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Modelling Electricity Prices with Forward Looking Capacity Constraints

Abstract

We present a spot price model for wholesale electricity prices which in-

corporates forward looking information that is available to all market players.

We focus on information that measures the extent to which the capacity of

the England and Wales generation park will be constrained over the next 52

weeks. We propose a measure of ‘tight market conditions’, based on capacity

constraints, which identifies the weeks of the year when price spikes are more

likely to occur. We show that the incorporation of this type of forward looking

information, not uncommon in the electricity markets, improves the modeling

of spikes (timing and magnitude) and the different speeds of mean reversion.

Keywords: capacity constraints, mean reversion, electricity indicated demand,

electricity indicated generation, regime switching model.

1 Introduction

The study of commodities and its role in the economy has a long tradition in financial

economics. In theory, there are two key factors that link commodity spot and futures

prices: storage costs and convenience yield. For example, early studies use the theory

of storage to frame the relationship between spot and forward prices or between two

forward prices of a commodity, for example the seminal work by Working (1949) and

Brennan (1958). More recently, a number of models have assumed that these key

factors are not deterministic and a series of alternative approaches have examined

pricing applications assuming stochastic convenience yield, (Gibson and Schwartz
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(1990) and Schwartz (1997)), or both stochastic convenience yield and interest rates,

(Hilliard and Reis (1998) Miltersen and Schwartz (1998) and Casassus and Collin-

Dufresne (2005)). Additional work based on the theory of storage includes that of

Fama and French (1988) who look at business cycles and the behavior of metal prices.

Eydeland and Geman (1999) argue that in the case of electricity, the existence of a

convenience yield and the spot-forward relationship essentially collapses.

Another strand of the commodity literature has focused on understanding why

futures are biased estimators of spot prices and what is the economic and financial

rationale behind the emergence of situations of backwardation and contango in these

markets. Studies along these lines include the work of Hirshleifer (1988), which looks

at equilibrium models that explain how markets are organized and how market players

hedge their positions in the forward markets. Further, the work of Fama and French

(1987) aims at explaining the connection between spot and futures prices under stor-

age considerations or by considering futures prices as expected spot prices plus a risk

premium; Litzenberger and Rabinowitz (1995) examine the relation between spot and

futures oil prices. Routledge, Seppi, and Spatt (2000) look at and equilibrium model

of the term structure of forward prices for storable commodities. Bessembinder and

Lemmon (2002), among other things, introduce two categories of players in electricity

markets in order to derive an equilibrium approach in power markets.

Commodities have always been considered as an asset class very different from

the more traditional ones such as equity, bonds, etc. However, although electricity

is considered to be a member of the commodity class, it had not been the focus of

attention in the literature as power markets were regulated around the world. It was

not until the onset of deregulation in Western Europe, North America, New Zealand

and Australia in the early 1990s, that the trading of power and related instruments
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became an interesting and attractive field of research for the academic community

and industry participants.

One of the most distinctive features of power markets is that electricity cannot

be stored, or it is too expensive to do so, and this characteristic alone is traditionally

considered as the fundamental and unique reason that places electricity, within its

asset class, on a league of its own. The inability to store electricity in a cost-effective

manner renders useless traditional arguments of cash and carry, dynamic hedging

and buy-and-hold strategies which are considered the cornerstone of no-arbitrage

arguments employed to price the majority of traded instruments.

However, the inability to store electricity is not solely responsible for the exclusive

idiosyncrasies of power markets. Price formation in these markets is intrinsically

different because, unlike any other financial assets, there are further characteristics

that contribute to the unique behavior of prices, either on an equal footing or by

magnifying the effects of non-storability. These characteristics include: number of

players (generators and retailers), composition of generation park and market design.

The number of players in this market is very small. On the generation side there

are few players per region or country as well as few retailers. Thus, the actions

or behavior of one player alone, for example a generating company, will be able to

influence equilibrium spot and futures prices. For example in the UK there are around

50 companies that own generating capacity. A closer look at these companies reveals

that 50% of production capacity is owned by only four companies, 90% of capacity is

owned by 15 companies and over 99% is owned by 28 companies (see Table 7 in the

appendix).

Further, the composition of the generation park also plays a crucial role in the

determination of price dynamics. On the supply side, the ‘supply stack’ reflects
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the amount of electricity that generators are willing to produce at different prices.

Therefore, the composition and heterogeneity of the generation park will determine

the shape of the curve which usually exhibits a ‘kink’ to reflect a step change between

low and high marginal production costs of the different plants. On the other hand,

aggregate demand is hovering around this kink making clearing prices very susceptible

to abrupt changes in supply and/or demand. The supply stack present in the UK

is therefore dominated by the composition of its generation capacity, as shown in

Table 1 below, and consequently seasonal levels and trajectile properties of prices will

inherit the idiosyncrasies of the generation park.

Finally, the architecture and design of these markets clearly affect price levels

and price dynamics. One clear example is how the behavior of prices in England

and Wales changed when the mechanism by which the market operated underwent

a series of alterations as a result of the introduction of the New Electricity Trading

Arrangements in March 2001. Moreover, the running of the electricity market in

England and Wales, plus the recent addition of Scotland, is in the hands, by design,

of the System Operator known as the National Grid Company (NGC).

One of the principal activities of the NGC is to organize the electricity market

which requires, among other duties, that it provides a wealth of information to market

players. There are two types of information that are publicly available: historical or

out-turn data and forecasts. Historical data covers areas that include out-turn load

(realized demand), out-turn capacity margins, fuel usage, etc. On the other hand, the

NGC publishes forecasts on a range of crucial variables including demand, capacity

margins, indicated demand and indicated generation.1 These forecasts clearly affect

the behavior of players in terms of prices and quantities they are willing to buy or

1We examine these forecasts in detail in Section 3.1.
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sell depending on market conditions. For example, if the NGC forecasts low levels

of demand, some generators will see this as an indication that some or none of their

capacity will be called on by the NGC to satisfy demand. Similarly, if the NGC

forecasts of expected demand is high and capacity margin is low, this sends a clear

signal to companies that own versatile generators, such as peaking plants, that they

might be called on to generate power and that clearing prices will be high to meet

the costs of the marginal plants coming online.

The unique characteristics of power markets therefore call for tailor-made models

that can replicate the stylized facts of their price dynamics, but ideally, must also take

into account other information and characteristics of this peculiar market. The main

contribution in this article is to argue for the first time that electricity spot models

should incorporate forward looking data which are made available to all players by

the System Operator; for demand and capacity forecasts are already incorporated in

the information set upon which market players make buy and sell decisions.

The rest of this article is organized as follows. Section 2 reviews existing models

and approaches proposed in the literature. In section 3 we present the model and

discuss in detail the inclusion of forward looking data: demand and capacity forecasts.

Section 4 discusses the calibration of the model. Section 5 shows the results and

section 6 concludes.
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2 Existing models and approaches in power mar-

kets

The most popular approach to model power prices adopts a reduced-form approach.

Models in this category are mainly concerned with capturing the three main charac-

teristics of its price dynamics (seasonality, large jumps and mean reversion) with a

view to pricing forwards, options and other derivatives such as interruptible contracts.

Recent models agree on the importance of including a deterministic seasonal trend

which is estimated from historical data. For example, in Lućıa and Schwartz (2002)

the deterministic seasonal component is responsible for capturing any relevant pre-

dictable component of electricity prices. They include a constant and two terms that

are responsible for the variation in price levels between working and non-working

days and the seasonal evolution of prices throughout the year. Similarly, Escribano,

Peña, and Villaplana (2002) take into account weekly and monthly seasonality by

means of daily and monthly dummies and sinusoidal functions. Finally, Cartea and

Figueroa (2005) construct an historical deterministic function by matching a Fourier

series to the averages of the historical months, while Geman and Vu-Nhat (2005)

model seasonality by sine and cosine functions.

It is important to note that although the inclusion of a deterministic seasonal

component, based on historical data, is widespread in the literature, the question

of how stable the seasonality function must not be overlooked. For instance, the

seasonal pattern in the Nord Pool market, where over 50% of the generation capacity

is based on hydro, is linked to the amount of snow which has recently fallen, how full

the reservoirs are and when and where will snow melt. Consequently, average prices

in any given year in the Scandinavian market will reflect whether the previous year
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was wet, normal or dry. This raises concerns in the ability of an historical seasonal

trend to capture average levels in markets like Nord Pool that depend so heavily on

hydro-power. Similarly, in the UK, the principal sources of generation are coal and

gas plants, thus future generation costs will also depend on how these markets are

developing. Therefore, the composition of the generation park is one of the driving

forces behind average power prices reflected in seasonal trends. The use of estimates

for seasonal trends that are solely based on historical data will fail to reflect situations

where fuel prices or reservoir levels have diverged from historical figures.

Another key component of spot-based models in electricity markets is the inclu-

sion of jumps. Different versions of mean reverting jump-diffusion models applied to

electricity markets have been considered. For instance, in Cartea and Figueroa (2005)

and Hambly, Howison, and Kluge (2007) large jumps or spikes occur according to a

homogeneous Poisson process where the intensity parameter of the counting process

is given by the historical average number of jumps. Geman and Roncoroni (2006)

and Benth, Kallsen, and Meyer-Brandis (2007) improve on this by considering an

inhomogeneous Poisson process where the jump intensity is a deterministic function,

also based on historical data.

However sophisticated and accurate the modeling of the stochastic arrival of jumps

is, the use of historical data to estimate or calibrate its parameters will only provide

a broad pattern for the jump-intensity that triggers large movements in electricity

prices. Although this approach might work on average, it will clearly miss the timing

of crucial events produced by constraints in the system such as plant outages, surges

in demand, periods where idle capacity is at low levels, some of which will not come

as a surprise to market players.

In this article we focus on the England and Wales wholesale electricity market.
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To model price dynamics, rather than directly modeling the intensity parameter of

jumps, we consider a regime-switching model where regime changes are governed by

a deterministic parameter alternating between a high-intensity level, labeled ‘high

regime’, during which the probability of observing spikes is high, and a low-intensity

level, labeled ‘low regime’, where prices may exhibit moderate jumps, if any. Central

to our model is the way in which the spot dynamics switch between these two regimes.

Changes between these two states of activity will be determined by an exogenous

switching variable that is linked to publicly available forecasts, as will be explained in

detail in the following section. Moreover, we propose the use of a seasonal component

based on gas forward prices instead of the customary approach based on historical

spot prices.

3 The model

A simple inspection of market data reveals that mean reversion is present in wholesale

electricity prices and the speed at which prices mean revert is not constant. Large

positive spikes in the market are associated to unexpected shocks to the demand or

supply side. For example, unanticipated surges in demand, that can only be met

by calling on plants with high marginal production costs, result in short-term high

prices. Similarly, shocks to the supply side come in the form of unforeseen plant

failures that must be resolved by calling on other sources of generation with higher

marginal costs. Generally, these high-impact deviations are short-lived and markets

are back to normal within a few days. Furthermore, other price shocks not considered

to be spikes, although being the result of unexpected variations in both demand and

supply that are also short-lived, exhibit a mean reversion which is considerably slower
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than the speed at which large spikes die out.

Hence, we propose a model that captures, among other key elements such as sea-

sonality, both large and normal deviations with different speeds of mean reversion. We

assume that the log-price process is the result of a deterministic seasonal component

g(t) and a stochastic processes y(t)

lnS(t) = g(t) + y(t) (1)

where y(t), driven by three independent processes, satisfies the stochastic differential

equation (SDE)

dy(t) = −β(t)y(t)dt + σdW (t) + ρ(t) ln JdN(t) + (1 − ρ(t))dZ(t). (2)

Here β(t) is a time-dependent speed of mean reversion, W (t) is a standard Brownian

motion, N(t) is a Poisson process with intensity ℓ, J are iid shocks (responsible for the

large spikes) and dZ(t) are the increments of a Lévy process with triplet (σZ , θ, M).2

Moreover, ρ(t) is an exogenous switching parameter such that

ρ(t) =











1 for high regime,

0 for low regime,
(3)

where the “high-regime” refers to periods where electricity prices may exhibit large

spikes that are introduced in equation (2) through the stochastic shocks lnJdN(t).

And, on the other hand, the “low-regime” captures periods where price variations

are present in the form of increments of the process Z(t), where we assume that the

2We can refer to equation (2) as representing an ‘Ornstein-Uhlenbeck type Lévy process’.
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presence of huge spikes is unlikely.3

To solve (2), we first note that

d
(

y(t)e
∫

t

0
β(u)du

)

= e
∫

t

0
β(u)dudy + y(t)β(t)e

∫

t

0
β(u)dudt. (4)

Rearranging equation (2) and multiplying it through by e
∫

t

0
β(u)du we obtain

d
(

y(t)e
∫

t

0
β(u)du

)

= e
∫

t

0
β(u)duσdW (t)+e

∫

t

0
β(u)duρ(t) ln JdN(t)+e

∫

t

0
β(u)du(1−ρ(t))dZ(t).

Finally, integrating between t0 and t and re-arranging, we obtain

y(t) = e
−

∫

t

t0
β(u)du

yt0 + σ

∫ t

t0

e−
∫

t

s
β(u)dudW (s) +

∫ t

t0

e−
∫

t

s
β(u)duρ(s) ln JdN(s)

+

∫ t

t0

e−
∫

t

s
β(u)du(1 − ρ(s))dZ(s). (5)

It is clear that the model described in equation (2), together with the specification

of ρ(t), alternates between periods when spikes are likely to occur (ρ(t) = 1), and

periods where prices also exhibit a great deal of variability, but large spikes are less

likely to take place (ρ(t) = 0). However, for the model (2) to capture the crucial

feature that the speed at which deviations fade away will depend on the magnitude

of the unexpected movements, we need to assume that β(t) is also a function of the

deterministic function ρ(t). Consequently, we define

β(t) = αHρ(t) + αL(1 − ρ(t)), (6)

3Below, in subsection 3.1, we provide a detailed explanation of how the deterministic function
ρ(t) is built.
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with ρ(t) being defined in (3) and αH > αL > 0. Then the stochastic differential

equation (2) may be written as

dy(t) = −
[

αHρ(t) + αL(1 − ρ(t))
]

y(t)dt + σdW (t)

+ρ(t) ln JdN(t) + (1 − ρ(t))dZ(t). (7)

We note that another approach would be to extend the class of one factor mean

reverting jump diffusion models by adding a second stochastic process and a switching

parameter in order to alternate between processes. This other approach, although

appealing from a mathematical standpoint, would be extremely difficult to calibrate

or estimate since one cannot discern whether the shocks to the spot dynamics come

from a high or low regime.

3.1 The deterministic switching component ρ(t)

To motivate our choice for an appropriate forward-looking deterministic function ρ(t),

with the functional form (3), we will discuss what are the principal sources of genera-

tion in England and Wales and what is the production capacity of power producers.4

We also discuss what type of information on generation capacity is publicly available.

The composition or structure of the generation park plays a crucial role in the

determination of the level and volatility of power prices. Different power plants come

on line at different price levels and the level of entry is determined by marginal

generation costs which, in this particular market, increase at an increasing rate with

output. Therefore the shape of the power supply curve or supply stack reflects the

4This information has been obtained from the “Digest of United Kingdom Energy Statistics 2004,
DTI”, which is publicly available at www.dti.gov.uk/energy/statistics.
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degree of heterogeneity in the generation capabilities and marginal costs, which for

most, if not all, power markets becomes very steep once expensive plants come on

line.

In England and Wales the main fuel sources for generation have been coal, nuclear

and gas. In recent years there has been a steady increase in the use of gas as a main

fuel source until becoming the principal source of generation in 2004. This has been

accompanied by a slight decrease in the dependence on coal, oil and nuclear and a

very small increase in renewable sources. The latter can be explained in part by a

shift towards cleaner sources of energy in order to meet targets set by the government

(for instance the Climate Change and Sustainable Energy Act 2006). In the case

of nuclear energy, the decrease is explained by the fact that the existing plants are

approaching the end of their expected life-cycles. Data reflecting these issues are

summarized in Figure 1 below.

Table 1 shows in greater detail the production capacity, by type of generation, of

power producers in England and Wales over the period 2003-2005. We observe that

in 2005 combined cycle gas turbine (CCGT) stations and conventional steam stations

account for 80% of the market’s net capability of power production. Although coal-

fired units and CCGT represent an almost similar share of the total capacity, the

main difference between them stems from the fact that coal-fired units have lower

marginal generation costs, but are less flexible in their response to address sudden

demand fluctuations. One expects this flexibility in generation provided by CCGT

stations to be more conspicuous during periods of high volatility. Economic rationale

indicates that during periods of high uncertainty, CCGT stations will play a key

role in the determination of the marginal plants that clear wholesale spot markets.

Consequently, in these cases, one anticipates the correlation between electricity and
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Figure 1: Fuel used in electricity generation in 1996 and 2004; data source:
www.dti.gov.uk/energy/statistics.

gas prices to increase. This aspect of the markets has been studied in Martijena

(2006), where an econometric analysis performed on gas and electricity price series

suggests that in periods of high consumption of electricity, the price of gas drives

the average marginal cost in the electric power industry, therefore their relation gets

tighter, and the volatility in the electricity market increases with the volatility in the

gas market, creating a ‘contagion’ effect.

Traditionally, electricity models had estimated the seasonal trend based on histor-

ical spot data, yet this approach is plausible so long as market players consider that

future average prices will be driven by the same fundamentals as in the past. For

example, in markets like England and Wales, the link between a fundamental variable
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2003 2004 2005
Major power producers in UK
Total declared net capability (MWh) 71,465 73,277 74,041

Conventional steam stations:
Coal fired 22,524 31.52% 22,639 31.68% 22,627 31.66%
Oil fired 2,930 4.10% 2,930 4.10% 3,262 4.56%
Mixed or dual fired 6,413 8.97% 6,413 8.97% 6,403 8.96%

Combined cycle gas turbine stations 22,037 30.84% 23,783 33.28% 24,373 34.10%
Nuclear stations 11,852 16.58% 11,852 16.58% 11,852 16.58%
Gas turbines and oil engines 1,537 2.15% 1,485 2.08% 1,346 1.88%
Hydro-electric stations:
Natural flow 1,267 1.77% 1,270 1.78% 1,273 1.78%
Pumped storage 2,788 3.90% 2,788 3.90% 2,788 3.90%
Renewables other than hydro 117 0.16% 117 0.16% 117 0.16%

Table 1: Type of plant and capacity of major power producers in the UK

such as gas prices and average marginal electricity costs is present, clearly indicating

that the seasonality component of wholesale electricity prices g(t) should be closely

related to forward gas prices.5 Therefore we propose that g(t) be determined by gas

forward prices, rather than historical electricity wholesale prices, since at time t the

gas forward curve is known, and it already reflects market expectations of the trend

levels of average marginal electricity costs.

3.2 The ‘high’ and ‘low’ regimes

As mentioned in the introduction, we consider a regime-switching model where regime

changes are governed by a forward looking deterministic parameter responsible for

alternating between the high regime, where the probability of observing spikes is

high, and the low regime, where prices may exhibit jumps, but huge spikes are un-

likely. Changes between these two states of activity are determined in the model

by the exogenous switching variable ρ(t), which is calculated using publicly available

5In the UK presently, and the last few years, CCGT plants have been the plants ‘on the margin’
which explains our choice of the seasonal function g(t).
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forecasts.

To construct the deterministic function ρ(t) we first look at the relation between

National Demand Forecast D(t0, tp) and forecasted Generation Capacity C(t0, tp)

which are both calculated at time t0 for an upcoming period tp. We define their ratio

as

̺(t0, tp) =
D(t0, tp)

C(t0, tp)
. (8)

These data are publicly available and supplied by the NGC and depending on the res-

olution of the data provided; the period tp may be a half-hour slot, a day or a week.6

Moreover, the NGC National Demand Forecast D(t0, tp) is based on historically me-

tered generation output for Great Britain; it takes into account transmission losses

and includes station transformer load, pump storage demand and inter-connector de-

mand. Similarly, the National Surplus forecast NS(t0, tp) is based on forecasts of

generator availability. Although unlikely, it is interesting to note that the ratio (8)

may take values higher than unity; a situation that has occurred in the English and

Wales market. In such circumstances one would expect that as time and other un-

certainties unravel, market forces will act so that demand and supply meet at an

equilibrium price.

Forecasts are available in various formats. Examples include the 2-14 day ahead

and 2-52 week ahead.7 In this work we focus on the NGC 2-52 weeks data set and

draw on this forward looking information as follows. At every point in time tm one

can calculate the forecast ratio ̺(tm, tn) where m, n ∈ {1, 2, 3, · · · , 52} denote weeks

of the year. The notation tn represents the time period in week n. For example

6Data can be accessed directly through www.bmreports.com.
7The NGC also publishes shorter-term forecasts that include other information such as indicated

demand and indicated generation for the day ahead market.
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t2 denotes the second week of any calendar year, t3 denotes the third week of any

calendar year, and so on. Hence, for example, ̺(t36, t38) is the forward looking ratio

calculated during week 36 for week 38. Another example, ̺(t36, t4) is the forward

looking ratio calculated during week 36 for week 4 (i.e. week 4 in the next calendar

year). Furthermore, the 2-52 week forecasts are updated every week and made public

every Thursday at around midday. Consequently, when we construct the forward

looking ratio we update it every week and construct a time series which is depicted

as ‘crosses’ in Figure 4. We point out that as a result of the updating procedure, the

ratio series will show the forecast made during week tn−1 for the following week tn,

̺(tn−1, tn).8

The objective is to overlay this ratio with out-turn spot prices to determine a

threshold, labelled δ, which enables us to differentiate for which ranges of the de-

mand to capacity ratio (8) the market is more or less likely to exhibit large spikes.

Intuitively, one would expect that the larger the ratio ̺(tm, tn) is, the tighter genera-

tion will become, leaving little manoeuvrability for the NGC to call on idle capacity

over the time period tn in the event of a contingency. Similarly, for low values of

̺(tm, tn) one would anticipate unexpected events at time tn not to have a large im-

pact on equilibrium prices. Therefore, in order to determine δ for the England and

Wales electricity market we proceed in three steps.

First, based on historical data of wholesale electricity prices S(t) for the period

period June 03 through March 06, we establish, via a filter as in Cartea and Figueroa

(2005), at which points in time did the market undergo a price spike. The total

number of spikes in our series is given by NJ and we index each spike with J i
j , where i

8Note that our updating procedure is equivalent to picking the first observation of the 2-52
forecast for every week. In other words, the forecast used for week tn is the one which was made
public as the first data point of the 2-52 forecasts in week tn−1.
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denotes the number of the spike, i.e. i ∈ {1, 2, · · · , NJ}, and j indicates the position

of the spike in the price series.9 For example, J1
31 denotes the first spike in our series

and it occurred on the 31st point of our price series data, (see Figure 9). Second, we

create a histogram of the values taken by ̺ that links ranges of ̺ to the frequency of

spikes. We show this in the first two columns of Table 2 where for example, regardless

of the time when these spikes occurred, the bin [0.92100, 0.93391) contains 3 spikes.

The third column shows the number of weeks in which the ratio was in that bin.

Finally, the fourth column in Table 2 identifies which bin each one of the spikes J i
j

belongs to. For example, there was a price spike in observation 267 of our price series

and for this spike ̺ ∈ [0.90808, 0.92100).

bin quantity of spikes numb. observations J i
j

[0.77893, 0.79185) 0 2 n.a.
[0.79185, 0.80476) 0 2 n.a.
[0.81768, 0.83059) 0 1 n.a
[0.83059, 0.84351) 1 3 31
[0.84351, 0.85642) 0 9 n.a
[0.85642, 0.86934) 0 7 n.a
[0.86934, 0.88225) 0 13 n.a
[0.88225, 0.89517) 0 12 n.a
[0.89517, 0.90808) 0 7 n.a
[0.90808, 0.92100) 3 7 267 , 699, 726
[0.92100, 0.93391) 3 14 543 , 649, 661
[0.93391, 0.94682) 3 15 51, 459, 674
[0.94682, 0.95974) 2 7 203, 274
[0.95974, 0.97265) 0 16 n.a.
[0.97265, 0.98557) 0 7 n.a.
[0.98557, 0.99848) 0 7 n.a.
[0.99848, 1.01140) 0 5 n.a.
[1.01140, 1.02430) 0 6 n.a.
[1.02430, 1.03720) 1 2 136

Table 2: The second column displays the number of spikes in each bin, the third one
the number of observations, and the fourth one the position of each one of the identified
spikes J i

j in the time series.

9The series considered in our study coincides with the spot series of 740 daily observations
(excluding weekends) between 2/06/03 and 31/03/06.
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Third, the last step is to establish the threshold value δ according to the follow-

ing criteria. We look for the first bin which signals the beginning of a sequence of

identified spikes. From Table 2 above we identify this threshold as δ = 0.90808. We

consequently define the high regime as the set ΘHR : {S(τ1), . . . , S(τk)} where the

times τi represent the corresponding points in the time series for which ̺(tm, tn) ≥ δ

and S(τi) is the spot price evaluated at time τi ∈ tn. Similarly the low-regime is given

by the set ΘLR : {S(τ1), . . . , S(τl)} where the times τi represent the corresponding

points in the time series for which ̺(tm, tn) < δ and S(τi) is the spot price evaluated

at time τi ∈ tn. Therefore (3) becomes

ρ(t) =











1 if ̺(tn−1, tn) ≥ 0.90808, for t in week tn,

0 if ̺(tn−1, tn) < 0.90808, for t in week tn.
(9)

In Figure 4 are represented the ratio time series ̺(tn−1, tn), the spot price series

S(t), and the deterministic function ρ(t), together with the observed spikes through-

out the historical sample considered.10

3.3 Dependence between ratio and volatility

In order to justify the use of the ratio as an explanatory variable to determine the

regime switching component of the model we analyze the existence of a correlation or

other dependence between the constructed ratio and the observed weekly volatility.11

We start by removing any seasonal component in the ratio which might obscure the

10An important issue is the robustness of ρ(t) if we calculate ̺(tm, tn) for other values of m.
Hence, we repeated our study for different values of m and found that the threshold was stable. For
instance, if the forward looking ratio is calculated using 13-week ahead forecasts, i.e. ̺(tn−13, tn),
our findings show that the threshold remains unchanged.

11Since the ratio is based on weekly observations we compare it with the weekly volatility.
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relationship between the ratio and the volatility of S(t). No significant seasonality

was detected on the margin, defined as capacity minus demand, however a strong

seasonality effect is observed on the demand D(tm, Tn), which in turn is used to

construct the ratio as in (8).12 Figure 2 depicts the demand, the fitted seasonality

and the residuals from the fit. The fitted seasonality takes the form

f(τD) = sin

(

2πτD

52

)

+ cos

(

2πτD

52

)

, (10)

where τD is a dummy variable used to index the series in number of weeks and 52 is

the annualization factor for a weekly-based estimate.

We then regress the residuals of the fitted demand and the weekly logarithm of

the volatility, the result is observed in Figure 3 below.13 The significance of the

coefficients is assessed below in Table 3 by the p-values, which report the marginal

significance level of the t-test. The test clearly rejects the null hypothesis of non

significant coefficients.

Further, to test the correlation between volatility and the ratio ̺, we bootstrapped

the data 5000 times. We find the median of the correlation is 19%, which indicates

the presence of correlation. The most significant test is the one obtained by the

significance of the beta coefficient that captures the relationship between volatility of

S(t) and the ratio. This confirms what had been previously assumed when considering

the ratio as an indicator for the regime-switching component of the model. In other

words, increases in the ratio ̺(tn−1, tn) are accompanied by an increase of volatility

in week tn.

12The capacity C(tm, tn) is calculated as demand forecast D(tm, tn) plus margin which is also
made public by the NGC.

13We regress the logarithm of the volatility in order to reduce the effect of apparent outliers in
the ratio.
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β se p-value R2

(-2.0787, 2.2042) (0.9256, 1.0122) (0.0263, 0.0311) 0.0335

Table 3: Parameter estimates
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Figure 2: The dotted line represents the demand series, the dashed line the fitted
seasonality and the solid line the residuals

4 Calibration of parameters

The calibration of models driven by Lévy processes is not a simple task. In most

cases the marginal distributions of these models are not known in closed-form ex-

pression, while they are the cornerstone of robust estimating techniques such as the

maximum likelihood estimator (MLE) or the generalized method of moments (GMM).

Due to the popularity of Lévy-based models in finance, there has been a recent surge

in the development of new methods devoted to parameter estimation under both
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Figure 3: Linear regression of deseasonalized ratio on the logarithm of the weekly
volatility.

the physical and risk-neutral measure. For instance, Sueishi and Nishiyama (2006)

perform a comparative study of different techniques used for the estimation of Lévy

processes which are based on the characteristic function associated to the underly-

ing process. Moreover, they make use of the characteristic function to construct the

quasi-likelihood function, which gives rise to the so-called quasi-likelihood estimator

(QLE) method.

Among the many differences between electricity markets and other traditional

asset classes is the mean reverting nature of prices. Therefore a popular approach,

see for instance Geman and Roncoroni (2006), in the literature has been to adopt

‘Ornstein-Uhlenbeck-type Lévy’ models for price modeling. On one hand, this class

of models is versatile at capturing most of the stylised features exhibited by electricity

and other commodities. On the other hand, however, the task of calibration or
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Figure 4: The spot price series is represented by the solid line and ‘•’ marker. The
series of the ratio, ̺(tn−1, tn), is represented with the ‘+’ marker, and the deterministic
function ρ(t) is represented by a solid line. The identified spikes in the series are
represented by J i

j , where i denotes the spike name and j is the position on the series of
the identified spike. (Note that the left axis is scaled between 0.7 and 1.1, hence ρ(t) is
only plotted when it takes the value 1; for all other cases, as defined by (9), ρ(t) = 0.

estimation is even more arduous than in the traditional Lévy models that describe the

dynamics of equity prices. Significant contributions in the estimation of parameters

for OU-type Lévy models have been made by Barndorff-Nielsen and Shephard (2001),

who modelled integrated variance as a non-negative OU-type process, and the work

of Schoutens, Tuerlinckx, and Valdivieso (2005).
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4.1 A two-stage calibration procedure

In this paper, the presence of the deterministic function ρ(t) in equation (2) allows

us to split the data into two sets: the high and low regime. Therefore we choose a

two-stage calibration procedure.

Here we assume that the in the model (7) the Lévy process Z(t) is Variance

Gamma with parameters (σz, θ, κ). Moreover, we assume that the distribution of the

spikes in the high regime, given by U = ln J , is double exponential with density

f(u) = pη1e
−η1u1u≥0 + qη2e

η2u1u<0,

where η1, η2 > 0 p, q ≥ 0 s.t. p + q = 1. Further, p and q represent the probabilities

of upward and downward jumps respectively.

Therefore, the set of total parameters to estimate in the model specified by (7)

is given by Θ : {q, p, η1, η2, α
H, αL, σ, σz, θ, κ}; which we group as Θ : {Θ1; Θ2}, with

Θ1 : {q, p, η1, η2} and Θ2 : {αH , αL, σ, σz, θ, κ}. We group them in this manner to

highlight the two-stage calibration process we perform.

Θ1 contains the parameters responsible for the size and direction of spikes. Thus

given the structure of our model we can separate the series, as discussed above, into

high and low regimes. From the high regime sub-sample we filter the spikes and

proceed in a similar way as in Cartea and Figueroa (2005) to estimate the parameters

{q, p, η1, η2}.
14

In the second stage of the calibration, making use of the estimated parameters

in Θ1, we estimate the parameters in Θ2 by matching the mean, variance, skewness

14The filter consists in recursively separating data points that are three standard deviations away
from the mean.
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and kurtosis of the deseasonalized returns of the spot price to those of simulated

paths. We start by assuming three possible initial values for each one of the pa-

rameters in the set Θ2. Hence, a possible set Θs
2, where superscript s indicates

which combination out of the 729 possible ones we are looking at, will be denoted by

Θs
2 : {αH

i , αL
j , σk, σ

l
z, θm, κn}, with (i, j, k, l, m, n) taking values in {1, 2, 3} since for

each parameter we are starting from three different guesses.15

We then perform 1000 simulations for each possible set Θs
2 and calculate the aver-

ages of the four statistics we are interested in, which we denote by (m̄s
1, m̄

s
2, m̄

s
3, m̄

s
4)

and s ∈ {1, 2, . . . , 729}. The optimal set is then defined as the set which is closest,

in a minimum square distance sense, to the empirical statistics of the deseasonalized

price series denoted by (m1, m2, m3, m4). In other words we solve

min
s∈{1,...,729}

{(m̄s
1 − m1)

2 + (m̄s
2 − m2)

2 + (m̄s
3 − m3)

2 + (m̄s
4 − m4)

2}, (11)

to find the optimal s̃ given the initial guess of the parameters.

Once we have obtained the first set Θs̃
2, we perturb the initial conditions and

repeat the procedure until a local minimum, denoted Θ̂2, is obtained.16 The results

are discussed in the following section and the parameter estimates are presented in

Table 4.

15The total number of possible sets can be calculated by calculating first the combinatorial number
nCk, which gives the number of k = 6 subsets possible out of a set of n = 18 distinct items; and
later by excluding those sets with more than one element of each sub-group.

16It is important to note that we might not be finding a global but a local optimal set.
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5 Results

When modeling wholesale electricity prices there are two main criteria used to assess

the ability of models to mimic price dynamics. First, the model has to be able to

reproduce path properties, especially jumps and spikes that mean revert at speeds

observed in the market. Second, the model should also be able to replicate statistical

properties, understood as replicating the mean, variance, skewness and kurtosis of

the returns series; in our case we expect the moment matching to be ‘good’ given the

choice of the calibration procedure descried above.

Figures 5, 6 and 7 show sample paths produced by our model. It is clear that

the model simulates the spikes in periods where the deterministic switching vector

ρ(t) = 1, as well as still allowing for jumps of lesser magnitudes in those regions where

ρ(t) = 0.17 Moreover, we can also observe that the mean reversion rates αH and αL

in both regimes are such that temporary deviations revert back to the mean seasonal

level at speeds observed in the market.

17Recall that the fact that ρ(t) = 0 does not preclude the model from exhibiting large spikes, it
just signals that the probability of observing a spike is very low in comparison to the periods where
ρ(t) = 1.
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Figure 5: Comparison of simulated and real price paths. The line with solid circle
represents the spot price while the simulated price is represented by the line with
hollow circle. Seasonality is represented by the thick solid line. On the second axis, the
deterministic vector ρ(t) is also shown.

To assess the statistical performance of the model we calculate the first four mo-

ments of 1000 simulated price paths and compare these moments with those obtained

from the distribution of realised returns. Table 4 below presents first the values for

the calibrated parameters in the model, followed by Table 5 where we present the

simulated statistics from the model and the actual statistics from the actual distri-

bution.

q̂ p̂ η̂1 η̂2 α̂H α̂L σ̂ σ̂z θ̂ κ̂

8.570 0.600 5.150 2.130 182.000 52.000 0.750 0.250 14.000 0.025

Table 4: Calibrated parameters.

Finally, we compute the minimum square distance of the simulated and actual
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Figure 6: Comparison of simulated and real price paths. The line with solid circle
represents the spot price while the simulated price is represented by the line with
hollow circle. Seasonality is represented by the thick solid line. On the second axis, the
deterministic vector ρ(t) is also shown.

statistics using (11). We also compute this measure for the results of simulated and

actual statistics reported in Geman and Roncoroni (2006) for comparative purposes.

The results are summarized in Table 6 below.

Although one must be extremely careful when comparing our estimation results,

because they are all different markets and different models, Table 6 indicates that

our two-step estimation procedure yielded plausible results for the parameters of our

model as supported by the criterion defined in equation (11). Moreover, note that

our model seems to perform very well, in absolute terms or in relative terms when

compared to the results in Geman and Roncoroni (2006), at capturing higher order

moments such as skewness and kurtosis. This should not come as a surprise since
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Figure 7: Comparison of simulated and real price paths. The line with solid circle
represents the spot price while the simulated price is represented by the line with
hollow circle. Seasonality is represented by the thick solid line. On the second axis, the
deterministic vector ρ(t) is also shown.

the use of forward looking capacity constraints provides enough versatility for the

model to switch between periods of large spikes with high mean reversion, ie positive

skewness and high kurtosis, and periods of less extreme activity and lower mean

reversion.

6 Conclusions

In this article we have presented a model which incorporates important contributions

to the most recent literature. First, although different models have accounted for a

time-dependent jump intensity, to the best of our knowledge, existing models have

not yet linked the probability of extreme events to observable exogenous variables as
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emp. sim.
mean 0.0023 0.0011

st. dev. 0.0315 0.0389
skewness 1.9943 1.1086
kurtosis 22.1243 21.48

Table 5: Comparison of simulated and empirical statistics.

ECAR PJM COB UK
emp. sim. emp. sim. emp. sim. emp. sim.

mean -0.0002 -0.0001 -0.0006 0 0.0009 0.0006 0.0023 0.0011
st. dev. 0.3531 0.3382 0.2364 0.2305 0.1586 0.1121 0.0315 0.0389
skewness -0.5575 2.1686 0.3949 1.6536 0.1587 0.961 1.9943 1.1086
kurtosis 21.6833 22.5825 13.1507 14.8429 6.7706 6.5402 22.1243 21.48

d 8.2404 4.4479 0.6989 1.1997

Table 6: Comparison of empirical and simulated moments. The first three columns,
labeled ‘ECAR’, ‘PJM’ and ‘COB’ refer to results from different American power mar-
kets, as reported in Geman and Roncoroni (2006); whereas the last column, ‘UK’,
corresponds to the results obtained in this paper. Finally, d represents the minimum
square distance defined in equation (11).

performed in this model.

Second, we have also extended the literature in the field by allowing for time-

varying mean reverting processes. In particular, this is aimed at solving the critical

problem encountered by one-factor mean reverting models regarding the flatness of

the long-end of the forward curves. Although other models account for sums of OU-

Lévy processes with different mean reversion rates, we believe this model allows for

a time-varying structure while preserving simplicity.

Third, we have tackled a common drawback of this class of models through the

incorporation of a forward-looking seasonality which enables the model to mean revert

to more realistic scenarios.

Fourth, we have made use of exogenous observable variables in order to separate

two distinct regimes where prices may jump and other where prices are allowed to
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spike. We believe the difference between jumps and spikes is critical in power markets

and hence a model should be able to distinguish between both processes.

The results obtained through the simulations of the spot prices seem to be in

reasonable qualitative accordance with observed historical price paths. More im-

portantly, by measuring the square distance between the first four moments of the

simulated paths and the actual distribution we are able to asses quantitatively the

performance of the model. Comparing our results with those of other authors, we con-

clude that the model performs well. Indeed, our results outperform the bench-mark

used in two out of three cases.
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Appendix: Generator capacity in the UK
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Power Stations in the United Kingdom

Company name Share in Production Cumulative share

1 British Energy 0.14903807 0.1490
2 RWE Npower Plc 0.12729716 0.2763
3 E.On UK 0.11811167 0.3944
4 Scottish & Southern Energy plc 0.11421521 0.5087

5 Scottish Power 0.07918333 0.5878
6 EDF Energy 0.06219059 0.6500
7 Drax Power Ltd 0.05090080 0.7009
8 Centrica 0.04437208 0.7453
9 International Power 0.03555960 0.7809

10 BNFL British Nuclear Group 0.02983084 0.8107
11 First Hydro Company 0.02694065 0.8376
12 Teesside Power Ltd 0.02419240 0.8618
13 Seabank Power Limited 0.01576699 0.8776
14 Barking Power 0.01290261 0.8905
15 Premier Power Ltd 0.01285100 0.9034

16 Spalding Energy Company Ltd 0.01165106 0.9150
17 Coryton Energy Company Ltd 0.00971567 0.9247
18 Rocksavage Power Co. Ltd 0.00967696 0.9344
19 Immingham CHP LLP 0.00956084 0.9440
20 AES 0.00851572 0.9525
21 Baglan Generation Ltd 0.00741900 0.9599
22 Alcan 0.00647066 0.9664
23 Coolkeeragh ESB Ltd 0.00541910 0.9718
24 Corby Power Ltd 0.00517395 0.9770
25 Uskmouth Power Company Ltd 0.00507073 0.9820
26 Beaufort Wind Ltd 0.00345790 0.9855
27 Derwent Cogeneration 0.00304502 0.9885
28 Gaz de France 0.00232247 0.9909

29 Fellside Heat and Power 0.00216764 0.9930
30 Paul’s Hill WindLtd 0.00070964 0.9937
31 Rothes Wind Ltd 0.00065803 0.9944
32 Crystal Rig Windfarm Ltd 0.00064513 0.9950
33 Airtricity 0.00056771 0.9956
34 Fenland Windfarms Ltd 0.00056771 0.9962
35 Fibrothetford 0.00050320 0.9967
36 EPR Ely Limited 0.00049030 0.9972
37 Combined Heat & Power Ltd 0.00041288 0.9976
38 Citigen (London) UK Ltd 0.00039998 0.9980
39 HG Capital 0.00027095 0.9982
40 Sita Tyre Recycling Ltd 0.00025805 0.9985
41 Western Power Generation 0.00020644 0.9987
42 Yorkshire Windpower Ltd 0.00020644 0.9989
43 Cemmaes Windfarm Ltd 0.00019354 0.9991
44 Fibrogen 0.00016773 0.9993
45 Fibropower Ltd 0.00016773 0.9994
46 K/S Winscales 0.00011612 0.9996
47 Llangwyryfon Windfarm Ltd 0.00011612 0.9997
48 Cold Northcott Windfarm Ltd 9.0318E-05 0.9998
49 TPG Wind Ltd 9.0318E-05 0.9999
50 Blyth Offshore Wind Ltd 5.1610E-05 0.9999
51 Great Orton Windfarm Ltd 5.1610E-05 1.0000
52 Haverigg III Ltd 3.8708E-05 1.0000

Table 7: Companies with power stations operational at the end of May 2006 in the
UK. Note that 4 companies hold 50% of output capacity; the first 15 companies al-
ready comprise over 90% of the output capacity; and the first 28 comprise over 99% of
production capacity. (Department of Trade and Industry 2006).
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