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An empirical researcher often encounters the following problem. On the 
one hand, economic theory assumes that a decision maker has a preference 
relation ≿ over choice alternatives. In other words, implied choices are 
generically deterministic (except for a special case when a decision maker is 
indifferent). On the other hand, empirical data show that choices are often 
probabilistic.1)  In other words, revealed preferences are fuzzy (either imprecise, 
or random, or noisy). Thus, an empirical researcher wishing to relate economic 
theory to empirical data faces a major problem. How to extend a deterministic 
economic theory into a model of probabilistic choice?

One popular method is strong utility model that can be traced back to 
Fechner (1860). In economics, it was popularized by Hey and Orme (1994). 
Blavatskyy (2008) recently provided its axiomatic characterization. Several 
authors also extended the original model (e.g., Hey, 1995; Buschena and 
Zilberman, 2000; Blavatskyy, 2007; Wilcox, 2008, 2010). Unfortunately, both 
the original model and its subsequent extensions violate first order stochastic 
dominance. Yet, such violations are rarely observed (e.g., Carbone and Hey, 
1995; Loomes and Sugden, 1998; Hey, 2001) and are normatively unappealing.

This paper presents a modification of strong utility (Fechner) model to 
avoid violations of stochastic dominance. First, the necessary notation is 
introduced in section 1. Strong utility (Fechner) model and its proposed 
modification are presented in section 2. Section 3 analyzes how the modified 
model fits experimental data. Section 4 takes a positive perspective on the 
modified model by demonstrating its ability to rationalize preference reversals 
(including strong reversals and reversals with probability equivalents). Section 5 
takes a normative perspective on the modified model and provides its intuitive 
─────────────
1) See Camerer (1989), Starmer and Sugden (1989), Hey and Orme (1994), Wu 
(1994), Ballinger and Wilcox (1997), Loomes and Sugden (1998), Hey (2001), 
Schmidt and Hey (2004), Schmidt and Neugebauer (2007).
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axiomatic characterization. Section 6 shows that an important microeconomic 
concept of risk aversion is well-defined in the modified model (but not in the 
original strong utility model). Sections 3-6 are self-contained. The reader can 
skip any of these sections without the loss of continuity. Section 7 concludes.

1. Notation 
Set X  is a non-empty set of outcomes (consequences) that is totally 

ordered under a preference relation ≿. Set X  is not necessarily a subset of the  
Euclidian space ℝn.  Lottery L:X → [0,1] is a probability distribution on set X, 
i.e., L(x)∈[0,1] for all x∈X and ∑x∈X L(x)=1. The set of all such lotteries is 
denoted by ℒ. A degenerate lottery that yields one outcome x∈X  with 
probability one is denoted by x. Notation LαL′ denotes a probabilistic mixture 
that yields outcome x∈X with probability α·L(x)+(1-α)·L′(x), α∈[0,1].

For any lottery L∈ℒ, cumulative distribution function FL(x) is defined as
(1) FL(x) = ∑y∈X, x≿y L(y),  for all x∈X .
Similarly, for any L∈ℒ, decumulative distribution function GL(x) is defined as
(2) GL(x) = ∑y∈X, y≿x L(y),  for all x∈X .

For any L, L′∈ℒ, lottery L∨L′ yields outcome x∈X  with a probability
(3)       min{FL(x),FL′(x)} + max{GL(x),GL′(x)} - 1.

Lottery L∨L′ is the least upper bound on lotteries L and L′ in terms of 
first order stochastic dominance. Lottery L∨L′  stochastically dominates both L 
and L′  and there is no other lottery that stochastically dominates both L and L′  
but that is stochastically dominated by L∨L′.

For any L, L′∈ℒ, lottery L∧L′ yields outcome x∈X  with a probability
(4)       max{FL(x),FL′(x)} + min{GL(x),GL′(x)} - 1.

Lottery L∧L′ is the greatest lower bound on lotteries L and L′ in terms of 
first order stochastic dominance. Both L and L′ stochastically dominate lottery 
L∧L′  and there is no other lottery that is stochastically dominated by both L 
and L′  but that stochastically dominates L∧L′.
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2. Strong Utility (Fechner) Model and Its Modification 
We assume that a decision maker has a rational continuous preference 

relation ≿ on ℒ. Such preference admits utility representation:
(5) L≿L′ if and only if U(L) - U(L′)≥0,
where U :ℒ→ℝ is a real-valued utility function.

Strong utility (Fechner) model postulates that a decision maker chooses 
lottery L over lottery L′ if
(6)    U(L) - U(L′)≥ξ,
where ξ  is a random variable (with zero mean) that is independently and 
identically distributed across all lottery pairs. In the original strong utility 
model, error term ξ  is homoscedastic (e.g., Hey and Orme, 1994). In the 
subsequent extensions, error term ξ  is heteroscedastic (e.g., Hey, 1995; 
Buschena and Zilberman, 2000).

Model (6) violates stochastic dominance. Indeed, it even violates strict 
dominance. Yet, a simple modification of model (6) cures the problem.

First, consider the case when lottery L stochastically dominates lottery 
L′. In this case, U(L) - U(L′) = U(L∨L′) - U(L∧L′). Thus, to avoid violations of 
stochastic dominance, we need to make sure that the realization of a random 
variable ξ  is never greater than the difference U(L∨L′) - U(L∧L′). In other 
words, inequality (6) must be always satisfied if L stochastically dominates L′. 
Thus, stochastic dominance imposes an upper bound on possible errors:
(7) ξ ≤ U(L∨L′) - U(L∧L′).

Second, consider the case when L′ stochastically dominates L. In this 
case, U(L) - U(L′) = U(L∧L′) - U(L∨L′). To avoid violations of stochastic 
dominance, we need to make sure that the realization of a random variable ξ  is 
never less than the difference U(L∧L′) - U(L∨L′). In other words, inequality (6) 
must always hold with a reversed sign if L′ stochastically dominates L. Thus, 
stochastic dominance also imposes a lower bound on possible errors:
(8) ξ ≥ U(L∧L′) - U(L∨L′).
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Inequalities (7) and (8) imply that random variable ξ  must be distributed 
on a bounded interval. In general, this interval varies across lottery pairs. Thus, 
random variable ξ  cannot be independently and identically distributed across 
all lottery pairs. Yet, it is possible to write random error ξ  as ε·[U(L∨L′)-U
(L∧L′)]. Inequalities (7) and (8) are then both satisfied if random variable ε  is 
independently and identically distributed on the interval [-1,1].

Using error term ξ=ε·[U(L∨L′)-U(L∧L′)]  not only imposes stochastic 
dominance but also resolves another problem. In the original Fechner model 
(6), error term ξ  is added on the absolute utility scale. In most decision 
theories, utility function U(.) is unique only up to a positive affine 
transformation. Multiplying utility function U(.) by an arbitrary positive constant 
makes no difference for representation (5) but it does affect the distribution of 
random errors in model (6). In contrast, random error ε  is added on the relative 
utility scale. Thus, multiplying utility function U(.) by an arbitrary positive 
constant does not affect the distribution of random error ε.

To summarize, strong utility (Fechner) model (6) is modified so that a 
decision maker chooses lottery L over lottery L′ if
(9) U(L) - U(L′)≥ε·[U(L∨L′)-U(L∧L′)],
where ε  is a random variable symmetrically distributed around zero on the 
interval [-1,1]. We need to distinguish two cases. First, if U(L∨L′)≠U(L∧L′), then 
both sides of inequality (9) can be divided by U(L∨L′)-U(L∧L′). Second, it is 
possible that U(L∨L′)=U(L∧L′).2) In this case, U(L)=U(L′) and inequality (9) holds 
trivially as equality. In other words, a decision maker can choose both L and L′. 
For simplicity, we assume that both lotteries are chosen with probability 0.5 in 
this case.3)

─────────────
2) If a decision maker has a strict preference over all outcomes (for any 

x, y ∈X  either x≻y  or y≻x), then the second case is possible only when L=L′.
3) Alternatively, choice probability may be left undefined in this case. 
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Let F : [-1,1]→[0,1] be the cumulative distribution function of random 
error ε.  Function F(.) can be any non-decreasing function satisfying the 
restriction F (v )+F (-v)=1 for all v∈[-1,1]. A decision maker then chooses 
lottery L over lottery L′ with probability (10).

      U(L) - U(L′) 
   P (L,L′)=F  ──────── , if  U(L∨L′)≠U(L∧L′)

(10) U(L∨L′)-U(L∧L′) 

   P (L,L′)=0.5, if  U(L∨L′)=U(L∧L′)
According to formula (10), P (L,L′)=F (1) if L stochastically dominates L′ 

(in this case L∨L′=L and L∧L′=L′) and P (L,L′)=F (-1)=1-F (1) if L is 
stochastically dominated by L′. Thus, by setting F (1)=14) we avoid violations of 
stochastic dominance. 

Formula (10) also implies that P (L,L′)≥0.5 if U(L)≥U(L′). Thus, model 
(10) satisfies weak stochastic transitivity: if P (L,L′)≥0.5 and P (L′,L″)≥0.5  then 
P (L,L″)≥0.5. This gives model (10) a comparative advantage over random 
preference approach (e.g., Falmagne, 1985; Loomes and Sugden, 1995) 
including random utility (e.g., Gul and Pesendorfer, 2006). Random 
preference/utility approach allows for intransitive choice cycles (similar to the 
Condorcet's paradox) that are normatively unappealing and rarely observed in 
the data (e.g., Rieskamp et al., 2006, p. 648).

─────────────
4) Setting F (1)=1 is appealing on normative grounds. From a descriptive 

perspective, it may be desirable to set F (1)<1. This allows model (10) to 
account for rare violations of stochastic dominance that are observed in the 
data. See Loomes et al. (2002) for a more detailed discussion.   
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3. Fit to Experimental Data
Decision theories are usually evaluated according to their goodness of 

fit to experimental data (e.g., Hey and Orme, 1994; Harless and Camerer, 1994). 
However, such practice critically depends on the method of converting a 
deterministic theory into a model of stochastic choice (see Hey (2005), Loomes 
(2005), Blavatskyy and Pogrebna (2010)). In this section we show that model 
(10) improves upon model (6) in terms of goodness of fit to experimental data. 
We also compare model (10) to other existing models. 

We use experimental data collected by Hey (2001), which is the largest 
data set of its kind. In this data set, 53 individuals faced 100 binary choice 
problems. Each choice problem was repeated five times. Each choice problem 
involved lotteries over four outcomes: -₤25, ₤25, ₤75 and ₤125. 

First, we consider the case when function U(.) is von Neumann-
Morgenstern expected utility function, i.e. U(L) = ∑x∈X L(x)·u(x), where u :X→ℝ 
is (Bernoulli) utility function. Bernoulli utility function can be normalized for any 
two outcomes. We use normalization u(-₤25)=0 and u(₤125)=1. Utilities of two 

other outcomes u(₤25) and u(₤75) remain subjective parameters to be estimated.

We assume that function F (.) in model (10) is the cumulative distribution 
function of the normal distribution with zero mean and constant variance σ >0. 
Estimation is done separately for each individual by maximizing total log-
likelihood (equation (10) shows the likelihood of one decision). For each subject 
we estimate three parameters: u(₤25), u(₤75) and σ. Non-linear optimization is 
solved in the Matlab 7.2 package (based on the Nelder-Mead simplex 
algorithm). Program code and data are available from the author on request.

 To evaluate the relative goodness of fit, we compare model (10) to four 
other models of probabilistic choice. First, we estimate the original strong 
utility (Fechner) model (6). We assume that random error ξ  in model (6) is 
normally distributed with zero mean and constant variance. Thus, a decision 
maker chooses lottery L over lottery L′ with probability P (L,L′)=F (U(L) - U(L′)), 
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where function F (.) is the cumulative distribution function of the normal 
distribution with zero mean and constant variance σ >0. 

Second, we estimate a contextual utility model of Wilcox (2008, 2010). 
In this model, a decision maker chooses lottery L over lottery L′ with probability 
P (L,L′)=F ([U(L) - U(L′)]/[u(z) - u(y)]), where function F (.) is the cumulative 
distribution function of the normal distribution with zero mean and constant 
variance σ >0 and outcomes z∈X and y∈X are correspondingly the best and the 
worst possible outcome in lotteries L and L′.

 Third, we estimate incremental expected utility advantage model using 
formula (2) in Fishburn (1978, p.635) with function ρ(v)=vμ for all v≥0 and μ  
being a subjective parameter. Fourth, we estimate the model of Blavatskyy 
(2009, 2011) using formula (3) in Blavatskyy (2011) with function φ(x)=eλv-1 
for all v≥0 and λ  being a subjective parameter. 

The models of Fishburn (1978) and Blavatskyy (2009, 2011) rule out 
violations of stochastic dominance. Yet, Hey (2001) found 24 violations of 
stochastic dominance in 1590 choice decisions (rate of violation 1.5%). Thus, 
the models of Fishburn (1978) and Blavatskyy (2009, 2011) can be estimated on 
Hey (2001) data set only if we introduce the possibility of trembles (see Loomes 
et al. (2002) for a more detailed discussion). Specifically, a decision maker 
chooses lottery L over lottery L´ with probability
(11) (1-τ )·P (L,L´) + τ ·[1-P (L,L´)],
where P (L,L´) denotes the probability that L is chosen over L´ in a model of 
probabilistic choice without trembles, and τ ∈[0,0.5] is a subjective parameter 
interpreted as the probability of a tremble (or lapse of concentration).

For each subject, five models are compared in terms of their goodness 
of fit to the subject's revealed choice pattern. We use Vuong likelihood ratio 
test for strictly non-nested models (see Vuong (1989) and Appendix A.2 in 
Loomes et al. (2002) for technical details). The models of Fishburn (1978) and 
Blavatskyy (2009, 2011) have one extra parameter compared to models (6), (10) 
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and a contextual utility model of Wilcox (2008, 2010). To penalize the models 
of Fishburn (1978) and Blavatskyy (2009, 2011) for one extra parameter we use 
two standard correction factors: Akaike and Schwarz information criteria (see 
Vuong (1989) p. 318 for technical details). Tables 1 and 2 summarize the 
results correspondingly for Akaike and Schwarz information criteria.

╔════════╦════════╦════════╦════════╗
║      Model (6) ║  Wilcox (2008) ║Fishburn (1978) ║Blavatskyy (2011)║
╠════════╬════════╬════════╬════════╣
║ 22 (42%)/0 (0%)║ 10 (19%)/0 (0%)║ 7 (13%)/1 (2%) ║  1 (2%)/6 (11%) ║
╚════════╩════════╩════════╩════════╝

Table 1 Number and percentage of subjects for whom model (10) fits significantly 
better (nominator) and significantly worse (denominator) than the corresponding 
model in the first row when U(.) is expected utility function and Akaike information 
criterion is used (at 1% significance level).
╔════════╦════════╦════════╦════════╗
║      Model (6) ║  Wilcox (2008) ║Fishburn (1978) ║Blavatskyy (2011)║
╠════════╬════════╬════════╬════════╣
║ 22 (42%)/0 (0%)║ 10 (19%)/0 (0%)║19 (36%)/1 (2%) ║  2 (4%)/4 (8%) ║
╚════════╩════════╩════════╩════════╝

Table 2 Number and percentage of subjects for whom model (10) fits significantly 
better (nominator) and significantly worse (denominator) than the corresponding 
model in the first row when U(.) is expected utility function and Schwarz 
information criterion is used (at 1% significance level).

Tables 1-2 show that modified strong utility (Fechner) model (10) clearly 
improves upon the original model (6), contextual utility model of Wilcox (2008, 
2010) and the model of Fishburn (1978). Yet, model (10) appears to be inferior 
to the model of Blavatskyy (2009, 2011). The latter can account for certain 
types of the common ratio effect (e.g., Loomes, 2005) and violations of 
betweenness (e.g., Blavatskyy, 2006) even if function U(.) is expected utility 
function. In contrast, model (10) can accommodate such violations of expected 
utility theory only if function U(.) is non-linear in probabilities. Since people 
often violate expected utility, it is not surprising that the model of Blavatskyy 
(2009, 2011) fits the data better than does model (10).
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Since model (10) is handicapped compared to the model of Blavatskyy 
(2009, 2011) when U(.) is expected utility function, it is interesting to repeat the
same estimation as described above with U(.) being rank-dependent utility, i.e. 
U(L) = ∑x∈X u(x)·[w(GL(x))-w(1-FL(x))], where u :X→ℝ is (Bernoulli) utility 
function and w: [0,1]→[0,1] is probability weighting function. We use Quiggin 
(1981) probability weighting function w(p)=pγ/[pγ+(1-p)γ]1/γ, where γ>0 is a 
subjective parameter. Expected utility is a special case of rank-dependent utility 
when function w(.) is linear (γ=1). Tables 3 and 4 summarize the results 
correspondingly for Akaike and Schwarz information criteria.

╔════════╦════════╦════════╦════════╗
║      Model (6) ║  Wilcox (2008) ║Fishburn (1978) ║Blavatskyy (2011)║
╠════════╬════════╬════════╬════════╣
║ 26 (49%)/0 (0%)║ 13 (25%)/0 (0%)║ 6 (11%)/1 (2%) ║  3 (6%)/5 (9%) ║
╚════════╩════════╩════════╩════════╝

Table 3 Number and percentage of subjects for whom model (10) fits significantly 
better (nominator) and significantly worse (denominator) than the corresponding 
model in the first row when U(.) is rank-dependent utility function and Akaike 
information criterion is used (at 1% significance level).
╔════════╦════════╦════════╦════════╗
║      Model (6) ║  Wilcox (2008) ║Fishburn (1978) ║Blavatskyy (2011)║
╠════════╬════════╬════════╬════════╣
║ 26 (49%)/0 (0%)║ 13 (25%)/0 (0%)║16 (30%)/1 (2%) ║  3 (6%)/3 (6%) ║
╚════════╩════════╩════════╩════════╝

Table 4 Number and percentage of subjects for whom model (10) fits significantly 
better (nominator) and significantly worse (denominator) than the corresponding 
model in the first row when U(.) is rank-dependent utility function and Schwarz 
information criterion is used (at 1% significance level).

Tables 3-4 confirm our previous conclusion for expected utility: model 
(10) improves upon the original model (6), contextual utility model of Wilcox 
(2008, 2010) as well as the model of Fishburn (1978). Tables 3-4 also confirm 
our intuition about the handicap of model (10) when combined with expected 
utility function. For rank-dependent utility, unlike for expected utility, model 
(10) achieves about a similar goodness of fit as the model of Blavatskyy (2011).  
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Model (10) fits well to experimental data due to a simple reason. When 
error term ε  is normally distributed, model (10) produces a relatively high 
choice variability when none of the two lotteries dominates the other. At the 
same time, it also allows for rare violations of stochastic dominance when one 
of the lotteries dominates the other (see footnote 4). And this is exactly how 
experimental data look like (e.g., Loomes and Sugden (1998), Hey (2001)). To 
the best of my knowledge, model (10) is the first model of probabilistic choice 
that mimics this feature of empirical data.

In contrast, the original strong utility (Fechner) model (6) is too 
simplistic. This model produces a relatively high choice variability irrespective 
of the fact whether one of the two lotteries dominates the other or not. 
Effectively, this model "overpredicts" probabilistic choice (see also discussion in 
Loomes and Sugden (1998)).

On the other hand, the models of Fishburn (1978) and Blavatskyy (2009, 
2011) are too restrictive. These models completely rule out violations of 
stochastic dominance. To account for rare violations of stochastic dominance in 
the data, these two models must be artificially "augmented" with an extra 
tremble parameter (cf. equation (11)). We should note in passing that the same 
criticism also applies to a random preference approach including random 
expected utility (see also discussion in Loomes and Sugden (1998)).

Contextual utility model of Wilcox (2008, 2010) goes only half-way. This 
model produces a relatively high choice variability when at least one of the two 
lotteries is non-degenerate. At the same time, it also allows for rare violations 
of (strict) dominance when both lotteries are degenerate. Thus, this model 
makes a step in the right direction by moving away from the complete 
insensitivity of the original strong utility (Fechner) model (6). Yet, contextual 
utility model of Wilcox (2008, 2010) does not go far enough. In particular, it 
does not single out instances when one of the two lotteries stochastically 
dominates the other.
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4. The Preference Reversal Phenomenon
The preference reversal phenomenon is one of the most robust 

behavioral regularities (see Seidl (2002) for a recent review).  Deterministic 
decision theories based on a rational preference relation cannot account for this 
phenomenon. Original strong utility (Fechner) model (6) combined with a 
plausible definition of a probabilistic certainty equivalent (see definition 1 
below) also rules out systematic preference reversals. In contrast, as shown in 
this section, model (10) can rationalize the preference reversal phenomenon. 

The preference reversal phenomenon is demonstrated with two lotteries 
of a similar expected value. Lottery L  (called the P-bet) yields a modest payoff 
of y  dollars with a probability L(y) close (but not equal) to one and zero dollars 
otherwise. Lottery L′  (called the $-bet) yields a relatively large payoff of z  
dollars, z >y, with a small probability L′(z), L′(z)<L(y), and zero dollars 
otherwise. A standard preference reversal is observed when a decision maker 
chooses L  over L′  but reveals a higher certainty equivalent for L′  than for L.  A 
nonstandard preference reversal occurs when a decision maker chooses L′ over 
L  but reveals a higher certainty equivalent for L  than for L′.

According to any deterministic decision theory based on a rational 
preference relation, both types of preference reversals should never occur 
(except in a special case when L~L′). However, empirical evidence shows that 
standard preference reversals usually significantly outnumber nonstandard 
preference reversals (e.g., Tversky et al., 1990). This robust behavioral 
regularity became known as the preference reversal phenomenon.

To analyze the phenomenon within a model of probabilistic choice, it is 
necessary to define a probabilistic certainty equivalent. Blavatskyy (2009) 
proposed the following definition. The probability that the certainty equivalent 
of a lottery is less than or equal to some amount x  is simply the probability 
that the amount x  is chosen over the lottery in a direct binary choice.
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Definition 1. A probabilistic certainty equivalent of lottery L  is a random 
variable with a cumulative distribution function P (x,L).

Given Definition 1, the likelihood of observing a standard preference 
reversal is given by  [1-P (L′,L)]·∫P (x,L)dP (x,L′) and the likelihood of observing 
a nonstandard preference reversal is given by P (L′,L)·[1-∫P (x,L′)dP (x,L)]. 
Hence, standard preference reversals occur more frequently if
(12)        ∫P (x,L)dP (x,L′)>P (L′,L).

Let us first consider original strong utility (Fechner) model (6). If 
lotteries L  and L′ yield the same utility (i.e., U(L)=U(L′) ), then the left hand side 
and the right hand side of inequality (12) are both equal to 0.5. Hence, in this 
case, systematic preference reversals cannot happen.

Let us now consider modified strong utility (Fechner) model (10). 
According to formula (10), P (x,L)=F (-1) for any x≤0 and P (x,L)=F (1) for any 
x≥y. Similarly, P (x,L′)=F (-1) for any x≤0 and P (x,L′)=F (1) for any x≥z. Using 
these results, inequality (12) can be rewritten as the following condition:

     y
(13) ∫P (x,L)dP (x,L′)>P (L′,L)+F (1)·P (y,L′) -F (1)2.

0
If binary choice probabilities are degenerate, i.e. if there is an amount 

CE (L) such that P (x,L)=0 for all x<CE (L) and P (x,L)=1 for all x>CE (L), then 
both sides of condition (13) are equal and it cannot hold with strict inequality. 
In other words, a deterministic decision theory based on a rational preference 
relation cannot account for the preference reversal phenomenon. Yet, if choice 
probabilities are non-degenerate, condition (13) may be fulfilled.

For example, consider model (10) when U(.) is expected utility function. 
For simplicity, we normalize Bernoulli utility function so that u(0)=0 and u(z)=1. 
As before, we consider the case when lotteries L  and L′ yield the same 
expected utility (i.e., L(y)·u(y)=L′(z)  and P (L′,L)=0.5).

Lottery x∨L yields outcome x  with probability 1-L(y) and outcome y  
with probability L(y). Hence, expected utility of lottery x∨L  is equal to
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(14) U(x∨L)=[1-L(y)]·u(x) + L(y)·u(y). 
Lottery x∧L yields outcome x  with probability L(y) and nothing 

otherwise. Hence, expected utility of lottery x∧L  is equal to
 (15) U(x∧L)=L(y)·u(x). 

According to formula (10), probability P (x,L) is given by
        u(x) - L(y)·u(y) 

(16)     P (x,L)=F  ─────────── , for all  x<y.
[1-2L(y)]·u(x)+L(y)·u(y)

Similarly, we can show that binary choice probability P (x,L′) is given by
          u(x) - L′(z) 

(17)    P (x,L′)=F  ─────────── , for all  x<y.
[1-2L′(z)]·u(x)+L′(z) 

Consider the simplest possible case when random error ε  is uniformly 
distributed on the interval [-1,1]. In this special case, model (10) can be viewed 
as a formalization of intuitive ideas of MacCrimmon and Smith (1986) that were 
recently reiterated in Butler and Loomes (2007). If random error ε  is uniformly 
distributed, then its cumulative distribution function F (.) is a linear function, 
i.e. F(v)=0.5+0.5v. Using this result, we can plug equations (16) and (17) into 
condition (13) to obtain a simplified condition:

1+L(y) - 2L′(z)  2·[1-L(y)]·[L′(z)-L(y)]
(18)      ln  ──────── >  ─────────────.

1-L(y)  [1-L′(z)]·[1+L(y) - 2L′(z)]

The left (right) hand side of inequality (18) is always positive (negative) if 
L(y)>L′(z). Thus, condition (18) is always satisfied. In other words, model (10) 
can generate systematic preference reversals even though model (6) cannot. 

Why do systematic preference reversals emerge in modified strong 
utility (Fechner) model (10) but not in the original model (6)? The intuition is 
simple. If lotteries L  and L′ yield the same expected utility, then both the 
original and modified strong utility (Fechner) model postulate that P (L′,L)=0.5. 
Definition 1 then implies that median certainty equivalents of lotteries L and L′ 
are the same. This implication again holds for both models. 
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The two models diverge in their assumptions about the distribution of 
certainty equivalents of L and L′. In original model (6), certainty equivalents of L 
and L′ are symmetrically distributed. In contrast, in modified model (10), 
certainty equivalents of L and L′ are skewed due to the bounds imposed by 
stochastic dominance. Specifically, the certainty equivalent of L is distributed on 
the interval [0,y] and the certainty equivalent of L′ — on the interval [0,z].5) 
Thus, the certainty equivalent of L is negatively skewed. At the same time, the 
certainty equivalent of L′ is positively skewed. In other words, the certainty 
equivalent of L′ is more likely to be the greater of the two. Hence, standard 
preference reversals are more likely to be observed than nonstandard ones.

Model (10) can rationalize not only a higher incidence of standard 
preference reversals but also the existence of strong reversals (Fishburn, 1988, 
p.46). Strong reversals occur when an individual chooses lottery L over lottery 
L′ in a direct binary choice but reveals a certainty equivalent for L′ which is 
greater than the highest possible outcome in lottery L (i.e., y). According to 
Definition 1, the likelihood of the certainty equivalent of L′ to be greater than y  
is simply P (L′,y). Hence, strong reversals occur with probability P (L′,L)·P (L′,y).

Note that if lotteries L  and L′ yield the same expected utility, then the 
likelihood of observing strong reversals cannot be greater than  0.25  because   
P (L′,L)=0.5 and P (L′,y)<P (L′,L). Experimental data appear to support this 
prediction (e.g., Butler and Loomes,2007).

Butler and Loomes (2007) recently found evidence of nonstandard 
preference reversals with probability equivalents. Model (10) can account for 
such reversals if we use a plausible definition of probabilistic probability 
equivalents (see definition 2 in Blavatskyy (2009)). 

 ─────────────
5) See also graphical representation in MacCrimmon and Smith (1986) 

and Butler and Loomes (2007).
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5. Axiomatic Characterization
This section provides a simple axiomatization of model (10) when U(.) is 

von Neumann-Morgenstern expected utility function. The primitive of choice is 
a binary choice probability function P :ℒ×ℒ→[0,1]. Probability P (L,L′) is 
observable from a relative frequency of L choices when an individual chooses 
repeatedly between L and L′, L≠L′. Probability P (L,L) is not observable from a 
direct binary choice. For simplicity, we assume that P (L,L)=0.5 for all L∈ℒ.  

First, we impose standard axioms on function P :ℒ×ℒ→[0,1]. Axioms 1-
4 are probabilistic analogs of the corresponding axioms in expected utility 
theory.
Axiom 1 (Probabilistic Completeness) P (L,L′)+P (L′,L)=1 for all L,L′∈ℒ. 
Axiom 2 (Weak Stochastic Transitivity)  If  P (L,L′)≥0.5  and  P (L′,L″)≥0.5  then P 
(L,L″)≥0.5  for all L, L′, L″∈ℒ.
Axiom 3 (Probabilistic Continuity)  The sets {α∈[0,1]: P (LαL′,L″)≥0.5}  and   
{α∈[0,1]: P (L″,LαL′)≥0.5}  are closed for all L, L′, L″∈ℒ.
Axiom 4 (Probabilistic Independence Axiom)  P (L,L′)=P (LαL″, L′αL″)  for  all L, 
L′, L″∈ℒ and α∈(0,1].

Proposition 1 (von Neumann and Morgenstern, 1944)  If Axioms 1-4 hold then 
there is a utility function u :X→ℝ such that for any L,L′∈ℒ:
(19)  P (L,L′)≥0.5     if and only if ∑x∈X L(x)·u(x)≥∑x∈X L′(x)·u(x).  

Proof   Define an auxiliary preference relation L≿0.5L′  if P (L,L′)≥0.5. If 
Axioms 1-4 hold then preference relation ≿0.5  satisfies all the axioms of 
expected utility theory. Proposition 1 then immediately follows from expected 
utility theorem of von Neumann and Morgenstern (1944)  Q.E.D.

Consider two arbitrary lotteries L and L′. According to axiom 3, the sets 
{α∈[0,1]: P ([L∨L′]α[L∧L′],L)≥0.5}  and   {α∈[0,1]: P (L,([L∨L′]α[L∧L′])≥0.5}  are 
both closed. Both of these sets are non-empty (α=1 always belongs to the first 
set and α=0 always belongs to the second set). Since set [0,1] is connected, 

- 16 -



there exists at least one probability αL,L′∈[0,1] that belongs to both of these 
sets, i.e., P (L, [L∨L′]αL,L′[L∧L′])=0.5. 

Two cases are possible. First, if the expected utility of lottery L∨L′  is 
strictly greater than the expected utility of lottery L∧L′, then probability αL,L′  is 
unique. In particular, proposition 1 implies that probability αL,L′ is given by (20).

          ∑x∈X L(x)·u(x) - ∑x∈X [L∧L′](x)·u(x)  
(20)           αL,L′ =  ───────────────────

   ∑x∈X [L∨L′](x)·u(x) - ∑x∈X [L∧L′](x)·u(x) 
Second, if expected utility of lottery L∨L′  is equal to the expected utility 

of lottery L∧L′, then probability αL,L′  is not unique. In fact, in this case, any 
probability αL,L′ ∈[0,1] satisfies condition P (L, [L∨L′]αL,L′[L∧L′])=0.5. For 
simplicity, we assume that αL,L′ =0.5 in this case. 

Intuitively, we can think of probability αL,L′ as a contextual probability 
equivalent of lottery L  given that an individual faces a binary choice between 
lotteries L and L′. If αL,L′=1 then lottery L  stochastically dominates lottery L′. If 
αL,L′=0 then lottery L  is stochastically dominated by lottery L′. If αL,L′=0.5 then 
lotteries L and L′ yield the same expected utility and P (L,L′)=0.5. More 
generally, the higher is probability αL,L′ the more an individual is likely to 
choose lottery L over lottery L′.  

Contextual probability equivalent of lottery L′ is defined in a similar 
vein. It is the probability αL′,L∈[0,1] such that P (L′, [L∨L′]αL′,L [L∧L′])=0.5. Note 
that αL′,L=1-αL,L′. Our last axiom postulates that the likelihood of choosing 
lottery L over lottery L′ depends only on the difference in contextual probability 
equivalents αL,L′ -αL′,L . 
Axiom 5 (Probabilistic Choice)  P (L,L′)=P (L″, L‴ ) for all L, L′, L″, L‴∈ℒ such 
that αL,L′ -αL′,L =αL″,L‴ -αL‴,L″ .

Axiom 5 follows as a corollary from Proposition 1 in a special case when 
function P (.,.) takes only three values: 0, 0.5 or 1.6)  When choices are truly 
probabilistic, it does not follow from axioms 1-4 and we must add it to the list. 
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Proposition 2 Binary choice probability function P :ℒ×ℒ→[0,1] satisfies axioms 
1-5 if and only if there is a utility function u :X→ℝ such that for all L,L′∈ℒ 
choice probability P (L,L′) is given by formula (10) with U(.) being von 
Neumann-Morgenstern expected utility function, i.e. U(L) = ∑x∈X L(x)·u(x), and 
F : [-1,1]→[0,1] being an arbitrary non-decreasing function satisfying the 
restriction F (v )+F (-v)=1 for all v∈[-1,1]. 

 Proof  The necessity of axioms 1-5 follows by simple algebra from 
formula (10). To prove sufficiency, note that axiom 5 effectively postulates that 
P (L,L′)=F (αL,L′ -αL′,L ), where F : [-1,1]→[0,1] is an arbitrary function. Plugging 
the definition of contextual probability equivalents (20) into the last expression 
immediately yields formula (10). Q.E.D.

Axiom 5 assumes that binary choice probabilities depend on the 
difference  in contextual probability equivalents. Alternatively, one can assume 
that they depend on the ratio  of contextual probability equivalents. It turns out 
that this assumption together with axioms 1-4 provide a new axiomatization of 
incremental expected utility advantage model (Fishburn, 1978). Thus, model 
(10) is also related to the model of Fishburn (1978). These two models diverge 
only in the arithmetic assumption about what drives binary choice probabilities: 
the difference or the ratio of contextual probability equivalents. Econometric 
estimation in section 3 suggests that the difference assumption (i.e., axiom 5) 
provides a better fit to experimental data than does the ratio assumption.

 ─────────────
6) This special case may be considered as nearly-conventional economic 

theory based on a revealed preference relation: L′≻L when P (L,L′)=0, L≻L′ when 
P (L,L′)=1, and L~L′ when P (L,L′)=0.5. This is "nearly-conventional" because in 
standard economic theory a choice probability P (L,L′) is not defined when L~L′.
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6. Risk Aversion
In this section, we consider two people: an individual ♀ characterized by 

a binary choice probability function P♀:ℒ×ℒ→[0,1] and an individual ♂ 
characterized by a function P♂:ℒ×ℒ→[0,1]. The notion of relative risk aversion 
can be introduced by direct analogy to Yaari's (1969) acceptance sets. A more 
risk averse individual is always at least as likely to choose a degenerate lottery 
over a risky lottery as is a less risk averse individual.

Definition 2 An individual ♀ is probabilistically more risk averse than an 
individual ♂ if P♀(x,L)≥P♂(x,L) for all x∈X and all L∈ℒ with a strict inequality for 
at least one outcome x∈X  and one lottery L∈ℒ.

Definition 2 of the more-risk-averse-than relation between individuals 
is quite general. It does not require outcomes to be measurable in real numbers. 
It also imposes no restrictions on a binary choice probability function. Thus, 
definition 2 is applicable to any model of probabilistic choice. In particular, we  
can investigate implications of Definition 2 for model (6) and model (10).

Definition 2, however, has one immediate implication for all models of 
probabilistic choice. We can unambiguously rank two individuals in terms of 
their risk attitudes only if they choose in identical manner between riskless 
alternatives (degenerate lotteries). If this is not the case, heterogeneous risk 
attitudes are confounded with heterogonous tastes over outcomes and we 
cannot make a clear comparison of individuals in terms or relative risk aversion.

For example, suppose that individual ♀ prefers apples to oranges and 
individual ♂ has the opposite preference. Furthermore, suppose that individual 
♀ chooses one apple for sure over a 50% chance of two oranges (nothing 
otherwise) and individual ♂ makes the opposite choice. We cannot conclude 
that individual ♀ is more risk averse than individual ♂. Individual ♀ could have 
chosen an apple because she likes apples, not because she is averse to risk. 
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Since Definition 2 implies that individuals ♀ and ♂ have the same 
preference ordering over outcomes, we can write that set X  is totally ordered 
under a preference relation ≿ without any individual specific subscripts. As in 
the previous two sections, we consider models (6) and (10) when U(.) is von 
Neumann-Morgenstern expected utility function. First, we state impossibility 
result for model (6).

Blavatskyy (2011a) shows that it is impossible to rank individuals in 
terms of probabilistic risk aversion under original strong utility (Fechner) model 
(6). Wilcox (2010) discusses the failure of strong utility (Fechner) model to 
capture risk aversion in the context of lotteries over monetary outcomes. This 
failure is not surprising if we look at the axiomatic characterization of strong 
utility (Blavatskyy, 2008). One of its axioms (interchangeability) postulates that 
risky lotteries can be replaced by their certainty equivalents without affecting 
choice probabilities. Yet, such exchange operation inevitably leads to the loss 
of information about risk preferences.

Proposition 3 Under modified strong utility (Fechner) model (10) an individual 
♀ is probabilistically more risk averse than an individual ♂ if F♀(v)=F♂(v)  for all 
v∈[-1,1], inequality (21) holds for all x, y, z∈X  such that z≿x≿y  and it holds 
as strict inequality for at least one triple of outcomes x, y, z∈X, z≿x≿y.

u♀(x) - u♀(y) u♂(x) - u♂(y)
(21) ──────    ≥ ──────

u♀(z) - u♀(x) u♂(z) - u♂(x)
Proof is presented in the Appendix.
The set of all lotteries that can be constructed over three outcomes is 

often geometrically represented as the probability triangle (see Machina, 1982). 
An individual's indifference curve shows all lotteries with the same expected 
utility. In other words, when choosing between two lotteries located on the 
same indifference curve, an individual chooses with probabilities 50%-50%. 
Under expected utility theory indifference curves are parallel straight lines.
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Index I♀(x,y,z)≡[u♀(x)-u♀(y)]/[u♀(z)-u♀(x)] measures local risk aversion of 
an individual ♀ in the context of outcomes x, y, z∈X, z≿x≿y.  Index I♀(x,y,z) is 
equal to the slope of ♀'s indifference curves in the probability triangle 
representing all lotteries over outcomes x, y, z∈X, z≿x≿y.  Inequality (21) 
effectively states that the indifference curves of a less risk averse individual ♂ 
should never be steeper than the indifference curves of a more risk averse 
individual ♀ (see figure 1). Thus, in model (10) definition 2 leads to a familiar 
notion of risk aversion (cf. Machina, 1982).

[INSERT FIGURE 1 HERE]
The importance of proposition 3 for applied econometrics is difficult to 

underestimate. The notion of probabilistic risk aversion cannot be defined in 
the original strong utility (Fechner) model (6). Thus, model (6) cannot be used 
for estimating risk attitudes, which is one of its most common econometric 
applications. In contrast, the notion of probabilistic risk aversion is well-
defined in model (10). In particular, this notion is the same as a standard 
definition of risk aversion for classical expected utility theory. Thus, not only 
model (10) can be used for estimating risk attitudes but it also produces the 
results that have standard microeconomic interpretation.

7. Conclusion
The main idea of strong utility (Fechner) model is quite intuitive. People 

do not automatically pick an alternative which maximizes their utility. Instead, 
they choose probabilistically. The higher the utility of a choice alternative, the 
more it is likely to be chosen. This simple intuition adds to the popularity of 
strong utility (Fechner) model. This paper proposes a modification of strong 
utility. The modified model has four clear advantages over the original model:

1) no violations of first order stochastic dominance, 
2) superior goodness of fit to experimental data, 
3) ability to rationalize systematic preference reversals,
4) a well-defined notion of probabilistic risk aversion.
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Axiomatic characterization of the proposed model reveals an interesting 
kinship to the model of Fishburn (1978). Both models can be derived from the 
same system of axioms differing only in one arithmetic assumption. In this 
paper we assume that choice probabilities depend on differences in contextual 
probability equivalents. In contrast, the model of Fishburn (1978) assumes that 
they are driven by the ratio of contextual probability equivalents. 

The proposed model can be applied not only in choice under risk but 
also in other microeconomic domains such as, for example, consumer choice. 
Consider the commodity space ℝL. Let A ∈ℝL be a commodity bundle (vector). 
For any two bundles A, B ∈ℝL, a commodity bundle A∨B  is defined as bundle 
[max{A1,B1}, ..., max{AL,BL}] and a commodity bundle A∧B  is defined as bundle 
[min{A1,B1}, ..., min{AL,BL}]. Modified strong utility (Fechner) model postulates 
that a consumer chooses bundle A over bundle B  with probability:

      U(A) - U(B) 
   P (A,B)=F  ──────── , if  U(A∨B)≠U(A∧B)

(22) U(A∨B)-U(A∧B) 

   P (A,B)=0.5, if  U(A∨B)=U(A∧B).
where F:[-1,1]→[0,1] is a non-decreasing function such that F (v )+F (-v)=1 for 
all v∈[-1,1], and U :ℝL→ℝ is consumer's utility function. 

According to model (22), revealed choices are always monotone. Yet, if 
neither bundle dominates the other, a consumer chooses in a probabilistic 
manner. Thus, formula (22) can be applied for modeling variable consumer 
demand. This approach has a comparative advantage over the traditional 
random preference/utility approach. Formula (22) satisfies weak stochastic 
transitivity whereas random preference/utility leads to intransitive choice cycles 
akin to the Condorcet's paradox.

The model proposed in this paper can be also applied in game theory. In 
standard Nash equilibrium, players can randomize only in order to keep the 
opponent in the state of indifference. McKelvey and Palfrey (1995) developed 
the concept of quantal response equilibrium (QRE) based on strong utility 
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(Fechner) model.7) In QRE players must not worry about keeping the opponent 
indifferent. Instead, they choose what is in their best interest (in a probabilistic 
manner) given their beliefs about opponent’s actions. A similar solution 
concept for non-cooperative games can be developed based on the model 
proposed in this paper. The advantage of such solution concept is that players 
avoid choosing dominated strategies because they are bound to respect 
stochastic dominance.
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Appendix
Proof of Proposition 3 Consider an arbitrary outcome x∈X  and a lottery 

L∈ℒ. We shall prove that P♀(x,L)≥P♂(x,L) if conditions of proposition 3 hold.

 If outcome x  is less preferred than the worst possible outcome in 

lottery L, then model (10) implies that P♀(x,L)=F♀(-1) and P♂(x,L)=F♂(-1). Since 

F♀(-1)=F♂(-1), it must be the case that P♀(x,L)=P♂(x,L). Similarly, if outcome x  

is more preferred than the best possible outcome in lottery L,  then we have      

P♀(x,L)=F♀(1)=F♂(1)=P♂(x,L). What remains is to consider the case when 

outcome x  lies between the worst and the best possible outcome in lottery L.

If inequality (21) holds for all x, y, z∈X  such that z≿x≿y  then
∑y∈X, x≿y L(y)·[u♀(x) - u♀(y)] ∑y∈X, x≿y L(y)·[u♂(x) - u♂(y)]

(A1) ───────────── ≥ ───────────── 
∑z∈X, z≿x L(z)·[u♀(z) - u♀(x)] ∑z∈X, z≿x L(z)·[u♂(z) - u♂(x)]

If inequality (A1) holds then the following inequality holds as well:
∑y∈X, x≿y L(y)·[u♀(x) - u♀(y)]  - ∑z∈X, z≿x L(z)·[u♀(z) - u♀(x)]
──────────────────────────── ≥
∑y∈X, x≿y L(y)·[u♀(x) - u♀(y)]  + ∑z∈X, z≿x L(z)·[u♀(z) - u♀(x)]

(A2)
∑y∈X, x≿y L(y)·[u♂(x) - u♂(y)]  - ∑z∈X, z≿x L(z)·[u♂(z) - u♂(x)]

      ≥ ────────────────────────────
∑y∈X, x≿y L(y)·[u♂(x) - u♂(y)]  + ∑z∈X, z≿x L(z)·[u♂(z) - u♂(x)]

Since F♀(v)=F♂(v)  for all v∈[-1,1] and it is a non-decreasing function, 

we can rewrite inequality (A2) as
 u♀(x) - ∑y∈X L(y)·u♀(y)  

     F♀ ──────────────────────────  ≥
∑y∈X, x≿y L(y)·[u♀(x) - u♀(y)]+∑z∈X, z≿x L(z)·[u♀(z) - u♀(x)] 

(A3)
 u♂(x) - ∑y∈X L(y)·u♂(y)  

   ≥F♂ ──────────────────────────  
∑y∈X, x≿y L(y)·[u♂(x) - u♂(y)]+∑z∈X, z≿x L(z)·[u♂(z) - u♂(x)] 

According to formula (10), the left hand side of (A3) is equal to P♀(x,L) 

and the right hand side of (A3) is equal to P♂(x,L). Thus, P♀(x,L)≥P♂(x,L). Q.E.D.
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Figure 1 An individual ♀ is more risk averse than an individual ♂ 
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b) Indifference curves of an individual ♀
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2010-16 Martin Gächter, Peter Schwazer and Engelbert Theurl: Stronger sex
but earlier death: A multi-level socioeconomic analysis of gender differences in
mortality in Austria

2010-15 Simon Czermak, Francesco Feri, Daniela Rützler and Matthias Sut-
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Empirical research often requires a method how to convert a deterministic econo-
mic theory into an econometric model. A popular method is to add a random error
term on the utility scale. This method, however, violates stochastic dominance. A
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