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Abstract

The distinction between a nominal framework for the three classical statistics and
a perceived framework for each classical statistic provides more ways to interpret these
statistics, and intuitively explains as well as more easily shows some well-known results.
In particular, each classical statistic can be viewed in terms of a length in each of
four spaces and, since the classical procedures per se are equivalent in a perceived
framework, two statistics are identical if their perceived frameworks are identical. This
helps to integrate the normally separately treated issues of a reformulation of a null
hypothesis and of locally equivalent alternatives. For example, a Wald statistic is
not invariant if a reformulation changes its perceived framework, and an appropriate
score statistic is invariant as its perceived framework is unaffected by considering a
locally equivalent alternative. [During the thirty-four months this paper was under
consideration at The Econometrics Journal, the Editor-in-charge (Professor Stéphane
Gregoir) did not reply to three (of the author’s four) requests about the status of the
submission, and provided neither a referee’s report nor a first decision. Also, when
asked to intervene by the author, the new Managing Editor (Professor Richard J Smith)
offered the author the possibility of submitting the paper (as a new submission) to the
new editorial regime, at which point, the author withdrew the paper.]
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1. Introduction

In a model specified by a likelihood function where the usual regularity conditions hold, the
validity of a set of restrictions (on a vector of unknown parameters) is commonly tested
by using the classical statistics, namely, the likelihood ratio, a score (or Lagrange Multi-
plier), and a Wald statistic. Numerous results on the behaviour of these statistics are well
known and presented in most graduate texts; for example, see Davidson and MacKinnon
(1993, 2004). This paper presents a novel/different approach to examining the behaviour
of these statistics by distinguishing between a nominal framework for all three statistics and
a perceived framework for each statistic. In general, a (testing) framework is defined by
three quantities: a parameter space, a maximand that provides an estimate for an unknown
vector of parameters, and a restricted parameter space defined by a set of restrictions on the
vector of parameters. In particular, in the nominal framework common to all three classical
statistics, the parameter space is {2, the maximand is a log-likelihood function L(#) where
is a vector of unknown parameters, and the restricted parameter space is defined by a vector
of restrictions r(#) = 0. The standard asymptotic theory, when applied to the classical
statistics, uses Taylor series approximations (or mean value expansions) of L(6), the score
function g(0), and r(#); for example, see Davidson and MacKinnon (1993, pp. 446-7). These
approximations do not only provide the asymptotic distribution of a statistic, but also play
a critical role in determining the form of a statistic. For example, these approximations
provide the variance-covariance matrix of the asymptotic distribution of n='/2¢(6) where n
is the sample size and 6 is the restricted maximum likelihood (ML) estimator of 8. Then, a
score statistic is constructed as a quadratic form in n~*/ 29(9) where the weighting matrix is
a consistent estimator of a generalized inverse of this variance-covariance matrix. Similarly,
these approximations provide the factor 2 in the likelihood ratio statistic and a Wald statistic

as an appropriate quadratic form in \/nr(0) where 6 is the unrestricted ML estimator of .

The perceived framework of a statistic is constructed such that it explicitly accounts for

the approximations used when the standard asymptotic theory is applied to the classical



statistics. Therefore, in the perceived framework of each classical statistic, the parameter
space is © with 2 C ©, the maximand is a quadratic approximation of L(f) (which gives
a linear approximation of g(f)), and the restricted parameter space is defined by a linear
approximation of 7(#) being zero. In the perceived framework of the likelihood ratio statistic,
the quadratic approximation of L(f) is at 0 and the linear approximation of 7(f) is at 0 and,
in the perceived framework of a score (Wald) statistic, both approximations are at 0 (0).
For each statistic, the particular approximations are chosen such that (for a given sample)
the statistic is reproduced by applying the corresponding classical procedure to its perceived
framework. Hence, notionally, a perceived framework is that as seen by a statistic for a

given sample, whereas, the nominal framework is that as intended for the statistics.

Quadratic approximations of L(#) have been used to argue that a score and a Wald statis-
tic can be viewed as approximations to the likelihood ratio statistic. For example, consider
Figure 3 in Newey and McFadden (1994, p. 2221) where Q,,(0), DM,,, LM, and W,, corre-
spond to L(#), the likelihood ratio, a score, and a Wald statistic, respectively. Then, this
figure shows that (for a scalar parameter with a linear restriction) a score and a Wald statistic
are approximations to the likelihood ratio statistic in the sense that they can be reproduced
by applying the likelihood ratio procedure to appropriate quadratic approximations of L(6).
In this example, a quadratic approximation of L(#) for the likelihood ratio statistic is not
considered as the focus is on the likelihood ratio procedure. However, there is no need to
focus solely on the likelihood ratio procedure. Also, in general, a Wald statistic cannot be
reproduced by considering only a quadratic approximation of L(#); below, another figure will
show the role played by a linear approximation of 7(¢) in reproducing a Wald statistic for
a nonlinear restriction. Therefore, by considering both a quadratic approximation of L(0)
and a linear approximation of r(#) for each statistic, a perceived framework does not focus
attention on any particular classical procedure and provides a more complete framework for

examining the behaviour of a statistic.

The analysis with a perceived framework provides two general results. First, in a per-

ceived framework, the classical procedures per se are equivalent so a difference between



two statistics arises as a result of applying the equivalent procedures to different perceived
frameworks, and (as expected, given the notion of a perceived framework) two statistics
are identical if their perceived frameworks are identical. The second general result is an
extension of two popular interpretations of the three statistics. On the one hand, based
on Buse (1982) and Engle (1984), each statistic can be viewed in terms of a length in the
space associated with the statistic. The likelihood ratio statistic is a length in the range
of L(f) and a score (Wald) statistic is a squared length in the range of g(#) (r(¢)). On
the other hand, based on Newey and McFadden (1994), all three statistics can be viewed
in terms of lengths in the range of L(0). Using a perceived framework, each statistic can
be interpreted in terms of a length in each of four possible spaces; the parameter space ©
and the spaces that contain the ranges of L(#), g(6), and r(#). The interpretation of a
classical statistic in terms of a length in a parameter space does not appear to have been
considered in the literature. With this interpretation, the analysis of the classical statistics
is simplified so some well-known results are more easily seen. These general results help to
shed further light in some special cases. For example, if L(6) is a quadratic function of ¢
and 7 (@) is a linear function of 6, then the equality of the likelihood ratio statistic and appro-
priate versions of a score and a Wald statistic is intuitively explained by the fact that their
perceived frameworks are identical, and it is seen that a quadratic L(6) per se is sufficient
for the equality of only the likelihood ratio and a score statistic. The general results are also
applicable to classical-type statistics; those obtained by replacing a log-likelihood function
with an appropriate maximand associated with some other method of estimation where a
type of information matrix equality holds, for example, as in Gourieroux and Monfort (1989,

Section 2.2).

Certain properties of a Wald and a score statistic are well-known. First, in general,
a Wald statistic is not invariant to a reformulation of a nominal null hypothesis where
r(6) = 0 is rewritten in an algebraically equivalent form; for the behaviour of the statistics
to different types of invariance, see Dagenais and Dufour (1991). Numerous papers have

examined various aspects of this non-invariance. For example, Gregory and Veall (1985)



provide Monte Carlo evidence of the effect of a reformulation, Lafontaine and White (1986)
and Breusch and Schmidt (1988) show how this non-invariance could be exploited to obtain
a desired numerical value for a Wald statistic, Phillips and Park (1988) examine the effect
of a reformulation on the small sample distribution of a Wald statistic, Davidson (1990)
and Critchley, Marriott and Salmon (1996) apply the methods of differential geometry to
explain the non-invariance, and Kemp (2001) provides a justification for ruling out certain
reformulations. Second, a score statistic (evaluated appropriately) is invariant to certain
alternative hypotheses. In a linear regression model, this result was first shown by Breusch
(1978) and Godfrey (1978) in the case of testing for white noise error terms against the
alternative of either autoregressive or moving average errors of the same order. Subsequently,
Godfrey (1981) and Godfrey and Wickens (1982) have shown the invariance of an appropriate

score statistic to what they define as a locally equivalent alternative (LEA).

In the literature, the analysis for a reformulation of a nominal null has been treated as
a separate issue from the analysis with an LEA. This paper helps to integrate these two
analyses by explaining the invariance or non-invariance properties of a statistic with respect
to either a reformulation of a nominal null or an LEA. In particular, the likelihood ratio and a
score statistic are invariant to a reformulation of a nominal null as their perceived frameworks
are unaffected by a reformulation, whereas, a Wald statistic is not invariant if a reformulation
changes its perceived framework. The analysis with respect to an LEA considers another
nominal framework where (ceteris paribus) the maximand is a log-likelihood function L*(#)
with the score vector ¢g*(f). Using the definition of Godfrey and Wickens (1982), this
other nominal framework is an LEA when, inter alia, g(0) = ¢*(f) and 6 is the restricted
estimator of 0 in both nominal frameworks. Davidson and MacKinnon (1993) have argued

that g(0) = g*(0) is too strong a requirement as an appropriate score statistic is also invariant
if g*(A) is a nonsingular linear transformation of g(f). Therefore, it is first shown that the
use of the definition of Godfrey and Wickens (1982) is not as restrictive as may first appear,

provided L*() is appropriately specified. Then, it is easily seen that an appropriate score

statistic is invariant as its perceived framework is unaffected by considering an LEA, whereas,



the likelihood ratio and a Wald statistic are not invariant as their perceived frameworks are

affected by the use of an LEA.

The rest of the paper proceeds as follows. In the next section, the three statistics are first
presented in their usual forms for a given nominal framework. Then, a generic perceived
framework is constructed such that it provides as special cases the perceived frameworks of
the likelihood ratio, a score, and a Wald statistic. Section 3 shows how each statistic can
be expressed in terms of a length in each of four spaces and presents some further results.
Section 4 provides the analysis with respect to a reformulation of a nominal null and discusses
certain aspects of the non-invariance of a Wald statistic. Results with respect to an LEA

are presented in Section 5 and, finally, some concluding remarks are stated in Section 6.

2. Nominal and perceived frameworks

The nominal framework common to all three classical statistics is defined by the triplet
(Q, L(0),€) where the parameter space 2 C RP, the maximand L(f) is a log-likelihood
function for n observations, 6 € €2 is a p X 1 vector of unknown parameters, and the re-
stricted parameter space Q0 = {0 |r(0) =0, 6 € Q} with r(0) = 0 being an r x 1 vector of
known restrictions and r» < p. For notational simplicity, the dependence of quantities on the
data and on n will be suppressed. The null and alternative hypotheses are Hy : 6 € €2y and
H; : 0 € Qq, respectively, where €}y and 2; constitute a partition of 2. Then, the unrestricted
and restricted ML estimators of 6 are § = argmaxy.q, L(0) and 0 = argmaxgcq, L(0), respec-
tively. Let g(0) = OL(0)/06, H(0) = —n~'9°L(0)/0000", H = H(0), R(0) = dr(0)/90"
(an r x p matrix), R = R(0), R = R(0), J(0) be a p x p symmetric matrix, J = J(0), and
J = J(#). Throughout, asymptotic results are obtained under Hy and the following two

assumptions hold.

Assumption 1. For a given sample: (a) 6 € €, g(d) = 0, and L(#) > L(A); (b) R and

R have rank r; and (c) H, J, and J are positive definite matrices.



Assumption 2. Under Hp: (a) 02 0y and 0 2 0, where 0y € Qo; (b) J2 Jyand J & J,
where Jy is the (positive definite) limiting information matrix; (c¢) H(0) 2 Jy and R(6) 2 R,
where 8 % 6, and Ry = R(6,) has rank r; and (d) /n(0 — 8) ~ N(0, J;'R{ Vi ' ReJit),
n~12g(6) ~ N(0, R Vi 'Ry), and \/nr(8) ~ N(0, Vi) where Vo = RoJ5 'Ry .

The ensuing analysis will present algebraic results for a given sample so Assumption 1 will
ensure that all sample quantities are well defined and have appropriate properties. Assump-
tion 2 simply states relevant standard asymptotic results obtained under Hy and under the
usual regularity conditions where the (limiting) information matrix equality holds. Rigorous
statements of the appropriate conditions required and formal derivations of these standard
asymptotic results can be found in, for example, Davidson and MacKinnon (1993) and Newey

and McFadden (1994).

Consider the likelihood ratio, a score, and a Wald statistic given by

LR = 2{L() — L()}, (1)

S=g0)7 T 9(0), 2)
and

W =nr(0)T{RJ'RT}~1r(0), (3)

respectively. Under Hy, each of these statistics is asymptotically distributed as a x?(r)
variate. Since the Lagrangean associated with 6 is £(6,\) = L(#) — A" r(6) where \ is an

7 x 1 vector of Lagrange multipliers, the first-order condition AL£(0, X)/d0 = 0 gives
9(6) = RTA (4)

so (2) is often written as S = n‘lj\T]?j_lf*ZTS\, a Lagrange Multiplier statistic. In the
case where L(f) is a quadratic function of § (such that H(f) = H is a positive definite
nonstochastic matrix with lim,, ... H = Jy) and r(6) is a linear function of 6, Buse (1982, p.

156) and Engle (1984, pp. 782-4) showed that

LR=S=W (5)



where S and W are evaluated with J = H and J = H, respectively.

The perceived frameworks of LR, S, and W can be obtained as special cases of a generic
perceived framework as follows. Let C'= LR, S,W. Then, the perceived framework of C'is
defined for a given sample by the triplet (©, Lo (6), Ooc) where the parameter space © = R?P
with  C O, the maximand L¢(0) is a quadratic approximation of L(#) at a chosen point
0¢ such that 0o > 0o, and the restricted parameter space Og¢ is obtained by replacing r(6)

in Qp with r¢(0), a linear approximation of r(#) at a chosen point 0 such that 0o 2 0,.

Formally,
Le(0) = L(0c) + g(0c) T (0 — 0c) — g(e —00) " Jo(0 - 0c), (6)
rc(0) =r(6c) + Ro(0 — 0c), (7)
and
Ooc = {0]70(0) = 0, 0 € O} 8)

where Jo is a symmetric positive definite matrix such that Jgo N Jo, and Rp is an r X p
matrix with rank 7 such that Re % Ry. Basically, Lo(6) is a second-order Taylor series
approximation of L(6) at ¢ with H(¢) replaced by Je to cater for different estimators of
Jo. Similarly, ¢ (f) is a first-order Taylor series approximation of r(8) at 8¢ with R(6¢)
replaced by R¢ to cater for different estimators of Ry. Here, the unrestricted and restricted
estimators of 0 are O = argmaxycg L¢ () and ¢ = argmaxgycg, . Lc(0), respectively. Note
that, throughout, a ‘hat’ (‘tilde’) on 6 is used for an unrestricted (restricted) estimator, and

the subscript C' will indicate a quantity from a perceived framework where, unless stated

otherwise, C' = LR,S,W. Let go() = 0Lc(0)/00. Then, it can be shown that

9c(0) = g(0c) — nJo(0 — 0c), (9)

1 _
0c =0c + ZJ;Q(HC)’ (10)



0c = 0o — J5'RE{RoJZ RS} Lra(b0), (11)
and

gc(0c) = nRL{ReJG' RE}Y re(fc) = ndc(bc — Oc) (12)
where 0 2 0y and 0 2 0.

Since the special cases of L¢(0) and r¢(0) are determined by appropriately choosing the
sample quantities 0, Jo, O¢, and Re, it is convenient to collect these quantities as the

quadruplet
Pe = (0c, Jo, 00, Ro). (13)

Initially, P¢ is treated as fixed for the purpose of evaluating a statistic and random vari-
ables are obtained in the usual manner by later accounting for repeated sampling; cf. a ML
estimator is obtained by first evaluating a ML estimate and later accounting for repeated
sampling. Therefore, in the perceived framework of C, the likelihood ratio, a score, and a

Wald statistic are

LR(P¢) = 2{Lc(0c) — Leo(06)}, (14)

S(Pe) = ~go(le) I gollc), (15)
and

W (Pe) = nre(0c) {ReJZ'RGY e (00), (16)

respectively. Then, the perceived frameworks of LR, S, and W are obtained by choosing
Pc such that C' = C(P¢) for a given sample; i.e., a statistic in the nominal framework is
reproduced by a corresponding statistic in its perceived framework. This paper focusses
on the classical statistics, but the generic perceived framework could also be used to deter-
mine the perceived frameworks of other asymptotic statistics such as classical-type, C(a),

and Hausman statistics. For the classical statistics, the following proposition (proved in

8



Appendix A) provides the particular choices for the components of Po. Table 1 (on page
37) presents these choices as well as the special cases of (6), (7), and (9) to (11), which are
easily seen except, perhaps, 6,z = 0 and O = 0 in the last row; the derivations of these two

special cases are indicated in the proof of the proposition.

Proposition 1. Let Prgz = (0,bH,0,RZ), Ps = (0,J,0,R), and Py = (0, j,é,f%) where
b is a particular positive scalar such that b 2 1, and Z is a particular p X p nonsingular

matriz such that Z % I,. Then, LR = LR(PLg), S = S(Ps), and W = W (Pw).

This proposition (and its proof) shows that, in the perceived framework of LR, the
maximand Lyg(0) is a second-order Taylor’s series approximation of L(f) at 0 where the usual
curvature provided by H is adjusted by the factor b to force the quadratic approximation
to go through the point (A, L(f)) € © x R, and the restricted parameter space Ogrp is
given by a particular linear approximation of r(6) at 6 such that 8,5z = 6. Therefore,
Lir(Orr) = L(0), Lpr(0pr) = L(0), and the unrestricted (restricted) estimator of § in the
perceived framework of LR coincides with the unrestricted (restricted) estimator of 6 in the
nominal framework. In the perceived framework of S (W), the maximand Lg(6) (Lw(6))
is a quadratic approximation of L(0) at 6 (§) with curvature provided by J (J), and the
restricted parameter space Ogs (Oow ) is given by a first-order Taylor series approximation of
r(6) also at 0 (0) so the restricted (unrestricted) estimator of § in the perceived framework of

S (W) coincides with the restricted (unrestricted) estimator of ¢ in the nominal framework.

3. Lengths in £, &, R, and O

3.1. General results

Let £ =R, & = RP, and R = R" denote the spaces that contain the ranges of the functions
L(0), g(0), and r(0), respectively. Then, the two popular interpretations mentioned above
can be stated formally as follows. First, based on Buse (1982) and Engle (1984), LR is the
length of L(A) — L(6) in £ where a length is twice the Euclidean length, S is the squared
length of g(f) in & with the metric (nJ)~!, and W is the squared length of r(0) in %R with

9



the metric n{]%j’léT}’l; see Greene (2003, Figure 17.2, p. 485). Second, based on Newey
and McFadden (1994), all three statistics can be viewed as lengths in £ where, again, a
length is twice the Euclidean length. Now, in a perceived framework, La(0) is a quadratic

function of 6 and r¢(0) is a linear function of §. Therefore, by analogy with (5),
LR(Pc) = 5(Pc) = W(Pc),
which, using C' = C(P¢) and (12), can be extended to
C = LR(Pc) = S(Pe) = W(Pe) = n(0e — 0¢) " Jo(0c — 0¢) (17)

where the last expression is a Hausman statistic in a perceived framework. By defining
lengths and metrics in a given space, (17) will enable C' to be expressed in terms of a length
in each of the four spaces £, &, R, and ©. In addition, (17) shows that the classical
procedures per se are equivalent in a perceived framework, and any two of LR, S, and
W are identical if their perceived frameworks are identical. Therefore, in finite samples,
a difference between two statistics arises as a result of applying the equivalent procedures
to different perceived frameworks and, asymptotically, the statistics are equivalent as the

difference between their perceived frameworks vanishes.

As above, let the length of a scalar [ € £ be defined as twice its Euclidean length, and

let the squared lengths of the vectors g € & and v € R be denoted as
1 +- N
lollg=-6"J's  and  |[tlx=nc {RI R} M, (18)
n s

respectively. In &, the metric (n.J)™! is used just to reproduce the interpretation of S as

the squared length of g(#). Similarly, the metric n{RJ'RT}~! in R will reproduce the

interpretation of W as the squared length of T(é) For squared lengths in & and fR, the
metrics will always be (n.J) ' and n{RJ 'RT} !, respectively, so the subscripts & and %
in (18) identify the spaces being considered. For lengths in ©, it is convenient to allow for

different metrics for different statistics. Therefore, in O,

~ ~ 2 ~ ~ N ~
(90 — 90 = 7’1/(90 - (90)—'—(]0((90 - 9()) (19)

nJo

10



will denote the squared length of the vector éc — éc where the subscript nJg specifies the
metric being used. Given Assumption 1, the estimates of Jy and Ry considered above have
the same (positive definiteness and rank r) properties as those of Jy and Ry, respectively, so
the metrics in &, R, and © are well defined in the sense of being positive definite matrices.
In practice, this may not be the case. For example, when S is evaluated with J = H (é),
Dagenais and Dufour (1991, Table 1, p. 1611) provide cases where S < 0 as H(6) is not
positive definite for the given sample. To cater for such cases, a perceived framework and
the metrics in &, 9B, and © could be defined by first using Jy and Ry instead of their
estimates. This would ensure that the resulting statistics from such a perceived framework
could be viewed as squared lengths where the metrics are well defined. Then, Jy and Ry in
these resulting statistics could be replaced with appropriate estimates to provide a classical
statistic, which could be interpreted as a ‘feasible’ squared length with any problems arising
(such as S < 0 for a given sample) viewed as a shortcoming of the estimates used. For
the case considered here, the following proposition (proved in Appendix B) provides the

expressions for each classical statistic in terms of a length in each of the four spaces.

Proposition 2. In terms of a length in each of £, &, R, and O, the special cases of (17)

LR =2{Lunl®0) - Lunl®)} = ||[Aung @], = |[Buwr@®)]| =[[o-7][ . (20

5=2{Ls(bs) - Ls®)} = |[o(®) Z :HBSr(é)i =lfos-a|| . e
and

W=2{Lw(@® — Lw(lw)} = |[awe@)| =[lr@||  =|p-ow| 2

where (for C = LR,W ) Ac is a particular p X p nonsingular matriz such that Ac TN I,

and (for C = LR, S) Be is a particular v x r nonsingular matriz such that Be 2 I,.

With respect to viewing a classical statistic in terms of a length in a given space, this

proposition provides all possible interpretations, including the two popular ones. In (20),

11



the first equality reproduces the interpretation based on Buse (1982) and Engle (1984) of LR
as twice the Euclidean length of L(0) — L(f) = Ly z(0) — LLg(0) in £ and, given appropriate
metrics, the remaining equalities enable LR to be viewed as squared lengths of the vectors
ALrg(0), BLRr(é’), and 6 — 0 in &, R, and O, respectively. Similar interpretations also
apply to each of (21) and (22). Now consider LR, S, and W in a given space. In £, the
interpretation provided by the first equality in each of (20) to (22) is as based on Newey and
McFadden (1994) except that, as will be seen below, their illustration for a Wald statistic is
only appropriate for cases where Ay = 0. In & with the metric (n.J)~", S is (by construction)

the squared length of g(6), whereas, LR and W are squared lengths of nonsingular linear
transformations of g(f). Since the matrices associated with these transformations converge
in probability to an identity matrix, the well-known asymptotic equivalence of the statistics
is easily seen. Similarly, in 98 with the metric n{RJ'RT}~!, W is the squared length
of r(@), whereas, LR and S are squared lengths of nonsingular linear transformations of
r(0) where the matrices associated with these transformations converge in probability to
an identity matrix. The interpretation of LR, S, and W as squared lengths in © is given
by the last expression in (20) to (22), respectively, which will be discussed in more detail
below. Finally, if L(#) is an appropriate maximand associated with some other method of

estimation where a type of information matrix equality holds, then (20) to (22) show that

classical-type statistics can also be expressed in terms of a length in each of the four spaces.

3.2. Example of classical statistics as lengths in £

For a diagrammatic exposition, £ is an appealing space to consider as it can also show the
relative magnitudes of statistics. Therefore, let S and W be evaluated with .J = H () and
J = H, respectively, and (for r = p = 1) let L(0) = —10 (Inf + 1) and 7(9) = 6% — (0.4)%;
here, 6 > 0 is the mean of an exponential distribution and L(#) is the log-likelihood function
for a random sample of ten observations with a sample mean of one. Then, the interpretation
of LR, S, and W as lengths in £ is illustrated in Figure 1 (on page 38) where Lg(0) and Ly, ()

are second-order Taylor series approximations of L(6) at 6 and 6, respectively, L = L(0),

12



L = L(0), Ls = Lg(0), Ly = Lw(f), and (on the vertical axis) the spaces £ and 9 have
different scales with the value of zero being with respect to R. To simplify the diagram,
L1 r(0) and rp,z(0) are not displayed; in © x £, L z(0) would be the quadratic curve through
the point (f, L) with a maximum of L at 6 and, in © x R, rp(0) would be a straight line

through the point (6, 0) with slope approximately half that of rg(6).

Figure 1 clearly shows the role played by ru () in the interpretation of a Wald statistic
when Oy # 6. The role of ry(6) is obscured in examples that consider linear restrictions
where 0y coincides with 6 when r = p. For example, Newey and McFadden (1994, Figure 3,
p. 2221) depict a situation where Oy = 0, and Davidson and MacKinnon (2004, Figure 10.3,
p. 433) illustrate a case where 0w =6 and Og = 0. Tt may be interesting to note that O
coincides with 6 when 7(f) = 6 —6° and Lg(6) is obtained by setting 65 = 6° and Jg = .J;(6°)
where the scalar 6 is the mean of the univariate exponential family of distributions, 6° is
known, J;(0) = E[H(0)], and given random sampling. Another interpretation of a Wald
statistic, provided by Pagan (1982) and reproduced in Poirier (1995, Exercise 7.3.3, p. 374),
is also based on an example where 0y = 0. In particular, for r(0) = § — 6° as above and W
evaluated with J = H, Pagan (1982, Figure 1, p. 259) shows that W = 2 f; gw(0)dO where
0 = 0°, whereas, the first equality in (22) and gy (6) = dLy (0)/df yield W = 2 fééw gw(0)do,
which caters for cases where Oy # 6. If desired, the graphs of g(8), gs(6), and gw (6)
could be added to Figure 1. Then, the areas féé g(6)de, f;s gs(0)dh, and fai/ gw (0)dd would
equal LR/2, S/2, and W/2 respectively; the first two integrals would reproduce appropriate
areas in Pagan (1982, Figure 2, p. 260) where, on the horizontal axis, the points A and D

correspond to 6 and és, respectively.

3.3. Equalities among statistics

Suppose that L(#) is a quadratic function of ¢ such that H(0) = H is a positive definite
(stochastic or nonstochastic) matrix with H 2, Jo. In this case, R g = RZ and Jog = bH
reduce to Rpr = R and Jpp = H, respectively, as Z = I,, b =1, and H= H; see the note at

the end of Appendix A. Let Lg(0) and Ly (6) be second-order Taylor series approximations
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of L(0) at 0 and 0, respectively. Then, S and W are evaluated with J = H and J = H,
respectively. Here, it is useful to separate the two cases where r(f) is either a nonlinear or

a linear function of #. First, let 7(f) be a nonlinear function of §. Then,
L(0) = Lrr(0) = Ls(0) = Lw (0) and rer(0) =rs(0), (23)

which show that the perceived frameworks of LR and S are identical (but not identical to
the nominal framework) so @ = fg. Therefore, using the last expression in each of (20) to
(22),

2

A ~

LR:S:W—Q and W =100y (24)

2
n

H nH

where LR # W in general. In Figure 1, if L(0) and Lg(0) are ignored and Ly, () is viewed
to be as in (23), then W is as given in the diagram and LR = S = 2{Ly (0) — Ly (0)} > W.

Second, let r(0) be a linear function of . Then,
L(0) = Lyr(0) = Ls(0) = Lw () and  r(0) =rpr(0) = rs(0) = rw(0) (25)

so, here, the perceived frameworks of LR, S, and W (and the nominal framework) are

identical, and

LR:S:W:H%@

2
n

(26)

H

Basically, (26) reproduces the equalities of Buse (1982) and Engle (1984); strictly speaking,
(5) is a special case of (26) obtained by setting H = H.

From examples demonstrating (26), particularly in textbooks, it is possible to get the
impression that a quadratic L(#) is sufficient for the equality of the three statistics. Such
examples invariably consider linear restrictions so the difference between (24) and (26) is
not seen. Therefore, it is important to note that a quadratic L(f) per se is sufficient for
the equality of only LR and S. The relationships in (23) and (25) help to explain the
equalities in (24) and (26), respectively; i.e., two statistics are identical if their perceived

frameworks are identical. For classical-type statistics, the results here can be used to either
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determine equalities or easily show and explain known equalities. For example, let L(f) be
the maximand associated with the efficient generalized method of moments estimator of
for orthogonality conditions that are linear in #. Then, (24) provides (and (23) explains)
the equality of D and LM in Newey and West (1987, Proposition 3, p. 785). Similarly,
(26) provides (and (25) explains) the equality of D, LM, and W in Newey and West (1987,

Proposition 4, p. 785).

3.4. Perceived null

Henceforth, an appropriate set will be referred to as a type of null or alternative. For
example, both Hy and €y (H; and Q) will be referred to as the nominal null (nominal
alternative). Let Ogc and O;¢ constitute a partition of © and, using (19) and the last
expression in (17), consider C' written as

2

C= Héc—éc (27)

nJo

where 0o 2 0o, Oc 2 0, and (from the note at the end of Appendix B) O € O10. Then,
in © with the metric nJs, C can be viewed either as the squared length of éo - éo or, more
usefully, as the squared distance from the point éc € O1¢ to the point Oc € Opc. Now, 0o is
the optimal point in ©g¢ where optimality is with respect to the perceived maximand L (6).
Therefore, for a given sample, ©g¢ is a perceived null in the sense that (in the perceived
framework of C') the restricted estimate of € is chosen from points in Ogc. Similarly, ©1¢

is a perceived alternative.

The use of ‘perceived’ should avoid any possible confusion with ‘implicit’ as used in
the literature. For example, Mizon and Richard (1986) define an implicit null, Davidson
and MacKinnon (1987) define an implicit null and an implicit alternative, and White (1987)
defines a ‘model implicitly tested’. These ‘implicit’ definitions account for repeated sampling,
whereas, the ‘perceived’ definitions are for a given sample. Here, by accounting for repeated
sampling, Og = {0 | Ro(0 — 0y) = 0, 0 € O} will be viewed as the implicit null of C as

Ouc 2 Oy in the sense that if § € Ope and § 5 0., then 0, € Oy since rc(é) =0 and (7)
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shows that ro(0) & Re(0, — 0p). Hence, LR, S, and W have identical nominal nulls and
identical implicit nulls, but their perceived nulls could differ depending on the form of r(6).
For example, in Figure 1, Qy = ¢ = Ogrr = Ops = {é} and Ogy = {éW} A nonlinear
restriction considered by Gregory and Veall (1985) provides an example where g, ©¢, and
Ogc differ. In particular, let = (6;,605)" and r(0) = 6,05 — 1 where §; and 0, are positive
scalars, and let 0, 0, Oy, Ryog, r(@), and R be provided by the sample. Then, in the positive
quadrant of R?, Q) is the set of points on the hyperbola given by 6,0 = 1, O is the (set of
points on the) straight line tangential to this hyperbola at the unknown point 6y, ©gg is the
straight line tangential to the hyperbola at 0, OoLr is the straight line (through the point
0) given by Rpp(0 — 0) = 0, and Ogy is the straight line (through the point fy) given by
r(0) + R(0 — 0) = 0.

4. Reformulation of a nominal null

4.1. General results

Following Davidson and MacKinnon (1993, p. 468), let p : R — R" be a mapping such that,
for any x € R", p(z) = 0 if and only if x = 0. Now, let x = r(0), q(8) = p(r(d)), and
Qb ={01q(0) =0, 0 € Q}, and recall that Qg = {0]r(0) =0, 0 € Q}. Then, as Qf = Qo,
HE : 0 € O is a reformulation of the nominal null Hy : 6§ € Qq. For later reference, it is
useful to note some results related to the mapping p(z). First, let Q(0) = 9q(0)/90" be the
r X p matrix of derivatives, Q = Q(#), Q = Q(0), and Py = P(0) where P(x) = dp(z)/dxT
is the r x r Jacobian matrix, which is assumed to be nonsingular for all x € R" and hence
nonsingular for all # € Q2. Then, Q(6) = P(z)R(0),

Q = P0R7 (28)
and

o= PR (29)
where P = P(r(@)) 2 PR, Q2L PRy, Q L PRy, and (given the assumptions on P(x), Ry,

R, and ]A%) the matrices Q, Q, and PyRo have full row rank. Second, a mean value expansion
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of p(x) at the zero vector is p(z) = P,z where P, is P(z) with its i-th row evaluated at

~

x} = a,x for some a; € [0,1]. This mean value expansion with « = r(6) yields

A

a(6) = Por(9) (30)

where P, is P, with xf = om"(é). Here, z} 2 0s0 P, 2 Py and it is assumed that P, is
nonsingular. Third, if p(x) is a linear mapping, then ¢(6) = Pr(0), Q = PR PRy, and

A A

P,=P=P (31)
where P is a nonstochastic nonsingular matrix whose elements do not depend on 6.

The nominal frameworks (2, L(6), ) and (2, L(0), Q) are identical as Qo = QI so 0
(0) is the unrestricted (restricted) estimator of 6 in both these nominal frameworks. Let
C, denote a statistic for testing Hg in the nominal framework (€2, L(0),Q3). Then, as
is well known, LR = LR,, S = S,, and (in general) W # W,. Now, by construction,
a perceived maximand does not depend on the form of the restrictions so the perceived
framework of C; is defined for a given sample by (0, Lo (6), ©2,) where La(0) is as above,
Odc = {0|qc(0) = 0, 0 € O}, and ¢c(0) is an appropriate linear approximation of ¢(0).
Since the perceived frameworks of C' and Cy can only differ in their perceived nulls, the
unrestricted and restricted estimators of 6 in the perceived framework of C, are O as above
and 0, = argmaxgegs  Lc(f), respectively. Then, by analogy with (27),

2

Co = ||bc— 0%

(32)

nJo
Clearly, if ©gc = ©¢ (or, equivalently, if the perceived frameworks of C' and C; are identical)

for a given sample, then 6 = 6, and (27) and (32) yield C = C,.

In the case of the likelihood ratio statistics, the row for (7) in Table 1 gives rpg(0) =
Rgr(0 — 6) so (8) provides the perceived null of LR as

Oorr = {0| RLr(0 —0) =0, 0 € O}
and (by analogy) the perceived null of LR, is
Ol r=1{01QLr(0—0) =0, 0 € O}
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where Qrr = QZ and Z is as above; (A.4) in Appendix A shows that Z depends only on
Jrr and an appropriately evaluated form of H(6) so both Rpr and Qrgr use the same Z.
Now, Rir = RZ and (28) provide Qpr = PoyRpr where P, is nonsingular so Ry z(0 — é) =0
is equivalent to Qpz(d — ) = 0; i.e., Ogr = O¢,z- Similarly, in the case of the score

statistics, the perceived nulls of S and S, are
Ous ={0|R(A—-0)=0,0cO®} and Ol ={0]QO—0) =0,0c0O},

respectively, so Opg = Of¢ given (28) where Py is nonsingular. Then, for C = LR, S, it
follows that C' = C, as ©pc = OF,. Therefore, the likelihood ratio (a score) statistic is
invariant to a reformulation of a nominal null as the perceived frameworks of LR and LR,
(S and S,) are identical. Note that, since O, = Opc 2, 0, for C = LR, S, the implicit
nulls of the likelihood ratio and a score statistic are invariant to a reformulation of Hy as H.
This implies that the implicit null of a Wald statistic is also invariant to the reformulation

as the three statistics have identical implicit nulls.
For the Wald statistics, the perceived null of W is
Oow = {0|7(0) + RO —0) =0, 6 € O}

and the perceived null of W, is OF,, = {0]¢(d) + Q6 — §) = 0, § € O}, which (using (29)

and (30)) can be written as
0L, = {0| P.r(0) + PR(O — ) =0, 6 € O}.

Now, consider two cases for the mapping p(z). First, suppose that p(z) is a linear mapping.
Then, (31) holds where P is nonsingular so Ogw = ©g;;,, which provides W = W,. In
this case, a Wald statistic is invariant to a reformulation of a nominal null as the perceived
frameworks of W and W, are identical. Second, suppose that p(z) is a mapping such that
P, # P. Then, Ogy # 0%, so (in general) Oy # é?,v and W # W,. In this case, a
Wald statistic is not invariant to a reformulation of a nominal null as the different perceived
nulls of W and W, provide different restricted estimates of 6 in their respective perceived

frameworks.
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4.2. FExzample of perceived nulls of Wald statistics

Different perceived nulls for Wald statistics can be illustrated by considering an example
in Lafontaine and White (1986). To provide an accurate illustration of this example, it is
necessary to show that © can be the space associated with a subset of the parameters in
a model. To see this, let L,(y) = L.(6,0) be a log-likelihood function for an [ x 1 vector
of parameters 1) = (6T, HT)T where 6 and 6 are (I — p) x 1 and p x 1 vectors, respectively,
and corresponding versions of Assumptions 1 and 2 hold with J,o denoting the limiting
information matrix. Also, let the restrictions be given by f(1)) = 0, ¥ be the unrestricted
ML estimator of v, and j* be a matrix evaluated at {p such that j* LN Jywo. Then, a Wald
statistic for testing f(¢) = 0 is Wy = nf(¢) {FJ, YFTY 1f(1h) where F = 8f(1)/d".
Now, let j*_ U and J' be conformably partitioned with 1) = (5T, HT)T as

766 760 86 60
Jeo j g e
JO& JOO J36 Jge

respectively, and let J~! = J% £ j00 = J=1. If f(1p) = r(0), then F = (0% (1—p) R] and

L~ 2 . .g |12
Wy=W =10 — 0w 5 Similarly, if f(y) = q(#), then W; =W, = H@ — 05y These

nJ
Wald statistics are appropriate for illustrating the example in Lafontaine and White (1986).

Let I >p=r=1,Q={0]0 >0}, and r(d) =0 —1. Then, Q C O =R, Q) =
Oow = {1}, and W = H@ - é‘ ‘i] as Oy = 0 (= 1). Lafontaine and White (1986) consider
different forms of ¢(6) given by ¢*)(0) = 6* — 1 for k € {~1, £2, £3, ... }. Therefore, to
indicate quantities related to the k-th form of ¢(f), the subscript and superscript g will be

replaced with k£ and (k), respectively. Then, for the k-th form of ¢(#), a Wald statistic is
2

Wi = Hé — éé’f) _and its perceived null is @(()13, = {0| qé{?(@) =0,0 €0} = {égﬂ,)} where
nJ

q‘(,‘]i)(é) = a0 — by, is a first-order Taylor series approximation of ¢ (0) at 0, a = k&k_l,

by =1—(1— k’)@k, and é@ — by/ay,. Figure 2 (on page 39) illustrates the perceived nulls

of W and Wy, for k = —16,—8,8,16 with 6 = 1.1. In this figure, the value of zero is for
R on the vertical axis so the perceived null of a Wald statistic is the point where the linear

approximation of a restriction intersects the horizontal axis ©; to avoid unnecessary lines,
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the graphs of 7(6), ¢%*)(#) and q‘(,ﬁ) (0) are appropriately truncated. Therefore, the perceived
nulls of W and W, are the points 0 and é(vlf,), respectively, on the horizontal axis. Since éé’;)

moves further away from 0 as k decreases and as all the Wald statistics use the same scalar

~ ~(k) 12
0 — HE,V) _as k varies is given by the change in
nJ

metric n.J, the qualitative effect on Wy =

5 ~(k
the Euclidean distance between 6 and HE,V). Hence, Figure 2 demonstrates that W), increases

as k decreases, a result shown numerically by Lafontaine and White (1986, Table 1, p. 37).
This qualitative effect is the same for any metric n.J and, if 0 < 1, a similar diagram would

show that W}, increases as k increases.

4.3. Interpreting a Wald statistic as a squared distance in O

It could be argued that a reformulation of a nominal null is justifiable if the perceived null
of a Wald statistic is not an adequate representation of the nominal null, the hypothesis of
interest. To see this, let (g, €21, and 25 constitute a partition of © where 2y = & if ) = O,
0 — Oy Zj as the squared distance from the point 0 to the point Gy

Now, 0 is a point in both the perceived alternative Oy and the nominal alternative €2,

and consider W = )

whereas, Oy is a point in the perceived null Oqy and not necessarily a point in the nominal
null 4. Therefore, if Ov ¢ g, then Oy is an inadequate representation of )y in the
sense that W is then the squared distance from a point in €2; to either another point in €2
or a point in Q. For example, in Figure 1, Oy = {fw} is an inadequate representation
of Qo = {A} as By is a point in Q. Similarly, in Figure 2, @gf,%, = {ég:,)} is also an
inadequate representation of Qg as Wy is the squared distance from 6 to é(vf,) where éé’f) is
either a point in {2; or a point not even in the nominal parameter space (2; i.e., in Figure 2,
ég:,) €y ={0|0 <0} if k < —39. To ensure that Ogy is an adequate representation of {1y,
it would seem reasonable to require Oy € . Then, W would be the squared distance from
0 e O to éW € Qp. Examples of statistics based on such a distance are F'G in Critchley,
Marriott and Salmon (1996) and MC' in Newey and West (1987). On the one hand, as

seen above, Figure 1 is an example where Ogy is an inadequate representation of €2y so a

reformulation of Hy : 6° = (0.4)% as H : 0 = 0.4 provides W, as the squared distance from

20



0 € Q4 to by, € Qo; in Figure 1, W, = 2{ L (0) — Ly (0)} where W, is evaluated with J = H.
On the other hand, Figure 2 provides an example where Ogy is an adequate representation
of Qp as O = Qy = {é} so, here, there is no need to consider a reformulation of Hy: 0 = 1

as Hék) L 0F = 1.

It is important to note two points concerning the argument above that a reformulation of
H is justifiable if Ow ¢ Q. First, the examples in Figures 1 and 2 may suggest that a Wald
statistic should be used only when the restrictions are linear. However, a Wald statistic is
invariant to a one-to-one transformation of the entire parameter space with the restrictions
also appropriately transformed; see Dagenais and Dufour (1991, p. 1607). In particular, if
(T, Ly(7y),T) is an appropriately transformed version of the framework (€2, L(6),€), then
a Wald statistic for nonlinear restrictions in 6 can be obtained as a Wald statistic for linear
restrictions in 7. For a parameter space, convention may suggest a particular specification
that is in some sense natural or convenient for purposes of interpretation but, ultimately,
even a conventional specification is arbitrary. Therefore, as © is obtained with reference
to €1, the argument above depends on the specification of the parameters in a nominal

2

_is such that a reformulation of Hy can
nJ
2

framework. Second, the form W = Hé — Ow

where only the metric nJ, is
nJr

only affect Ow. Tt is also possible to write W = H@ —0
affected by a reformulation of Hy. Formally, this metric can be obtained from the equality
of T1(A, R) and T4(Ae1, Re1) as given in the proof of the theorem in Dastoor (2003). In
particular, it can be shown that Ty(J,R) = W and Ty(Ag1, Rer) = n(6 — 0)7 A1 (6 — 0)
where Ag; is nonsingular. With A = J and R = f%, it can also be shown that Ag is
o3|

where J. = Ag;. Using this form for a Wald statistic,
nJy

both W and W, can be viewed as the squared distance from 6 to 6 where each statistic

positive definite so W =

uses a different metric. However, in order to compare W and Wj, both statistics should
be expressed as squared distances using the same metric. For Wald statistics, the choice
of n.J for the metric in O is particularly useful as it provides the simple interpretation of
W as the squared distance from 0 to Oy, where a reformulation of Hy can only affect Oy .

This simple interpretation would not necessarily be provided by using another metric. For
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example, using the Euclidean metric in © when J # I,, W would be viewed as the squared
distance from /n.J'/20 to \/nJ'/?0y where J/?2 is the matrix square root of J. Therefore,
the argument that a reformulation of Hy is justifiable if Oy ¢ () is also dependent on the

choice of n.J for the metric in ©.

5. Locally equivalent alternative

Consider another nominal framework given by (€2, L*(0), £2) where L*(0) is a log-likelihood
function not equal to L(0) for all § € €, asymptotic results are obtained under Hy, and
corresponding versions of Assumptions 1 and 2 hold with J; denoting the limiting information
matrix. In this nominal framework, the unrestricted and restricted ML estimators of 6 are

0" = argmaxy.q L*(0) and 6§ = argmaxgcq, L*(0), respectively. Let g*(6) = 0L*(0)/06.
Then, following Godfrey and Wickens (1982), L*(0) is an LEA to L(f) with respect to Hy if

L*(0) = L(0) for only 6 € Qy, g*(0) = g(0), and J5 = Jo. (33)

The three conditions in (33) will be referred to as the G-W conditions; the first two are
explicitly stated by Godfrey and Wickens (1982, p. 76) and the third is implicit in the
specification of the models in their equations (2.1) and (2.9). The first condition ensures
that the two nominal frameworks (2, L*(6), ) and (€2, L(0), ) have identical restricted
models with different unrestricted models, and the last two conditions ensure that S is
identical to a score statistic for testing Hy in the nominal framework (€2, L*(0),€)) when
J is used as an estimator of Ji. Godfrey (1981, 1988) and Godfrey and Wickens (1982)

provide numerous examples of LEAs, which yield the equality of appropriate score statistics.

The analysis to be carried out is simplified if L*(0) satisfies the G-W conditions, which
may appear to be quite restrictive at first sight. For example, with respect to the second
condition, Davidson and MacKinnon (1993, p. 470) remark that ‘this requirement is too
strong: It is enough if the components of §? are all linear combinations of those of ' and
vice versa.” However, the G-W conditions are not too strong provided L*(#) is appropriately

specified. To see this, let 3 be a px 1 vector and consider another nominal framework given by
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(B, L*™(3), By) such that the two frameworks (2, L(0),€) and (B, L™ (), By) have identical
restricted models under their respective nominal nulls; i.e., L*(3) = L(0) either for a 6 € Qg
and an appropriate § € By, or for a § € By and an appropriate § € ;. Then, there
must be a one-to-one transformation between the points in {25 and those in By; without such
a transformation, the two frameworks could yield different restricted models. Therefore,
let 8 = $(#) where ¢(.) is a one-to-one transformation with the Jacobian ®(0) = 93/00",
a nonsingular matrix for all 6 € Q. Now, let L*(#) = LT (¢(0)), g7 (8) = OL*(8)/9p,
and corresponding versions of Assumptions 1 and 2 hold with J; denoting the limiting
information matrix in the nominal framework (B, L*(3), Bg). Then, applying the G-W

conditions to this L*(#) shows that L*(3) is an LEA to L(0) with respect to Hy if
LT (¢(0)) = L(0) for only 0 € Qo, ®'g™(B) = g(0), and @JJfPo=Jo (34)

where 3 = ¢(6), ® = ®(#), and ®y = ®(fy). The proof of (34) is given in Appendix C
and a simple example that illustrates the specification of an appropriate L*(6) is provided
in Appendix D. In (34), the first condition ensures that the two frameworks (B, L*(3), Bo)
and (€2, L(0),€)) have identical restricted models with different unrestricted models and,

in the spirit of Davidson and MacKinnon (1993), the second condition requires g™ () to

be a nonsingular linear transformation of g(#). Therefore, provided L*(f) is appropriately

specified, the G-W conditions are not as restrictive as may first appear.

Henceforth, it is assumed that L*(¢) satisfies the G-W conditions in (33). Therefore, the
nominal frameworks (2, L*(0),$) and (2, L(#), ) have identical restricted models with
different unrestricted models so 8 = 0 and (in general) 0" #£ 0. Let C* denote a statistic for
testing Ho in the nominal framework (2, L*(6), ) where S* = n=1g*(6)TJ¢*(0"); i.e.,
here, J; = Jy so J is used in both S* and S. Then, it is well known that S = S* and (in
general) LR # LR* and W # W*. All quantities associated with C* can be obtained by
analogy with the results in Sections 2 and 3. In particular, the perceived framework of C*

is defined for a given sample by (O, L5(0), Ot.), Pi = (05, J&, 04, R,

Ly (0) = L*(00) + 9" (0c) " (0 = 0c) — g(Q —0c) " J5(0 - 0c), (35)

23



b ={0|r(0c) + R5(0 - 6c) =0, 0 € ©}, (36)

and

Ak ~x |2

nJy,

where é*c — argmaxyeg L5 (0) and 0, = argmaxgeg:  L¢:(0) are the unrestricted and re-
stricted estimators of @, respectively, in the perceived framework of C*. Then, the perceived
maximands (perceived nulls) of LR*, §*, and W* are obtained from (35) ((36)) by setting
Pin= (0,000, Rz, Py = (0,],6,R), and P;, = (6", J*,6", R*), respectively. Unlike
the case in the previous section where the perceived frameworks of C' and C; could only differ
in their perceived nulls, here, the perceived frameworks of C' and C* could differ in their
perceived maximands and in their perceived nulls. However, if the perceived frameworks of
C and C* are identical for a given sample, then 0o = @*C, 0o = ég, Jo = J&, and (27) and

(37) yield C = C*,

For C = LR,W, it is easily seen that Lo(0) # L5(0) for all € ©, and ©gc # Of,
(although 0,5 = 0, , = 0) so, in general, C' # C*. Therefore, the likelihood ratio (a Wald)
statistic is not invariant to an LEA as the perceived frameworks of LR and LR* (W and
W*) differ. Finally, in the case of the score statistics, the first two conditions in (33) show
that Lg(0) = L5(0) for all @ € © and it is easily seen that Ogg = Ofg so S = S*. Therefore,
an appropriate score statistic is invariant to an LEA as the perceived frameworks of S and

S* are identical.

6. Concluding remarks

This paper has shown that the distinction between a nominal framework for the three clas-
sical statistics and a perceived framework for each classical statistic provides more ways to
interpret the statistics and intuitively explains as well as more easily shows some well-known
results. In a perceived framework, the classical procedures per se are equivalent so, in finite
samples, a difference between two statistics arises as a result of applying the equivalent pro-

cedures to different perceived frameworks and, asymptotically, the statistics are equivalent
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as the difference between their perceived frameworks vanishes. Then, as a perceived frame-
work is meant to represent the framework as seen by a statistic, it is not surprising that two
statistics are identical if their perceived frameworks are identical; this must be the case for
a perceived framework to be meaningful. For the normally separately treated issues of a
reformulation of a nominal null hypothesis and of an LEA, the identicalness of (or different)
perceived frameworks explains the invariance or non-invariance properties of the statistics
and also provides a useful view of these properties. In particular, the non-invariance of a
Wald statistic (to a reformulation of a nominal null) is, on the one hand, desirable as W and
W, have different perceived frameworks and, on the other hand, undesirable as two identical
nominal frameworks provide these different perceived frameworks. Similarly, the invariance
of a score statistic (to an LEA) is desirable as S and S* have identical perceived frameworks,
and undesirable as two different nominal frameworks provide the identical perceived frame-
works. In the case of the likelihood ratio statistic, both its invariance (to a reformulation
of a nominal null) and its non-invariance (to an LEA) are desirable; is it surprising that the
‘father’ of the ‘holy trinity’ is omniscient? Finally, although this paper has focussed on the
behaviour of classical statistics, the analysis is applicable to appropriate classical-type statis-
tics, and the concept of a perceived framework could also be used to examine the behaviour

of other asymptotic test statistics.
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Appendix A

Proof of Proposition 1. To show LR = LR(Prr), three preliminary results are required.
First, let d = \/n(f — 0) and recall that H(0) = —n19%L(0)/0000". Then, as g(0) = 0, an
exact second-order Taylor series expansion of L(f) at 0 yields

L(0) — L(0) = %dTHLRd (A.1)

where Hpp = H(0Lg), 0.k = af + (1 — @)@ for some o € [0,1], and Hyx 2 Jy. Now, let

B dTHypd
n(d—0)TH(H —0)

(A.2)

where (although Hpg is not necessarily positive definite) the numerator is positive given
(A.1) with L(#) > L(6), the denominator is also positive as § # 6 and H is positive definite,
andb—1 = (d"Hd)"'d" (H,zr—H)d = 0,(1); it can be shown that d” Hd ~ x*(r). Therefore,
b>0and b 1.

Second, a mean value expansion of g(0) = 0 at 0 gives

~ ~ ~

g(0) = nH, (0 — 0) (A.3)

where H, is H(0) with each of its rows evaluated at a (possibly different) mean value given
by a convex combination of 0 and 0, and H, is assumed to be nonsingular; in general, H, is

not necessarily a symmetric matrix although H, % J, and H J 2 Jy. Let
Z = (H,)" g (A.4)
where Jpr = bH. Then, Z is a p X p nonsingular matrix such that Z = Ip.
Third, (A.4) and Ry g = RZ can be written as
H'=JZ" and  R"=(Z")7 'R}, (A.5)
respectively. Then, substituting (4) into (A.3) gives
P 1

0—0=—H'R"), (A.6)

n
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which, using (A.5), provides

1

0—0= ;JEéRZRS\. (A.7)

Now, to see that LR = LR(Pg), let C = LR and Prz = (Orgr, Jig, 0k, Rir) =
(0,bH,0,RZ) where b and Z are given by (A.2) and (A.4), respectively. Then, all the
quantities in the third column of Table 1 are easily obtained; for the last entry in this
column, the row for (7) provides rpg(01r) = Rir(fLr — 0) so substituting this into (11) and
then sequentially using .z = 0 and (A.7) gives O, = 0. Using Jpr = bH and (A.2), the

row for (6) in Table 1 provides

-1
Ligr(0) = L(0) — 5dTHLRd

which (given éLR = é, éLR = é, and (Al)) shows that LLR(éLR) = L(é) and LLR(éLR) = L(@)
so (1) and (14) yield LR = LR(PrR).

To see that S = S(Ps), let C = S and Py = (0s, Jg,0s, Rg) = (0,J,0,R). Then, all
the quantities in the fourth column of Table 1 are easily obtained; for the last entry in this
column, the row for (7) provides rg(fg) = R(0s — ) so substituting this into (11) and then
sequentially using 0 = 0 + %j_lg(é) and (4) gives fg = §. In Table 1, the row for (9)
provides gs(fs) = g(f) so (2) and (15) yield S = S(Ps).

Finally, to see that W = W(Py), let C = W and Py = (0w, Jw, w, Rw) = (0, J,0, R).
Then, all the quantities in the last column of Table 1 are easily obtained and the row for (7)

provides rw (Ow) = r(0) so (3) and (16) yield W = W (Py). |

Note. Suppose that L(f) is a quadratic function of 6 such that H(0) = H is a positive
definite (stochastic or nonstochastic) matrix with H 2 J,. Then, Hyzp = H = H] =
H, = H where Hyr and H, are as in (A.1) and (A.3), respectively. Therefore, (A.2),
Jir = bH, and (A.4) reduce to b =1, Jpg = H, and Z = I, respectively.
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Appendix B

Proof of Proposition 2. To show (20) to (22), four preliminary results are required;

below, a row refers to one in Table 1. First, the row for (9) provides

9rr(OLr) = nJLr(0 — OLR) (B.1)

so substituting 0,z = 6 on the right-hand side of (B.1) and sequentially using (A.7), Rz =
RZ, and (4) gives

grr(Orr) = Z"9(0). (B.2)

Second, since r(f) = 0, a mean value expansion of r(f) at 6 is
r(0) = R,(6 — 0) (B.3)

where R, is R(#) with each of its rows evaluated at a (possibly different) mean value given

by a convex combination of § and 0. Substituting (A.6) into (B.3) yields
A =nV,lr(0) (B.4)

where V, = R, H,_ IRT is assumed to be nonsingular and V, 2, RoJy 1R0T = V4. Also, the

row for (7) provides
rer(0Lr) = Rir(Orr — 0) (B.5)

so substituting f,r = 6 on the right-hand side of (B.5) and sequentially using (A.7) and
(B.4) gives

rer(0rr) = ViV, 'r(0) (B.6)
where Vir = RrrJ; s Rigr = Vo
Third, the row for (7) provides

7‘5(95) = R(és - é) (B7)
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so substituting fg = 6 + n~J1g(0) on the right-hand side of (B.7) and sequentially using
(4) and (B.4) gives

rs(0s) = VsV 'r () (B.8)

where Vg = RJ'RT & Vo.
Fourth, let Viy = RJ1RT &V, and

D=R'V;'RH*+1I,— RV, 'R,H . (B.9)
Then, it is easily seen that D 2 I, and

DR" = R"V,;}V,. (B.10)
Since 7 (Aw) = r(0), the first equality in (12) with C' = W, Ry = R, and Jy = .J provides

gw(bw) = BTV ValnV"r(9)),
which, sequentially using (B.10), (B.4), and (4), gives

gw(0w) = Dg(0). (B.11)

Assuming that R,H 'R" is nonsingular, a proof by contradiction shows that D is nonsin-
gular. Therefore, suppose that D is singular. Then, there exists a p x 1 vector £ # 0 such

that D& = 0, which (using (B.9)) can be written as
RV, 'RH '€ +¢—-R'"V'RH,'¢ =0. (B.12)

Since R,H,'R" is nonsingular, premultiplying (B.12) by R,H,' implies R,H.'¢ = 0 so

(B.12) reduces to £ = 0, the contradiction sought. Therefore, D is nonsingular.

To see the special cases in (20) to (22), first, let UY/? and U~'/2? be matrix square roots
of U and U™, respectively, where U~1/2 = (U 1/ 2)~! and all the U-matrices are symmetric
and positive definite. Then, given the definitions in (18), equations (15) and (16) can be

written as

2

S(PC) - ) ’jl/ngl/Qgc(éC)

. (B.13)
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and

2

, (B.14)

W(Pe) = ||[Va/*Ve retlo)|

respectively, where Vo = RoJ5 R}, Finally, appropriately substituting (B.2), (B.6), (B.8),
(B.11), and relevant quantities from Table 1 into (14), (B.13), (B.14), and (19), it can be
shown that (17) provides the special cases in (20) to (22) where Az = JY2J, 5 Z7 and
Aw = JY2J7Y2D are p x p nonsingular matrices such that Ac 2 I, (for C = LR, W),
and Brg = Vyi/*V 2Vt and Bg = Vii/*Vg/>V ! are r x r nonsingular matrices such that

Bo % I, (for C = LR, S). |

Note: Given (B.6), (B.8), and rw (0y) = r(6), it is easily seen that r¢(f¢) = 0 iff r(0) = 0;
ie., 0o € Oy iff H € Q. However, by Assumption 1(a), 0 ¢ Qp so O ¢ Ooc.
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Appendix C

Proof of (34). Let L™(3) be a log-likelihood function where 8 = ¢(0), 3 € B C RP, and
¢ : Q — B is a one-to-one transformation with the Jacobian ®(#) = 93/00", a nonsingular

matrix for all 8 € 2. Then,

BeBy={B|r(¢(0)=0,0€ B} iff 0€Q={0]r(0)=0,0€0} (C.1)
where ¢~!(.) is the inverse transformation of ¢(.). Now, let

L*(0) = L*(¢(0)) for all 6 € Q. (C.2)
Then, the first condition in (33) can be written as

L*(¢(0)) = L(0) for only 6 € Qq, (C.3)

the first condition in (34). This condition yields 3 = ¢(#) given (C.1) and the invariance
property of ML estimators. To obtain the remaining two conditions in (34), first note that

(C.2) provides

g (0) =(0) g (6) = 2(0) "g"(¢(0))  foralld €, (C.4)
and

J =] I 0y; (C.5)

cf. Davidson and MacKinnon (1993, equations (13.65) and (13.68), pp. 464-5). Then,

evaluating (C.4) at 6 yields
g'(0) = @Tg*(p) (C.6)

as 3 = ¢(0) given (C.3). Finally, the last two conditions in (34) are obtained by substituting

(C.6) and (C.5) into the last two conditions in (33), respectively. [
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Appendix D

An example illustrating the specification of an appropriate L*(0). Breusch and
Pagan (1979) have shown that, for testing the null hypothesis of homoskedastic errors in a
linear regression model, an appropriate score statistic is invariant to certain formulations of
the alternative hypothesis of heteroskedasticity. A special case of their model provides a
simple example that illustrates the specification of an L*(6) that satisfies the G-W conditions.
Therefore, for t = 1,2,... ,n, let y; be independently distributed as N (0, h;) variates where
h: is to be defined. Let ; and 6, be scalars, 0 = (61,05)7, Q = {0]6; > 0, 0, € R},
Qo ={0]0, > 0,05 =0}, 0y = (010,0)", and let L(6) be the log-likelihood function obtained

with h; = 01 + 052 where z; is a nonstochastic scalar. Then,

n 1 — 1 & yt2
L(0)=L(6,05) = ——In{27} — = In{6 0 —— gt
(0) = L(01.05) = =G n{2n} =5 3 {0+ duzp = 5 S5

0 52 - 1 0 1 1 p,
=] e =— i ,and Jo = — (D.1)
0 0 20, \ n(w—0,2) 2000 |y, 02
where s> =n~' Y7, @ =n"" Y yiz, Z=n""3 z, p, = lim Z, and vl = lim n~' )" 27,
t=1 t=1 t=1 n—00 n—0o0 t—1

Suppose that L*() is the log-likelihood function obtained with h; = exp{6; +052;} where
the unrestricted and restricted parameter spaces are Q* = R? and Qf = {0 |0, € R, 62 = 0},

respectively. Then,

n

n n nz 1 y?
L*(0) = —=In{27} — =0, — —05 — = D.2
(0) = =5 In{2m} =500 =50 =5 Zexp{e1 + 0oz} (D.2)

t=1

so, using appropriate quantities in (D.1), it can be seen that é: =Inb, é; =0,

®Tg"(07) =g(0), and B JPo=Jy (D.3)

~ %

where & = é;lh and &y = 073, Here, S* = n 1g*(0")T(J*)1g*(8") is a score statistic
(for testing Hg : 6 € QF) where J* & Ji. Therefore, although this L*(0) does not satisfy

any one of the three G-W conditions, (D.3) provides the invariance result shown by Breusch

and Pagan (1979) as S* = S when J* = (®7)~1J®~ !,
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An L*(0) that satisfies the G-W conditions can be obtained by first replacing 0 = (01, 02) "
with 8 = (3;,3,)" on the right-hand side of (D.2), and then by specifying an appropriate
transformation 3 = ¢(#). To see this, let L*(0) = LT () where LT () is the log-likelihood
function obtained with h; = exp{3; + B2} and let

In{6 1 0
T B T B TR ,
By 02/61 L —6,07" 1

B =R? and By = {§| 6, €R, 8, =0}. Note that ®(6) is such that ® and ®, in (D.3) are

equal to ®(0) and ®(0y), respectively. Then,

n

n n nzhs 1 y?
L*(0) = L*(01,.05) = ——In{27} — —Inf; — —= — —
( ) ( 1, 2) 2 n{ ﬂ-} 2 nuovy 201 291 ;QXP{QQZt/H]_}’

which is just the right-hand side of (D.2) with #; and 0 replaced with Inf; and 65/6;,
respectively. Here, 8° = 0, g*(0) = ¢(0), Ji = Jo, and L*(d) = L(#) for only 6 € Qy as
L*(61,0) = L(6,,0) and L*(0) # L(0) for 6 ¢ Qy. Therefore, as required, this L*() satisfies
the G-W conditions. Alternatively, this L*(#) can also be obtained by first specifying L™ ()
as the log-likelihood function obtained with h; = (3, exp{3y2:}, B =  and By = €, and

then by using the transformation (8, 3,) = (61, 02/61), an example where 3 = 6 although
B#0.
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Table 1. Quantities in the perceived frameworks of LR, S, and W

Special case of C'

Equation | Quantity LR S %4
(13) O 0 0 0
Jo bH J J
Oc 0 0 0
Re RZ R ;

(6) Le(0) L(9) L(#) +g(6)" (6 — 0) L(9)

20— 0)T TR0 —0) | =20 —6)TJO—0) | —2(0 —6)T (6 —0)

(7) ro(0) Rrr(0—0) R(0 —0) (0) + R(0 — 0)
(9) g (0) nJir(0 —0) g(0) —nJ(6 —6) nJ (0 —0)
(10) fc 0 0+ L171(0) 0

(11) b 0 0 0—J'RT

x{RJLRT}~1r(f)

Note: In the third column, b is a particular positive scalar such that b 2 1, and Z is a

particular p X p nonsingular matrix such that Z LN I,.

37



Classical statistics as lengths in £
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Figure 2.

Perceived nulls of Wald statistics
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