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Introduction 

The primary goal of this study is to analyze whether Critical Access Hospitals (CAHs) are less or more 

cost efficient than a comparison group of non-converting, prospectively paid rural hospitals.  As a 

secondary goal, we examine the performance of the two-stage approach and stochastic frontier analysis 

(SFA), and how the two methods can be used to make valid inferences about the effects of 

environmental variables on estimated cost efficiency.  In many of the efficiency analysis studies, 

researchers have been interested in explaining differences in estimated efficiencies across firms or 

decision making units (DMU).  Typically, this involves inferring on the relationship between estimated 

efficiency scores and a set of environmental variables.  From a policy perspective, hospital managers 

and policymakers can become more effective decision makers by understanding the relationships 

between efficiency and these environmental variables.  Two methods have been mostly used in the 

literature to investigate the impact of environmental variables on estimated efficiency scores.  The first 

method is SFA which is a parametric approach based on production or cost functions.  The second 

method is the two-stage approach in which efficiency scores are estimated in the first stage using data 

envelopment analysis (DEA), and, in the second stage, the efficiency scores are regressed on 

environmental variables that can influence efficiency. 

 The CAH program (also known as the Medicare Rural Hospital Flexibility program), 

introduced by the Balanced Budget Act of 1997, has been created in response to the dramatic 

deterioration of financial conditions (and the potential threat of closure) of small rural hospitals.  

Hospitals participating in the CAH program receive cost-based reimbursement for services delivered to 

Medicare beneficiaries providing they meet certain conditions before conversion (i.e., the number of 

acute care beds is restricted to less than or equal to 25; annual average length of inpatient stay must be 

less than or equal to 4 days, etc.).  In contrast, the rest of the hospitals are paid a fixed fee based on 
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diagnosis related group (DRG) under the Medicare prospective payment system (PPS).1  Previous 

research showed that Medicare cost-based reimbursement gave hospitals few incentives to control their 

costs and encouraged inefficiently produced services (Gianfrancesco, 1990; McKay, Deily and Dorner, 

2002/2003).  One of the goals of the PPS system, on the other hand, has been to promote efficiency in 

hospital operations by motivating hospitals to keep their costs below PPS payment rates (Sexton, 

Leiken, and Sleeper, 1989).  Although the CAH program has helped to preserve access to health care 

in rural areas, there is a concern that, since CAH hospitals receive Medicare cost-based reimbursement, 

they will have a reduced incentive to control costs and operate efficiently (MedPAC, 2005). 

In the efficiency analysis literature there has been considerable interest in reconciling SFA and 

DEA (Mutter et al., 2011).  Two studies that compared SFA and DEA are Chiricos and Sear (2000) for 

US hospitals, and Jacobs (2001) for hospitals in the UK and both studies found significant differences 

between the results from the two approaches.  Linna (1998) examined cost efficiency of Finish 

hospitals and found that SFA and DEA generated similar results.  Our study extends previous literature 

by providing an empirical application of both the two-stage DEA approach and SFA in the specific 

context of analyzing cost efficiency differences between CAH rural hospitals and a group of non-

converting, PPS rural hospitals.   

Methods 

DEA vs. SFA 

For the efficiency analysis of DMUs, researchers have applied frontier methods such as DEA or SFA.  

Both methods measure inefficiency of a DMU as the distance between a best practice (or efficient) 

frontier and actual performance of the DMU.  However, the two methods differ in some key theoretical 

                                                           
1 Under cost-based reimbursement, hospitals are paid the full cost of providing services to Medicare beneficiaries, while 
PPS pays a fixed fee based on DRG.  PPS allows hospitals to keep the difference between PPS reimbursement rate and 
actual hospital cost. 
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aspects.  DEA measures efficiency relative to a nonparametric estimate of an unobserved true frontier, 

conditional on observed data (Simar and Wilson, 2007).  As a nonparametric method, DEA requires no 

assumptions about the specific form of the frontier or the probability density of inputs and outputs used 

in the production process.  However, DEA assumes no errors and deviations from the efficient frontier 

are entirely assumed to be due to inefficiency.    

Stochastic frontier models avoid some of the limitations of the DEA.  Specifically, SFA allows 

the decomposition of deviations from the efficient frontier into a random error term that embodies 

statistical noise and a one-sided error term representing inefficiency.  However, SFA requires the 

specification of a functional form for the frontier and assumptions about the distributions of the 

random error and inefficiency error terms which might be very restrictive (Newhouse, 1994). 

DEA measures cost efficiency in two steps.  First, given input prices and output levels, the 

cost-minimizing input vector for each hospital is calculated using linear programming.  Next, cost 

efficiency is measured as the ratio of minimum cost to observed cost and takes a value between 0 and 

1, where a value of 1 indicates a cost efficient hospital (for technical details of cost efficiency 

estimation, see Coelli et al. (2005)).  The cost efficiency measures the factor by which the observed 

cost can be reduced if the hospital selects the optimal input bundle (which minimizes the cost of 

producing a given level of output given input prices) and operates at a technically efficient point 

(where output is produced using minimum quantities of inputs).  

Alternatively, cost efficiency can be estimated using SFA which, in a general form, specifies 

total cost as a function of outputs and input prices plus a composite error term (Coelli et al., 2005): 

iiii WYfTC ε+= ),(           (1) 

where TCi represents the total cost of the i-th hospital, Yi is a vector of outputs, Wi is a vector of input 

prices, and εi is a composite error term which can be decomposed as  
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iii uv +=ε            (2) 

where vi captures random statistical noise, assumed normally distributed, and ui represents cost 

inefficiency for which a distribution must also be assumed.2  Given the distributional assumptions for 

the two error terms, the model is estimated by maximum likelihood (Coelli et al., 2005).  In a cross-

sectional stochastic frontier model, the cost inefficiency is observed indirectly from the estimates of 

the composite error and is calculated as the expected value of inefficiency, conditional upon the 

composite residual. 

In the estimation of a stochastic frontier cost model, one must also specify a functional form for 

the cost equation.  The most popular functional forms used in empirical research have been the 

translog and Cobb-Douglas cost functions.  The translog function has been shown to be more flexible 

in the sense that it can provide a second-order differential approximation to any arbitrary function at a 

single point, making it the preferred functional form in empirical research.  However, increased 

flexibility of the translog function comes at the cost of an increased number of parameters to estimate, 

and this may give rise to multicolinearity problems (Coelli et al., 2005). 

Impact of Environmental Variables on Cost Efficiency 

The focus in this research is on making valid inference about the impact of environmental 

variables on hospital cost efficiency.  In the two-stage approach, cost efficiency scores, estimated in 

the first stage using DEA, are regressed, in the second stage, on some environmental variables to 

investigate how hospital efficiency is influenced by such explanatory variables.   

 The specification of the second-stage truncated regression used in this study is:  

1ˆ ≥+= iii z εβδ ,     i = 1, 2, …., n        (3) 

                                                           
2 Distributions assumed for the one-sided error term: half-normal, truncated-normal, exponential and gamma.   
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where iδ̂  is the reciprocal of DEA-estimated cost efficiency scores (referred to as inefficiency scores) 

such that 1ˆ ≥iδ , εi is assumed to be distributed N(0, σ2) with left truncation at 1-ziβ, zi is a vector of k 

environmental variables which are thought to have an effect on hospital efficiency and β is a vector of 

parameters to be estimated.  It has been shown that the DEA-efficiency estimates used as the 

dependent variable in the second stage are serially correlated in a complicated, unknown way (Simar 

and Wilson, 2007).  While this correlation disappears asymptotically, Simar and Wilson (2007) 

showed that conventional methods for inference in the second stage regression are invalid.  To provide 

valid inference in the second stage analysis, they suggested a bootstrap algorithm which is a parametric 

bootstrap of the truncated regression   

In SFA, the impact of environmental variables on the cost inefficiency is specified as: 

iii wzu += βˆ            (4) 

where iû  is the SFA estimated cost inefficiency, zi is a vector of environmental variables, β is a vector 

of parameters to be estimated and wi is a random variable defined by the truncation of the normal 

distribution with mean zero and variance σ2.  The stochastic frontier cost model used in this study 

allows cost inefficiency to be explicitly modeled as a function of environmental variables, the 

parameters of which are estimated simultaneously with the stochastic cost frontier in a one-stage 

procedure.  

Data 

Two years of data, 2005 and 2006, are used in this study.  The data come from the American Hospital 

Association (AHA) Annual Survey of Hospitals, the Area Resource File, the Medicare Hospital Cost 

Report, and the Centers for Medicare and Medicaid Services (CMS) Hospital Compare public 

reporting database for hospital quality measures.  We focus on the set of CAH-designated rural 

hospitals as well as on a comparison group of non-converting, prospectively paid rural hospitals.  
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Following Stensland, Davidson, and Moscovice (2003), the comparison group is restricted to rural 

hospitals with no more than fifty beds, allowing us to have two groups of hospitals of similar size 

(while CAHs are restricted to no more than 25 acute care beds, they have no restrictions on non-acute 

care beds; the mean for the CAH total staffed and licensed beds in our sample was 36 while for non-

converting rural hospitals was 38 (Table 1)).   

  For the specification of the stochastic frontier cost function, we followed Rosko and Mutter 

(2010).  Specifically, we used total hospital expenses as the dependent variable and input prices, 

hospital outputs and product mix descriptors as explanatory variables.  Hospital outputs consist of 

outpatient visits (opv), admissions (admtot), and post-admission days (postdays) (inpatient days – 

admissions).  Consistent with previous literature, a set of product mix descriptors is also included: 

percent of emergency room visits (erv%) ((emergency room visits / outpatient visits) × 100), percent of 

outpatient surgeries (outsurg%) ((outpatient surgeries / outpatient visits) × 100) and percent of births 

(birth%) ((births / admissions) × 100).  Additionally, we control for quality using percent of patients 

given pneumococcal vaccination (pneum_vac%) and percent of patients given initial antibiotic timing 

(initial_antib%).  Input prices used in the analysis are: the price of labor (sum of payroll expenses and 

employee benefits divided by the full-time equivalent facility personnel) and the price of capital (sum 

of depreciation expenses and interest expenses - from the Medicare Hospital Cost Report - divided by 

the number of facility beds) (Rosko and Mutter, 2010).  The assumption of linear homogeneity in input 

prices is imposed by normalizing the cost equation by the price of labor. 

The DEA-cost model requires information on hospital outputs, inputs, and input prices (Ferrier 

and Valdmanis, 1996).  For consistency, we used the same hospital outputs and input prices as in the 

stochastic frontier cost function.  However, the product mix descriptors used in the SFA are included 

as actual outputs in the DEA model.  Specifically, we used the following hospital outputs in our DEA 
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model: outpatient visits, admissions, post-admission days, emergency room visits, outpatient surgeries, 

and births.  Consistent with previous literature, we used the two quality measures as additional outputs 

in the DEA model (Nayar and Ozcan, 2008).  The physical inputs consist of full time equivalent (FTE) 

facility personnel (labor input) and total staffed and licensed hospital beds (a proxy for capital), and the 

input prices are identical to the ones in the SFA (the price of labor and the price of capital).   

A particular challenge in this study is adjusting outputs to control for case-mix variations.  

Unfortunately, there is no Medicare Case-Mix Index available for CAHs as these hospitals are 

exempted from the PPS system.  In the stochastic frontier cost function, percent of emergency room 

visits, percent of outpatient surgeries and percent of births can also be used as case-mix proxies (Rosko 

and Mutter, 2011).  Ozgen and Ozcan (2004) and others noted that the lack of case-mix variables in 

DEA efficiency models is in part compensated by specification of multiple outputs.  In the DEA 

model, we expand the set of outputs (beyond the ones used in SFA) in order to capture case-mix 

differences by including emergency room visits, outpatient surgeries and births.   

The set of environmental variables used to explain cost efficiency, on which we focus in this 

analysis, is identical for both the stochastic frontier model and the second stage truncated regression.  

For the specification of environmental variables, we follow Rosko and Mutter (2010, 2011).  The 

primary variable of interest is a CAH dummy (one if the hospital is a CAH and zero otherwise) which 

is used to test whether CAHs are more or less cost efficient than non-converting rural hospitals.  

Dummy variables that define government hospitals (Government), non-profit hospitals, and for-profit 

hospitals (For-profit) are included to control for internal pressure for efficiency associated with 

ownership (Rosko and Mutter, 2010; 2011).  Non-profit ownership is the reference category. Another   

environmental variable, directly associated with hospital efficiency, is membership in a multihospital 

system which is also introduced as a dummy variable (System). 
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Two variables are used to control for the external pressure for efficiency associated with public 

payers: Medicare percent of admissions (Medicare%) ((Medicare admissions / total admissions) × 100) 

and Medicaid percent of admissions (Medicaid%) ((Medicaid admissions / total admissions) × 100).  

The effect of Medicare percent of admissions on hospital inefficiency is unclear, given the joint use in 

estimation of cost-based reimbursed CAHs and PPS-reimbursed non-converting rural hospitals.  

Previous literature showed that reimbursement policies under Medicare PPS create incentives for 

reducing inefficiency while cost-based reimbursement gives hospitals few incentives to control their 

costs.   

A Herfindahl-Hirschman index (HHI) is used to control for competitive pressure in a hospital’s 

market (which, consistent with previous studies, is defined as the county).  HHI is calculated by 

summing the squares of the market shares of admissions for all of the hospitals in the county and takes 

a value between 0 and 1, with values approaching 1 indicating less competitive pressures.  Another 

source of external pressure for efficiency is Health Maintenance Organization (HMO) penetration.  We 

used percent of Medicare HMO penetration (MHMO%) from the Area Resource File as a proxy for 

general HMO penetration (Rosko and Mutter, 2010).  Finally, median household income of the county 

(Income) and a dummy variable for 2006 to control for time effects are also included as environmental 

variables to explain hospital efficiency.  Variable definitions for both SFA and the two-stage DEA 

approach are presented in Table 1.  Summary statistics of these variables are presented for both CAHs 

and the comparison group of non-converting rural hospitals.   

Results 

Table 2 shows summary statistics of cost efficiency scores estimated by both DEA and SFA and using 

the two years of data jointly.  The DEA mean cost efficiency for CAHs was 68 percent while for the 

comparison group of non-converting rural hospitals was 72.4 percent.  The mean cost efficiency 
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estimated using SFA was 90.6 percent for CAHs and 95 percent for non-converting rural hospitals.  

Both models indicate that CAHs are, on average, less cost efficient than non-converting rural hospitals 

and the difference in cost efficiency between CAHs and non-converting rural hospitals is 4.4 percent 

under both models.  As expected, however, there is a significant difference in the magnitude of 

efficiency scores estimated by DEA and those estimated by SFA which is attributed in principal to the 

differences in how the two approaches measure efficiency.  DEA, as a nonparametric method, assumes 

that deviations from the efficient frontier are entirely due to inefficiency, making no allowance for 

random statistical noise.  SFA, on the other hand, is a parametric approach in which deviations from 

the efficient frontier are decomposed into a random error term representing statistical noise and a one-

sided error term representing inefficiency.  

Table 4 shows the results obtained from the estimation of the SFA translog cost function.  The 

coefficient of the price of capital was found positive and significant, as expected, in contrast with the 

negative and significant coefficient of the same variable found by Rosko and Mutter (2010).  Some of 

the estimated coefficients of the output variables and interaction terms were insignificant or of an 

unexpected sign, fact that may be due to multicolinearity problems.  Similar to Rosko and Mutter 

(2010), we also found positive and significant coefficients for the product mix descriptors (erv%, 

outsurg%, and birth%).  Of the two quality control variables, only one (pneum_vac%) was found 

positive and significant , indicating a direct relationship between quality and hospital costs (Rosko and 

Mutter, 2010). 

Cost Efficiency Determinants 

 The focus of this study, however, is on using the two-stage approach and SFA to make valid 

inference about the impact of environmental variables on hospital cost inefficiency.  Table 3 

summarizes the results of the second stage bootstrapped truncated regression and SFA models in which 
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cost inefficiency scores are regressed on environmental variables.  As an interpretation rule, a positive 

coefficient suggests a positive effect on cost inefficiency, while a negative coefficient suggests a 

negative effect on inefficiency (an improvement in efficiency).  

The primary variable of interest is the CAH dummy which indicates whether CAHs are more or 

less cost efficient than the comparison group of non-converting rural hospitals.  The results in Table 3 

show that the coefficient of the CAH dummy is positive and highly statistical significant (p-value < 

0.01) in both the bootstrapped truncated regression model as well as the SFA model suggesting that 

CAHs are less cost efficient than non-converting rural hospitals.  The results are consistent with 

previous literature (Rosko and Mutter, 2010) and with our hypothesis that CAHs are less cost efficient 

than non-converting rural hospitals because of the differences in Medicare reimbursement facing these 

hospitals. 

The estimated results show a positive and significant coefficient of government ownership in 

both models suggesting that government rural hospitals in our sample are less cost efficient than 

nonprofit rural hospitals, a result that is consistent with previous literature (Rosko and Mutter, 2010).  

For-profit ownership, on the other hand, has an insignificant coefficient in both models. 

Medicare share of admissions (Medicare%) has a positive and significant coefficient (p-value < 

0.05) in the bootstrapped truncated regression model while the coefficient is positive but insignificant 

in the SFA translog model.  This is in contrast with the negative coefficient of the same variable found 

by Rosko and Mutter (2010).  Nevertheless, Rosko and Mutter (2010) as well as our research analyze a 

joint set of Medicare cost-based reimbursed CAHs and PPS reimbursed non-converting rural hospitals 

and one can expect an inconclusive effect of Medicare share of admissions on hospital efficiency in 

this situation.  Similar to Rosko and Mutter (2010), we also found an insignificant effect of Medicaid 

percent of admission (Medicaid%) variable on hospital cost inefficiency. 



12 

 

The negative and significant coefficient of system membership (System) in both our models is 

consistent with previous literature and suggests that rural hospitals that are members in a multihospital 

system are more cost efficient than the ones that are not.  Rosko and Proenca (2005) argue that 

hospitals participating in a multihospital system can provide services at lower costs and with greater 

efficiency by collaborating on service delivery.  The negative and significant coefficient of Medicare 

HMO in our SFA model may suggest that Medicare HMO penetration creates pressure for rural 

hospitals to operate more cost efficiently.  In particular, health maintenance organizations have 

contributed to health care cost containment by encouraging the use of outpatient services instead of 

inpatient care and by extracting large discounts from providers (Rosko, 2001).  Consistent with the 

findings of Rosko and Mutter (2010), we also found a positive and significant coefficient of the county 

median household income (Income) on hospital cost inefficiency.  

 

Conclusions and Discussion 

In this study, we examined the impact of conversion to CAH status on hospital cost inefficiency using 

SFA as well as a two-stage approach.  The estimated results showed a positive and highly significant 

coefficient of CAH dummy variable in both models suggesting that CAH rural hospitals were less cost 

efficient than the comparison group of non-converting rural hospitals.  This conclusion is consistent 

with the findings of Rosko and Mutter (2010), who compared the cost inefficiency of CAHs with that 

of non-converting rural hospitals using SFA, and with our hypothesis that CAHs are less cost efficient 

than non-converting rural hospitals. 

 Previous research showed that hospitals that converted to CAH status increased their Medicare 

payments and improved their profit margins as a result of the Medicare cost-based reimbursement.  

MedPAC (2005) estimated that in 2003 payments per CAH were roughly $850,000 higher under 
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Medicare cost-based reimbursement than they would have been under PPS reimbursement.  Similarly, 

Stensland, Davidson, and Moscovice (2003) found that hospitals that converted to CAH status 

significantly increased their Medicare revenue, profitability, employee salaries and capital 

expenditures.  They estimated that, on average, inflation-adjusted revenue of hospitals that converted 

to CAH status increased by $518,571 per hospital, half of which was used to cover loses or retained as 

profits and the other half used to raise salaries and to cover other expenses.  Analyzing quality 

improvements in CAHs, Casey and Moscovice (2004) found that Medicare cost-based reimbursement 

allowed CAHs to fund additional staff, staff training and equipment to improve patient care.  Further, 

anecdotal evidence suggests that after hospitals improved their finances post-conversion, many CAHs 

invested in new equipment, new hospitals or major infrastructure upgrades. 

While efficiency is an important factor for measuring the effectiveness of a health care policy 

or program, a complete assessment of the CAH program needs to go beyond efficiency and take into 

account issues such as equitable access to high-quality care.  The rationale for the Medicare cost-based 

reimbursement of CAH hospitals has been to protect these small, financially vulnerable rural hospitals 

and prevent their potential closure.  The benefits of the CAH program have been mostly associated 

with improvements in access to health care services in isolated rural areas.  Previous literature also 

showed that retaining a limited hospital facility in a rural community not only reduces welfare losses 

relative to the hospital closure (McNamara, 1999), but also has a positive economic impact on the 

community as a whole (Holmes et al., 2006).  The cost of the CAH program is represented by the 

increased Medicare payments for CAH hospitals which are borne in principal by federal taxpayers.  

While a complete evaluation of the CAH program requires answering the question whether the total 

benefits outweigh the total costs, we focused in this research on assessing the impact of conversion to 

CAH status on hospital cost inefficiency.    
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 A large number of efficiency analysis studies used SFA with cross-sectional data.  However, 

the cross-sectional stochastic frontier model has been shown to have some limitations.  Schmidt and 

Sickles (1984) noted three limitations of SFA with cross section data.  First, in cross-sectional 

stochastic frontier models, firm-specific efficiency is unidentified and researchers typically estimate 

expectations of efficiency conditional on a composite residual.  Second, cross-sectional stochastic 

frontier models require specific distributional assumptions for each error component in order to 

estimate efficiency.  Third, the efficiency error term is assumed to be independent of regressors (i.e., 

inputs and outputs), an assumption which is very restrictive. 

Alternatively, one can use the two-stage approach along the line of Simar and Wilson (2007) 

with cross-sectional data.  Using DEA to estimate efficiency scores in the first stage, one can avoid 

potential misspecification problems that affect SFA.  In the semi-parametric model defined by Simar 

and Wilson (2007), the assumptions of a linear functional form and truncated normal errors in the 

second stage appear to be less restrictive as compared with a fully parametric approach.  Further, the 

assumption of independent errors in SFA is avoided in the model defined by Simar and Wilson (2007) 

where the first stage estimation does not require independence between the efficiency scores and the 

inputs and outputs.   

Our research suggests that SFA and the two-stage DEA approach are viable alternatives for 

analyzing the impact of environmental variables on hospital cost efficiency.  We found that both SFA 

and the two-stage approach generated mostly similar and consistent results in our empirical application 

of the two methods to the efficiency analysis of rural hospitals.  Both methods have advantages and 

disadvantages that one needs to be aware of.  In particular, when using the two-stage DEA approach, 

researchers should consider using the bootstrap algorithm proposed by Simar and Wilson (2007) for 
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making valid inference.  Researchers should also consider using both methods, wherever possible, as a 

robustness check of the impact of environmental variables on estimated efficiency. 
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Table 1. Summary statistics and variable definitions 

DEA and SFA Variables 

CAH Rural 

Variable Definition Mean SD Mean SD 

Outputs 

admtot Total hospital admissions 1,072.12 427.87 1,730.83 737.84 

postdays Postadmission days 6,296.83 6,769.26 4,535.68 2,024.08 

opv Total outpatient visits 42,104.53 30,384.28 45,033.72 33,299.60 

erv Emergency room visits 6,981.46 4,516.93 9,492.27 5,194.94 

outsurg Outpatient surgeries 889.98 721.07 1,175.71 885.10 

births Total births 97.53 109.61 202.41 213.33 

Quality Outputs 

pneum_vac% %Patients given pneumococcal vaccination  62.31 23.66 59.90 24.28 

initial_antib% %Patients given initial antibiotic timing   84.74 8.75 80.87 10.40 

Inputs 

bdtot Total staffed and licensed hospital beds 35.92 22.27 37.93 9.41 

fte Full time equivalent (FTE) employee 191.95 79.35 216.16 98.51 

Input Prices 

pk $ Price of capital 36,824.86 29,993.99 35,780.83 27,633.52 

w $ Price of labor 50,747.63 13,418.28 49,177.05 12,514.33 

Additional SFA Variables 

exptot Total hospital expenditure 1.80E+07 9.31E+06 2.08E+07 1.20E+07 

erv% % Emergency room visits 20.60 13.52 26.49 16.71 

outsurg% % Outpatient Surgeries 2.60 2.41 3.41 3.59 

birth% % Admissions for birth 7.91 7.90 10.86 10.21 

Environmental Variables         

Government Government  hospital (1,0) 0.32 0.47 0.34 0.47 

For-profit For-profit hospital (1,0) 0.03 0.18 0.14 0.35 

Medicare% % Medicare admissions 59.90 12.57 52.47 11.77 

Medicaid% % Medicaid admissions 13.05 7.98 17.37 9.65 

HHI Herfindahl-Hirschman  index 0.50 0.35 0.56 0.33 

System Member of a multihospital system (1,0) 0.42 0.49 0.51 0.50 

MHMO% % Medicare HMO penetration 3.26 5.31 2.64 4.76 

Income Median household income 38,432.78 6,190.83 37,391.59 8,465.68 
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Table 2. Summary statistics of DEA and SFA estimated cost efficiency 

    DEA Eff. Estimates SFA Eff. Estimates 

Year N Mean SD Mean SD 

CAH2005 178 0.678 0.184 0.905 0.048 

CAH2006 224 0.679 0.181 0.906 0.048 

Rural2005 153 0.720 0.163 0.949 0.034 

Rural2006 205 0.727 0.171 0.950 0.033 

CAH 402 0.679 0.182 0.906 0.048 

Rural 358 0.724 0.167 0.950 0.033 

All 760 0.700 0.177 0.927 0.047 

 

 

 

Table 3. Estimated effects of environmental variables on cost inefficiency 

Variable 
Bootstrapped 

Truncated Reg. 
SFA 

Translog 

Constant 1.0898*** -0.1629 

Government 0.0589* 0.0431** 

For-profit -0.0885 0.0156 

Medicare% 0.0036** 0.0011 

Medicaid% 0.0013 -0.0013 

HHI 0.0507 0.0399 

System -0.1245*** -0.0392** 

CAH 0.1685*** 0.0535*** 

Income 4.48E-06* 4.60E-06*** 

MHMO% -0.0060 -0.0097*** 

Y2006 -0.0092 -0.0204 
***p<0.01, **p<0.05, *p<0.10 
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Table 4.  Results of the SFA estimation 

Variable Coeff. t-stat. 

cons 3.1126 1.6032 

ln(admtot) -0.4428 -1.1250 

ln(postdays) 0.1101 0.4656 

ln(opv) 0.1071 0.4349 

ln(pk) 0.7527 3.6888 

ln(admtot)-sq -0.0500 -0.7987 

ln(admtot)*ln(postdays) -0.0440 -1.5258 

ln(admtot)*ln(opv) 0.1428 4.5178 

ln(postdays)-sq 0.0964 3.2159 

ln(postdays)*ln(opv) -0.0420 -2.4426 

ln(opv)-sq -0.0510 -1.8981 

ln(pk)-sq 0.0955 4.9089 

ln(admtot)*ln(pk) -0.0247 -0.8433 

ln(postdays)*ln(pk) 0.0396 2.2323 

ln(opv)*ln(pk) -0.0657 -4.0868 

erv% 0.0029 4.4628 

outsurg% 0.0176 5.6814 

birth% 0.0048 4.4488 

pneum_vac% 0.0007 2.1324 

initial_antib% -0.0001 -0.0719 

Y2006 0.0005 0.0118 

Environmental Variables 

Constant -0.1629 -1.4734 

Government 0.0431 2.2271 

For-profit 0.0156 0.4211 

Medicare% 0.0011 1.2682 

Medicaid% -0.0013 -0.8207 

HHI 0.0399 1.5195 

System -0.0392 -2.2823 

CAH 0.0535 2.8621 

Income 4.60E-06 3.3379 

MHMO% -0.0097 -21.0912 

Y2006 -0.0204 -0.3924 

 

 

 

 


