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Assist. Prof. Dr. Aybike ÖZER (ITU)

JUNE 2009
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SOME PHYSICAL EFFECTS OF BLACK HOLES: THEORY AND
OBSERVATIONS

SUMMARY

Black holes are one of the most exciting and fascinating objects of study in modern
theoretical physics and astrophysics. In this thesis, we study some observable
effects of black holes in general relativity and braneworld gravity. We begin with
an overview of basic properties of these black holes and modern observations of
X-ray binary systems, which are believed to harbor a black hole. Next, we study
the theory of motion of test particles in terms of three fundamental frequencies,
earlier developed by Aliev and Gal’tsov, and present analytical expressions for the
orbital and epicyclic frequencies in the field of a Kerr black hole and a rotating
braneworld black hole with a tidal charge in the Randall-Sundrum braneworld
scenario. The tidal charge transmits the signature of an extra spacelike dimension
into our observable world. First, we perform a detailed numerical analysis of
these frequencies for the Kerr black hole and show that, at some particular
stable circular orbits, the values of the radial and vertical epicyclic frequencies are
in good qualitative agreement with the frequencies of twin peaks quasi-periodic
oscillations (QPOs) detected in some black hole binaries. We then proceed with a
numerical analysis of the epicyclic frequencies for the braneworld black hole and
find that, unlike the case of the positive tidal charge, the existence of the negative
tidal charge appears to be in agreement with modern observations of black holes.
Finally, we study the relativistic precession effects (periastronand frame-dragging)
in the field of both these black holes. We show that for sufficiently fast rotation
of the black holes, the precession frequencies at some characteristic radii exhibit
3 : 1 and 2 : 1 ratios. We also show that it is the rotation parameter that plays a
crucial role to distinguish between a Kerr black hole and a rotating braneworld
black hole. In the latter case, the rotation parameter obeys the inequality a> M.
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KARA DEL İKLER İN BAZI F İZ İKSEL ETK İLER İ: TEOR İ VE GÖZLEMLER

ÖZET

Kara delikler, modern teorik fiziğin ve astrofiziğin en heyecan verici ve ilginç
çalışma alanlarından biridir. Bu tezde genel görelilik ve zarlar üzerinde evren
teorilerinde kara deliklerin bazı gözlemsel etkileri araştırılmaktadır. Öncelikle,
bu kara deliklerin temel özellikleri ve kara delik barındırdığı düşünülen X-ışını
ikili yıldız sistemlerinin modern gözlemleri tasvir edilmektedir. Ardından,
önceden Aliev ve Gal’tsov tarafından geliştirilmiş olan test parçacıkların üç
temel frekans cinsinden hareket teorisi incelenerek, Kerr ve “tidal” yüklü
zarlar üzerinde Randall-Sundrum evreni senaryosunda dönen kara delikler için
yörüngesel ve episiklik frekansların analitik ifadeleri elde edilmektedir. Tidal yük,
ek uzaysal boyutun fiziksel imzasını bizim gözlenebilir dünyamıza taşımaktadır.
İlk olarak, bu frekansların bazı özel dairesel yörüngelerde detaylı sayısal analizleri
yapılarak, radyal ve dikey episiklik frekansların, kara delik barındıran bazı ikili
yıldız sistemlerinde gözlemlenmiş olan ikiz tepeli kuazi-periyodik salınımların
frekanslarıyla niteliksel olarak uyumlu olduğu gösterilmektedir. Daha sonra,
zarlar üzerinde evren teorisinde dönen kara delik için episiklik frekansların
sayısal analizleri yapılarak, pozitif tidal yük durumundan farklı olarak, negatif
tidal yükün varoluşunun kara deliklerin modern gözlemleriyle uyum içinde
olabileceği ortaya konulmaktadır. Son olarak, her iki tür kara deliğin alanında iki
rölativistik olayın, periastron ve çerçeve-sürükleme devinmesi, incelenmektedir.
Kara deliklerin yeterince hızlı dönme durumunda ve belirli yörüngeler için,
devinme frekanslarının, 3 : 1 ve 2 : 1 oranlarında olduğu gösterilmektedir. Bu
bağlamda, dönen Kerr ve zarlar üzerinde kara deliklerin birbirinden ayrılması
açısından dönme parametresinin kritik bir rol oynadığı ortaya konulmaktadır
ve zarlar üzerinde kara delikler için dönme parametresinin a > M olabileceği
vurgulanmaktadır.
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1. INTRODUCTION

Nowadays, the idea of a black hole is regarded as being one of the most

fundamental ideas in modern theoretical physics and it occupies a central place

in all theories of gravity formulated in various spacetime dimensions. It is a truly

remarkable fact that all these theories, from general relativity to supergravity and

string theory, provide an elegant mathematical description of this idea in terms of

exact solutions to the corresponding field equations. These solutions are of great

significance for many reasons: After all, they shed light on the nature of gravity

theories themselves, facilitating the study of their structure and dynamics, playing

the role of theoretical “guide-laboratories” to figure out the novel consequences

of these theories, such as the AdS/CFT correspondence in string theory [1–7]. It

is also a striking fact that modern astronomical observations provide compelling

and overwhelming evidence for the existence of black holes in the real universe.

In the light of all these developments, this thesis is devoted to the following group

of issues:

1. The description of the current theoretical status of black holes in general

relativity and braneworld gravity as well as modern observations of black holes

in X-ray binary systems.

2. The motion of test particles around Kerr black holes in terms of three

fundamental frequencies: the orbital frequency, the radial and the vertical

epicyclicfrequencies. The exploration of possible appearances of these frequencies

in astrophysical black hole systems.

3. The signature of the fifth dimension in the motion of test particles around

rotating braneworld black holes. The full numerical analysis of the orbital and

epicyclic frequencies and their astrophysical consequences.
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4. The study of relativistic precessions (periastron and frame-dragging) and their

observable effects in the field of both rotating Kerr and braneworld black holes.

1.1 Black Holes in General Relativity

General relativity admits a unique family of stationary black hole solutions,

which turns out to be crucial for understanding its nature and the occurrence

of spacetime singularities [6,7]. Furthermore, these solutions possess a number

of striking properties. Among them are the properties of stability, spherical

topology of the horizon, hidden symmetries and integrability of geodesics,

superradiance and quantum evaporation [8–13] (see also books [14,15]). Apart

from their obvious and deep physical significance, these properties pave the way

for astrophysical implications of general relativity in the regime of strong gravity

and constitute a firm ground for the search of black holes in the universe.

An astrophysical black hole is supposed to be likely described by an exact

stationary solution of the Einstein field equations discovered in 1963 by R. Kerr

[16]. This solution is uniquely characterized by two physical parameters: The

mass and the angular momentum. In addition to its global time-translational and

rotational symmetries, this solution also possesses hidden symmetries, generated

by a second rank Killing tensor [17]. Therefore, it becomes possible to achieve

a complete separation of variables both in the Hamilton-Jacobi equation for

geodesics [12] and in equations for scalar, electromagnetic and gravitational

perturbations [18]. This in turn opens up the way for analytical studies of the

behavior of particles and waves in the vicinity of Kerr black holes. For example,

the complete integrability of geodesic motion in the Kerr metric allows to calculate

the observable orbits of test particles. Bardeen et al. [19] gave an analytical

description of these orbits for the circular motion. In particular, they calculated

precisely the regions for the existence and stability of these orbits. The binding

energy of the innermost stable circular orbit (ISCO) determines the maximum

amount of energy, which is radiated away by a test particle approaching this orbit.

This energy for a maximally rotating Kerr black hole can attain nearly 42% of

the particle rest-mass energy, whereas for a static Schwarzschild black hole it is

about 6%. The high efficiency of this process constitutes a firm basis for invoking
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the idea of an accretion disk around a black hole to explain the enormous energy

output observed in both X-ray binary systems and active galactic nuclei (see [20]

and references therein for details).

1.2 Black Holes in Braneworld Gravity

Black holes in braneworlds are higher-dimensional objects. The braneworld idea is

a leading endeavor to reconcile the properties of gravity in higher dimensions with

those of four-dimensional gravity [21–24]. A braneworld is a four-dimensional

slice of a higher-dimensional space, on which our physical world resides. In

other words, all matter fields are supposed to be localized on the slice (3-brane)

except gravity. Gravity being dynamics of the spacetime itself is free to act in all

dimensions. Therefore, exploring the behavior of gravity in braneworld scenarios

one may provide a way of tackling extra unseen dimensions. In this regard, black

holes in these scenarios might have played an indispensable role.

The first striking confirmation of this idea has appeared in

Arkani-Hamed-Dimopoulos-Dvali (ADD) braneworld scenario [21], where

the large size of the extra spatial dimensions (compared to the Planckian

length ∼ 10−33cm), renders the scale of quantum gravity to be as lower as

TeV-energy scales, thereby opening up the possibility for the formation of

mini black holes at these scales. Such black holes would carry the imprints of

extra dimensions and their detection at high-energy experiments would be a

great triumph for gravitational physics in higher dimensions [25,26]. Another

intriguing braneworld scenario with a warped and infinite extra dimension was

proposed by Randall and Sundrum (RS) [24], which in the low energy limit, to

high enough accuracy, supports the properties of four-dimensional Einstein’s

gravity on the brane [27,28]. The similar effective field equations on the 3-brane,

imprinted by a five-dimensional gravity with a second order Gauss-Bonnet term,

were obtained in [29,30]. Therefore, it is natural to expect the formation of black

holes in this braneworld scenario.

A complete description of black holes in the braneworld scenarios is a challenging

and thorny problem. There have been several approaches to the description

of these black holes: The first approach is built up on invoking the classical

3



higher-dimensional black hole solutions found by Tangherlini [31] for static black

holes and by Myers and Perry [32] for rotating black holes. These solutions

generalize the well-known Schwarzschild, Reissner-Nordström and Kerr solutions

to arbitrary spacetime dimensions. The charged versions of the Myers-Perry

solution are discussed in papers [33–36].

From the physical point of view, it is clear that if a black hole on the brane

is small enough compared to the size of the extra dimensions, it would behave

as a “generic” higher-dimensional object, equally affected by all the spacetime

dimensions. These black holes can be effectively described using the Tangherlini

or Myers-Perry solutions. However, if the size of a black hole on the brane is

much larger than that of the extra dimensions, the black hole can be thought of

as an effectively four-dimensional object with some finite part of the horizon,

leaking into the bulk space. Such black holes could be formed as a result

of the gravitational collapse of matter on the brane. Chamblin et al. [37]

suggested to describe these black holes by the usual Schwarzschild solution on

the Randall-Sundrum brane, which from the five-dimensional point of view would

look like a black string. The main drawback of the black string solution is that it

suffers from curvature singularities propagating along the extra dimension.

Another approach to the braneworld black holes is to specify (postulate) the

spacetime metric form on the brane and solve the effective gravitational field

equations [27,28]. It gives a Reissner-Nordstrom type solution for static black

holes [38] and a Kerr-Newman type solution for rotating black holes on the

brane [39]. These solutions carry a tidal charge instead of an electric charge,

thereby transmitting the gravitational signature of the bulk space into the

four-dimensional world on the brane. Further developments in this direction

can be found in [40–53].

1.3 Observations of Black Holes

Modern astronomical observations carried out in all bands of the electromagnetic

spectrum have revealed dozens of compact and dark objects in binary stellar

systems. These objects are reliably identified as black holes. Solid observational
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data also point in favor of the presence of supermassive black holes at the centers

of most galaxies, including our Milky Way Galaxy. Below, we focus only on stellar

mass black holes.

1.3.1 Stellar mass black holes

The first real example of a black hole was identified with an unusual X-ray source

discovered in the binary Cygnus X-1 at the beginning of the 1970s [54]. The most

attractive features of this source are its persistently bright character in X-rays

and the presence of the widest range of temporal variability in the spectrum. The

companion star is a massive optical star of spectral class O/B (hot supergiant).

In order to identify this X-ray source as a black hole, it is crucial to determine

its mass from the observable parameters of the binary.

The observable parameters of a binary, the orbital period Porb and the Doppler

velocity of the companion star along the line of sight Kc = vsini, where i is the

inclination angle of the orbital plane, are determined from the analysis of its

optical light curve. With these parameters, one can evaluate the “mass function”

of the binary by the formula

f (M) =
K3

c Porb

2πG
=

M sin3 i

(1+Mc/M)2 , (1.1)

where Mc is the mass of the companion star, M is the mass of unseen compact

object and G is the gravitational constant [20].

It can be argued that the mass function gives a lower bound for the mass of the

compact object. It is important to note that the evaluation of the mass function

requires an independent estimate of the mass Mc and for its large values the factor

(1+Mc/M)2 in the denominator causes additional uncertainties. However, the

opposite occurs for binaries with low-mass companion stars. The mass of the

X-ray source in Cygnus X-1 has been measured very accurately and found to be

M ≥ 6M⊙, where M⊙ is the mass of the Sun. This value well exceeds the limiting

stable mass for a neutron star in general relativity M ≥ 3M⊙, confirming that

X-ray source in Cygnus X-1 is a black hole [20].

A new stage in the search for black holes has come with the discovery of a rather

dramatic transient X-ray source in the binary system GRS 1915 + 105 in the
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constellation of Aquila [55]. This source has a low-mass normal star companion

and flares up to maximum X-ray luminosity of order 1040 erg/s. Furthermore,

it also shows very strong and wide X-ray variability patterns as well as very

powerful, relativistic radio jets. For this reason, this X-ray source is also called

a “microquasar”. Measuring the mass of the dark companion has shown that it

is a black hole of mass M ≃ (10–18)M⊙. Another microquasar with the similar

properties was discovered in low-mass X-ray binary GRO J1655-40 [56] in the

constellation of Scorpius, where the dark companion is identified as a black hole

of mass M ≃ 7M⊙.

The number of X-ray binary systems harboring black holes is constantly growing.

Today at least twenty confirmed black holes and twenty black hole candidates

are known. A comprehensive description of the observational properties of these

black holes can be found in recent review papers [57,58]. The list of twenty X-ray

binaries with black holes is given in Table 1.1.

Table 1.1: Dynamically-confirmed black holes (from R. A. Remillard and J. E. McClintock (2006)).

Coordinate Common Spec. Porb f(M) M 1

Name Name/Prefix (hr) (M⊙) (M⊙)
0422+32 (GRO J) M2V 5.1 1.19±0.02 3.7–5.0
0538–641 LMC X–3 B3V 40.9 2.3±0.3 5.9–9.2
0540–697 LMC X–1 O7III 93.8 0.13±0.05 4.0–10.0
0620–003 (A) K4V 7.8 2.72±0.06 8.7–12.9
1009–45 (GRS) K7/M0V 6.8 3.17±0.12 3.6–4.7
1118+480 (XTE J) K5/M0V 4.1 6.1±0.3 6.5–7.2
1124–684 Nova Mus 91 K3/K5V 10.4 3.01±0.15 6.5–8.2
1354–64 (GS) GIV 61.1 5.75±0.30 –
1543–475 (4U) A2V 26.8 0.25±0.01 8.4–10.4
1550–564 (XTE J) G8/K8IV 37.0 6.86±0.71 8.4–10.8
1650–500 (XTE J) K4V 7.7 2.73±0.56 –
1655–40 (GRO J) F3/F5IV 62.9 2.73±0.09 6.0–6.6
1659–487 GX 339–4 – 42.1 5.8±0.5 –
1705–250 Nova Oph 77 K3/7V 12.5 4.86±0.13 5.6–8.3
1819.3–2525 V4641 Sgr B9III 67.6 3.13±0.13 6.8–7.4
1859+226 (XTE J) – 9.2 7.4±1.1 7.6–12.0
1915+105 (GRS) K/MIII 804.0 9.5±3.0 10.0–18.0
1956+350 Cyg X–1 O9.7Iab 134.4 0.244±0.005 6.8–13.3
2000+251 (GS) K3/K7V 8.3 5.01±0.12 7.1–7.8
2023+338 V404 Cyg K0III 155.3 6.08±0.06 10.1–13.4
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We note that only three of these sources are persistently bright in X-rays: one

galactic source, Cygnus X-1, and two extragalactic sources, LMC X-1, LMC

X-3. The remaining seventeen sources are transient in X-rays. The most crucial

point in identification of these sources as black holes is the determination of their

masses, according to the formula given in (1.1). For these twenty black holes there

exists very strong dynamical evidence for measuring their masses and therefore,

they are called dynamically-confirmedblack holes.

It is curious to note that in some cases (bolded in the table) the mass function

itself exceeds the maximum mass M ≃ 3M⊙ predicted for a neutron star. It is

also important to note that, in some cases, there exists strong evidence for the

existence of the event horizons as well (see [57] and references therein), thereby

confirming that these sources are true black holes. Furthermore, in some X-ray

binaries with black holes, high-frequency quasiperiodic oscillationswith a single

frequency, or with a pair of characteristic frequencies have been observed [57,59,

60]. The appearance of such frequencies in the X-ray spectra are of fundamental

importance as they are supposed to be determined by strong gravity effects. We

pass now to the description of these oscillations.

1.3.2 Quasi-periodic oscillations

As we have described above, astrophysical black holes are identified as massive

X-ray sources. As is known, in the classic sense black holes do not radiate

anything. That is, they are completely invisible. However, in the real universe

black holes become visible due to a powerful energy output from their vicinity.

Gravitationally interacting with the surrounding medium, a black hole captures

ambient matter. This matter spirals in nearly Keplerian orbits towards the

innermost stable circular orbit, forming an accretion disk around the black hole.

In the inner region of the accretion disk, temperatures attain so high values,

T ≥ 107 K, that a powerful energy release occurs in X-rays that makes the black

hole visible. The accretion flow has a turbulent nature that causes stochastic

variability on a wide-range time scales. The rapid variations are of particular

importance as they are generated in the strong gravity regime near black holes.
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Recent observations of black hole binaries on many occasions have revealed

finite-width peaks in the X-ray spectra. These peaks are believed to be signatures

of quasi-periodic oscillations (QPOs) of the black hole accretion disk [58].

Remarkably, besides low-frequency QPOs (0.1 - 30 Hz), high-frequency QPOs

(> 40 Hz) have also been detected in a number of cases [57,59,60]. Furthermore,

it turned out that these frequencies are almost stable to variations of X-ray flux

and scale with inverse mass of the black hole. This observational fact is a strong

indication that the high-frequency QPOs are largely determined by the properties

of relativistic gravity. These frequencies offer a new way for measuring the angular

momentum of black holes (see a review paper [61] and references therein).

At present, high-frequency QPOs have been seen in five black hole binaries and

in two binaries containing black hole candidates. In four sources, two peaks of

QPOs were detected (though not always simultaneously). The frequencies of these

QPOs are: (300, 450 Hz) for X-ray binary GRO J1655-40; (113, 168 Hz) for X-ray

binary GRS 1915 + 105; (184, 276 Hz) for X-ray binary XTE J1550-564 and (165,

241 Hz) for X-ray binary H 1743-322, which contains a black hole candidate. It is

easy to check that these twin frequencies are nearly in a 2:3 ratio. We note that

the source GRS 1915 + 105 has exhibited another pair of high-frequency QPOs

(41, 67 Hz) which are not in a 2:3 ratio and also a pair (164, 328 Hz), which is

in a 1:2 ratio. The remaining three sources have shown (at least till now) only

single oscillations: In XTE J1650-500 (250 Hz); XTE J1859+226 (190Hz) and

in 4 U 1630-47 (184 Hz). The latter source is a black hole candidate(see [57,58]

and references therein for details). In Figure 1.1, we present the list of the X-ray

binaries with high-frequency QPOs. The solid patterns correspond to the energy

range 13-30 keV, whereas the dashed patterns were obtained for the energy range

2-30 keV.

We emphasize once again that all these high-frequency QPOs exhibit, to high

enough accuracy, stability in frequency with respect to considerable changes of

the luminosity. This is a crucial feature that does not occur for high-frequency

QPOs observed in accreting neutron stars. Another striking feature of these

high-frequency QPOs is that they can be related to the fundamental epicyclic

frequencies of test particles in the spacetime of rotating black holes, which for
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Figure 1.1: High-frequency QPOs in X-ray binaries (from R. A. Remillard and J. E. McClintock
(2006)).

the first time were calculated in 1981 by Aliev and Gal’tsov [62]. This fact lies

at the roots of many theoretical models of the high-frequency QPOs discussed

in the literature over the last years [63–65]. See also recent papers [42,43,66,67].

However, it is also worth noting that at present a complete and widely accepted

model for the QPOs phenomenon still needs to be constructed.

1.4 New Perspectives and Thesis Outline

The advances in observations of black holes raise, among many others, a simple

and natural question: Are the observed black holes exact prototypes of those

predicted by general relativity?

Today this question is largely open as observations of high-frequency QPOs as

well as relativistically-broadened Fe Kα line formed near the ISCO have been

carried out near the limiting sensitivity of X-ray detectors.

Future cosmic missions with much more sensitive X-ray detectors on aboard will

certainly provide crucial data for more precise measurements of the observable

features of black holes, such as the angular momentum and the radius of ISCO

etc. Of course, it may happen that the observational data confront with the predictions

of general relativity. This perspective seems to be very exciting and greatly
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stimulates theoretical studies of the observable properties of black holes beyond

general relativity both in four and higher-dimensional spacetimes [68,69].

It is this perspective that was the baseline and the main motivation for the

study of rotating black holes in this thesis. We consider two examples of the

black holes: (i) the usual Kerr black holes in general relativity, (ii) rotating black

holes in braneworld gravity. In the framework of the theory of cyclic and epicyclic

motions of test particles, developed earlier in [62,70–72], we explore the observable

effects of these black holes.

The thesis is organized as follows. In Chapter 2 we give a brief description of

the properties of a Kerr black hole in general relativity, focusing mainly on its

event horizon and ergosphere structures. Next, we describe the circular and

quasi-circular motions of test particles in terms of three fundamental frequencies:

the orbital frequency and the frequencies of the epicyclic motion in the radial and

vertical directions. We perform a detailed numerical analysis of these frequencies

both at ISCOs and beyond as well as at some particular radii, for which the

radial epicyclic frequency attains its highest value. In Chapter 3 we describe

the properties of a rotating braneworld black hole which may carry both positive

and negative tidal charges. For the negative tidal charge, the event horizon

and the ergosphere of this black hole appear to be significantly different from

those of the usual Kerr-Newman black hole in general relativity. Here we obtain

analytical expressions for the fundamental frequencies of the test particle motion

and perform their full numerical analysis for both positive and negative values of

the tidal charge. We focus on orbits, where the radial epicyclic frequency reaches

its maximum value and compare the results with those obtained for a Kerr black

hole. We also point out the distinguished effects of the negative tidal charge and

discuss their observational signatures. Finally, we discuss two relativistic effects,

periastron and frame-dragging precessions, around rotating black holes with zero

and nonzero (negative) tidal charge.
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2. ROTATING KERR BLACK HOLES

The most general stationary black hole solution in general relativity is given

by the Kerr-Newman metric [15,73], which satisfies the coupled system of

Einstein-Maxwell equations. This solution gives a unique description of the

spacetime of rotating and electrically charged black holes. Though the presence

of the electric charge is of great interest from the theoretical point of view, in

realistic astrophysical situations the charge is usually negligible. Therefore, in

the astrophysical sense, it is most fitting to consider rotating black holes with

zero electric charge which are described by the Kerr metric.

2.1 The Kerr Metric and Its Properties

This metric is a unique stationary solution to the Einstein field equations in four

dimensional spacetime and it was found by New Zealand mathematician Roy

Kerr [16]. The black hole nature of this solution becomes immediately evident

when one explores its form written in the Boyer-Lindquist coordinates [15]. In

these coordinates, the metric is given by

ds2 =−∆
Σ

(

dt−asin2θ dφ
)2

+Σ
(

dr2

∆
+dθ2

)

+
sin2 θ

Σ
[

adt− (r2+a2)dφ
]2

, (2.1)

where the metric functions

∆ = r2+a2−2Mr ,

Σ = r2+a2cos2θ
(2.2)

and M is the mass, a is the rotation parameter or the angular momentum per unit

mass, a= J/M . For a= 0, this metric reduces to the Schwarzschild solution. We

note that for the Kerr-Newman metric we have the same expression as in (2.1),

but the metric function ∆ is replaced by

∆ = r2+a2−2Mr +Q2 , (2.3)

where Q is the electric charge.
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Looking at the metric components in (2.1), we immediately note that they do not

depend on t and φ . That is, the time coordinate t and the azimuthal coordinate

φ are ignorable coordinates. In other words, the Kerr metric admits global

time-translational and rotational symmetries (isometries). Mathematically, these

isometries are described by two commuting Killing vectors

ξ(t) =
∂
∂ t

,

ξ(φ) =
∂

∂φ
,

(2.4)

which satisfy the Killing equation

∇(µ ξν) = 0, (2.5)

where ∇ denotes a covariant derivative operator with respect to the metric (2.1)

and round parentheses here and in the following denote symmetrization over the

indices enclosed.

It is easy to see that the Kerr metric becomes singular in two cases; ∆ = 0 and

Σ = 0. The most convenient way to figure out the nature of these singularities is

the calculation of the curvature invariant for this metric. Having done this, we

find that

RµνλτRµνλτ =
48M2(2r2−Σ)(Σ2−16r2a2cos2 θ)

Σ6 . (2.6)

It follows that this expression diverges at Σ = 0, i.e. the singularity along this

surface is the only curvature singularity. This also shows that the singularity at

the surface ∆ = 0 is a coordinate singularity of the Kerr metric, which can be

assigned a clear physical meaning. Indeed, one can show that the equation

∆ = r2+a2−2Mr = 0, (2.7)

describes a null surface. The largest root of this equation

r+ = M +
√

M2−a2 (2.8)

corresponds to the radius of a region in the spacetime, which is called the event

horizon. From the geometrical point of view, the event horizon is a surface of

zero expansion for outgoing null geodesics, which are orthogonal to this surface.
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That is, the square of the normal vector nµ = ∂µ r to this surface must vanish.

This gives us the condition grr = 0, which is equivalent to that given in (2.7).

In an alternative approach, the existence of the event horizon in the Kerr metric

can be justified by exploring the isometries of the horizon geometry. For this

purpose, it is useful to introduce a family of static (locally nonrotating) observers,

whose velocity vector uµ is orthogonal to the surface t = const. This means that

for these observers we have the equations

ur = uθ = 0, u ·ξ(φ) = 0, (2.9)

which give the following expression for their coordinate angular velocity

Ω = − gtφ

gφφ
=

a
(

r2 +a2−∆
)

(r2+a2)
2−∆a2sin2θ

. (2.10)

We see that this expression is finite at ∆ = 0 and approaches its limiting constant

value

ΩH =
a

r2
+ +a2

. (2.11)

Next, following the Hawking idea [10,11] one can define a new vector field

χ = ξ(t) +ΩH ξ(φ) , (2.12)

which certainly satisfies the Killing equation (2.5) as the quantity ΩH is constant.

It is straightforward to show that the square of this new Killing vector vanishes

at ∆ = 0. That is, the Killing vector describes the isometries of the null surface

r = r+ and it is tangent to the null geodesics, which rotate along this surface with

an angular velocity ΩH . Thus, the null surface at r = r+ acts as an event horizon

to a distant observer. The existence of the event horizon is the most striking fact

towards the identification of the Kerr spacetime as containing a rotating black hole.

It is important to note that the event horizon, as it follows from equation (2.8),

exists provided that

a≤ M . (2.13)

This is the requirement of a “Cosmic Censor” (the absence of naked singularities),

which states that a rotating black hole in general relativity must possess an

angular momentum not exceeding its mass.
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Another striking feature of the Kerr metric stems from the fact that the norm of

the timelike Killing vector ξ(t) does not vanish on the horizon. From the equation

ξ(t) ·ξ(t) = gtt = 0, (2.14)

we find that

r0 = M +
√

M2−a2cos2 θ , (2.15)

where r0 is the largest root of this equation. It easy to see that this surface

lies outside the horizon and therefore, this region does communicate with the

outside world. This region is called the ergosphereof the Kerr metric. Inside

the ergosphere the timelike Killing vector becomes spacelike, which means that

all observers here must necessarily corotate with the black hole. The physical

significance of the ergosphere is that it allows the extraction of the rotational energy

from the Kerr black holes in the Penrose-type processes(see, for instance [14]).

2.2 The Motion of Test Particles

The test particles in the spacetime of a Kerr black hole move along the geodesics of

this spacetime. The global isometries of the Kerr metric described by the Killing

vectors (2.4) immediately result in two constants of motion, corresponding to the

total energy E and angular momentum L (along black hole’s rotation axis) of a

test particle. However, the Kerr spacetime, in addition to its global symmetries,

also admits the hidden symmetries which are generated by a second rank Killing

tensor Kµν . Solving explicitly the Killing equation

∇(λ Kµν) = 0 , (2.16)

we find that the nonvanishing components of this tensor are given by [17]

Kµνdxµdxν =
∆a2cos2 θ

Σ
(

dt−asin2θdφ
)2− Σa2cos2 θ

∆
dr2

+Σ r2dθ2 +
r2sin2θ

Σ
[

adt− (r2+a2)dφ
]2

.

(2.17)

The Killing tensor provides us with a new, quadratic in the particle 4-momentum,

constant of motion K = Kµν pµ pν . As it follows from equation (2.16), another

obvious Killing tensor is the spacetime metric gµν itself that gives the mass of
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the particle −m2 = gµν pµ pν . All together, these constants of motion guarantee

a complete separation of variables in the Hamilton-Jacobi equation for geodesics.

This was explicitly shown in 1968 by Carter [12], who achieved the separation of

variables by substituting the expansion of the action

S=
1
2

m2λ −Et+Lφ +Sr(r)+Sθ (θ) (2.18)

into the Hamilton-Jacobi equation

∂S
∂λ

+
1
2

gµν ∂S
∂xµ

∂S
∂xν = 0, (2.19)

where λ is an affine parameter.

In some cases, especially when studying the equatorial and quasi-equatorial

motions, it is convenient to invoke the geodesic equation

d2xµ

ds2 +Γµ
αβ

dxα

ds
dxβ

ds
= 0, (2.20)

where the parameter s can be thought of as the proper time along the geodesic

curves. Using the geodesic equation one can employ the method of successive

approximations and describe the motion of test particles in an arbitrary stationary

and axially symmetric spacetime in terms of three fundamental frequencies. In

this approach, the circular motion in the equatorial plane is described at the

zeroth-order approximation and is characterized by the usual orbital frequency

[19]. Small perturbations about circular orbits lead to the quasi-circular

(epicyclic) motion which, at the first-order approximation, amounts to two

decoupled oscillations in the radial and vertical directions. In 1981, Aliev and

Gal’tsov calculated the frequencies of these oscillations in the most general case

of the Kerr-Newman field and charged test particles [62]. The authors have

also put forward the idea that at higher-order approximations these oscillations

may couple, resulting in nonlinear resonance phenomena. In 1986, the epicyclic

frequencies in the Kerr field were used to develop the theory of multi-resonant

interaction of test particles and electromagnetic waves in the vicinity of rotating

black holes [70] (see also [71] and a review paper [72]). Later on, the expressions

for the frequencies of radial and vertical oscillations in the Kerr field were

rederived in [74,75] and have been studied in many physical and astrophysical
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contexts (for instance, see [42,43,63,64,76] and references therein). Below, closely

following the works of [62,70–72], we describe the cyclic and epicyclic motions of

the test particles in the Kerr field.

2.3 Circular Motion

From the symmetry considerations, it follows that the motion of test particles in

the equatorial plane of the Kerr metric must occur in circular orbits. To see this,

one needs to substitute the nonvanishing components of the Christoffel symbols

into equation (2.20) and solve it for the circular motion in the equatorial plane

r = r0, θ = π/2. Thus, we have

zµ(s) = {t(s) , r0 ,π/2 ,Ω0t(s)} , (2.21)

where Ω0 is the orbital frequency of the motion. The four-velocity is given by

uµ =
dzµ

ds
= u0{1,0,0,Ω0} . (2.22)

Indeed, using the Christoffel symbols given in the Appendix for β = 0, it is easy to

show that for the circular motion, the µ = 0,2,3 components of equation (2.20)

become trivial, whereas the remaining component with µ = 1 has the form

Ω2
0

(

1−a2Ω2
s

)

−Ω2
s (1−2aΩ0) = 0, (2.23)

where we have introduced the usual Kepler frequency

Ωs =
M1/2

r3/2
. (2.24)

From equation (2.23), we find that the orbital frequency of the motion is given

by

Ω0 =
±Ωs

1±aΩs
. (2.25)

Here and in what follows, the upper sign corresponds to direct orbits (the motion

of the particle occurs in the same direction as the rotation of the black hole)

and the lower sign refers to retrograde orbits (the particle moves in the opposite

direction with respect to the rotation of the black hole). Using this expression in

the normalization condition for the four-velocity

gµνuµuν = −1 = (u0)2
[

1−a2Ω2
0−3r2Ω2

s (1−aΩ0)
2
]

, (2.26)
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we obtain the energy of the particle (per unit particle’s mass) [19]

E
m

=
r2−2Mr ±a

√
Mr

r
(

r2−3Mr ±2a
√

Mr
)1/2

, (2.27)

where E = mu0. It follows that when the denominator of this expression vanishes,

the energy of the particle becomes infinite, which means that the equation

r2−3Mr ±2a
√

Mr = 0 (2.28)

determines the radius of the limiting photon orbit. That is, the circular orbits

exist in the region r > rph. It is easy to see that in the limiting case a = M,

we have rph = M for direct orbits and rph = 4M for retrograde orbits, while for

a = 0, rph = 3M.

2.4 Quasi-circular Motion

Let us consider now the motion of test particles in an off-equatorial plane of

any stationary axially symmetric metric. In this case, the motion would occur in

quasi-circular orbits. In order to describe such orbits, it is convenient to introduce

a deviation vector

ξ µ(s) = xµ(s)−zµ(s) , (2.29)

and expand equation (2.20) in powers of ξ µ(s). The resulting equation can

be solved using the method of successive approximations. Clearly, at the

zeroth-order we have a circular motion in the equatorial plane θ = π/2 , which is

described by zµ(s). We note that for the circular motion u0 = const, that allows to

pass to the coordinate time t . Taking this into account, we obtain the following

equation for the deviation vector [72]

d2ξ µ

dt2
+ γµ

α
dξ α

dt
+ξ a∂aU

µ = N
µ
(

ξ ,
dξ
dt

)

, a = 1,2≡ r,θ (2.30)

where N µ stands for all nonlinear terms in ξ µ(s) and we have also used the

notations

γµ
α = 2Γµ

αβ uβ (u0)−1 ,

U µ =
1
2

γµ
α uα(u0)−1 .

(2.31)
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We recall that all coefficients in this equation, including the quantities γµ
α and

∂aU µ must be taken on a circular orbit r = r0, θ = π/2 . At the first-order

approximation in ξ µ(s), equation (2.30) describes small perturbations around

circular orbits. Restricting ourselves to this case and integrating the µ = 0, 3

components of this equation, we obtain

dξ A

dt
+ γA

r ξ r = 0 , A = 0,3≡ t, φ . (2.32)

Substituting this result in equation (2.30) for µ = 1, we find that it reduces to an

equation for harmonic oscillations in the radial direction. Thus, we have

d2ξ r

dt2
+Ω2

r ξ r = 0, (2.33)

where the frequency of the radial oscillations is given by

Ωr =

(

∂U r

∂ r
− γ r

AγA
r

)1/2

. (2.34)

Similarly, writing down equation (2.30) for µ = 2, we obtain the equation

d2ξ θ

dt2
+Ω2

θ ξ θ = 0, (2.35)

which describes harmonic oscillations in the vertical direction with the frequency

Ωθ =

(

∂Uθ

∂θ

)1/2

. (2.36)

The above equations in (2.33) - (2.36) can be used to explore the stability of

the circular motion against small perturbations. The corresponding stability

conditions are given by

Ω2
r ≥ 0, Ω2

θ ≥ 0. (2.37)

We conclude that the epicyclic motion of test particles in an arbitrary stationary and

axially symmetric spacetime is in essence equivalent (within the linear approximation)

to two decoupled oscillations in the radial and vertical directions.

Turning now to the Kerr metric, we use the Christoffel symbols (A.2) for β = 0

in the general expression (2.34). After some algebra, we find that the frequency

of radial oscillations in the Kerr field is given by [62,70]

Ω2
r = Ω2

0

(

1− 6M
r

− 3a2

r2 ± 8aΩs

)

. (2.38)
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From the stability condition in (2.37), it follows that the radius of the innermost

stable circular orbit around the Kerr black hole is determined by the equation

r2−6Mr −3a2± 8a
√

Mr = 0 . (2.39)

For a nonrotating black hole, a = 0, this equation gives r = 6M, while for the

limiting rotation case, a = M, we find r = M for the direct orbit and r = 9M for

the retrograde one.

Similarly, for the frequency of vertical oscillations equation (2.36) gives [62,70]

Ω2
θ = Ω2

0

(

1+
3a2

r2 ∓ 4aΩs

)

. (2.40)

It is easy to verify that this expression is always nonnegative in the region of

existence and the radial stability of the circular motion. That is, the motion is

stable with respect to small oscillations in the vertical direction.

Thus, in the Kerr field one can distinguish three fundamental frequencies: The

frequency of orbital motion Ω0 and the frequencies Ωr and Ωθ of the epicyclic

motion in the radial and vertical directions, respectively. It is important to note

that in the Newtonian regime all these frequencies coincide with each other, going

over into the usual Kepler frequency (Ω0 = Ωr = Ωθ = Ωs). In the Schwarzschild

field, a = 0, we have only the equality Ω0 = Ωθ = Ωs; the frequency of radial

oscillations Ωr is different. However, in the general case all three frequencies

are different from each other, that makes them very attractive for astrophysical

implications of the Kerr black holes.

It is also important to estimate the value of these frequencies at radii of physical

interest. For this purpose, we first need to define characteristic length and

frequency scales in the black hole spacetime. In physical units, we have

r l =
GM
c2 ≃ 1.5

(

M
M⊙

)

km,

νl =
Ωl

2π
=

c3

2πGM
≃ 3.2 ·104

(

M⊙
M

)

Hz.

(2.41)

We recall that here c is the speed of light, G is the gravitational constant and

M⊙ is the mass of the Sun. In what follows, we express all other frequencies in

terms of the characteristic frequency νl . Using expression (2.25) for the orbital
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frequency at the ISCO, we find that for a = 0

ν0 =

√
6

36
νl ≃ 2.2 ·103

(

M⊙
M

)

Hz, r = 6M . (2.42)

For a maximally rotating black hole, a = M, the corresponding maximum orbital

frequency for the direct orbit is given by

ν0 =
1
2

νl ≃ 1.6 ·104
(

M⊙
M

)

Hz, r = M , (2.43)

whereas, for the retrograde orbit, we have

ν0 =
1
26

νl ≃ 1.2 ·103
(

M⊙
M

)

Hz, r = 9M . (2.44)

A detailed numerical analysis of the orbital and vertical frequencies at ISCOs

around a Kerr black hole with mass M = 10M⊙ is given in Table 2.1 (νr = 0).

Table 2.1: Orbital and vertical frequencies at ISCOs and their ratios.

direct orbits retrograde orbits

a/M rms/M ν0(Hz) νθ (Hz) ν0/νθ rms/M ν0(Hz) νθ (Hz) ν0/νθ

0.00 6.00 217.73 217.73 1.00 6.00 217.73 217.73 1.00
0.10 5.67 235.32 231.91 1.01 6.32 202.54 205.15 0.99
0.20 5.33 255.93 248.03 1.03 6.64 189.28 193.91 0.98
0.30 4.98 280.49 266.52 1.05 6.95 177.59 183.79 0.97
0.40 4.61 310.32 287.97 1.08 7.25 167.20 174.65 0.96
0.50 4.23 347.48 313.16 1.11 7.55 157.92 166.33 0.95
0.60 3.83 395.41 343.20 1.15 7.85 149.56 158.74 0.94
0.70 3.39 460.42 379.58 1.21 8.14 142.02 151.81 0.94
0.80 2.91 556.00 423.99 1.31 8.43 135.12 145.38 0.93
0.90 2.32 721.41 474.68 1.52 8.72 128.84 139.47 0.92
0.99 1.24 1348.05 304.86 4.42 8.99 123.19 134.10 0.92

We note that as the rotation parameter of the black hole grows, the radius of the

direct ISCO moves towards the event horizon and the associated orbital frequency

increases, approaching its maximum value in (2.43) at the horizon. The vertical

epicyclic frequency increases to its maximum value and then decreases to zero

(νθ = 0 for a= M, r = M). The ratio of these frequencies ν0/νθ essentially differs

from unity only for the fast enough rotation of the black hole. For the retrograde

motion both the frequencies decrease with the growth of the rotation parameter,

whereas their ratio remains about unity.
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It is also of interest to calculate all three frequencies at direct stable orbits with

radii r > rISCO around a maximally rotating black hole, a = M. The results of

numerical calculations are given in Table 2.2.

Table 2.2: Frequencies at radiir > rISCO.

r/M νr (Hz) νθ (Hz) ν0(Hz) νθ/νr ν0/νr ν0/νθ

2.00 234.08 484.35 835.85 2.07 3.57 1.73
2.30 244.60 462.27 712.99 1.89 2.91 1.54
2.90 237.48 398.45 538.85 1.68 2.27 1.35
3.50 217.25 337.58 423.96 1.55 1.95 1.26
3.80 206.12 311.02 380.61 1.51 1.85 1.22
4.10 195.14 287.13 344.02 1.47 1.76 1.20
4.30 188.05 272.60 322.69 1.45 1.72 1.18
4.60 177.86 252.71 294.50 1.42 1.66 1.17
4.90 168.28 234.89 270.12 1.40 1.61 1.15
5.00 165.23 229.37 262.72 1.39 1.59 1.15
5.30 156.49 213.94 242.40 1.37 1.55 1.13
5.60 148.36 200.05 224.53 1.35 1.51 1.12
5.90 140.81 187.51 208.73 1.33 1.48 1.11
6.20 133.80 176.17 194.67 1.32 1.45 1.11
6.50 127.30 165.87 182.11 1.30 1.43 1.10
6.80 121.27 156.50 170.83 1.29 1.41 1.09
7.00 117.48 150.71 163.93 1.28 1.40 1.09

It is worth noting that at some particular orbits near the black hole, the predicted

values of these frequencies (bolded in the table) are in good qualitative agreement

with the corresponding frequencies of twin peaks QPOs, which have been detected

in some black hole binaries: For instance, with (184, 276 Hz)for X-ray binary

XTE J1550-564; with (165, 241 Hz)for X-ray binary H1743-322; with (113, 168

Hz) for X-ray binary GRS 1915 + 105.

2.5 The Highest Epicyclic Frequencies

It is curious that there exists the highest frequencyfor small radial oscillations

around circular orbits in the Kerr field. Evaluating the first derivative of the

expression in (2.38) with respect to r, we obtain the equation

r3(8M− r)+a2(

5r2−4Mr
)

±2a
√

Mr
[

a2 + r (M−6r)
]

= 0 . (2.45)

This equation determines the radii for both direct and retrograde orbits, at which

the radial epicyclic frequency attains its highest value. For a = 0, it follows that
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rmax= 8M. The associated frequency is

νr(max) ≃ 707.1

(

M⊙
M

)

Hz. (2.46)

In the general case, one can solve equation (2.45) only numerically. In particular,

for a = M and for direct orbits, we find that rmax≃ 2.4M and

νr(max) ≃ 2453

(

M⊙
M

)

Hz. (2.47)

Similarly, for retrograde orbits at a = M, we have rmax≃ 11.8M and

νr(max) ≃ 422.6

(

M⊙
M

)

Hz. (2.48)

In Figure 2.1 we plot the dependence of the radial epicyclic frequency on the radii

of circular orbits around a Kerr black hole for different values of the rotation

parameter and for M = 10M⊙.

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10 11

ν r
 (

H
z)

r/M

0.0
0.5

0.99

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5  6  7  8  9  10 11 12 13 14 15

ν r
 (

H
z)

r/M

0.0
0.5

0.99

Figure 2.1: Radial epicyclic frequencies with three values of the rotation parametera= 0, 0.5 and 0.99.
Left: For direct orbits.Right: For retrograde orbits.

The full numerical analysis of equation (2.45) and the associated values of the

radial, vertical and orbital frequencies along with their corresponding ratios are

presented in Tables 2.3 and 2.4.

We note that with increasing rotation parameter of the black hole, the maxima

of the radial epicyclic frequency shifts towards the event horizon and in the

limiting case a = M, the frequency attains its highest value in the near-horizon

region. The accompanying vertical and orbital frequencies at the same radii also

increase to their highest values for a = M. It is also interesting to note that

the characteristic ratios νθ : νr(max) = 2 : 1, ν0 : νr(max) = 2 : 1 and ν0 : νθ = 1 : 1
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Table 2.3: The highest radial frequency and the associated vertical and orbital frequencies at direct
orbits(M = 10M⊙).

a/M rmax/M νr(Hz) νθ (Hz) ν0(Hz) νθ /νr ν0/νr ν0/νθ

0.00 8.00 70.71 141.42 141.42 2.00 2.00 1.00
0.10 7.58 75.73 151.17 152.60 2.00 2.02 1.01
0.20 7.15 81.52 162.37 165.68 1.99 2.03 1.02
0.30 6.70 88.27 175.45 181.26 1.99 2.05 1.03
0.40 6.24 96.29 190.74 199.97 1.98 2.08 1.05
0.50 5.76 105.99 209.23 223.29 1.97 2.11 1.07
0.60 5.26 118.03 231.78 252.90 1.96 2.14 1.09
0.70 4.71 133.53 260.59 292.71 1.95 2.19 1.12
0.80 4.11 154.57 298.90 349.83 1.93 2.26 1.17
0.90 3.42 185.95 353.95 442.93 1.90 2.38 1.25
0.99 2.45 243.45 447.52 662.11 1.84 2.72 1.48
1.00 2.42 245.34 450.40 671.62 1.84 2.74 1.49

remain almost unchanged up to large enough values of the rotation parameter.

However, for a→ M we have approximate ratios νθ : νr = 9 : 5, ν0 : νr = 5 : 2 and

ν0 : νθ = 3 : 2. Thus, we conclude that at characteristic stable circular orbits, where

the radial epicyclic frequency attains its highest value, the ratioνθ : νr = 2 : 1 remains

nearly the same even for a→ M. Remarkably, this fact is in good agreement with

the observed twin QPOs frequencies in the X-ray spectrum of some black hole

binaries. For instance, for a≃ (0.8–0.9)M, the detected pair (164, 328 Hz)in the

source GRS 1915 + 105 falls in the expected ranges of the radial νr and vertical

νθ epicyclic frequencies given in Table 2.3.

Table 2.4: The highest radial frequency and the associated vertical and orbital frequencies at
retrograde orbits(M = 10M⊙).

a/M rmax/M νr(Hz) νθ (Hz) ν0(Hz) νθ /νr ν0/νr ν0/νθ

0.00 8.00 70.71 141.42 141.42 2.00 2.00 1.00
0.10 8.41 66.31 132.83 131.72 2.00 1.99 0.99
0.20 8.81 62.42 125.20 123.24 2.01 1.97 0.98
0.30 9.21 58.95 118.38 115.74 2.01 1.96 0.98
0.40 9.60 55.84 112.25 109.08 2.01 1.95 0.97
0.50 9.98 53.03 106.70 103.10 2.01 1.94 0.97
0.60 10.36 50.48 101.65 97.72 2.01 1.94 0.96
0.70 10.73 48.16 97.04 92.85 2.02 1.93 0.96
0.80 11.10 46.03 92.81 88.41 2.02 1.92 0.95
0.90 11.47 44.07 88.92 84.35 2.02 1.91 0.95
1.00 11.83 42.26 85.32 80.63 2.02 1.91 0.95
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From this table we see that the highest value of the radial frequency for a = 0

as well as the associated values of the vertical and orbital frequencies decrease

with the growth of the rotation parameter and attain their characteristic values

in the limiting case a = M. It is curious that in all cases the frequencies exhibit,

to a good enough accuracy, the ratios νθ : νr(max) = 2 : 1, ν0 : νr(max) = 2 : 1 and

ν0 : νθ = 1 : 1 .

Let us now consider the expression for the vertical epicyclic frequency given in

(2.40). It turns out that for direct orbits and for sufficiently large values of

the rotation parameter this frequency also attains its highest value. Similar to

the case of the radial frequency described above, one can show that the radii of

characteristic direct orbits, pertaining to the maxima of the vertical frequency,

obey the equation

r
[

r3+a2(5r −2M)
]

+2a
√

Mr
(

a2−3r2) = 0 . (2.49)

Solving this equation numerically for a= M, we find that r ≃ 1.86and the vertical

frequency has the highest value

νθ (max) ≃ 4875

(

M⊙
M

)

Hz. (2.50)

The radial frequency at this radius has the value

νr ≃ 2236

(

M⊙
M

)

Hz. (2.51)

It is worth noting that an approximate ratio νθ (max) : νr = 2 : 1 holds in this case

as well.

In Figure 2.2 we plot the vertical epicyclic frequency as a function of the radius of

direct orbits, for given values of the rotation parameter and for M = 10M⊙ (Left),

and the positions of ISCOs and νθ (max) as functions of the rotation parameter

(Right). We see that in the region of physical interest, r > rISCO, the vertical

frequency reaches its highest value.
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3. ROTATING BRANEWORLD BLACK HOLES

As we have described in Chapter 1, an intriguing approach to the problem

of finding an exact solution for a rotating black hole localized on the

Randall-Sundrum 3-brane was undertaken in [39]. The authors postulated that

the induced metric on the 3-brane embedded into a five-dimensional bulk space

can be taken as a stationary and axisymmetric Kerr-Schild type metric. Solving

the effective gravitational equations on the brane with this metric ansatz, they

presented a Kerr-Newman type solution, which carries the signature of the fifth

dimension through a Coulomb type tidal charge. The appearance of this charge

is the result of gravitational interaction between the brane and the bulk, that is

transmitted on the brane by the "electric" part of the bulk Weyl tensor.

The effective gravitational field equations on a 3-brane in the Randall and

Sundrum scenario were first derived in [27], using the Gauss-Codazzi projective

approach and the Gaussian normal coordinates. Later on, these equations

were also obtained in a more general Arnowitt, Deser and Misner (ADM) type

approach, which allows for acceleration of the normals to the brane surface,

introducing the lapse shift functions [28]. In the most simple case, when the

bulk space is empty, these equations have the form

Ri j = −Ei j , i = 0, 1, 2, 3, (3.1)

where Ei j is the traceless “electric part” of the five-dimensional Weyl tensor

Ei j = (5)CABCDnAnCeB
i eD

j , A = 0, 1, 2, 3, 4, (3.2)

and the associated Hamiltonian constraint equation is given by

R= 0. (3.3)
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We recall that in the Randall-Sundrum braneworld scenario the momentum

constraint equation becomes trivial. Furthermore, the cosmological constant on

the brane vanishes due to the fine-tuning condition (see for details [39]).

3.1 The Metric and Its Properties

The exact solution to the effective gravitational field equations on the 3-brane

given by (3.1) and (3.3) that describes rotating black holes is given by the metric

[39]

ds2 =−∆
Σ

(

dt−asin2θ dφ
)2

+Σ
(

dr2

∆
+dθ2

)

+
sin2 θ

Σ
[

adt− (r2+a2)dφ
]2

, (3.4)

where the metric functions

∆ = r2+a2−2Mr +β ,

Σ = r2+a2cos2θ
(3.5)

and M is the mass, a is the rotation parameter or the angular momentum per

unit mass (a = J/M) and β is the tidal charge.

It should be noted that the field equations (3.1) are not closed on the brane as

they involve the quantities Ei j of the higher-dimensional origin. Therefore, the

metric (3.4) exactly solves the constraint equation (3.3) and when substituting in

equation (3.1) it closes the system by specifying the “source” Ei j on the right-hand

side. Having performed explicit calculations, we find [39]

Et
t = −Eφ

φ = − β
Σ3

[

Σ−2(r2+a2)
]

,

Er
r = −Eθ

θ =
β
Σ2 ,

Eφ
t = −(r2 +a2)sin2 θ Et

φ = −2βa
Σ3 (r2+a2) sin2 θ .

(3.6)

With these quantities, it is straightforward to show that the conservation law

DiE i
j = 0 is identically satisfied on the brane. Comparing the asymptotic behavior

of these quantities with that of the energy-momentum tensor for the usual
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Kerr-Newman black hole in general relativity

Tt
t = −Tφ

φ =
Q2

8πΣ3

[

Σ−2(r2+a2)
]

,

Tr
r = −Tθ

θ = − Q2

8πΣ2 ,

Tφ
t = −(r2+a2)sin2θ Tt

φ =
Q2a
4πΣ3 (r2+a2) sin2θ ,

(3.7)

we conclude that the parameter β in the metric (3.4) must create Coulomb-type

effects just as the square of the electric charge in the Kerr-Newman solution. That

is, though we have no electric charge on the brane, the rotating black hole solution

on the brane turns out to be inevitably “charged” due to the tidal influence of

the bulk space. It is important to note that, unlike the case of the Kerr-Newman

solution, the tidal charge in (3.4) may have both positiveand negativevalues. For

a= 0, the metric (3.4) reduces to a Reissner-Nordstrom type solution with a tidal

charge, which describes a static braneworld black hole [38]. For β = 0, we have

the usual Kerr solution in general relativity [16]. The physical properties of the

metric (3.4) are largely similar to those of the Kerr-Newman metric in general

relativity. However, some significant differences do exist as well.

The event horizon structure of the metric (3.4) is determined by the equation

∆ = 0, or equivalently by

∆ = r2+a2−2Mr +β = 0. (3.8)

The largest root of this equation

r+ = M +
√

M2−a2−β (3.9)

corresponds to the radius of the horizon. It is important to note that the event

horizon, as it follows from equation (3.9), exists provided that

M2 ≥ a2+β , (3.10)

where the equality corresponds to a maximally rotating black hole. As in the case

of the Kerr metric, this is dictated by a Cosmic Censor. We note that when the

tidal charge is positive, the condition in (3.10) gives rise to the Kerr type bound

on the angular momentum: the rotating braneworld black hole with a positive tidal

charge must possess an angular momentum not exceeding its mass.
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However, the situation is significantly different for a negative tidal charge. In

fact, for a rotating black hole with β < 0 and a = M, equation (3.9) gives

r+ =
(

M +
√

−β
)

> M . (3.11)

That is, for the maximally rotating black hole with the horizon radius r+ = M

the angular momentum is greater than the mass. Thus, braneworld gravity admits

a rotating black hole, whose angular momentum may exceed itsmass. This fairly

breaches the Kerr bound in general relativity.

Another important feature of the rotating braneworld black hole is related to the

norm of the timelike Killing vector ξ(t), which does not vanish on the horizon.

From the equation

ξ(t) ·ξ(t) = gtt = 0, (3.12)

we find that

r0 = M +
√

M2−a2cos2 θ −β , (3.13)

where r0 is the largest root of this equation and describes the boundary of

the ergosphere around the braneworld black hole. It is easy to see from

equation (3.13) that the negative tidal charge extends the ergosphere around

the braneworld black hole, whereas the positive tidal charge decreases it [39]. In

the limiting case, substituting equation (3.10) in (3.13), we find that the radius

of the ergosphere falls in the range

M < r < M +sinθ
√

M2−β . (3.14)

It follows that rotating braneworld black holes with negative tidal charge must

be more energetic objects compared to those with positive tidal charge.

3.2 Circular Motion

As in the case of the Kerr metric, the circular motion of test particles occurs in the

equatorial plane of the metric (3.4). Substituting the nonvanishing components

of the Christoffel symbols (A.2) in equation (2.20), we follow the steps, leading
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to equations (2.21)-(2.25) of Chapter 2. Consequently, we find that the Kepler

frequency is given by

Ωs =
(Mr −β )1/2

r2 , (3.15)

whereas for the orbital frequency of the motion we obtain

Ω0 =
±Ωs

1±aΩs
. (3.16)

Again, using the normalization condition for the four-velocity

gµνuµuν = −1 = (u0)2
[

1−a2Ω2
0−3r2Ω2

s (1−aΩ0)
2
]

, (3.17)

we find the energy of the particle (per unit particle’s mass)

E
m

=
r2−2Mr +β ±a

√

Mr −β

r
[

r2−3Mr +2β ±2a
√

Mr −β
]1/2

. (3.18)

For β = 0, this expression coincides with that given in (2.27). It follows that the

radius of the limiting photon orbit is determined by the equation

r2−3Mr +2β ±2a
√

Mr −β = 0. (3.19)

In the general case, when β 6= 0 equation (3.19) can be solved only numerically. In

particular, one can verify that for a = 0 and β = −M2 , the radius of the photon

orbit rph ≃ 3.56M, whereas the radius of the event horizon r+ = (1+
√

2)M .

For the positive tidal charge β = M2 , we have the same limiting radii as for

the Reissner-Nördstrom metric. That is, rph = 2M and r+ = M . We recall that

for a rotating braneworld black hole with a negative tidal charge, the rotation

parameter a > M . For instance, for β = −M2 , we have the limiting value

a =
√

2M. In this case, r+ = M and rph = M in the direct motion, whereas

rph = 4.82M in the retrograde motion. Further details can be found in [39].

3.3 Epicyclic Frequencies

The explicit expressions for the radial and vertical epicyclic frequencies in the

field of the rotating braneworld black holes can be obtained by substituting the

Christoffel symbols (A.2) into the general expressions (2.34) and (2.36). Having
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performed all calculations, we find that the frequency of radial oscillations is given

by

Ω2
r =

Ω2
0

Mr −β

[

Mr

(

1− 6M
r

− 3a2

r2 +
9β
r2

)

+
4β
r2 (a2−β )±8aΩs(Mr −β )

]

, (3.20)

where Ω0 is the same as that given in (3.16). Similarly, for the frequency of

vertical oscillations we obtain

Ωθ
2 = Ω0

2
[

1+
a2

r2

(

1+
2Mr −β
Mr −β

)

∓2aΩs
2Mr −β
Mr −β

]

. (3.21)

We note that these expressions agree with the uncharged test particle limit of the

general formulas given in [62] for the Kerr-Newman metric.

The vanishing of the radial epicyclic frequency in (3.20) determines the radius of

the innermost stable circular orbit, for which we have the equation

Mr

(

1− 6M
r

− 3a2

r2 +
9β
r2

)

+
4β
r2 (a2−β )±8aΩs(Mr −β ) = 0. (3.22)

Solving this equation numerically, we find that for a = 0 and β = −M2 , the

radius of the ISCO tends to rms ≃ 7.3M and r+ = (1 +
√

2)M , whereas for

β = M2, rms= 4M and r+ = M. In the latter case, the radii are the same as

those for an extreme Reissner-Nördstrom black hole. On the other hand, for a

maximally rotating black hole with the negative charge β =−M2 and a=
√

2M ,

we obtain that rms= M for the direct ISCO and rms≃ 11.25M for the retrograde

ISCO. We recall that r+ = M . The full numerical analysis show that the negative

tidal charge has an expelling effect on both direct and retrograde orbits, while

the positive tidal charge appears to have the opposite effect [39].

A similar numerical analysis of the expression (3.21) shows that it is nonnegative

in the physical region. That is, the circular motion around the braneworld black

hole is always stable to linear perturbations in the vertical direction.

It turns out that, just as in the Kerr field, the radial epicyclic frequency in (3.20)

has a maxima at some characteristic radii. In what follows, we focus on this

case. Assuming that the black hole has a small positive tidal charge, we compute

all three frequencies and their corresponding ratios at radii, for which the radial

frequency attains its maximum value. The numerical results are summarized in

Table 3.1.
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Table 3.1: The highest radial frequency and the associated vertical and orbital frequencies for the
positive tidal charge.

Direct orbits: β = 0.1M2, M = 10M⊙

a/M rmax/M νr(Hz) νθ (Hz) ν0(Hz) νθ /νr ν0/νr ν0/νθ

0.00 7.81 72.78 145.69 145.69 2.00 2.00 1.00
0.09 7.41 77.83 155.54 156.99 2.00 2.02 1.01
0.19 6.99 83.65 166.83 170.17 1.99 2.03 1.02
0.28 6.56 90.42 179.91 185.77 1.99 2.05 1.03
0.38 6.12 98.43 195.30 204.58 1.98 2.08 1.05
0.47 5.66 108.10 213.71 227.80 1.98 2.11 1.07
0.57 5.17 120.05 236.29 257.38 1.97 2.14 1.09
0.66 4.64 135.38 264.85 296.79 1.96 2.19 1.12
0.76 4.07 156.08 302.77 353.12 1.94 2.26 1.17
0.85 3.39 186.74 357.31 444.84 1.91 2.38 1.24
0.95 2.42 244.13 452.24 666.79 1.85 2.73 1.47

Comparing these results with those given in Table 2.3, we see that the observed

pair of frequencies (164, 328 Hz)in the source GRS 1915 + 105 falls in the range

of the radial νr and vertical νθ frequencies, corresponding to less values of the

rotation parameter, a ≃ (0.7–0.8)M. Meanwhile, recent observations give the

lower bound a > 0.98M on the rotation parameter of the black hole in GRS 1915

+ 105 [77]. In this sense, one can conclude that the positive tidal charge is not

supported by observations of black holes.

Next, we suppose that the black hole possesses the negative tidal charge β =−M2

and calculate all three frequencies at characteristic direct orbits, at which the

radial epicyclic frequency attains its maxima. The results are given in Table 3.2.

Again, comparing these results with those given in Table 2.3, we see that the

negative tidal charge increases the radii rmax, whereas with increasing the rotation

parameter of the black hole, the radii again move towards the event horizon,

approaching the limiting value for a =
√

2M. It is important to note that in

the over-rotating case, a ≃ 1.27M, the values of the radial νr and vertical νθ

frequencies and their ratio are in good agreement with the detected pair of

frequencies (164, 328 Hz)in the source GRS 1915 + 105.

Figure 3.1 displays the positions of maxima of the radial epicyclic frequencies

for an extreme Kerr black hole and for a maximally rotating black hole with the
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Table 3.2: The highest radial frequency and the associated vertical and orbital frequencies for the
negative tidal charge.

Direct orbits: β = −M2, M = 10M⊙

a/M rmax/M νr (Hz) νθ (Hz) ν0(Hz) νθ /νr ν0/νr ν0/νθ

0.00 9.64 56.20 112.29 112.29 2.00 2.00 1.00
0.14 9.09 60.69 121.06 122.28 1.99 2.01 1.01
0.28 8.53 65.94 131.25 134.11 1.99 2.03 1.02
0.42 7.95 72.15 143.25 148.35 1.99 2.06 1.04
0.57 7.36 79.63 157.61 165.82 1.98 2.08 1.05
0.71 6.74 88.84 175.16 187.83 1.97 2.11 1.07
0.85 6.09 100.51 197.15 216.53 1.96 2.15 1.10
0.99 5.40 115.87 225.74 255.80 1.95 2.21 1.13
1.13 4.64 137.33 264.91 313.73 1.93 2.28 1.18
1.27 3.77 170.50 323.56 411.81 1.90 2.42 1.27
1.41 2.53 236.74 431.78 663.00 1.82 2.80 1.54

tidal charge β = −M2 . We see that the epicyclic frequencies in the field of these

black holes are observationally almost indistinguishable. Thus, unlike the case of

positive tidal charge, the existence of the negative tidal charge could be in agreement

with observations of black holes. Clearly, in this case the angular momentum of the

black hole has a crucial meaning. It may happen that the precise measurements of

the angular momentum with future independent observational data gives results,

that breaches the Kerr bound a = M. Then our results with the negative tidal

charge would have a great significance for describing the signature of the extra

dimension in the real universe.
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Figure 3.1: The radial epicyclic frequencies. The solid line corresponds toβ = 0, a= M and the dotted
line refers toβ = −M2, a =

√
2M.
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3.4 Relativistic Precessions

As we have seen above, orbits of test particles around rotating black holes with or

without tidal charge can be described in terms of three fundamental frequencies.

The fact that these frequencies are all different from each other results in two

familiar relativistic precession effects: (i) The effect of periastron precession,

which in the weak-field regime describes the precession of the semi-major axis of

elliptic orbits, (ii) Frame-dragging effect, which in the weak field limit corresponds

to the Lense-Thirring precession around a rotating body [15]. It is interesting

to ask the following question: Whether the frequencies of these precessions could

have a viable meaning in the context of high-frequency QPOs seen in some black hole

binaries? Below, we try to answer this question.

The difference between the orbital frequency and the radial epicyclic frequency

causes the periastron precession. This leads to a secular shift in the perihelion

of an elliptic orbit. Following the work of [71], we define the associated angular

displacement per one revolution as

∆φ = 2π
∣

∣

∣

∣

1− Ω0

Ωr

∣

∣

∣

∣

. (3.23)

Consequently, for the coordinate frequency of the periastron precession we obtain

ΩPP = |Ω0−Ωr | . (3.24)

Similarly, the non-coincidence of the vertical epicyclic frequency with the orbital

frequency of the motion causes dragging of the orbital plane in the direction of

rotation. This gravitomagnetic phenomenon is the reason for the precession of

the orbital plane around the axis of symmetry. The precession angle per one

revolution is given by [71]

∆φ = 2π
∣

∣

∣

∣

1− Ω0

Ωθ

∣

∣

∣

∣

. (3.25)

And the corresponding precession frequency is

ΩLT = |Ω0−Ωθ | . (3.26)

We recall that as Ω0 > Ωθ > Ωr , both precession effects refer to direct orbits.

With the radial and vertical epicyclic frequencies given in (3.20) and (3.21), it is
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easy to show that for maximally rotating black holes both precession frequencies

ΩPP and ΩLT on the horizon reduce to the angular velocity of the horizon.

Next, focusing at characteristic radii, at which the radial epicyclic frequency

reaches its maximum value, we have computed the precession frequencies and

their ratio. For zero tidal charge the results are summarized in Table 3.3.

Table 3.3: Relativistic precession frequencies.

Direct orbits: β = 0, M = 10M⊙

a/M rmax/M νPP(Hz) νLT(Hz) νLT/νPP

0.00 8.00 70.71 0.00 0.00
0.10 7.58 76.89 1.43 0.02
0.20 7.15 84.19 3.31 0.04
0.30 6.70 92.96 5.81 0.06
0.40 6.24 103.71 9.24 0.09
0.50 5.76 117.26 14.06 0.12
0.60 5.26 134.92 21.13 0.16
0.70 4.71 159.16 32.12 0.20
0.80 4.12 195.16 50.90 0.26
0.90 3.42 257.23 89.09 0.35
1.00 2.42 426.28 221.21 0.52

We note that the ratio of these frequencies gradually increases and for high

enough values of the rotation parameter, the integer ratios νPP : νLT = 3 : 1 and

νPP : νLT = 2 : 1 appear. Furthermore, the value of these frequencies fall in the

expected ranges of high-frequency QPOs in black hole binaries.

We have also computed these frequencies for the negative tidal charge β =−M2 .

Comparing the results with those given in Table 3.3, we have plotted both cases

in Figure 3.2.

This figure clearly shows that for maximally rotating black holes, when the

rotation parameter is either a = M or a =
√

2M, the corresponding precession

frequencies in the field of the black holes with zero tidal charge and with

the tidal charge β = −M2 become observationally indistinguishable. It is also

worth noting that in both cases the limiting ratio tends to νPP : νLT = 2 : 1. We

conclude that for sufficiently fast rotation of the black holes, the relativistic precession

frequencies at characteristic radii fall in the expected ranges of high-frequency

QPOs in black hole binaries. Furthermore, the model admits the special frequency
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Figure 3.2: Relativistic precession frequencies as functions of the rotation parameter. The upper solid
curve corresponds toνPP and the lower solid line refers toνLT . Similarly, the dotted curves
correspond to the case with nonzero tidal charge.

ratios: νPP : νLT = 3 : 1 and νPP : νLT = 2 : 1. Again, the precise measurements

of the angular momentum from independent observations (for instance, from

relativistically-broadened Fe Kα line formed near the ISCO) would have to play a

crucial role in identification of the observed black holes with their real prototypes.

Thus, a measured value of the rotation parameter, obeying the inequality a > M

would signal in favor of the higher-dimensional nature of the black holes.
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4. CONCLUSION

Below, we briefly formulate the basic results of this thesis.

1. We have given an overview of the current theoretical status of black holes

in general relativity and braneworld gravity. We have also given an overview

of modern observations of black holes in X-ray binaries, describing unusual

properties of the X-ray sources, such as the appearance of high-frequency

quasi-periodic oscillations in the X-ray spectra.

2. In the framework of the theory of epicyclic motion of test particles in stationary

and axisymmetric spacetimes, developed earlier by Aliev and Gal’tsov, we have

rederived the expressions for the orbital, radial and vertical epicyclic frequencies

in the Kerr field.

3. We have performed the full numerical analysis of these frequencies at both

innermost stable circular orbits and beyond them. We have found that the values

of the radial and vertical epicyclic frequencies at some particular orbits are in

good qualitative agreement with the frequencies of twin peaks quasi-periodic

oscillations that have been detected in some black hole binaries.

4. We have considered the model of particle’s motion, for which the radial (or

vertical) epicyclic frequency at some characteristic radii attains its highest value.

We have shown that in this model the epicyclic frequencies exhibit the ratio

νθ : νr(max) = 2 : 1 (or νθ (max) : νr = 2 : 1), which remains nearly the same even for

a maximally rotating Kerr black hole, a→ M.

5. We have studied the motion of test particles in the field of a rotating black

hole in the Randall-Sundrum braneworld scenario. This black hole possesses a

tidal charge that transmits into our observable world the signature of an extra

spacelike dimension. We have presented analytical expressions for the frequencies

of oscillations in the radial and vertical directions. Considering a particular

model, in which the radial epicyclic frequency reaches its maximum value, we
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have given a detailed numerical analysis of these frequencies. We have shown

that the existence of the negative tidal charge could be in agreement with modern

observations of black holes.

6. We have explored relativistic precession effects, periastron and frame-dragging,

in the field of rotating Kerr and braneworld black holes. We have shown that for

sufficiently fast rotation of these black holes, the relativistic precession frequencies

at characteristic radii fall in the expected ranges of high-frequency QPOs in black

hole binaries. Moreover, they exhibit 3 : 1 and 2 : 1 ratios.
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Appendix A: The Christoffel Symbols
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A. THE CHRISTOFFEL SYMBOLS

Using the conventional expression that relates the Christoffel symbols to the
derivatives of the metric tensor

Γµ
αβ =

1
2

gµλ
(

∂gλα
∂xβ +

∂gλβ

∂xα −
∂gαβ

∂xλ

)

, (A.1)

we calculate the nonvanishing components of these symbols for the metric (3.4).
They are given by

Γ0
01 = −(r2+a2)B

2∆
, Γ1

00 = −∆B
2Σ

, Γ0
02 = −2Mr −β

2Σ2 a2sin2θ ,

Γ1
11 =

∆r − (r −M)Σ
∆Σ

, Γ0
13 =

asin2θ
∆

[
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2
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Σ

]

,
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Σ
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2Σ
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(
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)
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(
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)
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where

B =
2M
Σ

(

1− 2r2

Σ

)

+
2rβ
Σ2 . (A.3)
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