge et al., 1990).  
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It is reported that an enzyme is present in Rhizobium sp. strain MTP-10005 of 
bacteria found in river waters. The enzyme synthesized in case of induction by 2,6 
dihydroxybenzoic acid and it catalyzes decarboxylation of  this chemical (Masahiro 
et al., 2004). However, it is not reported the biodegradation of this compound in 
mixed cultures. 

 

Table 2.2: Studies of 2,6 Dihydroxybenzoic Acid on Pure Cultures 

Organism Condition Result Reference 

Clostridium sp. 
Campylobacter 
sp. 

Anaerobic Degradation with 2,6 DHBA 
deacarboxylase when the cells 
are grown on this substrate.  

Conversion to resorcinol, 
aromatic nucleus reduction, beta 
cleavage. 

Kluge et 
al., 1990 

Trichosporon 
cutaneum KUY-
6A 

Anaerobic No growth on 2,6 DHBA Hasegawa 
et al., 1990 

Ligniolytic 
cultures of 
Phanerochaete 
chrysosporium 

 % 41 degradation Leatham et 
al., 1983 

Ralstonia sp. 
LD 35 

P. putida DSM 
1868 

Aerobic % 0 degradation Gioia  et 
al., 2001 

Ralstonia sp. 

strain AV5BG 

strain AV1A 

strain AV2A 

strain AV6C 

Aerobic % 100 degradation without 
intermediate production which is 
peculiar to  AV5BG strain 

Gioia  et 
al., 2002 
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Figure.2.2:  Molecular Structure of 2,6 Dihydroxybenzoic Acid 

 

2.4. Biodegradation Tests  

Biodegradation tests are used for gaining information about degradability of 

chemicals which may be used for hazard assessment or risk assessment. Hazard or 

risk assessment, and aquatic hazard classification, are normally based on data 

obtained from standardized ready biodegradability tests. In addition to ready 

biodegradability tests, there are also other types of tests simulating biodegradation in 

water, aquatic sediments, and soil that may also be used for these purposes. By using 

the data of sewage treatment plant simulation, inherent biodegradability, anaerobic 

biodegradability, biodegradability in seawater and abiotic transformation tests, 

environmental hazard potential or risk can be assessed (OECD, 2005).  

Ready biodegradability tests are conducted in order to find out if the ultimate 

biodegradation of the substance, which means degradation of the substance to carbon 

dioxide, biomass, water, and other inorganic substances like ammonia, is possible in 

most environments including biological sewage treatment plants (ISO 9888, 1999). 

Using favorable conditions, the tests of inherent biodegradability are designed to 

assess whether the chemical has any potential for biodegradation under aerobic 

conditions. They possess a high capacity for degradation to take place, and in which 

biodegradation rate or extent is measured. The test procedures (TS EN ISO 9888) 

allow prolonged exposure of the test substance to microorganisms and a low ratio of 

test substance to biomass, which offers a better chance to obtain a positive result 

compared to tests for ready biodegradability. Moreover, microorganisms that have 

previously been exposed to the test substance, which resulted in adaptation, leads to a 

significant increase of the degradation rate. Inherent biodegradability can be 

measured by specific analysis such as primary biodegradation or by non-specific 
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analysis such as ultimate biodegradation. A substance yielding a positive result in a 

test of this type may be classified as inherently biodegradable, which, preferably, 

should be qualified by one of the terms with pre-adaptation or without pre-adaptation 

as appropriate. Because of the favorable conditions employed in these tests, rapid 

biodegradation in the environment of inherently biodegradable chemicals cannot 

generally be assessed. 

When the results point out that inherent, ultimate biodegradability occur, it indicates 

that the substance has a potential for degradation under favorable conditions, e.g. in 

well-operated sewage treatment plants. When a negative result is obtained in a test of 

inherent biodegradability, it may lead to a preliminary conclusion of environmental 

persistence and to an evaluation of potential adverse effects of transformation 

products (TS EN ISO 9888, 1999). 

2.5. Activated Sludge Modeling 

The effluent quality of treatment plants have been improved by focusing on 

operational conditions and design. However, it has become a complicated procedure 

pointing out the necessity of dynamic models (Jördening et al., 2005).  

Purpose of activated sludge modeling can be stated as to design, control, organize 

treatment plants, and optimize operational conditions. With respect to intended use of 

models such as design and control, structure of them differs. Although models are 

useful tools, which are simplifying the complicated processes, they are never true. 

This is because they are based on assumptions, depended on wastewater 

characterization in addition to the lack of knowledge in the microbiology of 

treatment plants (Jördening et al., 2005). 

In general, deterministic models are used in wastewater treatment plant design. There 

are also black-box type models that are used for controlling purposes (Jördening et 

al., 2005). It is commonly agreed that design and operation of treatment plants are 

based on reliable experimental data, mechanistic description of kinetic processes and 

material balances. Multi-component modeling of activated sludge is a common 

approach which reaction kinetics is evaluated by means of multiple parameters 

(Henze et al., 1997, Orhon et al., 1994).  

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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In this approach, defined COD fractions are useful for understanding particulate 

matter, its fractions, kinetic and stoichiometric coefficients which are responsible for 

biodegradation leading to better understanding of biological treatment (Henze et al., 

1997, Orhon et al., 1994). 

Most of the models are based on the IAWQ Activated Sludge Model No. 1, which is 

called ASM1 (Henze et al., 1987). This model includes components such as kinetic 

and stoichiometric parameters involved in basic processes. It has been improved 

based on the complexity of design by adding processes and components to this model 

and new models are introduced. ASM2, ASM3 are examples of activated sludge 

models (Jördening et al., 2005). 

2.5.1. Activated Sludge Model No. 1 

The model has some processes that it enables calculation of oxygen consumption, 

ammonia, and nitrate in tanks of treatment plants and in effluents. In addition, mixed 

liquor suspended solids, solids retention time and sludge production can also be 

assessed by using this type of models (Jördening et al., 2005).  

In the multi component model, COD is selected as the most suitable parameter for 

defining the carbon sources as it provides a link between electron equivalents in the 

organic substrate, biomass, and oxygen utilized. Organic carbon removal can be 

modeled by using Activated Sludge Model No. 1 (ASM1) and Activated Sludge No. 

3 (ASM3), which involve different processes. 

In Activated Sludge Model 1 (ASM1), COD is divided into fractions based on its 

solubility, biodegradability, biodegradation rate, and viability for biomass. The main 

COD fractions are defined as soluble (S), and particulate (X) COD. They are further 

divided into non-biodegradable fraction and biodegradable fraction. The non-

biodegradable fraction is biologically inert and passes through an activated sludge 

system in an unchanged form. The inert soluble organic matter (SI) leaves the system 

at the same concentration as it enters. Inert particulate organic matter (XI) in the 

influent wastewater is removed with particulate organic matter produced via decay 

processes by sludge wastage (Orhon et al., 1994). 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Hans-Joachim+J%C3%B6rdening
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Growth, decay, and hydrolysis are basic processes which are involved in ASM 1. 

The basic relationship is given in Figure 2.3. According to the model, carbon 

removal is slightly coupled with nitrification. Heteretrophs utilize organic matter 

directly or after hydrolysis process whereas autotrophic bacteria utilize ammonia for 

their growth. Decay of organisms results in particulate matter formation which in 

turn can be utilized for growth following hydrolysis. 

 

Figure 2.3: Processes for Heterotrophic and Nitrifying Bacteria in ASM 1 (Jördening 

et al., 2005) 

The biodegradable matter is divided into soluble readily biodegradable, (SS) and 

slowly biodegradable substrate (XS). Some of the XS is assumed soluble. SS is 

assumed to be simple organic matter that is utilized by heterotrophic organisms for 

growth. On the other hand, regeneration of slowly biodegradable particulate matter 

on nonviable biomass is observed in death-regeneration model while the rest of it is 

converted to inert particulate product (XP). On the contrary, XS consists of relatively 

complex molecules that require enzymatic breakdown prior to utilization to SS such 

as hydrolysis. Heterotrophic biomass XH and autotrophic biomass XA are generated 

by growth on SS or by growth on ammonia nitrogen SNH. The biomass is lost via the 
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decay process and converted to some other particulate components (Orhon et al., 

1994). 

In endogenous decay model, SS is utilized in only growth process. In addition, 

generation of inert particulate products is linked to the active biomass decay, which a 

fraction of biomass (fEX) turns into inert particulate products, XP. These products do 

not go any further reaction and accumulate in the system until they are removed by 

sludge wastage. On the other hand, soluble inert product formation is assumed 

through decay of  a fraction of biomass (fES) (Orhon et al., 1994).  

The decrease of biomass can be given as (McKinney, 1962): 

H PdX dXdX
dt dt dt

= +                                                                                                    (3.1) 

Hb is defined as the endogenous decay coefficient. The change in active biomass is 

expressed as: 

H
H H

dX b X
dt

= −                                                                                                         (3.2) 

Generation rate of particulate inert products are given as follows : 

P H
EX

dX dXf
dt dt

=                                                                                                       (3.3) 

When the maximum growth rate of heteretrophs and half saturation constant of 

substarte are defined as Hμ
∧

 and, SK  respectively, biodegradation rate of SS which is 

directly used in growth is given as follows: 

( )
S SH

H
H S S

dS S X
dt Y K S

μ
=

+

)
                                                                                         (3.4) 

The decay associated soluble inert product formation rate can be given as follows: 

P
ES H H

dS f b X
dt

=                                                                                                        (3.5) 
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Where XK and hk  are maximum spesific hydrolysis rate and half saturation 

coefficient for hydrolysis of slowly biodegradable substrate, hydrolysis of this 

fraction to SS is given as: 

/
( / )

S S H
h H

X S H

dX X Xk X
dt K X X

=
+

                                                                                 (3.6) 

Matrix representation of basic relationships between process components of 

endogenous model is given in Table 2.3. The SI and XI components are not included 

in the matrix since they do not go through biochemical processes. 

 

Table 2.3: Simplified Matrix Representation of ASM1 Involving Endogenous Decay 

Component→ 1 2 3 4 5 6 Process Rate 

Process↓ SS XS XH XP SP S0 ML-3T-1 

Growth  1

HY
−

 

 1   
(1 )H

H

Y
Y
−

−  
( )

S
H H

S S

S X
K S

μ
+

)

 

Hydrolysis 1 -1     /
( / )

S H
h H

X S H

X Xk X
K X X+

 

Decay   -1 EXf  ESf  (1 )EX ESf f− − −  
H Hb X  

Parameter, ML-3 COD COD Cell COD COD COD O2  

 

2.5.2. Activated Sludge Model No. 3 

Activated Sludge Model No 3 (ASM3) is one of the multi component models 

involving carbon and nitrogen removal with additional substrate storage process to 

ASM1.  

In literature, it is reported that microorganisms are able to accumulate and store 

polymers in both mixed and pure cultures. In the presence of dynamic conditions, 

substrate is converted into internal storage products (van Loosdrecht et a.l, 1997). 

The storage products are used for the growth of heterotrophic biomass (Mahone et 
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al., 1999). The basic processes that are involved in ASM3 is shown in Figure 2.4. 

The substrate flow is given as storage, growth, and maintenance. 

 

Figure 2.4:. Processes for Heterotrophic Organisms in ASM 3 

According to metabolic model of storage compounds, PHB, acetate is taken by 

microorganism and it is converted into acetyl-CoA. Acetyl-CoA is used for 

biosynthesis, as energy source and in the storing processes. Famine conditions forces 

biomass to hydrolyze acetyl-CoA. On the other hand, glucose is taken up and used 

for the production of Glucose-6-phosphate. It is converted into glycogen and used for 

biomass synthesis. Glucose-6-phosphate is also an intermediate in catabolic 

reactions. When the external substrate is over, glycogen is used for the synthesis of 

Glucose-6-phosphate. 

Aerobic storage of readily biodegradable substrate is the main process that differs 

from ASM1. Under transient loading, heterotrophic bacteria can store organic matter, 

SS in the form of polyhydroxyalkanoate (PHA). SS is first stored in the biomass and 

converted to internal storage polymers in an energy requiring process. The storage 

products XSTO are used in aerobic heterotrophic growth process when there is not 

external substrate in the environment. In aerobic endogenous respiration process, all 

forms of biomass loss are involved including decay, endogenous respiration, lysis, 
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predation motility etc. The respiration process of storage products is the other main 

process that is similar to endogenous respiration in ASM1 that emphasize both 

storage products and biomass decay. In ASM3, conversion of XS to SS is also 

involved. Moreover, description of hydrolysis is the same that expresses the same 

surface reaction kinetics.  

In ASM3 substrate consumption rate is given as follows. STOk  is maximum rate of 

storage [M COD.(M Cell COD.T)-1]. 

S S
STO H

S S

dS Sk X
dt K S

=
+

                                                                                           (2.1) 

The storege product formation rate is given in equation 2.1 where STOY  is storage 

yield [M COD.(M COD.T)-1]. STOY  reflects the stoichiometric amount of substrate 

converted into storage products followed by utilization for growth. 

STO S
STO STO H

S S

dX SY k X
dt K S

=
+

                                                                                 (2.2) 

Growth of biomass under both feast and famine conditions is described depended on 

storage polymer concentration and half saturation constant of storage respectively 

STOX  [M COD L-3], and STOK [M COD.(M COD-1)].  

/
/

STO HH
H H

STO STO H

X XdX X
dt K X X

μ=
+

                                                                            (2.3) 

Decay rate of storage products is given depended on heterotrophic yield. 

/
/

STO STO HH
H

H STO STO H

dX X X X
dt Y K X X

μ
=

+
                                                                          (2.4) 

The process of endogenous decay is given as a function of endogenous decay rate of 

heterotrophs, Hb and HX : 

H
H H

dX b X
dt

=                                                                                                           (2.5) 
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Respiration of storage products is a function of endogenous respiration rate of 

storage products, STOb  and STOX  [T-1]. 

STO
STO STO

dX b X
dt

=                                                                                                     (2.6) 

For the assessment of stoichiometric and kinetic constants, respirometric studies are 

proposed associated with ASM1. The simplified matrix representation of ASM3 is 

given in Table 2.4. 

Table 2.4 Simplified matrix representation of ASM3 for organic carbon removal 

Component→ 1 2 3 4 5 6 7 Process Rate 

Process↓ S0O2 SS SI XS XI XH XSTO ML-3T-1 

Hydrolysis  (1 )SIf−  SIf−  -1    /
( / )

S H
h H

X S H

X Xk X
K X X+

 

Storage of SS ( )1 STOY− −  -1     STOY  S
STO H

STO S

Sk X
K S+

 

Growth on 
XSTO  

(1 )H

H

Y
Y
−

−      1 
1

HY
−  /

( / )
STO H

H H
STO STO H

X X X
K X X

μ
+

)

Endogenous 
Respiration 

(1 )If− −     If  -1  H Hb X  

Respiration of 
XSTO 

-1      -1 STO STOb X  

Parameter, 
ML-3 O2 COD COD COD COD Cell 

COD 

COD  

 

The modification of ASM3 model is proposed by Karahan (2004) involving 
additions to carbon removal process. Storage and primary growth on readily 
biodegradable substrate processes are introduced to the model. The reaction rates of 
the processes are based on Monod kinetics with limitations on the growth of 
ammonia nitrogen and bi-carbonate. In case of primary substrate presence, the 
secondary growth process is inhibited in the system. In remaining processes, stored 
products are used surface reaction kinetics are applied in the processes. 
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Table 2.5: Matrix Representaion of Modified ASM3 Structure (Karahan, 2004) 

Component→ 1 2 3 4 5 6 7 Process Rate 

Process↓ S0O2 SS SI XS XI XH XSTO ML-3T-1 

Hydrolysis  (1 )SIf−  SIf−  -1    /
( / )

S H
h H

X S H

X Xk X
K X X+

 

Aerobic Storage of 
COD 

1 STO

STO

Y
Y
−

−  1

STOY
−      STOY  O S

STO H
O O S S

S Sk X
K S K S+ +

 

Growth on SS  1

1

(1 )H

H

Y
Y
−

−  

1

1

HY
−     1  1

O NH HCO S
H H

O O NH NH HCO HCO S S

S S S S X
K S K S K S K S

μ
+ + + +

)  

Growth on XSTO  2

2

(1 )H

H

Y
Y
−

−      1 
2

1

HY
−  2

/
( / )

O S NH HCO STO H
H H

O O S S NH NH HCO HCO STO STO H

S S S S X X X
K S K S K S K S K X X

μ
+ + + + +

)  

Endogenous 
Respiration 

(1 )If− −     If  -1  O
H H

O O

Sb X
K S+

 

Respiration of XSTO -1      -1 O
H STO

O O

Sb X
K S+

 

Parameter, ML-3 
O2 COD COD COD COD Cell COD COD  
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3. MATERIALS AND METHODS 

3.1. Reactor Operation  

Activated sludge taken from Paşaköy Wastewater Treatment Plant used for 

acclimation purposes. Activated sludge was acclimated by feeding OECD (Table 

3.1) solution having 500 mgCOD /L in fill & draw reactors, which had a working 

volume of 3 or 4 L. A phosphate salt was introduced as both a source of phosphorus 

for the microorganisms and to maintain a stable pH. All other macro and 

micronutrients were added in sufficient quantities for biological growth. The 

temperatures of systems were kept constant at 20 OC. Dissolved oxygen 

concentration in the reactors was also kept at minimum of 3 mg/L. The reactors were 

operated at a sludge age of 10 days and a hydraulic retention time of one day. The 

system was operated until steady state were reached. After the acclimation period, 

fate and effect of 2,6 dihydroxybenzoic acid to activated sludge was investigated. 

During the experiments sufficient amount of macro and micronutrients were added to 

the solutions. TS EN ISO 9888 Biodegradation Test (Zahn Wellens Biodegradation 

Test) and respirometric tests were performed for these purposes.  

Table 3.1:  Composition of OECD Nutrient Solution (ISO 8192, 1999) 

Compound Feed Concentration [g/l] 

Peptone 16 

Meat Extract 11 

Urea 3 

NaCl 0,7 

CaCl2.2H2O 0,4 

MgSO4.7H2O 0,2 

K2HPO4 2,8 
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3.2. Analytical Techniques 

Suspended solids, COD and pH analysis were performed in order to monitor and 

control reactor operation. In the experiments, total and dissolved organic carbon, 

volatile fatty acids, glycogen, PHA, pH parameters and nitrogen were performed as 

defined in the Standard Methods (1998). On the other hand, COD samples were 

filtered through 0, 45 μm membrane filters and performed as described in the method 

proposed by ISO 6060 (1986). pH measurements were performed by a 520Aplus pH 

meter. Respirometric tests were also performed with Applitek RA respirometer with 

PC connection for overall evaluation and modeling purposes. Determination of 2,6 

dihydroxybenzoic acid were performed using   Lambda 25UV/VIS spectrometer at 

306,17 nm (Davey et al., 2000). Calibration curve used for the determination of 2,6 

DHBA is given in Figure 2.1. 
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Figure 3.1: Calibration Curve for Determination of 2,6 DHBA 

 

Glycogen and glucose analysis were performed using a BIORAD HPX87H column 

in Shimiadzu HPLC Systems, equipped with a Shimiadzu SCL-10A vp system 

controller, a LC-10A vp pump, a DGU-14A degaser, a SPD-10A vp UV-Vis 

detector. RID-10A refractive index ditector, SIL-10AD vp autoinjector, CTO-10AC 

vp oven, Class-VP software. Volatile fatty acids were analyzed with GC (Agilent 

6890 N) using a flame ionization detector (FID) with a HP-FFAP capillary column 
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having the inner diameter and length of the column of 0,53 mm and 10 m 

respectively. 

3.2.1. Biodegradation Test    

For the determination of 2,6 dihydroxybenzoic acid biodegradation, Zahn Wellens 

Test as standard method was applied in this study (OECD 302 B Biodegradation 

Test, Zahn Wellens Test, ISO 9888). In the biodegration tests, peptone mixture 

acclimated sludge was used. Loading rate (S0/X0) was selected as 0.5 g COD/g VSS. 

2,6 dihydroxybenzoic acid having 500 mgCOD/lt was fed in the reactor. 

3.2.1.1. Principle of TS EN ISO 9888 

This method is specified for the evaluation in aqueous medium of ultimate 

biodegradability of organic compounds from water at given concentrations. In 

addition, primary biodegradability and the total elimination from water is also 

evaluated (TS EN ISO 9888). 

Biodegradation above 20% of measured DOC removal or COD may be regarded as 

evidence of inherent, primary biodegradability, whereas biodegradation above 70% 

of measured as DOC removal or COD may be regarded as evidence of inherent, 

ultimate biodegradability. Test duration and biodegradation rates are not very strict 

(TS EN ISO 9888). 

1 1

1 100cTt cBt
t

cT cB

D ρ ρ
ρ ρ

⎡ ⎤−
= − ×⎢ ⎥−⎣ ⎦

                                                                                      (2.1) 
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0 0

Total elimination
DOC concentration (mg/lt) at time t in the test suspension

e

CT

D
ρ

=
=

 

100S T
S

S

D ρ ρ
ρ
−

= ×                                                                                                  (2.3) 

Primary degradation
concentration of test compound (mg/lt) at time t in the test supension
concentration of test compound (mg/lt) at time t in the abiotic control

S

T

S

D
ρ
ρ

=
=
=

 

3.2.1.2. Experimental Procedure 

A mixture containing the test substance, mineral nutrients and a relatively large 

amount of activated sludge in aqueous medium was agitated and aerated at 20-25°C 

in the dark or in diffuse light for up to 28 days. Blank controls, containing activated 

sludge and mineral nutrients but no test substance, were run in parallel. The 

biodegradation process was monitored by determination of DOC and COD in filtered 

samples taken at defined time intervals. The ratio of eliminated DOC and COD was 

corrected for the blank, after each time interval, to the initial DOC value was 

expressed as the percentage biodegradation at the sampling time. The percentage 

biodegradation was plotted against time to give the biodegradation curve. Specific 

analysis of the test substance were performed.  

3.2.2. Respirometric Analysis 

The respirometric tests were conducted with relevant acclimated biomass seeding 

alone to obtain endogenous oxygen uptake rate (OUR) level of biomass. Samples 

with desired S0/X0 ratios are added to the reactor and the OUR data was monitored. 

Experimental studies are conducted by using activated sludge operated at the sludge 

age of 10 days and 2 days. The summary of respirometric studies is given in Table 

3.2. 

Experiments representing the same conditions in respirometric tests were conducted 

in parallel. VSS was found between 1700-2000 mg/L in the experiments. The 

monitored data for experiment was detailed in Table 3.3.  
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Table 3.2: Experimental Conditions Conducted 

Run Substrate Type 

Sludge 
Age 

(day) 

Acclimation 
Period    
(day) 

Run 1.1 peptone mixture (500 mg COD/L) 10 Control 

Run 1.2 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

10 0. 

Run 1.3 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

10 4. 

Run 1.4 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

10 15. 

Run 1.5 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

10 30. 

Run 1.6 2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

10 30 

Run 2.1 peptone mixture (500 mg COD/L) 2 Control 

Run 2.2 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

2 0 

Run 2.3 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

2 2. 

Run 2.4 peptone mixture (500 mg COD/L) + 
2,6 dihydroxybenzoic acid (500 mg 
COD/L) 

2 4. 
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Table 3.3: Monitored Data for Experimental Runs 
Time pH SS/VSS COD 

Total 

COD 

Filtered

TOC 

Total 

TOC 

Filtered 

TKN 

Total 

TKN 

Filtered 

TON 

Filtered

VFA PHA Glycogen Glucose

-10 min  x x x x x x x x x x x x 

5 min   x x x x   x x x x x 

20min x  x x x    x x x x x 

60 min x  x x x x x x x x x x x 

90 min   x x     x x x x x 

120 min x  x x x x x x x x x x x 

150 min   x x     x x x x x 

180 min   x x     x x x x x 

240 min x  x x x x x x x x x x x 

300 min x  x x     x  x x x 

430 min x  x x x x x x x x x x x 

24 h x x x x x x x x x x x x x 
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4. RESULTS AND DISCUSSION   

The averaged reactor analysis results operated at SRT of 10 days at steady state 

condition for the peptone mixture reactor in a period of approximately 5 months were 

represented in Figure 4.1. The peptone mixture reactor characteristics at steady state 

conditions was given in Table 4.1 
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Figure 4.1: Monitoring Results of the Peptone Mixture Reactor (SRT=10 days) 

 

Table 4.1: The Peptone Mixture Reactor Characteristics at Steady State 

S0/X0 SS VSS VSS/SS CODinf CODeff 

Removal 

Efficiency Substrate 
Type 

mgCOD/ 

mgVSS 

mg/L mg/L mgVSS/ 

mgSS 

mg/L mg/L % 

Peptone 
mixture 

0,25 2500 2050 0,83 500 32 0,94 
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Experiments representing the same conditions in respirometric tests were conducted 

in parallel for the peptone mixture and 2,6 dihydroxybenzoic acid mixture. The 

loading ratio (So/Xo) were aproximately 2000 mg VSS/L for all runs.  

Eleven experiments were performed to evalute of the sludge age effect on 

acclimation period of 2,6 dihydroxybenzoic acid. Oxygen uptake rate measurements 

together with parameters given in Table 4.1 were conducted on peptone mixture 

alone and mixture of 2,6 dihydroxybenzoic acid and peptone mixture for sludge of 

10 days.  

Figure 4.2-4.5 illustrate the data obtained for Run 1.1. 
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Figure 4.2: Filtered COD and DOC Concentrations versus Time (Run 1.1) 
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Figure 4.3: PHA versus Time (Run 1.1) 
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Figure 4.4: pH versus Time (Run 1.1) 
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Figure 4.5: OUR Data versus Time (Run 1.1) 

 

After the peptone mixture reactor acclimation, the peptone mixture and 2,6 DHBA 

addition was started by using the peptone mixture acclimated sludge for sludge age 

of 10 days and a hydraulic retention time of 1 days. SS, VSS and COD results were 

given in Figure 4.6. 
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Figure 4.6: Monitoring Results of the Peptone Mixture and 2,6 DHBA Reactor 
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Run 1.2 representing  first time addition of 2,6 DHBA was performed with 500 

mgCOD/L peptone mixture and 500 mg COD/L 2,6 DHBA by using the peptone 

mixture acclimated sludge. Run 1.2 results are illustrated in Figure 4.7-4.11. 
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Figure 4.7: COD Concentration versus Time (Run 1.2) 
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Figure 4.8: DOC Concentration versus Time (Run 1.2) 
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Figure 4.9: 2,6 DHBA Concentration versus Time (Run 1.2) 
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Figure 4.10: pH versus Time (Run 1.2) 
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Figure 4.11: OUR Data versus Time (Run 1.2) 

 

Addition of 2,6 DHBA with peptone mixture resulted in decrease of maximum 

oxygen uptake rate from 115 mg/L.h to 51 mg/L.h. The results indicate that 2,6 

DHBA had an inhibitory effect of 56% on peptone mixture acclimated activated 

sludge. However, the trend of the OUR profile remained the same. 

2,6 DHBA removal did not observed. However, the trend of peptone COD 

degradation did not change leading to decrease in COD degradation efficiency. 

Storage of PHA were also observed which is about 20 mg COD/L before the addition 

of peptone and 2,6 DHBA. PHA storage increased to 50 mg COD/L during the 

experiment and decreased to its initial concentration. pH was about 8 during a one 

day period with a slight increase. 

Run 1.3 experiment representing  forth day of 2,6 DHBA addition was conducted 

with 500 mg COD/L peptone mixture and 500 mg COD/L 2,6 DHBA by using the 

peptone mixture and 2,6 DHBA acclimated sludge. Run 1.3 results are given in 

Figure 4.12-16. 
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Figure 4.12: COD Concentration versus Time (Run 1.3) 
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Figure 4.13: DOC Concentration versus Time (Run 1.3) 
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Figure 4.14: 2,6 DHBA Concentration versus Time (Run 1.3) 
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Figure 4.15: pH versus Time (Run 1.3) 
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Figure 4.16: OUR Data versus Time (Run 1.3) 

 

 

Oxygen uptake rate decreased to 55 mg/L.h on the forth day of acclimation 

indication inhibition of 50%. On the other hand, the trend of the OUR profile had 

changed. 

2,6 DHBA removal did not observed. The trend of peptone COD degradation did not 

change leading to decrease in COD degradation efficiency. DOC experiments 

supported the decreased in COD concentration. pH was about 7 during a one day 

period with a slight increase. 

Run 1.4 representing  fifteenth day of 2,6 DHBA addition was conducted with 500 

mg COD/L peptone mixture and 500 mg COD/L 2,6 DHBA by using the peptone 

mixture and 2,6 DHBA acclimated sludge. Run 1.4 results are illustrated in Figure 

4.17-21. 
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Figure 4.17: COD Concentration versus Time (Run 1.4) 
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Figure 4.18: DOC Concentration versus Time (Run 1.4) 
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Figure 4.19: 2,6 DHBA Concentration versus Time (Run 1. 4) 
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Figure 4.20: pH versus Time (Run 1.4) 
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Figure 4.21:  OUR Data  versus Time (Run 1.4) 

 

Oxygen uptake rate increased to 100 mg/L.h on the fifteenth day of acclimation and 

also OUR profile also changed. 

2,6 DHBA removal was observed during hydraulic retention time with an efficiency 

of 100%. The trend of peptone COD degradation did not change. DOC experiments 

supported the decreased in COD concentration. pH was about 7 with a slight increase 

during the experiment. 

Run 1.5 representing  thirtieth day of 2,6 DHBA addition was conducted with 500 

mgCOD/L peptone mixture and 500 mg COD/L 2,6 DHBA by using the peptone 

mixture and 2,6 DHBA acclimated sludge. Run 1.5 results are illustrated in Figure 

4.22-25. 
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Figure 4.22:  COD Data versus Time (Run 1.5) 
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Figure 4.23:  DOC Concentration versus Time (Run 1.4) 
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Figure 4.24:  2,6 DHBA Concentration versus Time (Run 1.5) 
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Figure 4.25:  pH versus Time (Run 1.5) 

 

 

Run 1.6  thirtieth day of 2,6 DHBA addition was conducted with only 500 mg 

COD/L 2,6 DHBA by using the peptone mixture and 2,6 DHBA acclimated sludge. 

Run 1.6 results are illustrated in Figure 4.26. 
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Figure 4.26:  OUR Data versus Time  (Run 1.6) 

 

 

Oxygen uptake rate was about 100 mg/L.h on the thirtieth day of acclimation in case 

only 2,6 DHBA was applied. The trend of the OUR profiles obtained were 

completely different from the addition of peptone and 2,6 DHBA mixture.  

2,6 DHBA removal efficiency was about 100%. The trend of peptone COD 

degradation did not change. DOC experiments supported the decrease in COD 

concentration. pH was about 7 with a slight increase during the experiment. 

The averaged reactor analysis results operated at SRT of 2 days at the steady state 

conditions in a period of approximately 1 month is presented in Figure 4.28. The 

peptone mixture reactor characteristics under steady state conditions for SRT of 2 

days are given in Table 4.3. 
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Figure 4.27: Monitoring Results of the Peptone Mixture Reactor (SRT=2 days) 

 

 

 

Table 4.2: Characteristics of the Peptone Mixture Reactor under Steady State 

Conditions 

Su
bs

tr
at

e 
T

yp
e 

S0/X0 

mgCOD/ 

mgVSS 

SS 

mg/L 

VSS  

mg/L 

VSS/SS  

mgVSS/ 

mgSS 

CODinf 

mg/L 

CODeff  

mg/L 

Removal 

% 

Peptone 
mixture 

0,25 375 360 0,90 500 10 0,98 

 

Figure 4.29-4.30 illustrate the data obtained for Run 2.1. 
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Figure 4.28: COD and DOC Concentration versus Time (Run 2.1) 
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Figure 4.29: PHA versus Time (Run 2.1) 
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Figure 4.30: pH versus time (Run 2.1) 
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Figure 4.31: OUR Data versus Time (Run 2.1) 

 

After the peptone mixture reactor acclimation of 2 days, the peptone mixture and 2,6 

DHBA addition was started by using the peptone mixture acclimated sludge for 

sludge age of 2 days and a hydraulic retention time of 1 days. SS, VSS and COD 

results for 4 day period are given in Figure 4.33. 
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Figure 4.32: Monitoring Results of the Peptone Mixture Reactor (θx=2 days) 

 

Run 2.2 presenting first time addition of 2,6 DHBA was performed with 500 mg 

COD/L peptone mixture and 500 mg COD/L by using the peptone mixture sludge. 

Run 2.2 results are illustrated in Figure 4.34-4.38. 
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Figure 4.33: COD Concentration versus Time (Run 2.2) 
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Figure 4.34: DOC Concentration versus Time (Run 2.2) 
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Figure 4.35: 2,6 DHBA Concentration versus Time (Run 2.2) 
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Figure 4.36: pH versus Time (Run 2.2) 
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Figure 4.37:  OUR Data versus Time (Run 2.2) 

 

Addition of 2,6 DHBA with peptone mixture resulted in decrease of maximum 

oxygen uptake rate from 100 mg/L.h to 70 mg/L.h. The results indicate that 2,6 

DHBA had an inhibitory effect of 30% on peptone mixture acclimated activated 

sludge whereas the trend of the profile remained the same. 
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2,6 DHBA removal did not observed. However, the trend of peptone COD 

degradation did not change leading to decrease in COD degradation efficiency. 

Storage of PHA were also observed which is about 5 mg COD/L before the addition 

of peptone and 2,6 DHBA. PHA storage increased to 20 mg COD/L during the 

experiment and decreased to its initial concentration. pH was about 7 during a one 

day period with a slight increase. 

Run 2.3 presenting  second day of acclimation was performed with 500 mg COD/L 

peptone mixture and 500 mg COD/L 2,6 DHBA. Run 2.2 results are illustrated in 

Figure 4.39-4.44. 
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Figure 4.38: COD Concntration versus Time (Run 2.3) 
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Figure 4.39: DOC Concentration versus Time (Run 2.3) 
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Figure 4.40: DOC Concentration versus Time (Run 2.3) 
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Figure 4.41: 2,6 DHBA Concentration versus Time (Run 2.3) 
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Figure 4.42: pH versus Time (Run 2.3) 
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Figure 4.43: OUR Data versus Time (Run 2.3) 

 

 

Addition of 2,6 DHBA with peptone mixture resulted in decrease of maximum 

oxygen uptake to 85 mg/L.h. The results indicate that 2,6 DHBA had an inhibitory 

effect of 15% on peptone mixture acclimated activated sludge and the trend of the 

profile had changed. 

2,6 DHBA removal was observed. The removal efficiency was about 55%. The trend 

of peptone COD degradation has changed leading to increase in COD degradation 

efficiency. pH was about 7 with a slight increase during the experiments.   

Run 2.4 presenting forth day of acclimation was performed with 500 mg COD/L 

peptone mixture and 500 mg COD/L 2,6 DHBA. Run 2.2 results are illustrated in 

Figure 4.45-4.49. 
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Figure 4.44: COD Concentration versus Time (Run 2.4) 
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Figure 4.45: DOC Concentration versus Time (Run 2.4) 
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Figure 4.46: 2,6 DHBA Concentration versus Time (Run 2.4) 
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Figure 4.47: pH versus Time (Run 2.4) 
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Figure 4.48: OUR Data versus Time (Run 2.4) 

 

Addition of 2,6 DHBA with peptone mixture resulted in maximum oxygen uptake of 

60 mg/L.h on the forth day of acclimation. The OUR profile also changed and 

became similar to OUR profile on fifteenth day of acclimation for SRT of 10 days.  

2,6 DHBA removal was observed. The removal efficiency was about 100%. The 

trend of peptone COD degradation changed leading to increase in COD degradation 

efficiency. pH was about 7 with a slight increase during the experiments.   

Zahn Wellens Biodegradation Test (TS EN ISO 9888, 1999) results are given in 

Table 4.2, Figure 4.49-4.51. 

Table 4.3: Results of Biodegradation Test (TS EN ISO 9888) 
t  
 

(day) 

pH COD  
 

(mg/L) 

2,6 DHBA  
 

(mg/L) 

Total 
Degradation 

(%) 

Biodegradation 
 

(%) 
0,00 7,49 446 387 0   
0,05 8,02 331 385 27 0 

1 7,97 305 336 34 9 
5 8,23 17 3 98 97 
7 8,36 7 1 100 100 
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Figure 4.49: COD versus Time for Biodegradation Test (TS EN ISO 9888) 
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Figure 4.50: Biodegradation of 2,6 DHBA (TS EN ISO 9888) 

 

Biodegradation test results showed that 2,6 DHBA can be totally biodegraded after 7 

day with a unacclimated sludge and 2,6 DHBA has no vitalization. 
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Modeling results of Run 1.1 according to ASM1 and ASM3 are given with 

experimental data in Figure 4.51-4.52. 
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Figure 4.51: ASM1 Simulation (Run 1.1) 

 

 

0

20

40

60

80

100

120

140

0 0,05 0,1 0,15 0,2 0,25 0,3

Time, day

O
U

R
, m

g/
L

.h

model
data

 

 

 Figure 4.52: ASM3 Simulation of (Run 1.1) 
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Model simulation results of Run 2.1 according to ASM1 and ASM3 are given with 

date in Figure 4.53-4.54. 
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Figure 4.53: ASM1 Simulation of (Run 2.1) 
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Figure 4.54: ASM3 Simulation (Run 2.1) 
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The model simulation results based on ASM1 and ASM3 of Run 1.1 and Run 2.1 are 
given in Table 4.5 and 4.6. 
 

Table 4.4: Estimated Dual Hydrolysis Model Parameters for Run 1.1 and Run 2.1 
(ASM No:1) 

SRT 
Model Parameters & Components 

10 day 2 day 10 day* 

Hμ
) , day-1 5 12,7 5 

Growth 
Kinetics 

SK , mgCOD/l 20 20 23 

hk , day-1 3,2 9,1 1,78 

hxk , day-1 1,3 10 0,48 

XSK , grCOD/grcellCOD 0,02 0,08 0,03 

XXK , grCOD/grcellCOD 0,04 0,4 0,03 

Hydrolysis 
Kinetics 

Hb , day-1 0,13 0,24 0,05 

Assumptions: HY =0,6 grcellCOD/grCOD * Insel et al., 2007 

Modeling results of ASM1 for SRT of 10 and 2 days indicate that maximum 

heterotrophic growth rate is 5 day-1 for SRT of 10 days whereas it was found 12,7 

day-1 for SRT of 2 days.  

The estimated kinetic parameters for SRT of 10 days were similar to reported values 

by Insel et al. (2007). KS and Hμ
) values for both of the operating conditions were 

found 20 and 5 gr COD/gr cellCOD respectively. These values are in the range of 

typical values of domestic sewage, which are reported as 6 day-1 for Hμ
) and 20 gr 

COD/gr cellCOD for KS (Orhon et al., 1994). Simulation estimations for Hμ
)  

changed depended on the sludge age. In experiments conducted at SRT of 2 days, a 

considerable increase of Hμ
)  and Hb  was observed to 12,7 day-1 and 0,24 day-1. 

However, endogenous decay rate for SRT=10 day was observed 0,13 day-1.  
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Increase in Hμ
) points out the relationship of physiological state of microbial 

cultures. As it was reported by recent studies, Hμ
) level is a function of r-RNA level 

of the cells and the activity of the transporting enzymes involved in substrate 

utilization. r-RNA level increase stimulate protein synthesis mechanism leading to 

increase in maximum growth rate (Kavarova-Kovar and Egli, 1998). Moreover, 

transport enzymes are also affected, which in turn increases its affinity, lower KS 

values, to the substrate available. Half saturation constant for the hydrolysis of 

slowly and rapidly hydrolysable substrate also increased based on model simulation 

when compared to the parameters estimated for SRT of 10 days. In this operating 

condition, increasing hydrolysis rate may result in available substrate for both growth 

and hydrolysis process although affinity of enzymes (KS) remained constant for 

growth and or decreased (KX) for hydrolysis involved in SS utilization. 

Table 4.5: Estimated Model Parameters for Run 1.1-Run 2.1. (ASM No:3) 

SRT 
Model Parameters & Components 

10 day 2 day 10 day* 

Hμ
) , day-1 7 9,2 6,7 

SK , mgCOD/l 20 20 23 

STOk , day-1 2 2 1 

Growth 
Kinetics 

STOb , day-1 0,5 0,5 2,5 

hk , day-1 6,5 9,8 6,1 

hxk , day-1 2,0 5,3 - 

XSK , gr COD/grcellCOD 0,05 0,11 0,22 

XXK , grCOD/grcellCOD 0,2 0,2 - 

Hydrolysis 
Kinetics 

Hb , day-1 0,2 0,2 0,05 

Assumptions: HY =0,6 grcellCOD/grCOD, STOY =0,8 grCOD/grCOD  

*Insel et al., 2007 
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Modeling results of ASM3 based on data obtained from PHA analysis for SRT of 10 

and 2 days indicate that maximum heterotrophic growth rate is 7 day-1 for SRT of 10 

days whereas it was found 9,2  day-1 for SRT of 2 days.  

The estimated kinetic parameters for SRT of 10 days were similar to reported values 

by Insel et al. (2007). KS and Hμ
) values for both of the operating conditions were 

found 20 and 5 respectively as in the case of ASM1 simulation.  

Simulation estimations for Hμ
) changed depended on the sludge age. In experiments 

conducted at SRT of 2 days, a considerable increase of Hμ
)  and Hb  was observed to 

9,2 day-1 and 0,2 day-1. However, endogenous decay rates for SRT=10 day was 

observed 0,05 day-1.  

Half saturation constant for the hydrolysis of slowly and rapidly hydrolysable storage 

compounds also increased based on model simulation when compared with the 

parameters estimated for SRT of 10 days. In this operating condition, increasing 

hydrolysis rates may result in available substrate for both growth and storage process 

although affinity of enzymes, KS, and KX involved in SS utilization remained constant 

or decreased. 
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5. CONCLUSION 

2,6 DHBA is one of the phenolic compounds which is present in high concentrations 

in olive mill wastewater. Although it is reported as non-biodegradable in the tests 

which pure cultures were studied, biodegradability test results indicate that 2,6 

DHBA is ultimately biodegradable. 

Respirometric experiments conducted in parallel to batch tests showed a useful 

information about the inhibitory effect of 2,6 DHBA and it was followed by 

acclimation of activated sludge to this compound. The only peptone fed reactor 

operated with an efficiency of 94% COD removal. The inhibition of 2,6 DHBA when 

it is fed with peptone mixture was 56%. The removal of chemical compound was not 

observed for the first and forth day of acclimation. Acclimation of activated sludge to 

2,6 DHBA was observed on the fifteenth day of acclimation period resulting in 

changes in OUR profiles. The period of thirty days also supported the acclimation of 

activated sludge to 2,6 DHBA.  

Similar experiments conducted on activated sludge systems operated with SRT of 2 

days showed 30% inhibition of oxygen uptake rate, which is lower than obtained for 

high sludge retention time. The acclimation of the system to 2,6 DHBA was 

observed on the second day of acclimation period and 100% removal was achieved 

on the forth day of acclimation with a similar OUR profile obtained in higher sludge 

ages.  

Peptone degradation trend and efficiency of the system did not change during 

hydraulic retention time for SRT of 10 and 2 days although peptone degraded slowly 

compared to control experiments. Both of the models simulated led to estimation of 

higher maximum growth rates for the systems operated with sludge age of 2 days, 

when the two systems are compared in terms of modeling results. Storage compound 
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analysis supported that these systems stored small amount of PHA and used available 

substrate for their growth resulting in high maximum growth rates. 

Model simulation estimations proved the dependence of kinetic parameters to 

physiological state of microbial cultures, feeding pattern of substrates and culture 

history. In small sludge ages, high amount of substrate was available. Thus, the 

increase of r-RNA level in the cell led to increase in protein synthesis of microbial 

cells. They caused increase in maximum growth rate, although affinity of enzymes to 

readily biodegradable substrate remained the same and increased for hydrolysable 

substrate.  

In conclusion, 2,6 DHBA has an inhibitory impact on peptone degradation which 

cause decrease on peptone degradation rate but does not change removal efficiency 

at both high and low sludge ages. Acclimation to 2,6 DHBA is possible in the 

presence of available substrate, peptone mixture which may be a result of 

cometabolism.       
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