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1. Introduction

What we observe in daily life is that frequently homogenous goods are sold at different prices by

different firms, i.e. we observe price dispersion. In a recent survey Baye, Morgan, and Scholten

(2006) report on dozens of empirical papers providing ample evidence in both on- and off-line

consumer good markets1 for Varian’s (1980) assertion that actually “the law of one price is no

law at all” .

The classic explanation for persistent price dispersion is provided by models where firms com-

pete on prices and consumers differ (either exogenously or endogenously) in the number of

prices they compare. Following the works of Wilde and Schwartz (1979) and Varian (1980), in

many of these models there are only two types of consumers:2 A fraction of consumers –the

informed consumers– compare all prices and buy from the firm offering the lowest price. The

remaining fraction –the uninformed consumers– just sample one price at random. The pres-

ence of these two groups of consumers implies that firms face a tradeoff between setting low

prices in order to attract a high number of informed consumers and setting high prices to rip

off the uninformed consumers. These two forces are balanced in a mixed strategy equilibrium

where firms randomize on prices, which can be interpreted as the theoretical equivalent of the

empirical observation of price dispersion.

In models of consumer search the division of consumers in uninformed consumers and informed

consumers arises endogenously as consumers decide on the optimal number of prices to sam-

ple. Burdett and Judd (1983) present a model where consumers have homogeneous search costs

and engage in optimal non–sequential search. In this setup consumers either find it optimal

to sample only one price or randomize between sampling one and two prices. In the latter

case consumers endogenously divide themselves into uninformed and (partially) informed con-

sumers. Stahl (1989) presents a model of sequential search where a fraction of consumers has

zero search costs and samples all firms in the market, and the remaining fraction has positive

search costs and samples only one firm in the market. Janssen and Moraga-González (2004)

analyze the case of non–sequential search in the presence of consumers with zero search costs

1The recent rise of internet price comparison sites has not only eased consumer search but has made it also

much easier for researcher to collect data, hence the second wave in the literature.
2The survey by Baye, Morgan, and Scholten (2006) reports on many more theoretical papers on price dispersion

and consumer search.
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and consumers with positive search costs. Naturally, consumers with zero search costs will

always sample all firms in the market. Depending on the search cost, consumers with positive

search will either randomize between not sampling (and not buying) and sampling one price

(and buying), or sample one price, or randomize between sampling one price and two prices.

In the present paper we study a model that allows for any degree of partially informed con-

sumers. Some consumers will only be visiting one firm, some consumers will be comparing

the prices of two firms, some of three firms, and so forth, obtaining a consumer search distri-

bution. Burdett and Judd (1983) already show existence of a mixed strategy equilibrium under

such a general consumer search distribution. In their model consumers with homogeneous

search costs find it optimal to either visit one firm or to randomize between visiting one and two

firms.3 We assume that the consumer search distribution is exogenously given and remark that

any consumer search distribution can be justified as the result of consumers with sufficiently

heterogenous search costs engaging in optimal non–sequential search.

The first advantage of looking at more general consumer search distributions is that we are able

to provide new insights into the structure of price dispersed equilibria by varying the consumer

search distribution. We find that the only determinant for profits and hence also for total con-

sumer welfare is the share of uninformed consumers in the market. That is neither the number

of firms nor the exact distribution of the informed consumers matters. For, a firm can always

set the monopoly price (i.e. the consumers’ valuation for the good) in which case it only sells to

uninformed consumers. As in a mixed strategy equilibrium all prices in the support of the equi-

librium price distribution have to yield the same expected profits it follows that these expected

profits will only depend on the share of uninformed consumers.

In line with the previous literature on consumer search we find that lowering the fraction of

uninformed consumers tightens competition and lowers expected prices for all different types of

consumer. One might be tempted by this result to think that “more search” is always beneficial

to all consumers. We show that this is not the case if already informed consumers start to

compare more prices. In particular we show that if already informed consumers start to compare

even more prices then there exists a threshold – the digital divide – such that everybody who is

3 Burdett and Judd (1983) also analyze the case of noisy search, where consumers decide whether to receive

an unknown number of price observations. See Armstrong, Vickers, and Zhou (2009) for a model of noisy search

analyzing the welfare effects of price caps and advertisement.
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comparing fewer prices than this threshold will expect to pay a higher price whereas everybody

comparing more prices will expect to pay lower prices than before. In this sense, more search

by informed consumers inflicts a negative (pecuniary) search externality upon relatively poorly

informed consumer whereas it causes a positive search externality for relatively well informed

consumers. Figure 1 illustrates this point by means of an example.

A further advantage of considering general consumer search distributions is that it allows us

to put forward an alternative interpretation of the search model at hand as a model of price

competition on a network in the following sense:4 Firms and consumers represent nodes in a

bipartite network, i.e. a network where there are only links between firms and consumers. A

link between a consumer and a firm in this network indicates that a consumer observes the price

of this firm and may buy from this firm and that the firm may sell to this consumer. If we

assume that firms only know the degree distribution of consumers, i.e. the the probabilities that

a given consumer has one link, two links, and so forth, we obtain a network game of incomplete

information.5 Alternatively, we could also assume that the network is symmetric in the sense

that every firm faces the same consumer degree distribution and analyze this game of complete

information. Note that the number of potential consumers a firm can attract (i.e. its own degree)

may be different across firms, though.

Within this network interpretation the consumer degree distribution essentially plays the role of

the consumer search distribution in the consumer search model. In this sense, the equilibrium

we find in the search context and the comparative static exercise of varying the consumer search

distribution translate into our network context. In particular, the comparative static exercise of

introducing more search can be interpreted as increasing the density of the network. We then

have that adding links to consumers who are only linked to one firm decreases expected prices

for all consumers, whereas adding links to consumers with already more than one link amounts

to a redistribution of social welfare from consumers who just have a few links to well connected

consumers.

This second interpretation of our model is related to the literature of competition on networks.

4Galeotti (2009) presents a model of search and word of mouth communication, where a network determines

the communication process.
5This incomplete information setup stipulates the use of the Bayesian-Nash equilibrium concept for networks,

as e.g. in Jackson and Yariv (2007) or Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2009).
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Figure 1: The effect of already informed consumers engaging in even more search on the ex-

pected prices paid by different types of consumers. The k-th component qk of the ’search dis-

tribution’ q = (q1, . . .q8) is proportional to the number of consumers sampling exactly k prices;

and pk denotes the expected price paid by such a consumer. q̃ is obtained from q if two thirds of

the consumers who previously sampled two firms change to sampling eight firms. The solid line

connects the expected prices pk under the original distribution q and the dashed line connects

the expected prices p̃k under q̃. After this shift consumers who sample three or fewer prices will

expect to pay higher prices while consumers sampling more than three prices expect to pay a

lower price.
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Kranton and Minehart (2001) and Corominas-Bosch (2004) analyze bargaining situations be-

tween fully informed agents on exogenously given non–regular networks. These models how-

ever become soon very complex, untractable and with multiple equilibria, as the size of the

network grows. Blume, Easley, Kleinberg, and Tardos (2009) present instead a model with

uniqueness of equilibria, with sellers, buyers, and traders, where traders play the role of media-

tors and may set different prices to different buyers and sellers. Lever (2008) studies duopolistic

price competition under complete information on a network, where of course consumers may

at most have degree two.

The rest of the paper is organized in the following way: Section 2 spells out the model. Section

3 presents the results and section 4 concludes. Proofs are in the Appendix.

2. The Model

We consider a market for a homogenous good with N firms and M households (consumers),

and write µ = M/N for the number of households per firm. Each firm can produce the good at

constant marginal cost, without fixed cost, and sets the price at which it offers the good (all firms

set their prices simultaneously). Each household demands one unit of the good, up to a given

willingness to pay (assumed greater than the cost). Without loss of generality we normalize the

cost to 0 and the willingness to pay to 1 (the same for all firms, respectively households).

Households differ in the information they have about the firms’ prices. A household of type k

observes the prices of k firms and buys from the cheapest (randomizing with equal probabilities

in case of ties), provided the price does not exceed its willingness to pay. We denote by qk

the fraction of households of type k. The information structure is represented by the vector

q = (q1, . . .qN), where of course qk ≥ 0 for all k and ∑N
k=1 qk = 1. We also refer to q as the

consumer search distribution or the degree distribution.

As already mentioned in the Introduction, there are two interpretations for this kind of model:

(1) non–sequential search: the k firms which a household of type k observes are a random

sample (with equal probabilities) from the set of all N firms; and (2) a bipartite network of

firms and households: a household and a firm can trade only if they are connected by a link.

A household of type k (degree k) has links to k different firms, and each firm faces the same
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degree distribution among its potential customers (i.e. the households to which it is linked). One

justification of this particular kind of symmetry among firms is that the network itself might be

symmetric in the sense that each firm faces the same degree distribution but may in principle

attract a different number of potential consumers. Alternatively it could also be the case that

firms do not know the degree of each consumer they are linked to but instead only know the

degree distribution in the overall network.6 This incomplete information setup seems to be a

realistic approximation of situations where firms normally do not know the shopping habits of

each individual consumer, but rely their strategy on survey data representing the shopping habits

of average customers instead.

We will use both – the search and the network – interpretation interchangeably; in either case,

we obtain a strategic market game among the N firms, where we can take without loss of gen-

erality the strategy set of each firm to be the unit interval [0,1] (a price below 0 would generate

losses, and at a price above 1 nobody would buy). Trivial cases apart, we will see that this

game has equilibria only in mixed strategies, thus generating price dispersion. Our main inter-

est is the dependence of these price dispersion equilibria, and hence consumer welfare, on the

information structure q.

First we introduce some more terminology and notation. A household of type k = 1 is called

uninformed (or locked in in the network case), households of types k ≥ 2 are called informed

(also searchers or shoppers). The average number of searches (or links) per household is κ =

Eq[k] = ∑k kqk; it is a measure for the intensity of search in the market (density of the network);

the number of links per firm is µκ . For q = (q1, . . .qN), define the auxiliary functions

ϕ(x) := ∑
k

kqkxk−1 for x ∈ [0,1]

and if q1 > 0

ψ(x) :=
1
q1

ϕ(x) for x ∈ [0,1]

We have ψ(0) = 1, ψ(1) = κ/q1, and ψ is continuous and strictly increasing in x.

The following known results are stated here for easy reference.

6See footnote 5.
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Proposition 2.1. A market game with information structure q = (q1, . . .qN) has the following

equilibria:

(a) if all households are uninformed (q1 = 1), the only equilibrium is the monopoly outcome,

i.e. all firms charge the households’ willingness to pay (= 1).

(b) if all households search (q1 = 0), the only equilibrium (in which all firms are active) is

the competitive outcome, i.e. all firms charge the competitive price (= marginal cost =

0).

(c) If 0 < q1 < 1, there is no equilibrium in pure strategies, but there exists a unique symmet-

ric equilibrium in mixed strategies: each firm chooses its price at random according to a

continuous distribution F(p) with support [pmin, pmax], where

0 < pmin =
1

ψ(1)
=

q1

κ
< 1, pmax =

1
ψ(0)

= 1

and

F(p) = 1−ψ−1
(

1
p

)
for pmin ≤ p≤ pmax

(and of course F(p) = 0 for p ≤ pmin, F(p) = 1 for p ≥ pmax). Moreover, the equi-

librium profit per firm is π = µq1, and the average selling price (average household

expenditure) is pav = q1.

These results are known at least since Burdett and Judd (1983) (see especially the proof of

Lemma 2 there); for the reader’s convenience, we give a brief sketch of the proof of Proposition

2.1(c) in the Appendix. From now on, we focus on price dispersion equilibria and assume

always 0 < q1 < 1. The model is capable of generating a large variety of price distributions:

the density f (p) = F ′(p) can be increasing, decreasing, constant, U-shaped, bell-shaped, W-

shaped, etc., depending on the information structure q. Fig. 2 exhibits a few examples7 (cf. also

Example 2.3).

Remark 1. The price distribution F does not depend on the numbers M,N of households and

firms, but only on the function ψ , i.e. (the nonzero components of) the search distribution q.
7 In labeling this and some later figures, we give ’search distributions’ q that are not normalized to sum to one;

replacing such q by q/∑k qk converts them into probability vectors. Note also that the function ψ is homogeneous

of degree zero in q, so that the normalization of q does not matter in the formula for the price distribution F .
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Figure 2: Some densities f (p) for various q = (q1, . . . ,qK), with support [pmin,1]. The label

above each picture represents the search distribution (without the normalization ∑k qk = 1).

Dots "..." represent omitted zeros; in this case the length K of q is indicated by a subscript

(e.g. K = 20 in the last picture).
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The effective size of the market is given by K = max{k |qk > 0}, the highest type actually

occurring in the population. Thus for a town with N = 50 gas stations, with q such that nobody

compares the prices of more than K = 10 stations, this model predicts the same equilibrium

price distribution as if there were only N = 10 firms (only the profit per firm will be lower for

larger N). Intuitively, since every customer of a firm observes at most K−1 other prices, each

firm has only K−1 effective competitors, and the model behaves like an oligopoly with K firms.

Thus, for given q (hence given K), we may take the total number N of firms as arbitrary (as long

as N ≥ K). Of course, this conceptual separation between changes in N and changes in q, while

analytically useful, is somewhat artificial: in practice, an increase in the number of firms may

lead to a change in search behavior.8 This is often assumed in the literature. For example in

models where there are households with zero search costs who always sample all firms, we

must have K = N, and a change in N implies a corresponding change in q.

Remark 2. The average selling price in the market depends only on q1, the share of uninformed

consumers. Therefore, changes in the search behavior of the shoppers can only have redistribu-

tive effects (benefitting some types and hurting others), as long as q1 remains constant. One can

ask what the precise form of these redistributive effects is. Theorem 3.2 below gives a partial

answer. At this point we note only that it is hard to predict in general: for example, the change

from q = 1
60(10,27,20,0,0,3) to q̃ = 1

60(10,38,0,0,0,1) changes the equilibrium price distri-

bution in such a way that types k = 1,2,6 pay lower expected prices and types k = 3,4,5 pay

higher expected prices (note that it is not clear whether q or q̃ represents “more search"). See

Figure 3.

The expected price pk paid by a household of type k is given by

pk =
∫ 1

pmin

pdFk(p) (k = 1, . . .N)

where Fk(p) = 1− [1−F(p)]k is the distribution of the minimum of a sample of size k from

the distribution F . It is easy to see9 that the expected price pk can also be written pk =
∫ 1

pmin
[1−F(p)]kd p. This implies the well-known fact that pk is a strictly decreasing, convex

8Lach and Moraga-González (2009) empirically analyze the effects of an increase in the number of gas stations

in the Netherlands and find that all types of consumers benefit from such an increase.
9 pk =

∫
p.F ′k(p)d p =

∫
pk[1−F(p)]k−1F ′(p)d p =

∫
pk[1−F(p)]k−1 dF(p) =

∫
[1−F(p)]k d p, where the last

equality follows by partial integration.

9
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Figure 3: pk resp. p̃k is the expected price paid by type k under search distribution q resp. q̃.

The picture shows the difference pk− p̃k. The change from q to q̃ hurts the middle types.
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function of k (cf. Burdett and Judd (1983), p. 961). We write p = (p1, . . . pN) for the list of

expected prices paid by the various types. Note that if N > K, we have expected prices pk

even for some types k > K, although there are actually no such consumers. Such a pk is sim-

ply what a (hypothetical) consumer would expect to pay if he sampled k prices from the given

distribution F .

The next lemma will turn out to be very useful for the comparative statics exercise presented in

the next section.

Lemma 2.2. The expected price of a consumer of type k is given by

pk =
∫ 1

0

1
ψ(x)

dxk =
∫ 1

0

kxk−1

ψ(x)
dx. (1)

Proof: see Appendix.

Using this lemma, we can check that the average of the pk’s is indeed equal to the average

selling price pav = q1:

q · p = ∑
k

qk pk =
∫ 1

0

∑k qkkuk−1

ψ(u)
du =

∫ 1

0

ϕ(u)
ψ(u)

du = q1 = pav.

We conclude this section with an analytically tractable example (where formally K = N = ∞).

Example 2.3. Suppose the information structure q is such that qk = C αk

k , for k = 1, ,2, . . . , with

0 < α < 1, and C−1 = ∑k
αk

k =− log(1−α). Then ψ(x) = (1−αx)−1. By Proposition 2.1(c)

the price distribution is

F(p) =
1
α

[p− (1−α)] ,

with pmin = 1−α , pmax = 1, and the density f (p) = F ′(p) = 1
α is uniform on its support. The

expected price for a household of type k is pk = 1− k
k+1α , by (1), and the average selling price

is pav = α/∑k
αk

k = 1/∑k
αk−1

k . If α increases, also the probabilities that customers have more

connections increase, and expected prices decrease.
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3. The Digital Divide

The boundary between households who have access to the internet and those who do not is

sometimes referred to as the "digital divide", and there is evidence that households above the

divide (with many links) pay lower prices on average than those below (see e.g. Baye, Morgan,

and Scholten (2003)). This is trivially true in our model, too, whereever we put the "divide",

simply because the expected prices pk decrease with k.

In what follows, we will demonstrate the existence of a much less obvious, but perhaps even

more deplorable kind of divide (which, for lack of a better term, we also call "digital"): if some

of those consumers who already search (have two or more links) begin to search even more

(in a certain well-defined sense, see Definition 1 below), then the equilibrium price distribution

changes in such a way that all types below a certain threshold (our "digital divide") face higher

expected prices than before (in particular, the uninformed households always suffer), while

those above the divide face lower prices than before (Theorem 3.2).

That is, (a certain way of) increasing the information in the market (making the network denser)

favors only the high types, and harms the low types. Nobody here searches less than before,

but the increased activity of some produces a negative (pecuniary) externality for the others (the

low types who do not change their behavior). This is made precise in the following.

Consider two different search distributions q = (q1, . . . ,qN) and q̃ = (q̃1, . . . , q̃N), and denote

the associated equilibrium quantities by F, F̃ , pk, p̃k, etc.

Definition 1. q̃ has fewer low types and more high types than q if there exists a threshold type `,

1≤ ` < N, such that

q̃k ≤ qk for k < `, q̃` < q`, q̃k ≥ qk for k > `.

In this case, we write q̃Â` q or simply q̃Â q, and say that households search more under q̃ than

under q.

REMARK. The concept just introduced is stronger than first-order stochastic dominance, i.e.

q̃ Â q implies q̃ FOSD q, but not vice versa. Here q̃ FOSD q means that q̃1 + · · ·+ q̃k ≤ q1 +

· · ·+ qk for all k = 1, . . .N. It is easy to see that if q̃ FOSD q and q̃ 6= q, then κ̃ > κ and hence

pmin > p̃min. Therefore this last inequality is also implied by q̃Â q.

12



We want to see what happens to the expected prices pk if households search more in the sense

of Definition 1, and consider the following two cases in turn. First, we consider the case when

uninformed consumers start to compare more prices, and second, we consider the case when

already informed consumers compare more prices.

Uninformed Consumers begin to search. Consider first the case that only the uninformed house-

holds (type 1) search more. This means that q̃1 < q1 and q̃k ≥ qk for all k ≥ 2, i.e. q̃Â1 q.

Here we find, in line with the previous literature:

Theorem 3.1. Assume q̃1 < q1 and q̃k ≥ qk for all k ≥ 2, i.e. q̃Â1 q. Then p̃k < pk for all k.

Proof. Obviously the assumption implies that q̃k/q̃1 ≥ qk/q1 for all k, with strict inequality

for some k, so that ψ̃(x) > ψ(x) for all x ∈ (0,1). This in turn implies p̃k < pk for all k by

equation (1). ¥

That is, if some uninformed households begin to search, the expected prices for all types go

down. The average selling price, pav = q1 also goes down. Intuitively, there is more search and

the market becomes more competitive.

Informed Consumers search more. Consider next the case that only the informed households

(types k≥ 2) search more. This means that q̃1 = q1 and q̃Â` q for some `≥ 2. Here the situation

is not so transparent: there is also “more search", but the average selling price pav = q1 = q̃1

remains the same. This suggests (but does not prove) that not all prices pk can go down. Our

main result is the following.

Theorem 3.2. Assume q̃1 = q1 and q̃Â` q for `≥ 2. Then there exists a number d, d > 1 such

that p̃k > pk for k < d and p̃k < pk for k > d.

Proof: see Appendix.

We call d the digital divide. All types below the digital divide pay higher expected prices, and

all types above it pay lower expected prices. In particular, the uninformed households (k = 1)

always suffer because d > 1. For example, in Figure 4 we can take d = 10.5. It may be that

d > K, i.e. there are actually no consumers above d. In this case, all types k of consumers with

qk > 0 will expect to pay a higher price, see example 3.3.
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Figure 4: The Digital Divide: pk resp. p̃k is the expected price paid by type k under search
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k > d = 10.5 to decrease. Note that the size of these price changes need not be monotonic: e.g.

p3 increases more than both p1 and p5.
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It is important to realize that firms’ profits and hence also total consumer welfare depend only

on the fraction of uniformed consumers. More search by already informed consumers does not

affect total consumer welfare. However, it amounts to a redistribution of consumer welfare from

relatively uninformed consumers to relatively informed consumers. In this sense, more search

by informed consumers imposes a negative externality on relatively uninformed consumers and

may impose a positive externality on highly informed consumers.

As noted above, we find that the number of firms does not affect consumer welfare either (as

long as the search distribution q does not change). Increasing the number of firms just results

in lower profits per firm, leaving the industry’s profits and hence also consumer welfare unaf-

fected. This is in contrast to previous work by Rosenthal (1980) who considers a model with

uninformed and fully informed consumers and shows that if new firms enter the market all

types of consumers will expect to pay a higher price. The driving force behind this surprising

result is the assumption that each new firm brings new uninformed consumers to the market.

As the number of firms increases also the fraction of uninformed consumers in the market in-

creases and competition becomes less tough, like in our Theorem 3.1. Morgan, Orzen, and

Sefton (2006) and Waldeck (2008) also consider models with uninformed and fully informed

consumers and show that increasing the number of firms will decrease expected price for in-

formed buyers and increase expected prices paid by uninformed consumers. The main reason

behind this result is the assumption that the informed consumers always sample all firms in the

market. As the number of firms increases also the number of prices sampled by the informed

consumers increases. Morgan, Orzen, and Sefton (2006) and Waldeck (2008) show that in this

setup uninformed consumers will expect to pay a higher price and the fully informed consumers

will expect to pay a lower price, which can be readily interpreted in the light of Theorem 3.2.

We will now present an example where some consumers who previously compared two prices

start to compare three prices.

Example 3.3. Consider the case where consumers only sample at most three firms, i.e. K = 3

and consider the consumer search distribution q = (5,5,10). Using Lemma 2.2 we can nu-

merically compute the expected prices paid by the different types of consumers, obtaining

p1 ' 0.3761, p2 ' 0.2408 and p3 ' 0.1915. Suppose now that one consumer who previ-

ously sampled two firms samples now three firms, obtaining a new consumer search distribution

q̃ = (5,4,11). Computing expected prices under this new consumer search distribution we now
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obtain that p̃1 ' 0.3832 > p̃1, p̃2 ' 0.2434 > p2 and p̃3 ' 0.1919 > p3. In addition, we find

that a consumer of type 4 would actually pay a lower price (i.e. p̃4 < p4), but there are no such

consumers represented in the population.

At a first glance, the previous example seems to be in contradiction with the observation that as

the number of uninformed consumers is the same under both consumer search distributions also

the expected selling price has to be constant. This contradiction is however easily resolved if

one takes into account that the consumers who switched from sampling two firms to three firms

now pay a lower price, i.e. p̃3 < p2.10

It is clear from the above that if some shoppers search more they can exert a negative externality

on other households. Perhaps surprisingly, it is even possible that all consumers who search

more hurt themselves:

Example 3.4. starting from the initial search distribution q = (1,20000,0,0,0,10000), suppose

that all type 2 households switch to become type 3 (begin to compare three prices instead of

two), resulting in the new search distribution q̃ = (1,0,20000,0,0,10000). We have q̃Â q and

q̃1 = q1, i.e. the average selling price pav = p̃av remains the same, and one can check that

p̃k > pk for k ≤ 5 and p̃6 < p6 (the digital divide is d = 5). But even more is true: the expected

price p̃3 paid by the new type 3 households under distribution q̃ is not only higher than p3, but

even higher than p2, the expected price paid by the same households before the change. Thus

the increased search by these former type 2 households benefits only the highest type 6 in the

population, and actually makes those who search more worse off than before.

Note that the concept of “more search" introduced in Def. 1 is stronger than First Order Stochas-

tic Dominance. Regarding FOSD, we have:

Corollary 3.5. Assume q1 = q̃1, q̃ 6= q, and q̃ FOSD q. Then there exist thresholds 1 < d ≤ d̄,

such that all types below d (resp. above d̄) pay higher (resp. lower) expected prices under q̃

than under q.

Proof: see Appendix.

In particular, the uninformed (type k = 1) always suffer from an FOSD improvement among the

shoppers. We conjecture that Cor. 3.5 holds with d = d̄, i.e. the digital divide result in Th. 3.2
10Similar observations are known as Simpson’s paradox in statistics.
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remains true if "more search" is defined by FOSD, but have not been able to prove this stronger

result.

Finally, if we assume only q̃ FOSD q (but not necessarily q̃1 = q1), it is still true that sufficiently

high types pay lower prices under q̃, because the additional change from q1 to a (necessarily

smaller) q̃1 lowers all prices, by Th. 3.1. The effect on the uninformed of such a general FOSD

change is ambiguous: the reduction in q1 tends to lower p1, but the “digital divide" tends to

raise p1.

4 Conclusion

It has become widely accepted in economics that consumer welfare can be increased by making

the comparison of prices easier. If previously uninformed consumers start to compare prices

this is definitely the case. However, if already informed consumers compare more prices total

consumer welfare stays unaffected. Moreover, it will result in a redistribution of consumer

welfare from relatively uniformed to informed consumers.

The internet – and with it the onset of price comparison sites – has been largely praised by

economists and policy makers as a way to ease consumer search and thereby increase compe-

tition. Consequently, policies to improve internet accessibility, and to promote the use of price

comparison sites, are also seen as tools to increase consumer welfare. Whether such policies

are indeed beneficial to all consumers is however questionable. Suppose there are three types of

consumers: those who are uninformed consumers, those who sample just a few prices, e.g. by

using newspapers ads, and those who rely on internet price comparison sites. If the uninformed

consumers are not affected by measures promoting search, total consumer welfare will remain

constant. Moreover, if partially informed consumers decide to become fully informed, then the

uninformed will expect to pay a higher price.11 Consequently, when trying to enhance com-

petition by easing the burden of comparing prices uninformed consumers should be targeted

first.

Our findings are at the heart of the current political debate on broadband stimulus which turns

11As seen in Example 3.4, it is not even certain that the partially informed consumers will benefit from such a

shift.

17



around the question whether existing internet connections should be made faster or the internet

should be made accessible to a broader audience. The Economist argues that:

. . . But the case for large-scale government investment in broadband is not as strong

as its proponents claim. When it comes to promoting economic activity, it is easy

to see why having broadband is better than not having it, but most benefits are

likely to come from wiring people up in the first place rather than making existing

connections hum faster. . . . (“Broadband Stimulus,” The Economist, January 31st

2009, Vol. 380, Number 8616, p12. )

Our model supports this viewpoint, as making existing connections faster would merely result

in a redistribution of welfare from poorly informed consumers to better informed consumers,

whereas wiring up new consumers would increase total consumer welfare.

5. Appendix

Sketch of Proof of Prop. 2.1(c).

First one establishes that the equilibrium price distribution F must be continuous and strictly

increasing on a support of the form [pmin, pmax] with 0 < pmin < pmax = 1 (otherwise, one can

easily find profitable deviations). Given this, we observe that every price in the support must

give the same (expected) payoff to a firm. If the firm charges pmax = 1 it gets only its share

of uninformed consumers, so π = pmax.µq1 = µq1 is the equilibrium profit. If it charges pmin

it gets all households to which it is linked, so π = pmin.µκ , hence pmin = q1/κ . Total profits

are Nπ and must be equal to total household expenditure Mpav, so pav = (N/M)µq1 = q1.

A firm charging any price p ∈ [pmin,1] is observed by µqkk households of type k and makes a

sale to such a household iff the other (k−1) prices observed by the household are higher than p,

which occurs with probability [1−F(p)]k−1. Thus the firm’s profit is

p.
N

∑
k=1

µqkk[1−F(p)]k−1 = p.µq1.ψ[1−F(p)] = π = µq1

This implies

p.ψ[1−F(p)]≡ 1 (2)
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or F(p) = 1−ψ−1(1/p) ¥

Proof of Lemma 2.2.

The function x = Fk(p) = 1− [1−F(p)]k is one-to-one from [pmin,1] to [0,1]. Solving for p

gives the inverse function p = F−1
k (x) as follows: (1− x)1/k = 1− F(p) = ψ−1(1/p) (by

Prop. 2.1), hence 1/p = ψ[(1− x)1/k] or

p = F−1
k (x) =

1
ψ [(1− x)1/k]

It is geometrically obvious that the areas in the unit square to the left and to the right of the graph

of Fk (which is the same as the graph of F−1
k ) sum to one, i.e.

∫ 1
0 F−1

k (x)dx+
∫ 1

pmin
Fk(p)d p = 1.

By a well-known formula for RS-integrals we have

∫ 1

pmin

pdFk(p)+
∫ 1

pmin

Fk(p)d p = p.Fk(p)|1pmin

The leftmost term in this expression is pk, and the RHS is equal to 1, hence

pk = 1−
∫ 1

pmin

Fk(p)d p =
∫ 1

0
F−1

k (x)dx =
∫ 1

0

1
ψ[(1− x)1/k]

dx

The change of variable x = f (u) := 1−uk, with f ′(u) =−kuk−1, transforms the last integral to

pk =
∫ 1

0

kuk−1

ψ(u)
du =

∫ 1

0

1
ψ(x)

dxk

¥

The proof of Theorem 3.2 is preceded by some lemmas.

Lemma 5.1. Assume q̃1 = q1 and q̃ Â` q, 2 ≤ ` < N. Then there is a number b ∈ (0,1) such

that ψ̃(x) < ψ(x) for x ∈ (0,b) and ψ̃(x) > ψ(x) for x ∈ (b,1].

Of course, by continuity, ψ̃(b) = ψ(b), i.e. ψ̃ and ψ cross only once in (0,1], at the point b.

Proof of Lemma 5.1: Since q̃1 = q1 > 0, it suffices to prove the assertion for ϕ = q1ψ . By

assumption, qk− q̃k ≥ 0 for k < `, q`− q̃` > 0, and qk− q̃k ≤ 0 for k > `.
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We know that ϕ(0)− ϕ̃(0) = q1− q̃1 = 0 and ϕ(1)− ϕ̃(1) = κ− κ̃ < 0. For 0 < x≤ 1 we have

ϕ(x)− ϕ̃(x) =
`

∑
k=1

k(qk− q̃k)xk−1 +
N

∑
k=`+1

k(qk− q̃k)xk−1 =
1

x`−1 [A(x)−B(x)]

where

A(x) =
`−1

∑
k=1

k(qk− q̃k)
1

xl−k + `(q`− q̃`)

is nonincreasing in x and ≥ `(qk− q̃k) > 0 ∀x, and

B(x) =
N

∑
k=`+1

k(q̃k−qk)xk−l

is strictly increasing in x (because at least one coefficient k(q̃k−qk) must be positive), and tends

to zero for x → 0. Therefore the function f (x) := A(x)−B(x) is strictly decreasing on (0,1],

positive for x near zero, and negative for x = 1 (because ϕ(1)− ϕ̃(1) < 0). This implies the

assertion. ¥

Lemma 5.2. Let g(x) be a nonnegative continuous function on the interval [0,1] which is strictly

positive except in at most finitely many points, and choose b with 0 < b < 1. For i = 1,2, . . .

define

Ai :=
∫ b

0
g(x)dxi =

∫ b

0
g(x)ixi−1dx, Bi :=

∫ 1

b
g(x)dxi =

∫ 1

b
g(x)ixi−1dx.

Then
Bi

Ai
<

Bi+1

Ai+1
for i = 1,2, . . .

(obviously Ai, Bi are always positive).

Intuitively, the distribution Hi(x) = xi on the interval [0,1] has more weight on the right if i

increases, hence Bi should increase relative to Ai (one might also think that Bi−Ai increases

in i, but one can show by examples that this is not true in general).

Proof of Lemma 5.2: Fix b ∈ (0,1) and i ≥ 1. For any n ≥ 2 the integrals Ai and Bi can be

written as Riemann sums

Ai =
n

∑
j=1

g(η j)iη i−1
j dy j, Bi =

n

∑
j=1

g(ζ j)iζ i−1
j dz j
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where

0 = y0 < y1 < · · ·< yn = b, b = z0 < z1 < · · ·< zn = 1

η j ∈ (y j−1,y j), ζ j ∈ (z j−1,z j), dy j = y j− y j−1, dz j = z j− z j−1 ∀ j

Moreover, the numbers y j,η j,z j,ζ j can be chosen so that the summands

αi j := g(η j)iη i−1
j dy j =

∫ y j

y j−1

g(x)ixi−1dx

are all equal, i.e. αi j = Ai/n for all j = 1, . . .n; and the summands

βi j := g(ζ j)iζ i−1
j dz j =

∫ z j

z j−1

g(x)ixi−1dx

are also all equal, i.e. βi j = Bi/n for all j = 1, . . .n.

Now, using these same numbers y j,η j,z j,ζ j, we can approximate Ai+1, Bi+1 by Riemann sums

of the form

Ãi+1 =
n

∑
j=1

αi+1, j, B̃i+1 =
n

∑
j=1

βi+1, j

where

αi+1, j := g(η j)(i+1)η i
jdy j, βi+1, j := g(ζ j)(i+1)ζ i

jdz j.

By choosing n is sufficiently large, we can make Ãi+1 resp. B̃i+1 arbitrarily close to Ai+1 resp.

Bi+1 (because g is continuous and all possible Riemann sums converge to the same integral if

the grid size goes to zero). Then

βi+1, j

αi+1, j
=

g(ζ j)(i+1)ζ i
jdz j

g(η j)(i+1)η i
jdy j

=
βi j

αi j
· ζ j

η j
=

Bi

Ai
· ζ j

η j
(3)

By construction, ζ j/η j > z j−1/y j ≥ min1≤i≤n{zi−1/yi} =: λ > 1 (recall n ≥ 2). Moreover, if

we proceed to a finer partitioning, replacing n by n′ = n+1 (with the same properties as above,

i.e. all summands α ′i j resp. β ′i j are equal), then y′j < y j and z′j > z j−1 for j = 1, . . .n. Therefore

a fortiori ζ ′j/η ′j > z′j−1/y′j > z j−1/y j ≥ λ > 1.

Equation (3) implies βi+1, j > λ (Bi/Ai)αi+1, j, hence

B̃i+1 = ∑
j

βi+1, j > λ
Bi

Ai
∑

j
αi+1, j = λ

Bi

Ai
Ãi+1
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Therefore B̃i+1/Ãi+1 > λBi/Ai and, since B̃i+1/Ãi+1→Bi+1/Ai+1 as n→∞, we obtain Bi+1/Ai+1≥
λBi/Ai > Bi/Ai. ¥

Proof of Theorem 3.2.

Let q̃1 = q1, q̃ Â` q, 2 ≤ ` < N, and denote by pk resp. p̃k the expected price paid by a type k

household under the search distribution q resp. q̃, for k = 1,2, . . .N.

Consider the function

h(x) :=
1

ψ(x)
− 1

ψ̃(x)
.

By Lemma 5.1, there is a point b, 0 < b < 1, such that h(x) < 0 for 0 < x < b and h(x) > 0 for

b < x < 1. Therefore, by equation (1):

pk− p̃k =
∫ 1

0
h(x)dxk = Bk−Ak

where Ak =
∫ b

0 |h(x)|dxk, Bk =
∫ 1

b |h(x)|dxk. The function g(x) := |h(x)| satisfies the assump-

tions of Lemma 5.2, hence Bk/Ak increases strictly with k. Thus, if pm− p̃m = Bm−Am > 0

for some m, so that Bm/Am > 1, we have also Bk/Ak > 1, hence pk− p̃k = Bk−Ak > 0 for all

k ≥ m. In other words, if the expected price decreases for some type m, then also for all higher

types.

Denote by d the lowest type for whom the expected price does not increase, i.e. d is the first

index such that pd ≥ p̃d .

We know that p̃min < pmin, therefore p̃N < pN for N sufficiently large (because a household who

searches long enough must find a price arbitrarily close to the minimum); thus d < ∞.

It remains to show that d > 1, i.e. not all prices go down. Using vector notation, write q · p =

∑k qk pk. Then the expected average prices satisfy

q̃1 = p̃av = p̃ · q̃ = q1 = pav = p ·q (4)

Moreover, the components of p = (p1, . . . pN) are strictly decreasing and q̃ FOSD q. Therefore

q̃ · p < q · p. If all prices p̃k were less than pk, we should have p̃≤ p, hence q̃ · p̃≤ q̃ · p < q · p,

contradicting (4). ¥

Proof of Cor 3.5.

A search distribution q = (q1, . . .qN) can equivalently be represented by its cumulative distribu-

tion Q = (Q1, . . .QN), where Qk = q1 + . . .qk for k = 1, . . .N (of course Q1 ≤Q2 ≤ . . .QN = 1).
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Write Q̃ÂQ iff q̃Â q. Now assume q̃1 = q1, q̃ 6= q, and q̃ FOSD q. i.e. Q̃k ≤Qk ∀k. Write

Q = (Q1, . . .QN), Q̃ = (Q̃1, . . . Q̃N) and define Q1 = Q, and Q` = (Q̃1, . . . Q̃`−1,Q`, . . .QN) for

2 ≤ ` ≤ N. Then QN = Q̃N and each Q` is obtained from Q`−1 by shifting the nonnegative

mass δ` = Q`− Q̃` of consumers from type `−1 to type `, i.e. Q` Â Q`−1 (or Q` = Q`−1) for

` = 2, . . .N. Each move from Q`−1 to Q` either leaves all prices unchanged (if Q` = Q`−1), or

it creates a digital divide d` > 1, raising expected prices for the types below d` and lowering

prices for the types above d`, by Th. 3.2. Since q̃ 6= q, such a change occurs at least once.

Putting d = min(d`), d̄ = max(d`) gives the assertion of the Corollary. ¥
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