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DOYURULABİLİR ORTAMLARDA DOĞRUSAL OLMAYAN
KAFES SOLİTONLARI
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NONLINEAR LATTICE SOLITONS IN SATURABLE MEDIA

SUMMARY

Solitons are nonlinear wave structures that are widely present in nature; they arise
from fluid dynamics to biological systems and from nonlinear optics to Bose-Einstein
condensates (BECs). In nonlinear optics, localized solitary waves are usually called
solitons or optical modes and their existence in homogeneous and/or periodic systems
is shown experimentally. In recent years, optical lattice solitons in Kerr media are
deeply analyzed and it is shown that they suffer from collapse due to self-focusing or
diffraction.

In this thesis, the existence and stability of optical solitons in saturable media on periodic
and certain type of quasicrystal lattices (Penrose-5 and Penrose-7) are investigated.

In Section 1, the historical background of the nonlinear wave propagation in optical
media is given. Basic definitions about optical lattices and medium, and the model that
governs nonlinear wave propagation through a nonlinear optical lattice are also given in
the same section. Since localized soliton type solutions to the model equation are found
by the use of a numerical algorithm based on a double Fourier transform, this transform
technique is also briefly explained.

The governing equation for the physical model that has been used in this study is the
saturable nonlinear Schrödinger (NLS) equation with an external potential in (2+1)D
space. This equation is given as follows:

iuz(x,y,z)+uxx(x,y,z)+uyy(x,y,z)−
e0u(x,y,z)

1+V (x,y)+ |u(x,y,z)|2
= 0 . (0.1)

In Section 2, the solution to the NLS equation with an external potential is obtained by
spectral methods.

For the numerical solution of (0.1), a Fourier iteration method, namely the spectral
renormalization method (SR) is employed which uses the ansatz u(x,y,z) = f (x,y)e−iµz

where f (x,y) is a complex valued function and µ is the propagation constant
(eigenvalue) and solves it iteratively in the Fourier space.

In a certain parameter regime of the potential depth (V0) and the propagation constant
(µ), the first nonlinear band-gap structures are obtained for periodic and Penrose type
quasicrystal potentials.

The effect of the numerical value of the saturation parameter e0 and the potential depth
V0 to the gap width are also analyzed in detail for the above mentioned lattice types.

In Section 3, the nonlinear stability properties of the obtained solitons located in the first
nonlinear gap are investigated. For this purpose, Vakhitov-Kolokolov (VK) stability
criterion is explained. This criterion interprets the relation between the rate of change
of the soliton power (P) with respect to the eigenvalue (µ) and the soliton stability.

xiii



This relation is often called the slope condition and used to predict collapse. In order
to use the slope condition, the power versus eigenvalue graphs are depicted for the gap
solitons.

The long time (distance) behavior of the fundamental solitons are also observed by
direct simulations of the NLS equation, i.e. whether they conserve their shapes,
locations and maximum amplitudes or not. The latter is done by means of finite
differences method and a time stepping method (Runge-Kutta). The results are
compared with the results that are obtained from VK criterion and their consistency
is shown.

The results of the study and possible future projects are discussed in Section 4.
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DOYURULABİLİR ORTAMLARDA DOĞRUSAL OLMAYAN KAFES
SOLİTONLARI

ÖZET

Solitonlar, doğada bir çok yerde var olan, akışkanlar mekaniğinden biyolojik sistemlere,
doğrusal olmayan optikten Bose-Einstein yoğuşmasına (BEC), birçok fiziksel olguda
ortaya çıkan yapılardır. Doğrusal olmayan optikte yerel yalnız (lokalize soliter) dalgalar
genellikle soliton ya da optik mod adını alırlar ve bunların deneysel olarak homojen
ve/veya periyodik sistemlerdeki varlıkları gösterilmiştir. Son yıllarda optik kafes (latis)
solitonları Kerr ortamlarda derinlemesine incelenmiş ve bunların odaklanmadan ötürü
dalga patlaması (ya da çökmesi) nedeniyle kararlılıklarının (stabilitelerinin) bozulduğu
gösterilmiştir.

Bu tezde, doyurulabilir ortamlarda periyodik ve belirli tipte yarı kristal latisler üzerinde
(Penrose-5 ve Penrose-7) optik latis solitonlarının varlığı ve kararlılığı incelenmiştir.

Bölüm 1’de, optik ortamlarda doğrusal olmayan dalga yayılımının tarihsel gelişimi
anlatılmıştır. Aynı bölümde optik latisler, optik ortamlar ve doğrusal olmayan optik
latislerde dalga yayılımı modeli hakkında bilgiler verilmiştir. Model denklemin sayısal
sonuçları Fourier dönüşümü tabanlı bir algoritma ile bulunduğu için bu dönüşüm
metodu da kısaca açıklanmıştır.

Bu çalışmada kullanılan fiziksel model, (2+1) boyutlu, bir dış potansiyel içeren,
doyurulabilir, doğrusal olmayan Schrödinger (NLS) denklemidir. Bu denklem aşağıdaki
gibi verilir:

iuz(x,y,z)+uxx(x,y,z)+uyy(x,y,z)−
e0u(x,y,z)

1+V (x,y)+ |u(x,y,z)|2
= 0 . (0.2)

Bölüm 2’de dış potansiyel içeren doyurulabilir NLS denkleminin çözümü spektral
yöntemler kulllanılarak elde edilmiştir.

(0.2) denkleminin sayısal çözümü, literatürde spektral renormalizasyon (SR) olarak
isimlendirilen yöntem ile elde edilmiştir. Bu yöntem, u(x,y,z) = f (x,y)e−iµz

yaklaşımını kullanır ve f (x,y) kompleks değerli fonksiyonunu Fourier uzayında ardışık
(iteratif) olarak çözer. Burada µ yayılım sabitidir (özdeğerdir).

Bu çalışmada periyodik ve Penrose tipi yarı kristal potansiyellerde, potansiyel derinliği
V0 ve yayılma sabiti µ’nün belirli değerlerinde birinci doğrusal olmayan bant yapıları
bulunmuştur.

Doygunluk parametresi e0’ın sayısal değerinin ve potansiyel derinliği V0’ın bant
genişliğine etkileri de yukarıda sözü edilen potansiyeller için ayrıntılı olarak
incelenmiştir.

Bölüm 3’te birinci doğrusal olmayan yarıkta elde edilen solitonların kararlılığı ele
alınmıştır. Bu amaçla öncelikle Vakhitov-Kolokolov (VK) stabilite kriteri açıklanmıştır.
Bu kriter, soliton gücü (P) ile özdeğer (µ) arasındaki ilişkinin soliton kararlılığına
etkisini ortaya koyar. Bu ilişki sıklıkla eğim koşulu olarak isimlendirilir ve dalga
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patlamasını öngörmek için kullanılır. VK stabilite kriterinin, elde edilen kafes
solitonları tarafından sağlanıp sağlanmadığını kontrol etmek amacıyla solitonların
güç-özdeğer grafikleri çizilmiştir.

Temel solitonların uzun zaman (mesafe) davranışları da doyurulabilir NLS denkleminin
doğrudan simülasyonuyla gözlemlenmiştir; yani solitonların şekillerini, konumlarını
ve maksimum genliklerini koruyup korumadıkları kontrol edilmiştir. Son bahsedilen
kontrol, sonlu farklar ve zamanda ilerleme yöntemleri (Runge-Kutta) kullanılarak
yapılmıştır. Elde edilen sonuçlar, VK kriterlerinden elde edilen sonuçlarla
karşılaştırılmış ve sonuçların tutarlılığı gösterilmiştir.

Çalışmanın sonuçları ve gelecekte olası projeler Bölüm 4’te tartışılmıştır.
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1. INTRODUCTION

In the last few years, optical solitons have become the main area for studying

solitons’ interactions and they are responsible for most of the progress on soliton

phenomena because of the ease with which sophisticated experiments can be conducted

in a laboratory environment that offers precise control over almost every parameter.

Furthermore, the ability to sample the waves directly as they propagate and the

availability of numerous material systems that are fully characterized by a set of simple

equations result in a field in which theory and experiments make rapid progress.

Recently, there has been considerable interest in studying solitons in systems with

periodic potentials or lattices, in particular, those which can be generated in nonlinear

optical materials [1, 2]. In periodic lattices, solitons can typically form when their

propagation constants (or eigenvalues) are within a certain region, so called gap;

a concept that is borrowed from the Floquet-Bloch theory for linear propagation.

However, the external potential of complex systems can be much more general and

physically richer than a periodic lattice. For example, atomic crystals can have various

irregularities such as defects and edge dislocations or quasicrystal structures which have

long-range orientational order but no translational symmetry [3, 4]. In general, when

the lattice periodicity is slightly perturbed, the band-gap structure and soliton properties

also become slightly perturbed and solitons are expected to exist in much the same

way as in the perfectly periodic case [5, 6]. On one hand, little is known about the

spectrum with quasi-periodic potentials [7]. On the other hand, recently in [8], NLS

equation with external potentials (lattices) possessing crystal and quasicrystal structures

are studied and the numerical existence of fundamental solitons is shown. In the same

study, the bands and gaps of the fundamental lattice solitons are computed and their

stability properties are investigated by numerical methods.
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In this thesis, the existence and stability of solitons in periodic and certain quasicrystal

potentials are numerically investigated. The model for this is the saturable (2+1)D

nonlinear Schrödinger (NLS) equation with an external potential in three dimensional

space:

iuz(x,y,z)+uxx(x,y,z)+uyy(x,y,z)−
e0u(x,y,z)

1+V (x,y)+ |u(x,y,z)|2
= 0 . (1.1)

In optics, u(x,y,z) corresponds to the complex-valued, slowly varying amplitude of the

electric field in the xy-plane propagating in the z direction, ∆u = uxx +uyy corresponds

to diffraction, V (x,y) is an external optical potential that can be written as the intensity

of a sum of N phase-modulated plane waves (see [9]) and e0 is a real constant.

For the solution of this equation, a fixed-point spectral computational method (spectral

renormalization method [8]) is employed which uses the ansatz u(x,y,z) = f (x,y)e−iµz

where f (x,y) is a complex valued function and µ is the propagation constant

(eigenvalue) and solves it iteratively in the Fourier space. Different than in the above

mentioned work, the method is applied to the saturable NLS equation and therefore, it

is slightly modified.

In this work, the numerical existence of fundamental solitons on the periodic and

quasicrystal lattices is shown and the band-gap structures are found for periodic and

Penrose type potentials firstly for fixed e0 and then for varying e0 and potential depth

V0 values. It is shown that band-gap structure is sensitive to the change in e0 values,

namely, gap width increases with the increasing values of e0.

The first nonlinear gap is the edge of the parameter regime of the potential depth V0 and

eigenvalue µ for which the numerical method converges to a localized mode. In the

band region, under the same potential depth V0, beyond a certain threshold value of the

eigenvalue µ , the numerical method yields an extended state which is called the Bloch

wave region.

Next, the nonlinear stability of the fundamental solitons is investigated. For this reason,

the change of the soliton power with respect to the eigenvalue (soliton power P versus

µ graph) is analyzed in order to predict collapse according to the slope condition.

The long time (distance) behaviors of the fundamental solitons are also observed by

direct simulations of saturable NLS equation, i.e. whether they conserve their shapes,

locations and maximum amplitudes or not. To study the nonlinear stability, Eq.(1.1) is

2



directly computed over a long distance (Finite difference method is used on derivatives

uxx and uyy; fourth-order Runge-Kutta method is used to advance in z.) for both periodic

and Penrose potentials. The initial conditions were fundamental solitons with %1

random noise in the amplitude and phase.

1.1 Definitions

In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet

or pulse) that maintains its shape while it travels at constant speed. Solitons arise as

the solutions of a widespread class of weakly nonlinear dispersive partial differential

equations describing physical systems. [10]

In optics, the term soliton (also called an optical mode) is used to refer to any optical

field that does not change during propagation due to a delicate balance between

nonlinear and linear effects in the medium.

A crystal is a structure arranged in an orderly repeating pattern extending in all three

spatial dimensions. Patterns are located upon the points of a lattice, which is an array

of points repeating periodically in three dimensions. In short, a crystal is ordered and

periodic (i.e. has a translational symmetry).

A structure that is ordered but non-periodic (i.e. lacks any translational symmetry) is

called a quasicrystal. The Penrose tiling given in Fig.(1.1) is a quasicrystal, for instance

and has a rotational symmetry. [11]

Figure 1.1: A Penrose tiling

An optical lattice is formed by the interference of counter-propagating laser beams,

creating a spatially periodic polarization pattern. The resulting periodic potential can be

3



modelled mathematically. In this thesis, potentials of the following form will be

investigated:

VN(x,y) =
V0

N2

∣∣∣∣N−1

∑
n=0

ei(xcos 2πn
N +ycos 2πn

N )

∣∣∣∣ (1.2)

The potentials for N = 2,3,4,6 yield periodic lattices which correspond to standard

2D crystal structures whereas N = 5,7 correspond to quasicrystals. In particular, the

quasicrystal with N = 5 is often called the Penrose tiling.

In Fig.(1.2), Fig.(1.3) and Fig.(1.4), contour images, contour plots and cross sections of

the lattices corresponding to N = 4,5,7, all with V0 = 1 are displayed.

Figure 1.2: Potentials obtained from (1.2) by taking N = 4,5,7 with V0 = 1

Figure 1.3: Contour plots of the potentials in Fig.(1.2)

Figure 1.4: Cross sections of the potentials in Fig.(1.2)

As it can be seen from Fig.(1.4), non-periodic lattices (N = 5 and N = 7) admit only an

absolute maximum unlike the periodic lattice (N = 4) which admits local maxima.
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Recently, Freedman et al. observed solitons in Penrose and other quasicrystal lattices

generated by the optical induction method [12].

1.2 Fourier Transform

For a continuous, smooth and absolutely integrable function f (x), the integral transform

F(kx) =
1√
2π

∫ ∞

−∞
f (x)eikxxdx (1.3)

is called the Fourier transform of f (x) and conversely, the transform

f (x) =
1√
2π

∫ ∞

−∞
F(kx)e−ikxxdkx (1.4)

is called the inverse Fourier transform of F(kx). [13]

The Fourier transform of f is denoted by F ( f ) = f̂ , the inverse Fourier transform of f̂

is denoted by F−1( f̂ ) and clearly F−1( f̂ ) = F−1(F ( f )) = f .

Integral transform methods are very useful for solving partial differential equations

because of their properties such as linearity, shifting, scaling, etc.

Suppose that f (x) tends to zero as |x| tends to infinity. Then,

F ( f ′(x)) =
1√
2π

∫ ∞

−∞
f ′(x)eikxxdx

=
1√
2π

([
f (x)eikxx

]∞

−∞
− ikx

∫ ∞

−∞
f (x)eikxxdx

)
=−ikxF ( f (x)).

(1.5)

This result can be extended to obtain the differentiation property of the Fourier

transform:

F ( f (n)(x)) = (−ikx)
nF ( f (x)) = (−ikx)

n f̂ , n ∈ N. (1.6)

Using this property and the linearity of the Fourier transform, one obtains the important

equality

F (∆ f (x,y)) = F ( fxx + fyy) =−(k2
x + k2

y) f̂ (1.7)

which will be used during the calculations in the spectral renormalization method.
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1.3 The Saturable Nonlinear Schrödinger Equation

In isotropic (Kerr) media, where the nonlinear response of the material depends

cubically on the applied field, the dynamics of a quasi-monochromatic optical pulse

are governed by the (2+1)D NLS equation

iuz +λ (uxx +uyy)+ γ|u|2u = 0 . (1.8)

In this model, u(x,y,z) is the amplitude of the envelope of the optical beam, z is the

distance in the direction of propagation, and x and y are transverse spatial coordinates.

Although higher dimensional NLS models are not integrable, they possess stationary

solutions which are unstable on propagation. Maybe the most fascinating issue related

to the higher dimensional NLS is that for a wide range of initial conditions, the system

evolution shows collapse [14]. Wave collapse occurs where the solution tends to infinity

in finite time (distance). Collapse was theoretically predicted for the (2+1)D NLS

equation back in the 1960’s [15].

It is known that there exist solutions of (1.8) which have a singularity in finite time and

are extremely sensitive to the addition of small perturbations to the equation and there

has been much interest in the determination of the structure of this singularity [16, 17].

Therefore, an important challenge in nonlinear science is to find out mechanisms

arresting wave collapse in NLS models. One way of arresting collapse is adding

a defocusing term to the classical (2+1)D NLS equation (1.8). Then, the equation

becomes (for λ = γ = 1)

iuz +∆u+ |u|2u−Vu = 0 . (1.9)

In optics, u(x,y,z) corresponds to the complex-valued, slowly varying amplitude of the

electric field in the xy-plane propagating in the z direction, ∆u ≡ uxx +uyy corresponds

to diffraction, the cubic term in u originates from the nonlinear (Kerr) change of the

refractive index and V (x,y) is an external optical potential that acts as a defocusing

mechanism.
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In [8], the nonlinear stability properties of the fundamental Penrose lattice solitons

corresponding to N = 5 are investigated and shown that solitons located on lattice

maxima (for both periodic and Penrose lattices) and some Penrose solitons located on

lattice minima (depending on the topology of the minima) are nonlinearly unstable. In

another study ( [18]), the existence and nonlinear stability properties of the fundamental

Penrose lattice solitons for N = 7 are investigated and some Penrose-7 solitons are found

to be unstable depending on the location, eigenvalue and potential depth.

Optical spatial solitons and their interactions in Kerr and saturable media have been

elucidated in detail in [19]. In [20], the numerical existence of an optical lattice soliton

in saturable media is demonstrated by means of the spectral renormalization method.

Numerical existence of vortex solitons are also reported in saturable media in [21].

It is well known that the nonlinear saturation suppresses the collapse of the fundamental

solitons in two and three dimensions [22, 23].

In this work, in the light of the previous studies and with the intention of achieving

stable solitons in quasicrystal type lattices, namely Penrose-5 and Penrose-7, saturable

nonlinear Schrödinger equation with an external potential will be considered:

iuz +∆u− e0u
1+V + |u|2

= 0 . (1.10)

Here, e0u
1+V+|u|2 is the term for nonlinear saturation whereas e0 is a real constant.
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2. NUMERICAL EXISTENCE OF FUNDAMENTAL LATTICE SOLITONS

In this section, numerical solution to the saturable NLS equation with an external

potential given in (1.1) will be obtained by the spectral renormalization method and

the first nonlinear gap edges will be demonstrated for various types of lattices.

Firstly, the spectral renormalization method for the saturable NLS equation is explained.

Secondly, gaps, (i.e. intervals of convergence) are found for different e0 values and

potentials (periodic and Penrose type). Finally, the effects of e0 and the potential depth

V0 on the gap width are discussed.

2.1 Spectral Renormalization Method

Spectral renormalization method is essentially a Fourier iteration method. The idea

of this method was proposed by Petviashvili in [24]. Later, this method is improved by

Ablowitz et al. and applied to (2+1)D NLS equation [25]. In this subsection, the method

is configured so that it can be applied to the saturable NLS equation.

Consider the saturable (2+1)D nonlinear Schrödinger equation with a potential in three

dimensional space:

iuz(x,y,z)+uxx(x,y,z)+uyy(x,y,z)−
e0u(x,y,z)

1+V (x,y)+ |u(x,y,z)|2
= 0 (2.1)

Using the ansatz u(x,y,z) = f (x,y)e−iµz gives

µ f e−iµz +( fxx + fyy)e−iµz − e0 f e−iµz

1+V + | f |2
= 0 . (2.2)

Multiplying both sides of this equation by eiµz results in

µ f + fxx + fyy −
e0 f

1+V + | f |2
= 0 . (2.3)

By applying Fourier transformation, one obtains

µ f̂ − (k2
x + k2

y) f̂ −F

(
e0 f

1+V + | f |2

)
= 0 . (2.4)
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To prevent singularities in the denominator in future calculations, the term r f̂ is added

to and substracted from (2.4):

(µ + r) f̂ − (k2
x + k2

y + r) f̂ −F

(
e0 f

1+V + | f |2

)
= 0 . (2.5)

Solving for the f̂ in the second term above yields

f̂ =
(µ + r) f̂ −F

(
e0 f

1+V+| f |2

)
k2

x + k2
y + r

. (2.6)

Making the substitution f (x,y) = λw(x,y) where λ is a non-zero constant gives

λ ŵ =
(µ + r)λ ŵ−F

(
e0λw

1+V+|λ |2|w|2

)
k2

x + k2
y + r

. (2.7)

Dividing by λ yields

ŵ =
(µ + r)ŵ−F

(
e0w

1+V+|λ |2|w|2

)
k2

x + k2
y + r

. (2.8)

When indexed, (2.8) can be utilized in an iterative method in order to find w. For this

purpose, ŵ can be calculated using the following iteration scheme:

ŵn =
(µ + r)ŵn−1 −F

(
e0wn−1

1+V+|λ |2|wn−1|2

)
k2

x + k2
y + r

, n ∈ Z+ (2.9)

with the initial condition taken as a Gaussian type function (see Fig.(2.1))

w0 = e−((x−x0)
2+(y−y0)

2) (2.10)

and the stopping criteria |wn −wn−1| < 10−8. Here, the values of x0 and y0 define the

location of the initial condition. In order to center the initial condition on the lattice

maximum (the one that appears at the center of the lattice), one should e.g. take x0 =

y0 = 0 and to center the initial condition on a lattice minimum (usually taken as one of

the closest minima to the central maximum), one should take x0 = π, y0 = 0, for the

periodic lattice N = 4.

However, λ is unknown and hence must be calculated for each iteration.

Multiplying (2.8) by k2
x + k2

y + r leads to

(k2
x + k2

y + r)ŵ = (µ + r)ŵ−F

(
e0w

1+V + |λ |2|w|2

)
. (2.11)
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Figure 2.1: Initial condition: A Gaussian type function

After moving all terms to the left side, one has

(k2
x + k2

y −µ)ŵ+F

(
e0w

1+V + |λ |2|w|2

)
= 0 . (2.12)

Multiplying by the conjugate of ŵ, i.e. by ŵ∗ results in

(k2
x + k2

y −µ)|ŵ|2 +F

(
e0w

1+V + |λ |2|w|2

)
ŵ∗ = 0 . (2.13)

Finally, by integrating this equation, one gets∫ ∫
(k2

x + k2
y −µ)|ŵ|2dk+

∫ ∫
F

(
e0w

1+V + |λ |2|w|2

)
ŵ∗dk = 0 . (2.14)

This is nothing but an equation of the form F(λ ) = 0 which can be solved for λ by

employing the Newton-Raphson Method, for instance. The Newton-Raphson Method is

a numerical method for finding roots of equations and is given by the following iteration

scheme:

λn = λn−1 −
F(λn−1)

F ′(λn−1)
, n ∈ Z+ (2.15)

where F ′ =
dF
dλ

and λ0 is the initial guess for the root.

Here

F(λ ) =
∫ ∫

(k2
x + k2

y −µ)|ŵ|2dk+
∫ ∫

F

(
e0w

1+V +λ 2|w|2

)
ŵ∗dk , (2.16)

F ′(λ ) =
∫ ∫

(−2λ )F
(

e0w|w|2

(1+V +λ 2|w|2)2

)
ŵ∗dk , (2.17)

λ0 = 1 and the stopping criteria is |λn −λn−1|< 10−8.

Once ŵ is obtained from (2.9) by means of (2.15) to calculate λ for each iteration, the

desired soliton is f (x,y) = λw(x,y) = λF−1(ŵ).
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2.2 Properties of Fundamental Solitons

In this subsection, fundamental lattice solitons obtained by means of the spectral

renormalization method will be demonstrated. Solitons located on lattice maxima and

minima will be investigated separately. A comparison of the amplitudes and the profiles

of the solitons obtained on each lattice maxima and an observation of the effect of

the increment of potential depth V0 on the periodic lattice are also analyzed in this

subsection.

2.2.1 Solitons on lattice maximum

In this subsection, solitons located on the maxima of the periodic and Penrose type

lattices are demonstrated.

In Fig.(2.2), 3D view of the soliton obtained on the lattice maximum with the parameters

e0 = 8, potential depth V0 = 1 and the eigenvalue µ = 4 is depicted. In the same

figure, contour plot of the soliton superimposed on the initial condition and underlying

periodic lattice (N = 4) is shown. Fig.(2.3) and Fig.(2.4) display the same outcomes

for Penrose-5 and Penrose-7 potentials respectively. Note that for each case, the initial

condition is taken on the lattice maximum and after the iteration, a localized mode is

obtained at the same location.

Figure 2.2: 3D view of the soliton on the periodic lattice maximum with e0 = 8, V0 = 1
and µ = 4 and its contour plot superimposed on the initial condition and
underlying lattice (N = 4)
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Figure 2.3: 3D view of the soliton on the Penrose-5 lattice maximum with e0 = 8, V0 =
1 and µ = 4 and its contour plot superimposed on the initial condition and
underlying lattice (N = 5)

Figure 2.4: 3D view of the soliton on the Penrose-7 lattice maximum with e0 = 8, V0 =
1 and µ = 4 and its contour plot superimposed on the initial condition and
underlying lattice (N = 7)

2.2.2 Solitons on lattice minimum

In this subsection, solitons located on the minima of the periodic and Penrose-7 lattices

are demonstrated.

In Fig.(2.5), 3D view of the soliton obtained on the lattice minimum with the parameters

e0 = 8, V0 = 1 and µ = 2.5 and its contour plot superimposed on the initial condition

and the underlying periodic lattice (N = 4) is plotted. Fig.(2.6) displays the same

outcome for Penrose-7 potential. Note that for each case, the initial condition is taken

on the lattice minimum and after the iteration, a localized mode is obtained at the same

location.
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Figure 2.5: 3D view of the soliton obtained on the periodic lattice minimum with
e0 = 8, V0 = 1 and µ = 2.5 and its contour plot superimposed on the initial
condition and the underlying lattice (N = 4)

Figure 2.6: 3D view of the soliton obtained on the Penrose-7 lattice minimum with
e0 = 8, V0 = 1 and µ = 2.5 and its contour plot superimposed on the initial
condition and the underlying lattice (N = 7)

2.2.3 Comparison of fundamental solitons

In order to compare the maximum amplitudes and the profiles of the fundamental

solitons obtained on the periodic, Penrose-5 and Penrose-7 lattices, on axis mode

profiles are depicted in Fig.(2.7).

It can be observed from Fig.(2.7) that the amplitudes of the fundamental solitons slightly

increase as the numerical value of N increases. On the other hand, the shapes of the

fundamental solitons do not exhibit any difference as N increases despite the fact that

the fundamental lattice solitons in Kerr medium show changes in shape. For example,

Penrose-5 solitons are shown to have dimples when their eigenvalues are close to gap

edge [8].

14



Figure 2.7: On axis profiles of the solitons obtained with e0 = 8, V0 = 1 and µ = 4 at
the maximum of the potentials, N = 4, N = 5 and N = 7 along x-axis (upper
row) and y-axis (lower row)

In order to investigate the effect of the potential depth (V0) on the fundamental solitons,

the periodic lattice case is considered and it is shown that the amplitude of the

fundamental soliton located on the lattice maximum decreases as the potential depth

increases. An example for this fact is illustrated in Fig.(2.8) where N = 4 (periodic

lattice) and V0 is increased from 1 to 4.

2.3 Band-gap Structures of Fundamental Lattice Solitons

Band-gap structure is a linear concept that first appeared in Floquet theory as well as

condensed matter theory (i.e. diffraction of X-rays through atomic crystals).

In nonlinear optics, the propagation of the soliton on a lattice depends on the depth

of the lattice and the propagation constant (or the eigenvalue). In the spectrum of the

propagation, there are strips (or regions), where a localized structure is obtained (called

gaps) and strips where the solution is not a localized structure but an extended state

(called bands). The whole spectrum is called band-gap structure of the lattice or the

potential.

The first nonlinear gap of a lattice is the region where localized solutions (solitons) exist.

In a certain parameter regime of the potential depth V0 and the propagation constant µ ,
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Figure 2.8: On axis profiles of the solitons obtained with e0 = 8, V0 = 1,2,3,4 and
µ = 3 at the maximum of the periodic potential (N = 4) along x-axis

Figure 2.9: Band-gap structure of the solitons obtained with e0 = 8 and the potentials
N = 4, N = 5 and N = 7 at the lattice maximum

spectral renormalization method converges to a localized bound state, i.e. to the solution

of (1.1) that is bounded and decays to zero. By fixing the potential depth and increasing

the eigenvalue, both the convergence and the localization of the solution are checked. In

this way, the first nonlinear gap edge of the lattices considered in this work is obtained.

Beyond a certain threshold value of the eigenvalue µ , the numerical method yields a

Bloch wave.

In Fig.(2.9), the band-gap structures are depicted for periodic, Penrose-5 and Penrose-7

solitons in separate graphs, located on the (absolute) lattice maxima for the fixed value

of e0 = 8. For a more clear comparison of the band-gap structures, those obtained

band-gap structures are depicted on top of each other in Fig.(2.10).
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Figure 2.10: Band-gap structure of the solitons obtained with e0 = 8 and the potentials
N = 4, N = 5 and N = 7 at the lattice maximum (superimposed)

Figure 2.11: Band-gap structure of the solitons obtained with e0 = 8 and the potentials
N = 4 and N = 7 at the lattice minimum

In Fig.(2.11), the band-gap structures are depicted for periodic and Penrose-7 solitons

in separate graphs, located on the lattice minima for the fixed value of e0 = 8. For a

more clear comparison of the band-gap structures, those obtained band-gap structures

are depicted on top of each other in the same figure.

It is observed, especially from the Fig.(2.10), that increasing N expands the gap region.

This shows the fact that the gap regions are wider for quasicrystal type lattices than that

of the periodic type lattice.
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Figure 2.12: Gap width versus e0 graph of the solitons obtained with V0 = 1 and the
potential (N = 4) at the lattice maximum and minimum

Figure 2.13: Gap width versus e0 graph of the solitons obtained with V0 = 1 and the
Penrose type potentials (N = 5 and N = 7) at the lattice maximum and
minimum

2.4 The Effect of e0 on the Gap Width

In this subsection, the effect of the saturation parameter e0 that appears in the saturable

NLS equation is investigated. In order to observe this effect, the potential depth V0 = 1

is fixed and by the use of the SR method, the existence of fundamental solitons for

increasing values of e0 for the periodic, Penrose-5 and Penrose-7 lattices are checked.

For small e0 values, no soliton could be obtained. As e0 gets greater, the number of

eigenvalues for which a soliton exists increases. In other words, the gap width increases

as e0 increases. It is also to be noted that for the same e0 value, the gap width of the

solitons on the lattice maximum is greater than the gap width of the solitons on the

lattice minimum.

Above mentioned facts are demonstrated in Fig.2.12 and 2.13.
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Figure 2.14: Gap width versus V0 graph of the solitons obtained with e0 = 8 and the
potential (N = 4) at the lattice maximum and minimum

Figure 2.15: Gap width versus V0 graph of the solitons obtained with e0 = 8 and the
Penrose type potentials (N = 5 and N = 7) at the lattice maximum and
minimum

2.5 The Effect of V0 on the Gap Width

In this subsection, the effect of the potential depth on the gap width is investigated. In

order to explore this phenomenon, the potential depth V0 versus gap width graphs for

the periodic potential N = 4 is plotted. Those graphs for fundamental solitons on lattice

maximum and minimum are shown in Fig.(2.14). In both cases, it can be seen that

the gap width decreases as V0 increases. Same phenomenon occurs for quasicrystals as

well. In Fig.(2.15), it is shown that the gap width decreases as V0 increases for Penrose-7

solitons located both on lattice maxima and minima. In the same figure, V0 versus the

gap width graph for Penrose-5 solitons on lattice maximum is also plotted and it can

be seen that for the same V0 value, the gap width of the solitons located on the lattice

maximum are greater than the gap width of the solitons located on the lattice minimum.
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2.6 The Effect of the Potential Type on the Gap Width

When the figures 2.9 and 2.10 are considered, it is observed that the Penrose-7 type

potential brings out a bigger gap region than the Penrose-5 type potential and the

Penrose-5 type potential brings out a bigger gap region than periodic N = 4 type

potential. This holds also true for other cases, i.e. for different e0 values. So, one

can claim that the gap widths increase as N increases.
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3. NONLINEAR STABILITY ANALYSIS OF FUNDAMENTAL SOLITONS

In this section, the nonlinear stability properties of the fundamental lattice solitons are

explored. One way to do this is the power analysis. The power is defined as

P =
∫ ∞

−∞

∫ ∞

−∞
| f (x,y)|2dxdy (3.1)

and plays an important role in determining the stability of the soliton f (x,y). In [26],

Vakhitov and Kolokolov proved that a necessary condition for the linear stability of the

soliton f (x; µ) is

dP
dµ

< 0 . (3.2)

In other words, the soliton is stable only if its power decreases with increasing

propagation constant µ . This condition is called the slope condition.

Key analytic results on nonlinear stability were obtained in [27, 28]. They proved that

the necessary conditions for nonlinear stability are the slope condition (3.2) and the

spectral condition. Furthermore, it is well known that a necessary condition for collapse

in the 2D cubic NLS equation is that the power of the beam exceeds the critical power

Pc ≈ 11.7 [29].

The fundamental solitons of the NLS equation can become unstable in two ways:

1. Is the slope condition not satisfied, this leads to a focusing instability.

2. Is the spectral condition associated with the eigenvalue problem (see [30]) not

satisfied, this leads to a drift instability.

In order to investigate the nonlinear stability, first approach is trying to predict collapse

by using the VK criterion by plotting the soliton power P versus the propagation

constant µ graph.

As it can be seen from figures 3.1 and 3.2, no matter whether the soliton is located

on a lattice maximum or minimum, the power decreases as µ increases for all three

different potentials. Consequently, all the solitons obtained from the numerical solution
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Figure 3.1: Power versus µ graph of the solitons obtained with e0 = 8, V0 = 1 and the
potential (N = 4) at the lattice maximum and minimum

Figure 3.2: Power versus µ graph of the solitons obtained with e0 = 8, V0 = 1 and
the Penrose type potentials (N = 5 and N = 7) at the lattice maximum and
minimum

of the Eq.(1.1) by the spectral renormalization method explained in the previous section

are expected to be stable as they all satisfy the Vakhitov-Kolokolov stability criterion.

However, the VK-condition is not sufficient. The soliton may undergo a drift instability,

that is, the soliton might move from the lattice maximum towards a nearby lattice

minimum during the direct simulation. One way to check this is to let the soliton move

along the z-axis and see whether it conserves its maximum amplitude and its location.

In this context, the center of mass of a soliton is defined as follows:

CM =
1
P

∫ ∞

−∞

∫ ∞

−∞
(x+ iy)| f (x,y)|2dxdy (3.3)

where P stands for power.

The x and y coordinates of the center of mass (CM) are given by

< x >= real(CM)

< y >= imag(CM) .
(3.4)
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To study whether there exists a drift instability or not, Eq.(1.1) is computed over a

long distance. For this purpose, a random noise of 1% is added to the soliton; finite

difference method is used on derivatives uxx and uyy, and fourth order Runge-Kutta

method is employed to advance in z.

A fundamental soliton is considered nonlinearly stable if it conserves its location

and maximum amplitude during the direct simulation. Therefore, the maximum

amplitude and centers of mass versus the propagation distance graphs are plotted for the

fundamental solitons. Solitons located on lattice maxima and minima are investigated

separately.

3.1 Stability Analysis of Solitons on Lattice Maximum

Following are sample outcomes of the nonlinear stability test for some parameters

and different potentials. More precisely, Fig.(3.3) depicts the evolution of the soliton

obtained on the lattice maximum of the periodic potential (N = 4) with e0 = 8, V0 = 1

and µ = 4, the change of x and y coordinates of the center of mass over z, cross section

Figure 3.3: Evolution of the soliton obtained with e0 = 8, V0 = 1, µ = 4 and the
potential N = 4. (a) Peak amplitude maxx,y|u(x,y,z)| as a function of the
propagation distance z, (b) Change of x and y coordinates of the center
of mass over z, (c) Cross section along the diagonal axis of the soliton at
the maximum superimposed on the potential N = 4 at z = 10, (d) Contour
plot of the soliton at the maximum superimposed on the potential N = 4 at
z = 10.
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Figure 3.4: Same as Fig.(3.3) with N = 5

along the diagonal axis of the soliton superimposed on the potential at z = 10

and contour plot of the soliton superimposed on the potential after the propagation;

Fig.(3.4) and Fig.(3.5) depict the same but for the Penrose-5 and Penrose-7 potentials

respectively. Note that for each case, the initial condition is taken on the lattice

maximum, so are the obtained solitons.

As it can be seen from figures 3.3, 3.4 and 3.5, peak amplitudes of the fundamental

solitons slightly oscillate with the propagation distance z and the centers of mass almost

stay at the same place. This suggests that the fundamental solitons for all three lattices

are nonlinearly stable.

In contrary, the existence of nonlinearly unstable solitons of the NLS equation with Kerr

nonlinearity for the periodic potential N = 4 and Penrose-5 potential were shown in [8]

and for the Penrose-7 potential in [18].

3.2 Stability Analysis of Solitons on Lattice Minimum

Following are sample outcomes of the nonlinear stability test for some parameters

and different potentials. More precisely, Fig.(3.6) depicts the evolution of the soliton

obtained on the lattice minimum of the periodic potential (N = 4) with e0 = 8, V0 = 1

and µ = 2.5, the change of x and y coordinates of the center of mass over z, cross
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Figure 3.5: Same as Fig.(3.3) with N = 7

section along the diagonal axis of the soliton superimposed on the potential at z = 10

and contour plot of the soliton superimposed on the potential after the propagation;

Fig.(3.7) depicts the same but for the Penrose-7 potential. Note that for each case, the

initial condition is taken on the lattice minimum, so are the obtained solitons.

As it can be seen from Fig.(3.6), peak amplitude of the fundamental soliton on periodic

lattice slightly oscillates with the propagation distance z and the center of mass almost

stays at the same place. This suggests that the fundamental soliton on the periodic lattice

minimum is nonlinearly stable.

However, the soliton obtained at the minimum of the Penrose-7 potential is not stable.

The drift instability can be clearly seen in Fig.(3.7b) by the change of the center of mass.

If the positions of the soliton before (Fig.(2.6) and after (Fig.(3.7d)) the propagation are

compared, it can be said that the soliton moves from one minimum over the absolute

maximum to another minimum. This also explains the big difference in the change of

the amplitude in the middle of the graph in Fig.(3.7a).
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Figure 3.6: Evolution of the soliton obtained with e0 = 8, V0 = 1, µ = 2.5 and the
potential N = 4. (a) Peak amplitude maxx,y|u(x,y,z)| as a function of the
propagation distance z, (b) Change of x and y coordinates of the center
of mass over z, (c) Cross section along the diagonal axis of the soliton at
the maximum superimposed on the potential N = 4 at z = 10, (d) Contour
plot of the soliton at the minimum superimposed on the potential N = 4 at
z = 10.

Figure 3.7: Same as Fig.(3.6) with N = 7

26



4. CONCLUSION AND RECOMMENDATIONS

The purpose of this study was to investigate the existence and stability properties of

solitons in periodic (N = 4) and certain quasicrystal (N = 5 and N = 7) lattices.

Firstly, the solutions of saturable NLS equation with an external potential are obtained

by means of the spectral renormalization method. The band-gap structure of the lattice

solitons are obtained for periodic and Penrose type potentials. The effects of the

saturation parameter e0 and the potential depth V0 on the gap width are investigated

and depicted in some figures and it is shown that on one hand, increasing the saturation

parameter e0 expands the gap width, on the other hand, increasing the potential depth

V0 decreases the gap width. Another result is that increasing N expands the gap width.

After obtaining fundamental solitons, their nonlinear stability properties are investigated

according to Vakhitov-Kolokolov stability criterion and by direct simulations. It

is observed that direct simulations are in good agreement with Vakhitov-Kolokolov

stability criterion.

As a future study, the linear stability properties of the fundamental solitons can be

explored and those results can be compared with the linear eigenvalue problem.
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Universities and Colleges attended:

• Istanbul Technical University,
Mathematical Engineering - M.Sc. 2009-2011
Computer Engineering - B.Sc. 2006-2007, 2008-2010
Mathematical Engineering - B.Sc. 2005-2007, 2008-2009

• University of Nantes (France),
Mathematical Engineering - Erasmus 2007-2008

• Istanbul (Erkek) Lisesi (Deutsche Auslandsschule)
1996-2002, 2003-2005

• Robert E. Lee High School (Tyler, USA) 2002-2003

Publications:
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