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Pricing Discrete Barrier Options under Stochastic Volatility *

Kenichiro Shiraya T,Akihiko Takahashi *and Toshihiro Yamada ®
First Version: November 11, 2009, This Version: August 9, 2011

Abstract

This paper proposes a new approximation method for pricing barrier options with discrete monitoring under
stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in
Malliavin calculus are effectively applied in pricing barrier options with discrete monitoring. To the best of our
knowledge, this paper is the first one that shows an analytical approximation for pricing discrete barrier options
with stochastic volatility models. Furthermore, it provides numerical examples for pricing double barrier call
options with discrete monitoring under Heston and A-SABR models.

Keywords: discrete barrier option, barrier option, knock-out option, double barrier option, stochastic volatility,
CEV model, Heston model, SABR model, A-SABR model, asymptotic expansion, Malliavin calculus

1 Introduction

This paper develops a new approximation formula for pricing discrete barrier options under general stochastic
volatility models. In particular, the paper applies the Malliavin calculus to pricing path-dependent derivatives
with discrete monitoring under stochastic volatility environment and derives a concrete approximation formula for
valuation of barrier options. It is also stressed that our new analytic formula is obtained by an asymptotic expantion
around a multi-dimensional log-normal (or Gaussian) distribusion, which can be regarded as an extension of existing
expansions around one-dimensional Gaussian distributions for approximating derivative prices such as plain-vanilla
and average option prices. (For instance, see Takahashi (1999, 2009).) Furthermore, numerical examples for pricing
discrete double barrier options under Heston and A-SABR models are presented.

As a seminal work, Fournié et al. (1999) applied Malliavin calculus to derive efficient Monte Carlo estimators of
computing Greeks for path-independent as well as path-dependent options in the Black Scholes framework. These
estimators are sometimes called Malliavin weights. Subsequently, a number of papers extended their method.
Related to our present work, Siopacha and Teichmann (2007) developed strong and weak Taylor methods for
stochastic differential equations. In particular, the weak Taylor expansion is based on the Malliavin’s integration
by parts on the Wiener space and the expansion coefficients are given by Malliavin weights. As an example, they
applied the method to a market model of interest rates with stochastic volatility and obtained a semi-closed-form
approximation of the option prices with expectation including the Malliavin weights; their method depends on the
Monte Carlo simulations in order to compute the option prices numerically.

Takahashi and Yamada (2009) gave a perturbation method for stochastic volatility models and pointed out that
the approximation terms including the Malliavin weights can be transformed into a finite-dimensional integration
through the duality formula and obtained completely closed-form approximations for density functions and option
prices by an asymptotic expansion. Applying both the integration by parts and the duality formula, this paper
derives a closed-form approximation for prices of barrier options with discrete monitoring as an example. The same
method can be used for obtaining closed-form approximations of other derivatives’ prices and implied volatilities
as well as of the underlying density functions; for instance Takahashi and Yamada (2009) applies the method
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to deriving expansions of implied volatilities under stochastic volatility models and jump-diffusion models with
stochastic volatilities. Also, we remark that there are various approaches for approximations of derivatives’ prices,
Greeks and heat kernels through certain asymptotic expansions: for instance, there are recent works such as
Baudoin(2009), Gatheral-Hsu-Laurence-Ouyang-Wang (2009) and Ben Arous-Laurence (2009).

As for pricing discrete barrier options, Fusai, Abrahams and Sgarra (2006) provided an analytical solution in
the Black-Scholes framework. Recently, using a high-order asymptotic expansion scheme for a plain-vanilla option’s
value by Takahashi,Takehara and Toda (2009) combined with a static hedging method by Fink (2003), Shiraya,
Takahashi and Toda (2009) provided an analytic approximation for valuation of barrier options with continuous
monitoring under stochastic volatility environment; however, their method cannot be applied to pricing discrete
barrier options. Our approximation for the discrete barrier options is made around the log-normal distribution
for the Heston-type model and the normal distribution for CEV (Constant Elasticity of Variance) model with
general stochastic volatility. To the best of our knowledge, this paper is the first one that derives an analytic
(approximation) formula for pricing discrete barrier options with stochastic volatility models. In particular, our
result can be regarded as an extension of Fusai, Abrahams and Sgarra (2006).

Moreover, we remark that numerical computations for pricing discrete barrier options under stochastic volatility
models typically apply double integrals on the underlying asset and its volatility, which requires computational
burden in pricing substantially. On the other hand, our new approximation based on the asymptotic expansion
technique is able to price them in a second for our numerical experiments. It implies that our developed method
seems useful especially because this type of options is embedded in structured bonds very often where an efficient
computational scheme is very desirable.

The organization of the paper is as follows: The next section derives an asymptotic expansion formula for
generalized Wiener functionals. Section 3 applies the general formula to pricing path-dependent derivatives with
discrete monitoring and provides a concrete approximation formula for valuation of discrete barrier options. Section
4 provides numerical examples for pricing double barrier call options with discrete monitoring under Heston and
A-SABR models. Section 5 concludes. Appendix summarizes Malliavin calculus necessary for this paper.

2 Asymptotic Expansion

2.1 Asymptotic Expansion for Expectation of Generalized Wiener Functionals

The next theorem and corollary present asymptotic expansion formulas for the expectation and the density of
generalized Wiener functionals which is a key tool to evaluate the prices of the discrete barrier options under
stochastic volatility models. For the definitions, the notations and the proofs, see Takahashi-Yamada (2009).
Hereafter, we use the notation [ T'(x)p(z)dz for T € §'(R") and p € S(R") meaning that s wrn)(T, p)smn)-

Theorem 2.1 [Takahashi and Yamada (2009)] Consider a family of smooth Wiener functionals F€ = (Ff,---,Ff) €
Do (W : R™) such that F€ has an asymptotic expansion in Do and satisfies the uniformly non-degenerate condi-
tion:

limsup ||(det o) Y| zr < 00, p < . (2.1)
el0

Then, for a Schwartz distribution T € S'(R™), we have an asymptotic expansion in R:

. N (4) k .
B[T(F)] = / T(@)p" (@)dr + Y / T(@)E[Y Hyw (B [ FGIF® = alp™ (2)dz + O(V),
Jj=1 E =1

(2.2)

k) = (a1, -+, ) and

where Fio’k = %%Fﬂezo, keN,i=1,---,n, a®) denotes a multi-indez, o
(4) B j 1
2= X >

ko k=181t +Br=5,B:i>1 ) €{1, .-}
Also, Malliavin weight H ) is recursively defined as follows:

H (k)(Fa G) = H(ak) (Fa Ha(k*U(Fv G))a

[e3%



where

Hy(F,G) =D~ (Z Gl DFZ) :
i=1
Here, vF' = {75}1@,3‘9 denotes the inverse matriz of the Malliavin covariance matriz of F.
(Proof ) See Takahashi-Yamada (2009). O

Corollary 2.1 The density p* (y) is expressed as the following asymptotic expansion with the push-down of Malli-
avin weights:

m

(4) k
P W) =p" () + D ED | How (FO, [ FEMIFC = ylp™ (y) + O™ ), (2.3)
j=1 k =1

where pFU (y) is the density of F°.

(Proof) See Takahashi-Yamada (2009). O

3 Pricing Path-dependent Derivatives with Discrete Monitoring

This section presents an approximation formula for pricing a path-dependent derivative whose payoff is determined
by the underlying asset’s value at finite number of time points during the contract period, as an application of
Theorem 2.1 in the previous section.

3.1 General Results
Let (Q,F, (Ft)iepo,m), P) be a filtered probability space and (Wi, Wa t)iejo,7) be a two dimensional Brownian
motion with respect to (F)¢cjo, 7). We consider the following stochastic volatility model;

ds') = a8 9dt + V(0! t)S\ awy

o\ = Ag(o t)dt + €Ay (01, 1) (pd W1 4 + /1 — p2dWsay),

Si9 =880 = s, (3.1)

where « is a constant, p € [—1,1] and € € [0,1]. V,Ap,A4; : R x [0,T] — R are continuous and C*° for each
t € [0,T] with bounded derivatives of any orders in the first argument. Note that o = r — §, where r and § are
the risk-free rate and continuous dividend rate, respectively. Note also that the model becomes the Black-Scholes
model when e = 0.

Under this stochastic volatility model, we consider a derivative whose payoff depends on the underlying asset
price S at monitoring time points, 0 =ty < t; < --- <ty = T. More specifically, let ¢ : RY +— R be the payoff
function of a path-dependent derivative with discrete monitoring. First, we impose the following assumption.

Assumption 3.1 For allt € (0,7],
V(x,t)? > 0. (3.2)
Denote Xt(f) by the logarithmic process of St(f);
X\ i=logsd,  i=1,---,N.

Then, regarding the valuation of the path-dependent derivative with discrete monitoring, the following theorem is
obtained.



Proposition 3.1 Let ¢ : RN — R be the payoff function of a path-dependent derivative with discrete monitoring.
Then, an asymptotic expansion formula for valuation of the derivative under the stochastic volatility model (3.1)

s given by

e TElp(S{, -, 5]

_ e—rT/ (p(eml’...7e$N)pX(O)(x1’,.,7:1;N)dx1..-de
RN

m () k
je—rT T1 L N (X, T x51x X der - d
—I—Zee /RN<p(e R )Z Hy( ,H = (z1, -, 2N)p" (21, ,oNn)dry, - den
Jj=1 k =1
+O0(em™th), (3.3)
where X,S’i = ,3, s X(e)\e 0, Kk € N,i=1,---,N and pxo(x1,~~,x1\/) is the density function of X =
(Xt(?), e 7Xt(f\),)). In particular, the ﬁrst term on the right hand side of (3.32) gives the value of the derivative
under the Black-Scholes model.
(Proof)

The Malliavin covariance matrix {ox o };; is given by

(X", DXy (DX, DX\ (DX DX yu (DX DX\
0 0 0 0 0 0 0
(DX, DXy (DXt(z),DX( N (DXt(z),DXt(N) r o (x2, Dx Oy
I9xo = 0 E 0 0 . 0 ' 0 (0 : 0)
(px¥ DXy (DX 1,DXt(2)> (DX 1,DX ) yr (xY  Dx Oy
0 0 0 0 0 0 0
(DX, DXy (DX, DXy (DXt(N),DXt(N) O (Dx, Dx Oy
fQT £)214<y, dt fQT o 1)1y, dt fQT (09 £)21,<,, dt fO o0 )21y, dt
V(o 0} t)21t<t1dt V(0! © )2 Lycy,di V(0! © t)21t<t2dt v (0) )2 Ly<y,di
fQT (0! 7t)21t§t1dt fQT (0) t21t<t2dt fo 21t<tN dt [TV (ol t21t<tN dt
(O' 7t)21t§t1dt ( (O) t)21t<t2dt fO (0) t 21t<tN 1dt fO t ]-t<tth
V(e t2dt [V (0) 1)2d V(o t)th V(o 1)2dt
V(o § )%dt f“V 42 BV Vel bR
0 LV (0! © J4)2dt fo V(a§0> £)2dt ftN LY 0(0) H2dt - [NV (0l 1)2dt
SV (o © 2dt [y V(o §0>,t)2dt St v(al )th X V(e 6)2adt
Forn=1,---,N, define
Ve 02dt 3 V(e )2t V(o t)2dt Y (o t)2dt
s V(ato),t dt [ V( ato),t)zdt V(o )2t V(o )2t
X, = : : (3.5)
"V (o) © )2dt [PV t(o),t)2dt fo" V(o )2t f(f"*lv ©) t)2dt
V(o 0),t dt 2 V(o t)2dt Ve nae i Vel n2dt
The determinant of ¥, is given by
det ¥, = X0, 8 (1,2) " Bn—1,n)> (3.6)
where
t;
Sy = [ VO (3.7)
ti—1



By Assumption 3.1, each principal minor’s determinant of the Malliavin covariance matrix is positive;
det¥, >0, n=1,---,N. (3.8)

Then the Malliavin covariance matrix is positive definite. Thus, the uniformly non-degenerate condition is satisfied
by the similar argument to Takahashi and Yoshida (2004). For the payoff function ¢ € &', Theorem 2.1, especially,
the equation (2.2) can be applied and hence the following asymptotic expansion formula is obtained:

e TElp(S{, -, 8]

= e—TT/ S0(69617...,eﬂw)pxo(g,;h...JCN)dgcl...dJUN
RN

m
+Z€j€7ﬁ/ ple™, -
j=1 RN

+O(emH).

(4) k
™) > T E[HL (X, T X5 IX0 = (21, 2n)p™
k =1

0
(x17"'axN)d-rla"'7de

O

3.2 Pricing Barrier Options with Discrete Monitoring

This subsection provides an approximation formula for valuation of barrier options with discrete monitoring as a
concrete example of the previous subsection. Let B C R be the barrier. For example, B = [L,o0), B = (—o0, H|
and [L, H] for some constants, —oco < L < H < oco. Hereafter, the following notations are used:

t;
- / V(e© ),
0
t;
& = / V(U,go),t)Zdt—2ati,
0
1
Xti = log SO + }/tz - §£i7
oV (x,t
V1t = 8IV(Jt(O)7t)U£1)a GIV(Ut(O),t) = %u:aio)
(1) 9ot !
T T e = / s AL (pdW s + V1 = p2dWa,),
0
t
N = exp{/ aon(afLO)7u)du},
0
ti ti
U, = / vy dWiy — / V(el” t)oydt,
0 0
ts ti
\I/i—Li = / vltdWM—/ V(O’go),t)’l)ltdt,
ti—1 ti—1
t;
E(i*l,i) = / V(O’EO),t)2dt
ti—1

BarrieryY denotes the price at time 0 of a discrete barrier option with strike K and maturity 7 under the
stochastic volatility (3.1). Also, Barrierﬁs denotes the price of this discrete barrier option under the Black-Scholes
model;

Barriery® = e . YY1, yn)p(y, - yn)dys - - dyn, (3.9)
where
(Y1, yn) = l{Seyk%&l eB} 1{SeyN*%€N eB}(seyN_EEN - K)*, (3.10)
1 _ZN wi—vi—1)?
pyr, - yn) = 72 g S TR (o = 0). (3.11)
(27T>N/22(0,1) N NS



Then, the following result is obtained. That is, the value of a discrete barrier option under the stochastic volatility
is approximated around the value under the Black-Scholes model.

Theorem 3.1 An asymptotic expansion of Barm’erjsvv, the price at time O of a discrete barrier option with strike
K and maturity T under the stochastic volatility (3.1) is given by:

Barrier%‘/ = BG/I"TZ.BTI%S + Ge_T.T ~ ql)(ylu e 7yN)Q9(y13 e 73/N)p(yl7 IR yN)dyl e dyN + O(GQ)ﬂ(312)
R
where
N
(e —yr-1)® 3k —yk—1) (Y — Yr—1)? 1
Hy1, -, = _ — — +
(11 YN) ;Ck Lk ( S S 7 A
Sl (=10 (Y —Yi—1 (Yr — Yk 1)2 1 Y — Yk—1
+ 1 - - - - - , 3.13
kz:; = Gt < Y1y ) S ik Yk-1,k Y1,k (3.13)
with
tr t
G = p [ OV Hn V(e ) / 07 AL (00, )V (0, 5)dsdt, (3.14)
th—1 th—1
and
11,1 tk (0) 0) K
]i_l?}c) = p oV (o, ,t)ntV(Ug 7t)dt/ N7 AL (0, )V (6, 5)ds. (3.15)
te—1 ti—1
(Proof)
We will evaluate the €’s coefficient of the expansion (2.2) in Theorem 2.1 under the current setting.
Let @ : (w1, ,2N) = lemiep - lernep(e®™ — K)T.

N
Barriery” e p (p(XO), 1) +eeT Z p_. (0:0(X ), ¥i)p_. +O(e?)
i=1

e Tp (6(XD), ), +ee Tn__($(X D), m)p. +O()

Barriery® + ee” " (1, 9) p(yyay + O(€?)

Barriery® + ee‘rT/ LUl yn) O yn )Py yn)dyn - dys £ O(€2), (3.16)
R

where m = Zﬁg:l mij € Do is the Malliavin weight defined by m;; = DT(\Iliva{(o)DlXj(o)) and ¥(y1, -, yn) =

EY=Y[rx] is the push down of the Malliavin weight. The inverse matrix of the Malliavin covariance matrix of X (%)
is given by

[ v1 me2 O 0 0 0 0 0 1
V2,1 V2,2 Y23 O 0 0 0 0
0 32 733 734 0 0 0 0
0 0 V4,3 V4,4 0 0 0 0
X _ . . : ) (3.17)
0 0 0 0 YN-3,N-3 YN-3,N-2 0 0
0 0 0 0 YN-2,N—3 TYN—2,N—2 7YN-2,N-1 0
0 0 0 0o - 0 YN-1,N—2 7YN-1,N—1 7YN-1.N
| 0 0 0 o .- 0 0 YN,N—1 YN.N |
_ 1 1 - _ _ 1 o _ 1
where ’Yi,i_m Z(i’i+1)’1_17..-’N—1’ 71’,i+1_7i+17i__m7l_1""7]\]_17 rYNvN_m To
make the right-hand side of (3.9) short, let
tr t tr t
0y, ;:/ At/ B (pdWy s 4+ /1 — p2dWo o )dW1, —/ ot/ B (pdW, s + /1 — p2dWy,,)dt, (3.18)
0 0 0 0



where A, = 8,V (0!, t) -y, Be = 17 A1 (0, 5) and €, = V(0" 1) - 0,V (0, t) -y = V(0!”, 1) A,
divided into the three parts:

k—
U=V 1+ V1 + ‘I’;(CO_’Lkl)v

where Wy = 0, ¥’ = 0 and

tr t
Vi1 p = / A (/ Bs(deLs + 41— deW27s)> dW1y
t tp—1

k—1

tr t
[ ( / Bs(pdwl,sﬂ/l—p?dm,s)) dt,
tr—1

tr—1

tk‘—l 123
ST ( / By (pdWy 5 + /1 — ,o2dW2,S)> < / AtdWM)

tr—1
k—1

< Bs(pdWy s + /1 — p?dWa ) ) ( Otdt> = ‘I’kl 111?7

=1

S AR )

AtdWM)

1
Cidt | ,
th—1

(I
( de15+ﬁdW25><
ti—1
1<i<k-1.
Applying the integration by parts formula, we have
m; = D (xmjf “ D, / v V(a§°>,t)dW1,t>
0

x(0)
ij

T
v, / V(e u) <y, dWi , — / DuaVily<, V(cl®, )1t<t]du].
0

S

The Malliavin weight for Barriery" is given by

™= E T = T1,1+ E (Th ke + Tk k1 + Tht1,k)-
ij=1 k=2

1 1 b
Tii = ( + ) [‘I/z/ V(e u)dWy,, — / Dy 1,V (o )du} ;
Vim0 D) 0

1 tit1
Tii+l = (— ) |:\Ifi / V(O’&O), U)dWl,u — / Du71\I/Z‘V(O'1(LO), u)du} s
2(4,i41) 0 0
1 ti t; 7
71'7;_;,_171' = <_E ) |:\Ifi+1 / V(U£0)7U)dW17u — / Du71\IJi+1V(O'TSO),’UJ)du 5
(i,i+1) 0 0 i
and for N,
1 tN tN 7
TN.N _— [WN V(el®, u)ydWy ,, — DUV (e, u)dul .
’ X(N-1,N) 0 0 |

Also, ¥, is

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



Thus, fort =2,--- N — 1,

Mi—1,4 + Tii—1 + Mg

1 t171 tifl
- (_ ) |:\Illl / V(ngO)vu)dWLu - Du,l\IliV(U’(‘O),U)du]
Y(i-1,i) 0 0

1 Z ti ti l
+ (E ) (Tio1i + 0" 11))/ V(e u)dWy, — / Dyt (Wi + U)W (000, w)du
(i—1,%) ti—1 ti—1
1 ti ti
+ (2 > {\If / V(e wydwy, — / Du,lxpMV(ggO),u)du} : (3.24)
(i,i+1) 0 0
and for N,

TN-1,N + TN.N-1+ TN,N

1 tN—1 tN—1
= (s [ [ Ve aw = [T eyl w
(N—1,N) 0 0

(o)
Y(N-1,N)

Hence, we have

tN

tN
(Ty_1n + TNV / V(e u)dWy,, — Doy (Un_y v + W0 1))V(U£O)7u)du] .
tN-1

tN—1

(3.25)

N " .
1 k k
T = Z( ){(\Pk 1k+\11201§k1)) V(oy, o yu)dWi y — Dy (Vg 1k+\11(0k 1))V(0£0),u)du}

=\ Zk-1k . -
ol 1 e th
- Z( ) ‘Ilk—l”f/ V(e u)dWi, —/ Dy Vi—1,kV (0, u)du
k=1 Ek*l’k tr—1 tre—1
N k-1 . .
1 _ k k B
+ZZ() ‘1'1&1171?/ V(aff)),u)dWLu—/ Do V(0O w)du b (3.26)
k=2 =1 Y1k Sty tes ,

In order to obtain a closed form approximation of Barm'ersv, we calculate the push down of (3.26) in the
following manner. For t;,_; < u < tj, the Malliavin derivatives of Uy_; ; and \Il,(f 11 k) are calculated as follows;

tr t
Dy1Vi_1r = Dya Ay Bs(pdW1 s + /1 — p2dWo )dW7
tp—1 tp—1
tk t
_Du,l Ct Bs(deI,s “+ v/ 1-— deWZs)dt
th—1 th—1
u 23
= pAu/ BSdWLS + pBu/ AtdWLta (327)
tr—1 u
1-1,1 h e
Dun 7Y = Dua By(pdW1 s + /1 — p2dWsa,,) AedWr
ti—1 th—1

t tr
_Du,l (/ Bs(pdwl,s + V 1- p2dW2,s)> (/ Ctdt>
tr—1

ti—1

t
_ 4, (/ Bu(pdW s + /1= p2dW2,S)> . (3.28)

ti—1

Then, we have

tr tr u tr ti
/ Dujlllfk_LkV(UgO),u)du = p/ AUV(Ugo),u)/ BSdWLSdu—Fp/ BuV(aq(LO),u)/ A dWy du
tr—1 tp—1 ti—1 tp—1 u



tr ti
—p / B,V (c® w) [ Cidtdu,

th—1 u

tr

i tr
Du,lqjl(cljll,,li)V(JgO)7u)du = (/ Bs(pdwl,s + v 1- pdeZS)) ( A V( (0) )d > '
te—1

th—1 ti—1

Taking the conditional expectations, we obtain the followings:

th B B
E ‘Ifk—l,k/ V(oﬁo),u)dW17u|Y:y] = Gk ykEka 1) (ykE Yk 1)) (U — yrr),
bh k—1,k k—1,k
ty
E Dy1 Vi1 xV(elD u)ydulY =y| =
th—1

(1—1,0)

E = Sk—1k

2(Yr — Yr—1)
Ch— 1k< S 1>7

yzzf Yi—1 > ((yk ~ Y1) 1> Uk = Yr—1);
-1,

tr
vy / V(e w)dWy Y =y
k—1

Yk—1,k

/ D, 1‘1’,(; 11,?‘/( ,u)dulY =y

0 (M) e
1-1,1

Here, we use the following formulas: (e.g. see Section 3 in Takahashi, Takehara and Toda (2009) that gives more
general results and their derivation.)

T, T, T "

E / Qo W] / Qo dWy = 2| = / dorq1edt | o, (3.29)
0 0 0 D
T t , ’ T ’ T t ’ ’ .’172—2

E / /unquqgtthl/ 0, Wy = x| = / /QQuQIudUQ‘stQItdt 7 (3.30)
0 0 0 0 0

where ¢; € L?[0,T),i=1,2,3 and ¥ = fOT lq1¢|2dt > 0.
Therefore, we obtain

N
(e —yr—1)> 3wk —yk—1) (Y — yr—1)? 1
19(91»"'»?JN) :E[W|Y:y] = Ck—l,k - - +
Z ik SE 1k S5k Yk-1,k
e —y (yr — yp—1)* 1 Yk — Y
-1, -1 k — Yk—-1 k — Yk—-1
+ - - 3.31
kZle;Ck o ( Zi-1 ) < SRtk Ye-1k  Zk-1k >( )

3.3 Application to CEV Model with General Stochastic Volatility
Next, consider CEV Model with General Stochastic Volatility.
B
asi? = as{Vdt+ Vel ) (s17) " aw,,
dol? = Ag(ol )dt + Ay (0\) 1) (pdWi, + /T — p2dWa,).

In this case, we cannot apply the asymptotic expansion directly, because the density at e = 0 is not the Gaussian.
However, if we introduce a perturbation for the asset dynamics,

B
A5\ = a5 9dt + v (o' 1) (Sfe)) AWz,
doi”) = Ao(ot” )t + (ot ) (pdWr g + /1= pPdWVa).



we can expand the density for the transformed process Z;, := %(St(e) — St(?)) as follows,

()
pZ (217"'72]\]‘)
= B2, Z())]
m (49) k
= B2, 29+ ZGJ ZE (20, 2OV H o0 (20, T] 25°)] + O(e+)
=1
(0> m ) k o
= pZ (z1,,2 +ZEJZE (’”‘)(Z(O),HZBI’O””Z(O):(Zlv"'aZN)]pZ (21, 2n)
=1
O™, (3.32)
where Zg i %%Zt(e le=0, k € N, i =1,---, N. Note that the Malliavin covariance matrix ¢ = [0(; j)]1<ij<n of

Z©) is given by

T T
T(ig) = <D ( / eV (of” 1)(5,")” 1{t§ti}qu> , D < / etV (1", 1)(S{”)° 1{t§tj}dW1t>>
0 0

T
/ (eatie—asv(0£0)7S)(Sgo))ﬂl{sgti}) ( oztje OésV( )(S( ))ﬂl{ <t }> ds
0

H

tiNtj
ea“i“a‘)/ e 25V (0 5)2(80)%Bds, (1 <i,j<N). (3.33)
0
Then the N-dimensional normal density function p?" (21,---,2n) of Z(0) (Zf?),~ . Zt(g)) is given by
) 1 e—atizi _ e‘"‘“*lzi, 2
p? (e en) = S o 0 exp (— > ( 5 ) (3.34)
« i ts P 1—1,2
(2m)N/2 (6 =1 ) 201y BN-1,N) =1
with tg = 2o = 0 and
t;
S = / e~205Y(50) )2(8O)2Bgs (1< i< N). (3.35)
ti—1

Therefore, we can evaluate the expectation analytically for CEV model with general stochastic volatility as follows:

BarrieryABE = =T (21, zN)pZ(e) (21, +,2Nn)dz1 - d2zn, (3.36)
RN
where
w(yh o 7yN) - l{St(f)"FCZleB} o l{st(?v)‘i‘ezNEB}e(Ke + ZN)+’ (337)
(3.38)
with
1
K= -(5Y - K). (3.39)
€

4 Numerical Examples

This section provides numerical examples for pricing double barrier call options with discrete monitoring under
Heston model and A-SABR, model.
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4.1 Heston model

First, we deal with Heston model. The form of Heston model is as follows.
ds'? = 1S +1/ol989aw,,, (4.1)
dcr]ge) = k(60— O't(e))dt +ey/ O't(e)(deLt + /1= p2dWy,). (4.2)

The time to maturity of the options is T'= 1, and the monitoring dates when one judges whether the underlying
price hits the barriers is set to be 0.25, 0.5, 0.75, 1.0 (case A) and 0.5, 1.0 (case B). The parameters are set to be
the following: The initial underlying asset’s price and variance are S((f) = 100 and o((f) = 0.02, respectively. The
mean reversion speed and level are set to be kK = 1 and § = 0.02 respectively. The lower barrier L and the upper
barrier U are set to be L = 80 and U = 120 respectively. Also, the riskless interest rate (r) is set to be 0.

The volatility on the variance ¢, the correlation between the underlying asset and the variance p and the strike
price vary for the following cases:

I: e =0.02, II: € = 0.05, III: € = 0.10, IV: € = 0.15, V: € = 0.20,

ir p=-0.7,ii: p=0.0,1iii: p=20.7,

1: K =90, 2: K =100, 3: K =110.

For each double barrier option the range of the integration is bounded from above and below. Thus, the
Gauss-Legendre Quadrature is used for efficient computation.

For the single barrier case (that the integration range includes infinity), it is more efficient to use the Gauss -
Laguerre Quadrature with Gauss - Legendre Quadrature than to use only the Gauss - Legendre Quadrature.

Note that Gauss - Legendre Quadrature is given by

b 1
—b —-b b —b b
/af(x)d:c:a2 /1f(a2 z—i—a;r >dz~w(zk)f<a2 Zk—i-a;r),
where zi, k = 1,---,n are the values such that P,(z;) = 0 and P, denotes the Legendre polynomial of the n-th
order. The weights, w(z) are obtained by

w(zk) = 2/ (0P (24) P (20))-

For our computation, set n = 20. Gauss - Legendre Quadrature can calculate the integration with smaller number
of computation than other usual computational methods(e.g. trapezoidal rule). Thus, the speed of calculation is
very fast.

For example in the case A, at ¢t = 0.75 for each yy_1 = 2zx, k =1, - -, 20, the payoff at maturity T = 1;

1
SeyN_§EN - K

is integrated from max{L, K} to U.

The values obtained by the previous integration for zx, k = 1,---,20 at ¢ = 0.75 is used for the integration from
L to U at t = 0.50 for each zi. Recursively in this way, the value for the initial value at ¢ = 0 is obtained.

The results are shown in Table 1 (case A) and Table 2 (case B) below. MC denotes the benchmark price
computed by Monte Carlo simulation. Except for the cases that p = 0, our first order expansions improve the
accuracies relative to the Black-Scholes model(BS) where the stochastic volatility component is ignored: Note that
when p = 0, the approximations by the first order expansion are equivalent to those by the Black-Scholes model(BS)
and that the Black-Scholes model provides relatively good approximations when p = 0.

4.2 MSABR model

The next numerical example is based on A-SABR model which is described as follows.

dSée) = rS;+ at“)Sf“)dWLt, (4.3)
dgt(e) = MO- ot(e))dt + ecrge) (pdW1 4 + de2,t)~ (4.4)

We consider the cases of § =1 (case C) and 8 = 0.5 (case D). The time to maturity of the options are T =1 and
the monitoring dates are 0.25, 0.5, 0.75, 1.0. The parameters are set to be the following: The initial underlying
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asset’s price is S((f) = 100 for both cases. The initial volatilities are oée) = 0.15 for (case C) and 0(()6) = 1.5 for (case
D), respectively. The mean reversion speed and level are set to be A = 1, § = 0.15 for (case C) and 6 = 1.5 for
(case D), respectively. The lower and upper barriers are set to be L = 80 and U = 120, respectively. The riskless
interest rate (r) is set to be 0.

The volatility on the volatility €, the correlation p between the underlying asset price and the volatility as well
as the strike prices are set to be the same as in Heston model.

The results are shown in Table 3 (case C) and Table 4 (case D) below. MC denotes the benchmark price
computed by Monte Carlo simulation.

The results show that the second order expansions provide better approximations than the first order expansions.
Also, we note that the approximations for 3 = 0.5(case D) are better than those for 5 = 1(case C). It is because
the A-SABR model is expanded around a normal distribution and the distribution of the underlying asset price is
closer to a normal when (3 is closer to zero. Thus, the smaller 3 gives better approximation in general.

It is generally observed in both Heston and A-SABR models, the higher volatility on the variance (or volatility)
cause worse approximation, especially when the correlation is not 0 and the strike price is in-the-money(K = 90).
It implies that the higher order expansion may be necessary for those cases.

5 Conclusion

The paper applied a perturbation method for stochastic volatility models developed by Takahashi-Yamada(2009) to
pricing path-dependent derivatives with discrete monitoring under stochastic volatility environment and obtained
a concrete approximation formula for valuation of discrete barrier options. To our knowledge, this paper is the
first one that shows an analytical approximation formula for pricing barrier options with discrete monitoring under
stochastic volatility environment. Numerical experiments on double barrier options with discrete monitoring under
Heston and A-SABR models are also given.

A Malliavin calculus

Following Malliavin(1997) and Malliavin-Thalmaier(2006), this subsection summarizes basic facts on the Malliavin
calculus which are necessary for this paper.

Let (W, i) be the d-dimensional Wiener space where
W=wW?=Cy([0,T] : RY) = {w: [0,T] — RY; continuous, w(0) = 0}

and p is the Wiener measure. Next, let H be a Hilbert space such that

d T
dh;(t
H = {h € Wi h;(t)(i =1,---,d) is absolute continuous with respect to ¢ and Z/ | dt( )|2dt < oo}
=170

with an inner product (h,h)g = Z?zl OT dhc'l"t(t) dhét(t) dt. H is called the Cameron-Martin space.

Define L~ (W) as L™~ (W) = Np< oo LP (W) and a distance on L~ (W) as dp— o) (F1, F2) = 2272, 279 (min{|| Fy —
Fs||1i,1}), where || - ||z denotes the LP-norm in (W, ). Let LP(W : H) denote the space of measurable maps
from W to H such that ||f||z € LP(W). The same definition is made for L=~ (W : H).

Then, consider the space

DiW:G) = {F € LP(W, G) : there exists DF € LP(W : H ® G) such that for h € H,
.1
ing S0 -+ o) — F(u)] = (DF, R |
e—0 €
Here, DF is called the (Malliavin) derivative of F. Due to the identification between the Hirbert space LP(W :

H® G) and LP([0,T] x W : G), DF is a stochastic process {D\F = (Dy1F,---,D,¢F) : t € [0,T]} such that
d T dhi(t
(DF.Wnse = X fy (Deat) (S5t
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The norm of sz(W : G) is given by ||F||Df(W:G) = ”FHLP(W:G) =+ ”DF”LP(W:H@G)- Also, D*(W : G) is
defined by DP(W : G) := NpctocDY(W : G), and a distance on D{°(W : G) is given by dDg@(W;G)(Fl,Fz) =
¥, 279 minf|Fy — Fallpy ey LD

For r > 2(r € N), we introduce the spaces:

DIW:G)={FeD’ ,(W:G):DFeD’_ (W: H®G)}

with [[Fllprov.c) = | Fllpr_ owve) + ||DT_1FHD119(H®(H71)®G). We also define DE(W : G) as DE(W : G) = LP(W :
G).
If G = R", We denote D2(W) as D2(W : G).

Some properties of these spaces are the following; Df:(W) c DE(W), ' < r, and p’ < p. The dual space of
(DIOW)), (DIOW))* is given by (DIW))* =D”, (W), with p~t +¢1 = 1.

Furthermore, define the space Doo(W) = N,,DE(W). Then, Dy(W) is a complete metric space under a
metric, dpew)(F1, F2) = 30— Npr(min{[|[F1 — Fy|lpz, 1}) where 7, > 0 such that 37 7, < co. Note that
this topology on Do, (W) is independent of the choice of the sequence {n,,}. We call F' € Dy (W) the smooth
functional in the sense of Malliavin.

Given Z = (Z1(w), -+, Zg(w)) € DY(W : H), there exists D}(Z;) € LP(W), i =1,---,d such that
E[fOT Dy F(w)Z;(w)dt] = E[F(w)D}(Z;(w))] for all F € D°(W). Then, define D*Z := Z?Zl D3 (Z;(w)). So,
there exists C), > 0 such that ||D*Z||r» < Cp||Z[|prwy.m). We call D*Z the divergence of Z.

Definition A.1 Let F = (Fy,---,F,) € Doc(W : R") be the n-dimensional smooth functional, we call F a
non-degenerate in the sense of Malliavin if the Malliavin covariance matriz {o2 }1<i j<n

d T
o = (DF,,DF;)y =Y / (Dt Fi(w)) (D, Fy (w) )dt
k=170

is invertible a.s. and
(detop)™ € L=~ (W).

Theorem A.1 Let F € Do (W : R") be a n-dimensional non-degenerate in the sense of Malliavin and G €
Do (W). Then, for ¢ € C}H(R"),

E[0ip(F)G] = E |o(F)D* (Y Gv5DF
j=1

where (75)1§i,j§n is the inverse matriz of Malliavin covariance of F'.
(Proof) See Lemma I.5.2. of Malliavin(1997). O

Theorem A.2 Let F € Doo(W : R"™) be a non-degenerate functional. F has a smooth density p'' € S(R™) where
S(R™) denotes the space of all infinitely differentiable functions f : R™ — R such that for any k > 1, and for any
multi-index 3 € {1,---,n} one has sup,cgn |2|*|0sf(z)| < co. (i.e. S(R™) is the Schwartz space and S'(R™) is
its dual.)

(Proof ) See Theorem II.5.1. of Malliavin(1997). O

Definition A.2 Consider the space D_oo(W) = U, . D” (W), that is, the dual of Dog. We call F € D_ (W) a
distribution on the Wiener space. We define the duality form on D_o X Do, (F,G) — p__(F,G)p., = E[FG] €
R. We call this duality form the generalized expectation.

Let F € Doo(W : R") be a non-degenerate functional and v be the law of F, that is v(dz) = po F~!(dz) =
p (x)dz is the direct image by F of the Wiener measure on W. We define the range O as O := {z : pf'(z) > 0} C
R".
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By Malliavin (1997) and Malliavin-Thalmaier (2006) the conditional expectation of g € LP (W, 1) conditioned
by a set {w : F(w) = z} in o-field o(F), E[g|F = x] gives a map,

EF :LP(W,u) 3 g — E[g|F = z] € LP(O, v). (A1)

Watanabe (1983, 1984) introduced the distribution on Wiener space as composition of a non-degenerate map
F by a Schwartz distribution 7. The next theorem restates the result of Watanabe (1984) in terms of Malliavin
(1997) and Malliavin-Thalmaier (2006).

Theorem A.3 [Watanabe (1984)] Let F € Dooc(W : R™) be a non-degenerate functional. Let v be the law of F
and O = {z : p¥'(x) > 0} C R™.

1. Let 8'(R™) be the set of Schwartz distributions on R"™. The map (E¥)* : S(R") 3T +— ToF € D_., can be
uniquely extended to a map:

(EF) . S'R") 5T +—ToFeD_ :=UsoNg>1 DL, CD_. (A.2)
(EFY* is called the lifting up of T.
2. The conditional expectation defines a map
Ef: D, 3G~ EF[G] € 5(0), (A.3)

where S(O) stands for the Schwartz space of the rapidly decreasing functions on O = {z : p¥'(x) > 0} C R™.
We call this map the push down of G.

8. The following duality formula is obtained :
p_. (BE")T.G)p.. = (T, E¥[G)pr (2)aa- (A.4)

where the notation (-,-),F (z)dz 15 understood as follows:

<T7 EF[GDPF(x)dm = S'(R") <T7 EF[G]pF>S(R")- (A5)
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Table 1: Discrete Barrier Option Prices (case A)

AE BS MC \ AE error BS error \ AE error rate BS error rate
I-i-1 8.06 7.86 8.06 -0.01 -0.21 -0.10 -2.60
I-i-2 2.96 2.85 2.96 -0.00 -0.12 -0.10 -3.90
[-i-3 0.54 0.52 0.54 -0.00 -0.03 -0.10 -4.70
I-ii-1 7.86 7.86 7.86 -0.00 -0.00 0.00 0.00
1-ii-2 2.85 2.85 2.85 -0.00 -0.00 0.00 0.00
[-ii-3 0.52 0.52 0.52 0.00 0.00 0.10 0.10
I-iii-1 7.65 7.86 7.66 -0.01 0.19 -0.10 250
1-iii-2 2.74 2.85 2.74 -0.00 0.11 -0.20 3.90
1-iii-3 0.49 0.52 0.49 -0.00 0.02 -0.20 4.8 0
1I-i-1 8.36 7.86 8.40 -0.04 -0.55 -0.50 -6.5 0
I1-i-2 3.13 2.85 3.15 -0.02 -0.30 -0.70 -9.6 0
11-i-3 0.58 0.52 0.58 -0.00 -0.07 -0.80 -11.4 0
II-ii-1 7.86 7.86 7.87 -0.02 -0.02 -0.20 -0.20
11-ii-2 2.85 2.85 2.85 0.00 0.00 0.00 0.00
11-ii-3 0.52 0.52 0.51 0.00 0.00 0.50 0.50
II-ii-1 | 7.35  7.86 7.39 -0.04 0.46 -0.6 0 6.3 0
II-iii-2 | 2.57 2.85 2.59 -0.02 0.26 -0.80 10.0 0O
I1-iii-3 | 0.45 0.52 0.46 -0.00 0.06 -1.00 12.4 0
III-i-1 8.86 7.86 9.05 -0.18 -1.19 -2.00 -13.1 0
1I1-i-2 3.40 2.85 3.49 -0.09 -0.65 -2.50 -18.50
II1-i-3 0.64 0.52 0.66 -0.02 -0.14 -2.60 -21.3 0
III-ii-1 | 7.86 7.86 7.92 -0.06 -0.06 -0.8 0 -0.8 0
III-ii-2 | 2.85 2.85 2.84 0.01 0.01 0.30 0.30
III-ii-3 | 0.52 0.52 0.50 0.01 0.01 2.50 2.50
I11-iii-1 | 6.85 7.86 7.00 -0.15 0.86 -2.10 12.30
II1-iii-2 | 2.29 2.85 2.36 -0.07 0.49 -3.00 20.7 0
II1-iii-3 | 0.39 0.52 0.41 -0.02 0.11 -3.90 26.2 0
IV-i-1 9.37 7.86 9.74 -0.37 -1.88 -3.80 -19.3 0
IV-i-2 3.68 2.85 3.85 -0.16 -1.00 -4.30 -26.0 O
IV-i-3 0.70 0.52 0.72 -0.02 -0.20 -2.60 -28.3 0
IV-ii-1 | 7.86 7.86 7.98 -0.13 -0.13 -1.60 -1.60
IV-ii-2 | 2.85 2.85 2.82 0.03 0.03 1.00 1.00
IV-i-3 | 0.52 0.52 0.49 0.03 0.03 6.10 6.10
IV4ii-1 | 6.34 7.86 6.66 -0.32 1.19 -4.80 1790
IV4ii-2 | 2.01 2.85 2.15 -0.14 0.70 -6.50 32.4 0
IV-iii-3 | 0.33  0.52 0.36 -0.03 0.15 -8.90 41.90
V-i-1 9.87 7.86 10.34 -0.46 -2.48 -4.50 -24.00
V-i-2 3.96 2.85 4.12 -0.15 -1.27 -3.80 -30.90
V-i-3 0.76 0.52 0.74 0.03 -0.22 3.60 -29.90
V-ii-1 7.86 7.86 8.05 -0.20 -0.20 -2.50 -2.50
V-ii-2 2.85 2.85 2.78 0.07 0.07 2.30 2.30
V-ii-3 0.52 0.52 0.46 0.05 0.05 11.50 11.50
V-iii-1 | 5.84 7.86 6.39 -0.55 1.46 -8.70 22.90
V-iii-2 | 1.73  2.85 1.96 -0.23 0.89 -11.6 0 45.40
V-iii-3 | 0.27  0.52 0.32 -0.05 0.19 -16.2 0 60.4 O
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Table 2: Discrete Barrier Option Prices (case B)

AE BS MC \ AE error BS error \ AE error rate BS error rate
I-i-1 8.38 8.19 8.39 -0.01 -0.20 -0.10 -2.40
I-i-2 3.15 3.04 3.15 -0.01 -0.11 -0.20 -3.60
I-i-3 0.60 0.58 0.61 -0.00 -0.03 -0.20 -4.20
I-ii-1 8.19 8.19 8.19 -0.00 -0.00 -0.10 -0.10
I-ii-2 3.04 3.04 3.04 -0.00 -0.00 -0.10 -0.10
I-ii-3 0.58 0.58 0.58 0.00 0.00 0.00 0.00
I-iii-1 8.00 8.19 8.01 -0.01 0.18 -0.10 2.30
1-iii-2 2.93 3.04 2.94 -0.01 0.10 -0.20 3.50
I-iii-3 0.56 0.58 0.56 -0.00 0.02 -0.20 4.10
II-i-1 8.67 8.19 8.71 -0.04 -0.52 -0.50 -6.00
11-i-2 3.31 3.04 3.33 -0.02 -0.29 -0.6 0 -8.60
11-i-3 0.64 0.58 0.64 -0.00 -0.06 -0.6 O -9.90
II-ii-1 8.19 8.19 8.21 -0.02 -0.02 -0.20 -0.20
11-ii-2 3.04 3.04 3.04 0.00 0.00 0.00 0.00
11-ii-3 0.58 0.58 0.58 0.00 0.00 0.50 0.50
II-idi-1 7.71 8.19 7.75 -0.04 0.44 -0.50 5.70
11-iii-2 2.77 3.04 2.79 -0.02 0.25 -0.6 O 8.90
11-iii-3 0.52 0.58 0.52 -0.00 0.06 -0.80 10.70
II1-i-1 9.14 8.19 9.30 -0.16 -1.11 -1.70 -12.00
111-i-2 3.57 3.04 3.64 -0.07 -0.60 -2.00 -16.6 O
111-i-3 0.70 0.58 0.71 -0.01 -0.13 -1.40 -18.30
II1-ii-1 8.19 8.19 8.24 -0.05 -0.05 -0.6 0 -0.6 0
I11-ii-2 3.04 3.04 3.02 0.02 0.02 0.6 0 0.6 0
111-ii-3 0.58 0.58 0.56 0.02 0.02 2.8 0 2.80
IT1-iii-1 7.23 8.19 7.36 -0.13 0.83 -1.80 11.20
I11-iii-2 2.51 3.04 2.56 -0.06 0.48 -2.20 18.6 0
I11-iii-3 0.46 0.58 0.47 -0.01 0.11 -2.60 22.70
IV-i-1 9.62 8.19 9.94 -0.31 -1.75 -3.20 -17.6 0
IV-i-2 3.84 3.04 3.96 -0.12 -0.92 -3.10 -23.30
IV-i-3 0.76 0.58 0.76 -0.00 -0.18 -0.20 -23.80
IV-ii-1 8.19 8.19 8.29 -0.10 -0.10 -1.20 -1.20
IV-ii-2 3.04 3.04 2.99 0.05 0.05 1.60 1.6 0
1V-ii-3 0.58 0.58 0.54 0.04 0.04 6.6 O 6.6 0
IV4iii-1 6.76 8.19 7.04 -0.28 1.15 -4.00 16.4 0
IV-iii-2 2.24 3.04 2.36 -0.11 0.68 -4.90 29.10
IV-iii-3 0.40 0.58 0.43 -0.03 0.15 -5.90 36.3 0
V-i-1 10.10 &8.19 1048 -0.38 -2.29 -3.60 -21.90
V-i-2 4.11 3.04 4.20 -0.09 -1.16 -2.20 -27.60
V-i-3 0.82 0.58 0.76 0.06 -0.18 7.20 -24.10
V-ii-1 8.19 8.19 8.34 -0.15 -0.15 -1.90 -1.90
V-ii-2 3.04 3.04 2.94 0.10 0.10 3.30 3.30
V-ii-3 0.58 0.58 0.52 0.06 0.06 1250 1250
V-iii-1 6.28 8.19 6.77 -0.49 1.42 -7.20 21.00
V-iii-2 1.97 3.04 2.16 -0.19 0.88 -8.6 0 40.70
V-iii-3 0.34 0.58 0.38 -0.04 0.20 -10.7 0O 52.2 0
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Table 3: Discrete Barrier Option Prices (case C)

AE1 AE2 MC ‘ AE1 error AE2 error ‘ AE1 error rate AE2 error rate
I-i-1 8.30 7.49 7.54 0.75 -0.06 10.0 0O -0.8 0
I-i-2 3.19 273 2.77 0.42 -0.04 15.20 -1.30
I-i-3 0.61 0.50 0.51 0.09 -0.01 1850 -2.10
I-ii-1 830 T7.42 7.49 0.81 -0.06 10.8 0 -0.8 0
I-ii-2 3.19 270 2.74 0.45 -0.04 16.50 -1.50
I-ii-3 0.61 0.49 0.51 0.10 -0.01 20.2 0 -2.30
I-iii-1 830 7.36 7.43 0.86 -0.07 11.6 0 -0.90
1-iii-2 3.19 266 2.71 0.48 -0.04 17.80 -1.70
I-iii-3 0.61 0.49 0.50 0.11 -0.01 21.80 -2.50
II-i-1 8.30 7.58 7.63 0.67 -0.05 8.70 -0.70
11-i-2 3.19 278 2381 0.37 -0.03 13.30 -1.10
11-i-3 0.61 0.51 0.52 0.08 -0.01 16.10 -1.70
II-ii-1 830 7.42 7.49 0.81 -0.06 10.8 0 -0.90
11-ii-2 3.19 270 2.74 0.45 -0.04 16.50 -1.50
11-ii-3 0.61 0.49 0.51 0.10 -0.01 20.10 -2.30
II-idi-1 830 7.27 7.35 0.94 -0.08 12.801 -1.10
11-iii-2 3.19 261 2.66 0.53 -0.05 19.70 -2.00
11-iii-3 0.61 0.47 0.49 0.12 -0.02 24.2 0 -3.10
II1-i-1 830 7.73 7.7 0.52 -0.04 6.70 -0.6 0
111-i-2 3.19 2.87 2.89 0.29 -0.03 10.20 -0.90
111-i-3 0.61 0.53 0.54 0.07 -0.01 12.30 -1.20
IIT-ii-1 | 830 7.42 7.49 0.81 -0.06 10.8 0 -0.8 0
III-i-2 | 3.19 2.70 2.74 0.45 -0.04 16.50 -1.40
III-ii-3 | 0.61 0.49 0.50 0.10 -0.01 20.3 0 -2.20
II1-iii-1 | 8.30 7.12 7.22 1.07 -0.10 14.90 -1.40
IIT-ii-2 | 3.19 2.52  2.59 0.60 -0.07 23.10 -2.50
III-ii-3 | 0.61 0.45 0.47 0.13 -0.02 28.5 0 -4.00
IV-i-1 8.30 7.88 7.92 0.38 -0.04 4.80 -0.50
IV-i-2 3.19 295 297 0.21 -0.02 7.20 -0.60
IV-i-3 0.61 0.55 0.56 0.05 -0.00 8.70 -0.8 0
IV-ii-1 830 T7.42 7.49 0.81 -0.06 10.8 0 -0.8 0
IV-i-2 | 3.19 2.70 2.73 0.45 -0.04 16.6 0 -1.40
IV-ii-3 | 0.61 0.49 0.50 0.10 -0.01 20.5 0 -2.00
IV4ii-1 | 830 6.97 7.09 1.20 -0.12 17.00 -1.70
IV-4ii-2 | 3.19 2.44 2.52 0.67 -0.08 26.6 O -3.20
IV4ii-3 | 0.61 0.43 0.46 0.15 -0.02 33.10 -5.00
V-i-1 8.30 8.03 8.06 0.23 -0.03 290 -0.40
V-i-2 3.19 3.04 3.06 0.13 -0.01 440 -0.50
V-i-3 0.61 0.57 0.58 0.03 -0.00 5.20 -0.50
V-ii-1 830 T7.42 748 0.81 -0.06 10.80 -0.80
V-ii-2 3.19 270 2.73 0.46 -0.03 16.70 -1.30
V-ii-3 0.61 0.49 0.50 0.10 -0.01 20.90 -1.70
V-iii-1 830 6.82 6.97 1.32 -0.15 19.00 -2.20
V-iii-2 3.19 235 245 0.74 -0.10 30.10 -4.00
V-iii-3 0.61 0.41 0.44 0.17 -0.03 37.70 -6.20
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Table 4: Discrete Barrier Option Prices (case D)

AE1 AE2 MC ‘ AE1 error AE2 error ‘ AE1 error rate AE2 error rate
I-i-1 830 7.92 794 0.36 -0.02 4.70 -0.30
I-i-2 3.19 298 299 0.20 -0.01 7.10 -0.50
I-i-3 0.61 0.56 0.56 0.04 -0.00 8.6 0 -0.80
I-ii-1 830 7.86 7.88 0.41 -0.02 5.50 -0.30
I-ii-2 3.19 294 296 0.23 -0.02 840 -0.60
I-ii-3 0.61 0.55 0.56 0.05 -0.00 10.30 -1.00
I-iii-1 830 7.80 7.82 0.47 -0.02 6.3 0 -0.30
1-iii-2 3.19 291 293 0.26 -0.02 9.70 -0.70
I-iii-3 0.61 0.54 0.55 0.06 -0.01 11.90 -1.10
II-i-1 8.30 8.01 8.03 0.27 -0.02 3.50 -0.20
11-i-2 3.19 3.03 3.04 0.15 -0.01 5.30 -0.40
11-i-3 0.61 0.57 0.57 0.03 -0.00 6.4 0 -0.6 0
II-ii-1 830 7.86 7.88 0.42 -0.02 5.6 0 -0.30
11-ii-2 3.19 294 296 0.23 -0.01 8.50 -0.50
11-ii-3 0.61 0.55 0.55 0.05 -0.00 10.30 -0.90
II-idi-1 830 7.71 7.74 0.56 -0.03 7.60 -0.40
11-iii-2 3.19 286 2.88 0.31 -0.02 11.70 -0.80
11-iii-3 0.61 0.53 0.54 0.07 -0.01 14.4 0 -1.30
II1-i-1 830 8.16 8.18 0.12 -0.01 1.50 -0.20
111-i-2 3.19 3.11 3.12 0.07 -0.01 2.30 -0.30
111-i-3 0.61 0.59 0.59 0.01 -0.00 2.60 -0.40
IIT-ii-1 | 830 7.86 7.88 0.42 -0.02 5.6 0 -0.20
III-i-2 | 3.19 294 2.95 0.23 -0.01 8.5 0 -0.50
II1-i-3 | 0.61 0.55 0.55 0.05 -0.00 10.5 0 -0.70
II1-iii-1 | 8.30 7.56 7.60 0.70 -0.04 9.70 -0.6 0
IIT-ii-2 | 3.19  2.77 2.80 0.39 -0.03 15.10 -1.10
III-ii-3 | 0.61 0.51 0.52 0.09 -0.01 18.8 0 -1.70
IV-i-1 8.30 8.32 8.33 -0.03 -0.01 -040 -0.20
IV-i-2 3.19 320 3.21 -0.02 -0.01 -0.60 -0.20
IV-i-3 0.61 0.61 0.61 -0.01 -0.00 -0.90 -0.30
IV-ii-1 8.30 7.86 7.87 0.42 -0.02 5.6 0 -0.20
IV-ii-2 | 3.19 294 295 0.24 -0.01 870 -0.30
IV-ii-3 | 0.61 0.55 0.55 0.05 -0.00 10.80 -0.40
IV-4ii-1 | 830 7.40 7.46 0.83 -0.06 11.70 -0.8 0
IV-4ii-2 | 3.19 2.68 2.72 0.47 -0.04 1850 -1.50
IV-iii-3 | 0.61 0.49 0.50 0.11 -0.01 23.20 -2.40
V-i-1 8.30 8.47 8.48 -0.19 -0.01 -2.30 -0.20
V-i-2 3.19 3.29 3.29 -0.10 -0.01 -3.40 -0.20
V-i-3 0.61 0.63 0.63 -0.02 -0.00 -4.30 -0.20
V-ii-1 830 7.86 7.87 0.42 -0.01 5.70 -0.10
V-ii-2 3.19 294 295 0.24 -0.00 8.8 0 -0.20
V-ii-3 0.61 0.55 0.55 0.06 -0.00 11.20 -0.10
V-iii-1 8.30 7.25 7.33 0.96 -0.08 13.80 -1.10
V-iii-2 3.19 2,60 2.65 0.54 -0.05 22.10 -2.00
V-iii-3 0.61 0.47 0.48 0.12 -0.01 27.90 -3.10
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