
 
 
 
 
 

Working Paper No. 2009-04 
 
 
 
 

Options and Efficiency in Spaces of Bounded 
Claims 

 
 
 

V. Galvani 
University of Alberta 

 
V.G. Troitsky 

University of Alberta 
 
 

January, 2009 
 
 
 
 
 
 
 
Copyright to papers in this working paper series rests with the authors and their assignees.  
Papers may be downloaded for personal use.  Downloading of papers for any other activity 
may not be done without the written consent of the authors. 
 
Short excerpts of these working papers may be quoted without explicit permission provided 
that full credit is given to the source. 
 
The Department of Economics, The Institute for Public Economics, and the University of 
Alberta accept no responsibility for the accuracy or point of view represented in this work in 
progress. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6273793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Options and E¢ ciency in Spaces of Bounded

Claims

Valentina Galvani and Vladimir G. Troitsky�

December 15, 2008

Abstract

Supplementing a �nite state-space static securities market with op-

tions obtains market completeness. This study concludes that options

maintain the same spanning power in the space of bounded payo¤

topologized by its duality with the space of the state price densities.

Keywords: Spanning; Options; Market Completeness; E¢ ciency

JEL classi�cation: C0, D61, G10, G12, G19

�Galvani is with the Department of Economics at the University of Alberta, Edmonton,
AB, Canada, T6G 2H4. Troitsky is with the Department of Mathematics and Statistical
Sciences at the same institution. Contact Information: Galvani: Tel: (780) 492-1477, Fax:
(780) 492-3300. E-mail: vgalvani@ualberta.ca.

1



1 Introduction

In a seminal contribution Ross (1976) showed that a static �nite state-space

market can be completed by supplementing the primitive securities with or-

dinary call and put options written on an injective claim in the same way

that adding Arrow securities would in an incomplete Arrow�Debreu econ-

omy.1 This �nding supports the view that the market structure necessary

to span all contingent claims needs not to involve a complex set of securities

but rather a large number of ordinary call or put options.2 Options maintain

the same spanning power in Lp-spaces for 1 < p < 1 that are de�ned over

a separable measure algebra of the state-space (Galvani, 2008, Theorem 1).

A similar result holds with respect to notion of approximation o¤ered by

the pointwise convergence of sequences for spaces of measurable functions

(Galvani, 2008, Corollary 7). In addition, underlyers for which options bring

about market completeness are shown to be dense in these spaces of contin-

gent claims (Galvani, 2008, Corollaries 6 and 7).3 This work analyzes the

spanning power of options in spaces of bounded random variables.

Previous literature on the spanning power of options has emphasized the

existence of underlyers for which ordinary options make redundant more

complex derivatives on a given set of assets. Nachman (1989) proved that

1Baptista (2003, 2005) discusses the multi-period model.
2Remarkably, it might be the case that options are not replicated by any portfolio of

primitive securities (Aliprantis and Tourky, 2002; Baptista, 2007).
3Galvani (2005 and 2007, a and b) discuss the generalization of Ross�spanning propo-

sition for continuos underlying asset in the space of continuos payo¤s and in the Lp-spaces.
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two layers of options span the market completion of an at most countable

collection of primitive securities N . The market completion of N is the space

of contingent claims that are measurable with respect to the �-algebra � (N)

generated by the elements of N . In particular, options span all the deriva-

tives that are written on the option underlyer (Nachman, 1989). Green and

Jarrow (1987) obtained similar results but for the required number of option

layers. From the perspective of market completeness analysis, these spanning

propositions prove that if the �-algebra modeling the market�s information

structure is generated by the option underlying asset, then portfolios of op-

tions span any contingent claim. In this sense options are proved to complete

the market by endogenizing the market�s information.

In contrast, this study obtains a generalization of Ross�spanning propo-

sition for securities markets in which the information structure is taken as

given. This departure from the previous literature is motivated by the fact

that in the standard framework of empirical investigations the relevant in-

formation structure is identi�ed with a given �-algebra, often the state-space

Borel �-algebra.

In this work, the space of contingent claims is identi�ed with the space

of bounded measurable functions over a probability space and equipped with

the weak-star topology de�ned by its duality with the space of state-price

densities L1 (P ), as discussed in Jarrow et al. (1999). Options are said to

complete the space of contingent claims L1 (P ) as long as �nite-component

portfolios of plain call options form a dense subspace of the L1-space. In this
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framework, we show that there is essentially only one L1-space for which

an attempt to generalize Ross� spanning proposition is not futile, namely

L1 [0; 1]. The uniqueness of L1 [0; 1] is proved by demonstrating that spaces

of bounded claims that can be complete by options are equivalent from a

vectorial, topological, and latticial perspective to L1 [0; 1].

This work also shows that options on a single payo¤ complete a separable

L1-space. Moreover, we also prove that underlyers for which options com-

plete such space of bounded claims are pervasive in the sense that they form

a dense subset of the space of contingent claims.

When the state-space is a completely separable metric space equipped

with the completion of its Borel �-algebra and measured by an atomless

probability, we prove that options on a claim that is a.s. equal to an injective

function (i.e., that is a.s. injective) complete the L1-space. This amounts to

a direct generalization of Ross��nite-dimensional spanning result to a class of

spaces of bounded claims that are extremely common in the extant literature.

Also in this case, underlyers for which options obtain market completeness

are shown to form a dense subset of the L1-space.

The structure of the paper is the following. The next section provides

some background. Section 3 discusses the notion of uniqueness for the state-

space L1 [0; 1] as the only L1-space that can be completed by options. Our

main spanning proposition can be found in Section 4: Last, Section 5 o¤ers

some concluding remarks.
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2 Background

Throughout this paper the state-space 
 is assumed to be an uncountable set

of states of nature. The �-algebra modeling the market information structure

is denoted by�, while P designates the completion of a nonatomic probability

measure on �. The measure algebra associated with � and P is indicated

by �P and is considered a metric space under the metric induced by the L1-

norm. The space of random variables on the probability space (
;�; P ) that

are bounded in the essential supremum norm, with respect to P , is denoted

by L1 (P ). As usual, functions in the L1-spaces are de�ned up to P -almost

sure equivalence (see for example Aliprantis and Border, 2006, henceforth

AB, Section 13.1). In this work, claims are identi�ed with elements of the

space L1 (P ). The space L1 (P ) is therefore called the space of contingent

claims.

The space of contingent claims L1 (P ) is henceforth equipped with the

weak-star topology w� associated with the dual system hL1 (P ) ; L1 (P )i de-

�ned by the duality

hf; gi =
Z



gfdP , (1)

for each f in L1 (P ) and g in L1 (P ). The topological dual of L1 (P )

equipped with the w�-topology is L1 (P ) endowed with the topology gen-

erated by the L1-norm. We choose this topology to maintain the equivalence

between market completeness and the uniqueness of a strictly positive state

price density, under suitable no-arbitrage conditions, for the space of contin-
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gent claims L1 (P ).4

The interval [0; 1] is equipped with the topology induced by the Euclidean

norm. If the state-space [0; 1] is measured by the Lebesgue measure �, then

the space of contingent claims is denoted by L1 [0; 1] and its dual by L1 [0; 1].

The state-independent claim 1
 is de�ned by 1
 (!) = 1 for each ! in 


and is interpreted as the payo¤ of the riskfree bond or as the payo¤ of the

numeraire. Whenever the domain is clearly identi�ed by the context, the

claim 1
 is denoted by 1. If k is a real number, then k stands for k1 when

appropriate.

In a static framework the payo¤ of a call option written on a claim x

with strike price k is (x� k)+, where (x� k)+ (!) equals sup fx (!)� k; 0g

for all ! in 
. Likewise, the payo¤ of a put option on x with strike price k is

(k � x)+. If the underlyer is a positive claim, strike prices might be limited

to nonnegative values.

In an e¤ort to capture the �nite nature of actual portfolio management,

portfolios are from now on restricted to have �nitely many nonzero weights.5

Hence, the space Span fxjgj2J of linear combinations of the collection of

claims fxjgj2J represents the space of the payo¤s generated by portfolios of

the claims fxjgj2J where the index-set J is either �nite or countable. In

particular, the riskfree asset and call options on fxjgj2J de�ne the space of

4See the discussion of Artzner and Heath�s paradox in Jarrow et al. (1999).
5Nachman (1987, 1989) allows for portfolios with in�nitely many components under a

mild boundness condition.
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payo¤s:

OJ = Span
�
(xj � k)+ : j 2 J; k 2 R

	
, (2)

which is called the option space of fxjgj2J .6 Similarly, the riskfree asset and

call options on a single claim x de�ne the space of payo¤s Ox by

Ox = Span
�
(x� k)+ : k 2 R

	
. (3)

Options written on the collection of claims fxjgj2J are said to complete the

space of contingent claims L1 (P ) if the space OJ is weak-star (w�) dense in

L1 (P ).

The reminder of this section deals with some book-keeping results we will

utilize in the ensuing discussion.

Lemma 1 The space L1 (P ) is w�-separable if and only if the state-space

measure algebra �P is separable.

Proof. The measure algebra �P is separable if and only if the space L1 (P ) is

separable (e.g., AB, Lemma 13.14). The Banach space L1 (P ) is weakly com-

pactly generated (Fabian et al., 2001, henceforth F, De�nition 11.1). Hence

by the Amir and Lindenstrauss Theorem (F, Theorem 11.3), the density

character of L1 (P ) and the weak-star density character of L1 (P ) coincide.7

6By the put-call parity relationship, the option spaces might have been equivalently
de�ned in terms of put options or by a mixture of put and call options. Brown and
Ross (1991) outlined an immediate proof of the parity relationship relying on elementary
latticial properties.

7The density character of a Banach space X is the minimum cardinality of a dense
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Therefore L1 (P ) is w�-separable if and only if L1 (P ) is separable and there-

fore if and only if the space �P is separable (AB, Lemma 13.13).

Linear operators between vector lattices that are onto and injective and

that preserve the latticial operations are called lattice isomorphisms (AB,

De�nition 9.16). Such mappings are called lattice homeomorphisms when

they also are topological homeomorphisms between topological spaces. Two

topological vector lattices are lattice homeomorphic if there is an onto lattice

homeomorphism between them. Lattice homeomorphic spaces share the same

vectorial, topological, and latticial properties.

Lemma 2 The measure algebra �P is separable if and only if there exists

an onto lattice homeomorphisms H from L1 [0; 1] to L1 (P ) that satis�es

H1[0;1] = 1
.

Proof. The measure algebra �P is separable if and only if there exists an

onto linear homeomorphism H from L1 [0; 1] to L1 (P ) that is also a lattice

isomorphism and satis�es H1[0;1] = 1
. Only one implication needs to be

proved. Assume that �P is separable. Then there exists a lattice isometry

� from the measure algebra �P to the measure algebra �� on [0; 1] that is

de�ned by the Lebesgue measure � (Royden, 1988, henceforth R, Theorem

4, p. 399). The set function � is also surjective because P is nonatomic.8

Thus there exists an onto lattice isometry T from L1 (P ) to L1 [0; 1] for which

subset of X. The weak-star density character of the dual Banach space is the minimum
cardinality of a weak-star dense subset of X (F, De�nition 11.2).

8In general the isomorphism � is not a point mapping from 
 to [0; 1] (R, p. 400).
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T�A = ��(A) for each A in �P (R, Exercise 7, p. 394). Denote by H the

adjoint operator of T , i.e., the operator from L1 [0; 1] to L1 (P ) for which

hf;Hgi equals hTf; gi, for each f in L1 (P ) and g in L1 [0; 1]. The operator

H is a surjective linear homeomorphism. Since T and its inverse are positive

operators, also H and its inverse are positive operators. Thus H is also a

lattice isomorphism (AB, Theorem 9.17). Because H maps the positive cone

of L1 (P ) into the positive cone of L1 [0; 1], then H1[0;1] is positive. The

map � is measure-preserving and thus for each A in �P it is

hT�A;1[0;1]i =
Z
[0;1]

��(A)1[0;1]d� = � (� (A)) = P (A) .

Passing to the adjoint operator,

h�A; H1[0;1]i = P (A) .

Thus

h�A;
�
1
 �H1[0;1]

�
i =

Z
A

�
1
 �H1[0;1]

�
dP = 0,

which implies that H1[0;1] is P -a.s. equal to 1
. Hence H carries 1[0;1] in 1
.

By the same token, the inverse of H maps 1
 in 1[0;1].

In this work a claim in L1 (P ) is called a.s. injective if it is a.s. equal to an

injective measurable and bounded function de�ned on the state-space. When

the state space is a separable metric space equipped with the completion of

its Borel �-algebra, then the lattice homeomorphisms H de�ned in Lemma
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2 maps a.s. injective claims in a.s. injective claims in L1 [0; 1].

Corollary 1 Let 
 be a complete and separable metric space equipped with

its Borel �-algebra, then the lattice homeomorphisms H maps a.s. injective

claims in a.s. injective claims in L1 [0; 1].

Proof. It su¢ ces to note that, under the hypotheses, the set mapping �

de�ned in the proof of Lemma 2 is an injective point mapping from 
 onto

[0; 1] (R, Proposition 12, p. 407).

In the interest of clarity, we recall that the �-algebra � (x) induced by a

claim x is the smallest �-algebra with respect to which x is measurable and

is de�ned by the counter images of the Lebesgue sets of the real line. The

measure algebra obtained from � (x) is called the measure algebra associated

with x. The next lemma shows that the measure algebra associated with an

a.s. injective claim on [0; 1] is the Lebesgue measure algebra.

Lemma 3 The measure algebra associated with an a.s. injective claim in

L1 [0; 1] coincides with the Lebesgue measure algebra �� on [0; 1].

Proof. Let x be an a.s. injective element of L1 [0; 1]. For simplicity, we also

denote with x an injective representative of the equivalent class of functions

on [0; 1] that are a.s. equal to x. LetW be an element of the Borel �-algebra

B of [0; 1]. Since x is one-to-one, then W coincides with x�1x (W ). However

x (W ) is an element of BR because the state-space is a Polish space (AB,

Theorem 12.29). Therefore each Borel set of [0; 1] is the counter-image via x
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of a Borel set of the real line. Since x is Lebesgue measurable, and thus also

Borel measurable, this shows that � (x) coincides with the Borel �-algebra of

[0; 1] and thus, up to zero-measure sets, with the �-algebra of the Lebesgue

sets. Hence the measure algebra associated with � (x) coincides with ��.

We conclude this section with the observation that a.s. injective claims

are pervasive in the space L1 [0; 1].

Lemma 4 The collection of claims that are a.s. injective are w�-dense in

L1 [0; 1].

Proof. The step functions are dense with respect to the norm of the essential

supremum in L1 [0; 1] (e.g., AB, Theorem 13.8). Adding an appropriate

multiple of x (t) = t for t in [0; 1] to a given step function transforms this latter

in an injective function (e.g., Galvani, 2008, proof of Lemma 2). Therefore

a.s. injective claims are dense in L1 [0; 1] with respect to the norm of the

essential supremum. Density with respect to this norm implies density in the

w�-topology induced by L1 [0; 1]. Therefore injective claims are w�-dense in

L1 [0; 1].

3 Uniqueness

The next result indicates that only w�-separable L1-spaces can be completed

by options. Put di¤erently, options do not complete a L1-space that is non-

separable in the weak-star topology.
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Lemma 5 If options on a collection of at most countably many claims

fxjgj2J complete L1 (P ), then L1 (P ) is w�-separable. In particular, count-

ably many options su¢ ce.

Proof. The option space OJ of fxjgj2J is de�ned in (2). Assume that OJ is

w�-dense in L1 (P ). De�ne the subset OJQ of OJ obtained by restricting the

portfolio weights and the call options�strike price to be rational numbers.

Also, as a matter of notation, denote by A
1
the closure of a subset A of

L1 (P ) with respect to the norm of the essential supremum and by A
�
its

closure in the weak-star topology. Since the weak-star topology is weaker

than the topology generated by the norm of the essential supremum, the

weak-star closure of O1
J coincides with the weak-star closure of the option

space OJ , which, by hypothesis, is the entire space L1 (P ). Now notice that

every element of OJ can be uniformly approximated by elements of OJQ and

thus the norm-closed sets O1
J and O1

JQ coincide. Therefore

L1 (P ) = O
�
J =

�
O1
J

��
=
�
O1
JQ
��
.

Because the closure in the weak-star topology of O1
JQ coincides with the

closure in the weak-star topology of OJQ, then

L1 (P ) = (OJQ)
�
,
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which proves that OJQ is w�-dense in L1 (P ). By hypothesis, the index set

J in fxjgj2J is either �nite of countable. Hence L1 (P ) contains a countable

dense subset, i.e. is separable. Moreover, the collection of options in OJ with

rational strike price su¢ ce to span L1 (P ).

An argument similar to the one proving Lemma 5, shows that options

fail to complete the familiar space of claims L1 [0; 1] when this space is

topologized by the usual norm of the essential supremum. In fact, L1 [0; 1]

is non-separable with respect to this topology (F, Proposition 1.27).

In general, spaces of contingent claims are considered indistinguishable

as long as they are equipped with equivalent vectorial and topological struc-

tures. However, when considering the spanning properties of options the

preservation of vectorial and topological qualities must be matched by that

of space ordering, bar foregoing the intrinsic mathematical qualities of op-

tion payo¤s. By inspection of the claim (x� k)+, a linear mapping between

spaces of contingent claims carries option payo¤s in themselves as long as it

preserves the pointwise supremum and the constants.

As recalled in Section 2, linear operators between vector lattices that

are onto and injective and that preserve the latticial operations are called

lattice isomorphisms (AB, De�nition 9.16). If, in addition, these operators

also are topological homeomorphisms between topological spaces then they

are called lattice homeomorphisms. Two topological vector lattices are lat-

tice homeomorphic if there is an onto lattice homeomorphism between them.

Lattice homeomorphic spaces share the same vectorial, topological, and lat-
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ticial properties. Hence, whenever between two spaces of contingent claims

there exists a lattice homeomorphism that preserves the constants, then these

spaces are equivalent from the perspective of the spanning properties of op-

tions.

The next lemma proves that all the L1-spaces that can be completed by

options are equivalent, from the perspective of the spanning power of options,

to the familiar space L1 [0; 1].

Lemma 6 The space L1 [0; 1] is the unique L1-space that can be completed

by options with respect to the weak-star topology w�. The uniqueness is

de�ned modulo onto lattice homeomorphisms.

Proof. Lemma 5 indicates that we can concern ourselves only with w�-

separable L1-spaces. Lemmas 1 and 2 show that there exists an onto linear

homeomorphismH from L1 [0; 1] to L1 (P ) that is also a lattice isomorphism

and satis�es H1[0;1] = 1
. Thus options on a collection of claims fxjgj2J in

L1 (P ) complete the space L1 (P ) if and only if the span:

Span
�
(Hxj � k)+ : j 2 J; k 2 R

	
, (4)

is w�-dense in L1 [0; 1]. The vector space de�ned in (4) is the option space

of the collection of claims fHxjgj2J . Therefore options on a set of claims

fxjgj2J complete L1 (P ) if and only if options on the claims fHxjgj2J com-

plete L1 [0; 1]. This complete the proof.
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Lemma 6 indicates that L1 [0; 1] is essentially the only L1-space for which

options might obtain the allocative e¢ ciency of a complete market structure.

This uniqueness is de�ned up to lattice homeomorphisms that preserve the

constants, i.e. the riskfree asset�s payo¤.

4 Spanning

The next result shows that the topological separability of the L1-space is

equivalent to the ability of options to complete the market. As illustrated by

Lemma 1, the separability of the state-space measure algebra �P is equiv-

alent to the w�-separability of L1 (P ). Therefore the separability of the

state-space turns out being a su¢ cient and necessary conditions for options

to complete L1 (P ). This �nding complements the results of previous works

on the spanning power of options for in�nite-dimensional spaces of contin-

gent claims in which the separability of the state-space is, instead, directly

assumed (e.g., Nachman, 1987, 1989).

Theorem 7 There exists a claim for which options complete the market if

and only if the space of contingent claims L1 (P ) is w�-separable. Moreover

claims for which options complete the market form a w�-dense subset of

L1 (P ).

Proof. In view of Lemma 5, only one implication needs to be proven. Also,

Lemma 6 guarantees that our analysis can be con�ned to L1 [0; 1] with no
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loss of generality. Let x be an a.s. injective claim in L1 [0; 1]. For each

positive integer n de�ne the function 'n on [0; 1] by:

'n (t) =

8>>>><>>>>:
0 if x (t) < �

(x (t)� �)n if � � x (t) � � + 1
n

1 if x (t) > �

where � is a scalar. For future reference, note that the payo¤ 'n represents

a spread in call options on the claim x and therefore it belongs to the option

space Ox.9. In fact:

'n (t) = n

"
(x (t)� �)+ �

�
x (t)�

�
� +

1

n

��+#
,

where � is a scalar. Let f be an element of L1 [0; 1]. Notice that the sequence

ff'ngn converges pointwisely to f�� where �� is the indicator function of

the set of t in [0; 1] for which x (t) > �. Since x is bounded, the dominate

convergence theorem implies that

lim
n!1

hf; 'ni =
Z 1

0

��fd�. (5)

Suppose there exists a function f in L1 [0; 1] for which hf; 'i is zero for each

element of the option space Ox of x de�ned in (3). Then hf; 'ni is zero for

all n because 'n is an element of the option space of x. Thus 5 implies that

9This function is similar to that utilized for the proof of Theorem 2 in Nachman (1989).
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for each scalar � it is: Z 1

0

��fd� = 0.

Varying �, the collection of the sets of [0; 1] for which x (t) > � de�ne the

�-algebra generated by the claim x. Therefore for each set A in � (x) it is:

Z
A

fd� = 0.

By Lemma ?? the measure algebra associated with � (x) coincides with the

Lebesgue measure algebra on [0; 1]. Therefore f is a.s. equal to the constant-

zero function. Hence each function f in L1 [0; 1] that satis�es the equality

hf; 'i = 0 for all claims ' in the option space Ox, must be zero. The Hahn-

Banach theorem for the weak-star topology on L1 (P ) then implies that Ox

is w�-dense in L1 [0; 1]. Lemma 4 completes the proof.

Ross proved that options on an injective claim complete the Euclidean

space (Ross, 1976, Theorem 4). In contrast, Theorem 7 does not require

that the underlying asset for which options complete a separable L1-space

is one-to-one. In fact, if we demand to identify underlyers for which options

complete the L1-spaces by means of a pointwise relationship, we must allow

some latitude in what is taken as to be the standard state-space structure,

which until now, besides separability, has been left unconstrained. The next

result shows that for a large class of securities market models options on an

a.s. injective claim complete the market.
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Corollary 2 Let 
 be a complete and separable metric space equipped with

the completion of its Borel �-algebra, then options on an a.s. injective claim

complete the space of contingent claims L1 (P ). Moreover, a.s. injective

claims are w�-dense in L1 (P ).

Proof. Obvious in view of Theorem 7, Lemma 6 and Corollary 1.

Corollary 2 indicates that options on a.s. injective claims complete the

L1-spaces, provided that the state-space is a metrizable complete space

equipped with the completion of its Borel �-algebra. Examples of such

spaces of states of nature include familiar probability spaces like the Euclid-

ean spaces and their closed and bounded intervals, e.g. [0; 1], endowed with

the �-algebra of the Lebesgue measurable set. The choice of the topological

qualities of the underlying state-space is easily justi�ed by the pervasiveness

in the economic literature of probability spaces de�ned over an Euclidean

space (see Nachman, 1987, p. 342 for a discussion of this point).

It is easy to show that if the state-space is completely metrizable and

separable, then any a claim in L1 (P ) is a.s. injective if and only if one of

its realizations is injective on a full-measure subset of the state-space. From

this perspective, Corollary 2 indicates that options written on an underlyer

that di¤erentiates all but a negligible set of states of nature complete the

market. In addition such payo¤s are pervasive, in the sense of being dense,

in the space of contingent claims.
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5 Some Remarks

Adopting a terminology from Green and Jarrow (1987) and Nachman (1987,

and 1989), a payo¤ x is e¢ cient with respect to a collection N of at most

countable many claims whenever � (x) and � (N) coincide, where � (N) is

the �-algebra generated by these claims. The �-algebra � (N) contains all

the information that is payo¤ relevant for payo¤s of portfolios of the collec-

tion of claims N . Therefore, an e¢ cient asset summarizes all the relevant

information for all derivatives whose payo¤ solely depend on these securities.

An obvious modi�cation of the proof of Lemma 3 shows that, provided that

the state-space is a completely metrizable probability space equipped with

the completion of its Borel �-algebra (e.g., an Euclidean space equipped with

the Lebesgue �-algebra), an a.s. injective claim is e¢ cient with respect to

the entire space of all contingent claims.

Under the assumption that the state-space measure algebra is separable,

Nachman (1989, Corollary 5) proved that options on an asset that is e¢ cient

for a collection of N securities are pointwise dense in the space of � (N)-

measurable claims. In particular, when all claims are also p-integrable, then

options on an e¢ cient asset x complete the space of p-integrable and � (N)

measurable claims with respect to the standard Lp-norm.

Among other results, this article presents an extension of Nachman�s

spanning propositions to the spaces of bounded claims. It is shown that

the separability of the state-space is equivalent to the ability of options to
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complete the markets. Furthermore, the separability of the state-space is

linked to the separability of the space of contingent claims as a whole. This

allows categorizing the spaces that can be completed by options without di-

rectly involving the information structure underlying the securities market

model. In addition, this article proves that underlyers for which options

complete the market are pervasive, in the sense of being dense, among the

contingent claims.

In the �nite dimensional setting, Ross proved that options on an injec-

tive claim complete the market (Ross, 1976, Theorem 4). Arditti and John

(1980) and John (1984) generalized this result to countable state-space mod-

els. This work shows that options on an (a.s.) injective claim span the space

of bounded claims written on completely separable metric space equipped

with the completion of their Borel �-algebra. Hence this article generalizes

Ross�spanning proposition for spaces of contingent claims that are commonly

encountered in the extant literature.

This article also shows that when the state-space is a complete and separa-

ble metric space equipped with its Borel �-algebra, options on an injective un-

derlying claim complete the market, as it is the case in the �nite-dimensional

case (Ross, 1976, Theorem 4). Because injective claims are dense in L1-

space de�ned on such state-spaces, underlyers for which options bring about

market completeness are pervasive in these spaces of contingent claims.
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