Lehmann, Katja; Crombie, Andrew; Singer, Andrew C.
2008 Reproducibility of a microbial river water community
to self-organize upon perturbation with the natural

Copyright: 2008 Federation of European Microbiological Societies

This version available at http://nora.nerc.ac.uk/3589/

NERC has developed NORA to enable users to access research outputs
wholly or partially funded by NERC. Copyright and other rights for material
on this site are retained by the authors and/or other rights owners. Users
should read the terms and conditions of use of this material at
http://nora.nerc.ac.uk/policies.html#access

This document is the author’s final manuscript version of the
journal article, incorporating any revisions agreed during the peer
review process. Some differences between this and the publisher’s
version remain. You are advised to consult the publisher’s version
if you wish to cite from this article.

www3.interscience.wiley.com

Contact CEH NORA team at
nora@ceh.ac.uk
Title: Reproducibility of a microbial river water community to self-organize upon perturbation with the natural chemicals enantiomers, \(R\)- and \(S\)-carvone.

Authors: Katja Lehmann, Andrew Crombie, Andrew C. Singer*

Centre for Ecology & Hydrology, Oxford, Mansfield Road, Oxford, OX1 3SR, UK

*phone: +44 (0)1865 281630
fax: +44 (0)1865 281696
acs@ceh.ac.uk

Keywords: river water, self organization, microbiology, microbial ecology, length heterogeneity PCR, carvone, biodegradation
A river water microbial community was studied in response to perturbation with the monoterpene enantiomers R- and S-carvone. The microbial community structure and function was also evaluated after enantiomers exposure was switched. Microbial communities were evaluated by length heterogeneity PCR. The addition of R- and S-carvone enriched for a range of functionally different communities: enantiomer-selective, racemic and ones that contain both. After 5 days incubation, the R- and S-carvone treatments developed a range of dominant microbial communities, which were increasingly dissimilar from the ones in which no carvone degradation had taken part (R-values: R-carvone 0.743, S-carvone 0.5007). Upon carvone depletion, communities reverted to a less dominant community structure. After the cross-over, the rate of carvone utilization was significantly faster than after the first carvone addition ($p=0.008$) as demonstrated by concomitant carvone and oxygen depletion. The main R-degrading community (450 to 456 bp) appeared enantioselective and largely unable to degrade S-carvone, whereas the S-carvone degrading community (502 to 508 bp) appeared to have racemic catabolic capacity. In conclusion, chemical perturbations, such as enantiomers, might generate a significant shift in the river microbial ecology that can have implications for the function of a river in both a spatial and temporal context.
Introduction

The scientific method relies upon the premise that a response from a system can be replicated upon re-creation of the precise physical-chemical-biological conditions under which the response was generated. In the physical sciences, this can be easily demonstrated—as a projectile will precisely and accurately hit its target when all variables are reproduced. However, proving such a premise when it entails biological systems can be logistically impossible. Curiously, our inability to precisely reproduce physical-chemical-biological conditions in the natural sciences has not precluded genuine insights into the mechanics of natural systems. For example, the premise has enabled a deep understanding of the physiology of microorganisms despite the lack of control over many of its component parts, e.g. gene instability, mutations, gene regulation. The problems posed by microbial systems are considerably compounded when microbial ecology is interrogated, as each member of the community is uniquely responding to its individual physical-chemical-biological condition.

Therefore, complex microbial systems are, arguably, impossible to replicate (Huisman & Weissing, 2001). Yet, despite their inherent complexity, the ‘system’ can function with a considerable degree of reliability—this is evident in as disparate operations as sewage treatment works and wineries. However, how natural systems self-organize to perform a function and why on occasion they don’t, is largely unknown.

The current study aims to investigate the reproducibility of a river water system to self-organize upon perturbation with the natural chemical carvone. Carvone is one of over 400 different naturally occurring monoterpenes constituting the largest class of secondary metabolites in plants (van der Werf, et al., 1999). S-(+)-Carvone is the principal constituent of the oils from caraway (50-70%) and dill (40-60%), while R-(–)-carvone is the principal constituent of the oil from spearmint (51%) (de Carvalho & da Fonseca, 2006). Monoterpenes play an important role in chemical ecology, where they act as attractants, repellents, sex pheromones, alerting pheromones, and defence secretions, as well as antifungals, and biofilm and enzyme inhibitors (Hartmans, et al., 1995, Amaral & Knowles, 1998, Amaral, et al., 1998, van der Werf & Boot, 2000, Niu & Gilbert, 2004). Emissions of monoterpene from trees are estimated at 127 x 10^{14} g carbon per year (Guenther, et al., 1995) and are deemed central to a terpene-

The structural similarity of R- and S- carvone to many of the other 400+ naturally-occurring monoterpenes permitted its use as a model natural chemical for perturbing the river water ecosystem. By using optical isomers as the perturbation, the treatment effect can be isolated to the interaction between the chiral biomolecules within the river water microorganisms and the chiral nature of carvone—as all physical properties of enantiomers are identical (e.g., water solubility, log P, Henry’s constant, etc). The ability to distinguish enantiomers plays an important role in fields such as drug effectiveness, insect chemical communication, taste perception and bioremediation (Laska, et al., 1999, Singer, et al., 2002). The varied physical activities and toxicological risks of enantiomers should be expected given that the biological receptors (e.g. proteins) are chiral and thus potentially enantioselective (Laska, et al., 1999).

This study repeatedly monitored residual carvone, dissolved oxygen, protists, and community structure over a 22-day period to qualify the variability in the resulting community structure and functional response of a river water bacterial community after spiking with different carvone isomers. We hypothesized that despite every
effort having been made to replicate the physical-chemical-biological conditions within and between treatments, the resulting community structure and function would be highly variable. We predict one of three outcomes: 1) enrichment of enantiomer-selective degraders; 2) enrichment of racemic degraders; or 3) enrichment of both enantiomer-selective and racemic degraders. The study employed a cross-over design, where communities exposed to one isomer of carvone were subsequently exposed to the other isomer, raising the question: How rapidly can the function and structure of a microbial community respond to fluctuating optical isomers, and how variable is the response?

Materials and methods

Experimental design

Two experimental treatments, one spiked (R)-(+)–carvone and the other with (S)-(−)–carvone and one control treatment were monitored over 12 days to investigate the degradation process of the different carvone isomers. On day 13 the microbial communities from each treatment were retrieved from their environment and re-suspended in water spiked with the alternative carvone isomer (see Table 1). This cross-over was employed to assess the functional diversity of the communities. After the cross-over the degradation of the alternative isomer was also monitored. A final sample was taken on day 22, after which the experiment was finished.

Sample preparation

Ten litres of water were collected from the River Cherwell at the weir in the University Parks, Oxford, England. Details of this reach of the Thames catchment can be found in a previous publication (Neal, et al., 2006). The water was poured into a 50 L plastic container through a 5 mm sieve to remove large particles. Half of the filtered water was immediately autoclaved and stored at 4°C to be used in the second half of the experiment. The remaining river water was incubated for four days in the dark to equilibrate to room temperature and allow the microbial community to adjust to laboratory conditions prior to initiating the study. The time span needed for the microbial community to adjust to laboratory conditions had been determined in
preliminary unpublished studies, which utilised DNA recovery over time as a measure of ‘change’ in the system.

The experimental treatments were generated from three 5 L conical flasks prepared from the incubated river water. (R)-(+)\text{-}carvone (98% purity; Lancaster, Morecambe, UK) and (S)-(\text{-})\text{-}carvone (98%; Sigma-Aldrich, Gillingham, UK) were dissolved in two of the flasks at 20 µg g\text{-1}, whereas nothing was added to the third, control, flask.

The carvone treatments were divided into 24 pseudoreplicates by distributing 80 mL into 125-mL wide-mouth amber glass bottles. Half of the prepared bottles (n = 12) served to monitor carvone degradation while the remaining were used to monitor the microbial community. Providing separate bottles for chemical and molecular analysis ensured that the microbial community would be minimally disturbed during the study. Only 12 replicate bottles were prepared for the control treatment, as there was no carvone degradation to monitor. All bottles were loosely capped and stored at 19 °C in a temperature-controlled room in random order determined by true random number generation (Haahr, 2006). A new order was established after each sampling occasion.

Sampling procedure

Samples for chemical analysis were taken on a daily basis for the first 7 days of the study to record the rate and extent of carvone degradation (Table 1). Carvone analysis was achieved by transferring 5 mL of water from each of the 12 replicate bottles into a 20 mL glass vial with a PTFE-lined cap and frozen until further analysis (see Chemical Analysis section). A minimum of 4 replicates from each of the bottles used for chemical analysis from each treatment were also monitored for dissolved O\texttext{2} concentration with a Multiline P3 oxygen probe (WTW, Weilheim, Germany) to aid in assessing the extent of microbial activity, as the concentration of dissolved oxygen negatively correlates with the extent of aerobic bacterial activity in the bottles.

Microbial communities were sampled on 6 time points throughout the study. The first four time points were located within the first 7 days and aimed to characterize the rate of carvone degradation. The fifth sampling point (day 12) was set for 5 days after the fourth sampling point (day 7) to allow the microbial communities to adapt to a
situation in which only residual organic carbon sources were available. The sixth
sampling point (day 22) was set for one week after the cross-over, where the
alternative carvone isomer was added so as to assess the extent of carvone
degradation. The sampling regime in this study was determined fluidly, based on data
generated from the previous sampling point to maximize the relevance of each
sampling.

Five-mL aliquots of water from all treatments were passed through a 47-mm
diameter, 0.2 μm pore filter (Millipore GSWP04700), which was frozen at -80 °C
until analysis. Particular attention was given not to disturb the samples, as the surface
was sometimes, but not always covered in a biofilm while the bottom of the bottle
occasionally collected precipitated organic matter and sediment. As not all
pseudoreplicates developed a biofilm or bottom sediments all aliquots for molecular
microbial community analysis were acquired from the middle zone (i.e., mid-depth)
of each bottle. Negative controls were taken by filtering 5 mL sterile water in the
same manner.

On day 13 (one day after the 5th sampling point) the communities within each of the
replicates were pelleted by centrifugation (14,000g, 40 min, 4°C, JA-20 rotor,
Beckman J2-HS centrifuge). They were re-suspended in new bottles holding 85 mL of
the autoclaved river water that was frozen at the beginning of the experiment to which
20 μg g⁻¹ of the alternative carvone isomer was added (see Table 1). The cross-over
was employed to assess the functional diversity of the communities. Chemical
analysis was subsequently carried out on days 14, 17, 18 and 20, to measure the rate
at which the carvone was removed. On day 22 final samples were taken for both
chemical and community analysis. The control treatment was treated identically to the
carvone treatments, less the addition of carvone.

Protist abundance
Samples from four randomly chosen replicate bottles from each treatment used for
chemical analysis as well community analysis and from the controls were studied
under the microscope on days 1, 4, 7, 13, 15, and 22. Protozoa were quantified on
days 13 and 15, and 22 from a 16 µL aliquot using a Nikon Phase Contrast microscope 0.90 dry (40x magnification) with a counting chamber (Fuchs Rosenthal, 0.2mm deep).

Chemical analysis
A liquid-liquid extraction was employed for recovering carvone from the river water samples. Briefly, 5 mL of ethyl acetate containing 20 µg g⁻¹ α-pinene as internal standard were added to each 5 mL sample in a 15 mL glass vial with a PTFE-lined cap. The sample vials were shaken overnight to extract carvone into the organic phase. One mL of the organic phase was withdrawn into 1.8 mL vials and analyzed using a Perkin-Elmer Autosystem XL gas chromatograph fitted with a flame ionization detector (FID) and an Agilent DB-5 ms capillary column (30 m length × 0.25 µm film thickness × 0.25 mm ID). A 3 µL injection was analysed with the following instrument parameters: injector and detector temperature 280 °C, He carrier at 1 mL min⁻¹, and a 40 mL min⁻¹ split. The temperature program was, initially, 80 °C held for 1 min, ramped at 10 °C min⁻¹ to 110 °C followed by a ramp of 25 °C min⁻¹ to 260 °C.

DNA preparation and LH-PCR analysis
The frozen filter papers were cut into 3 to 5 mm wide strips and placed in bead beating tubes (Q-BIOgene lysing matrix E, BIO 101 systems) containing 1 mL of CTAB DNA extraction buffer (consisting of 100 mM Tris-Cl, 100 mM NaEDTA, 100 mM phosphate buffer, 1.5M NaCl, 1% CTAB, pH 8.0). In addition to the negative controls taken at the sampling stage, control blanks were produced by extracting from an empty bead beating tube. The tubes were incubated for 30 min in a 65 °C water bath. They were subsequently shaken for 30 sec at setting 5.5 in a FASTprep bead beating machine (Bio 101, Vista, California), cooled and centrifuged for 10 min at 14,400 × g at 4 °C. The supernatant was transferred to new 1.5 mL microcentrifuge tubes and 1 volume of 24:1 chloroform:isoamyl alcohol (IAA) added. The tubes were centrifuged for 5 min at the same settings noted earlier. The aqueous phase was transferred to new 1.5 mL microcentrifuge tubes, 0.6 volumes of isopropanol added to precipitate DNA, and the tubes left over night at 4 °C. The next day the tubes were
centrifuged for 10 min as noted earlier, the supernatant was removed and the DNA pellet washed with 200 µL cold 70% ethanol. The tubes were centrifuged for a further 10 min as noted earlier, the supernatant removed and the remaining DNA pellet dried for 30 min in a laminar flow cabinet. Lastly, the DNA was re-suspended over 2 h in deionized water. The extraction product was analyzed by electrophoresis (ECPS 3000/150, Pharmacia, New Jersey, USA) in a 1% agarose gel containing ethidium bromide (Sigma-Aldrich, Gillingham, UK), photographed in a Geneflash image analyser (Syngene, Cambridge, UK) to determine if DNA was present and thereafter frozen at -20° C.

LH-PCR of 16S rDNA was carried out using a BF1 forward primer (nucleotide sequence TCA GA(A/T) (C/T)GA ACG CTG GCG G) labelled with Beckman D4 fluorescent dye (Proligo, France) and 530R reverse primer (GTA TTA CCG CGG CTG CTG) (Proligo, France). The thermal cycle consisted of 95 °C, 2 min; then 34 repeated cycles of 95 °C, 1 min; 60 °C, 2 min; 72 °C, 1.5 min, followed by 30 min at 72 °C. The PCR product was purified by filtration through Sephadex® (Sigma-Aldrich, Gillingham, UK) in a 96-well filter plate (Millipore, Watford, UK) as per manufacturer’s instructions. Electrophoresis in a 1.2% agarose gel was used to confirm the presence of a PCR product and the absence of contamination. As the products were often weak, the magnesium ion concentration in the reaction mixture was further optimized (Ignatov, et al., 2003). The optimized 50 µL reaction volumes contained 0.1 µL of each primer, 50 µM of each dNTP (Bioline), 1 unit Taq polymerase in 1 × PCR buffer (both Sigma) to which was added 2 µL of 50 mM MgCl and between 1 to 4 µL template DNA, depending on the strength of the PCR product. Materials, except for the active ingredients, were exposed to UV radiation for 2 min in a UV crosslinker (Hoefer, San Francisco, USA).

Both positive and negative controls were run alongside the DNA templates. Negative controls included those from the sampling stage, the DNA extraction and from the PCR stage, during which sterile deionized water was used instead of the DNA product. Analysis of fragment length was carried out with a Beckman Coulter CEQ2000 sequencer, using 1 µL of the PCR amplified 16S rDNA in 35 µL deionised
formamide and 0.5 µL of CEQ 600 bp DNA size standard (Beckman Coulter, Fullerton, USA). Samples for which no DNA could be detected were re-analysed.

Statistical analysis

OTU detection and fragment size determination of the LH-PCR products were carried out using CEQ8000 (Beckman Coulter, Fullerton, USA) and GeneMarker v 1.6 (Biogene Ltd, Kimbolton, UK) sequencing software. The fragments were automatically aligned via the software’s binning analysis function to remove imprecision in the software’s interpolation of size standards and fragment lengths without introducing bias through manual alignment (Rees, et al., 2004, Hewson & Fuhrman, 2006). The negative controls which had been successfully analyzed showed some bands (≤ 200 relative fluorescent units (RFU)) up to 374 bp but not beyond. Most replicates showed bands between 450 bp and 520 bp which is consistent with findings of Whiteley et al. (2003) using the same set of primers. Only fragments in the range of 400 to 560 bp were used in defining microbial community structures (Whiteley, et al., 2003).

The band intensity and fragment length data thus obtained was imported into Microsoft Excel where absolute band intensities were converted to show relative abundance to standardize the data (Rees, et al., 2004). Peaks lower than 1% were subsequently removed to further reduce bias caused by the amount of PCR product added (Rees, et al., 2004). The resulting data set was used for the statistical analysis.

Analysis of variance including Tukey tests and correlations were performed in SPSS (SPSS Inc.). Past v. 1.4.8 (Hammer, et al., 2001) was used for Analysis of similarity (ANOSIM)—a non-parametric test for significant differences between two or more groups (Clarke, 1993). ANOSIM produces a statistic, R, which indicates the magnitude of difference among groups of samples. If R>0.75 the groups are well separated, if R>0.5 they are overlapping, but clearly different, if R<0.25 the groups are barely separable (Clarke & Gorley, 2001). As part of the analysis, the statistical significance of R is tested by Monte Carlo randomization. PCA and cluster analysis were done in Past v. 1.4.8 and MSVP v. 3.1.3 (Kovach Computing Services).
Distance measures for the multivariate analyses are based on the Bray-Curtis similarity index (Clarke, et al., 2006). Diversity was measured in Past v. 1.4.8 with the Parker-Berger index showing a proportional representation of the most dominant species per sample.

Samples will be referred to as either [Treatment/Replicate] such as R1 to denote ‘treatment R-carvone, replicate 1’ or [Sampling day/Treatment/Replicate] such as D7R1 to denote ‘sampling day 7, treatment R-carvone, replicate 1’. Samples used for chemical analysis will have the prefix ‘Chem’.

Results and discussion

Dissolved oxygen concentration

The measurement of dissolved O$_2$ was used to determine the metabolic activity of samples, indicating when carvone degradation had begun, as a decline in the dissolved oxygen indicates metabolic activity suggestive of carvone degradation (Figure 1).

Overall, the difference between the replicates which had carvone added to them and those which had not is clearly visible: the O$_2$ content in the replicates of the two carvone-supplemented groups decreased over the course of the experiment. By day 12 when all initial carvone had been degraded it returned to the baseline dissolved oxygen concentration (8.2 mg L$^{-1}$). After the cross-over (day >13), the dissolved oxygen concentration decreased again, only to return to baseline by day 22 after the carvone had been degraded (Figure 1). Notably, a number of replicates in both treatments reacted immediately upon the addition of the alternate isomer of carvone (day 14), as is shown in Figure 1. There was little change in the dissolved oxygen concentration in the control group up until the cross-over, at which point a number of the controls demonstrated a decline in dissolved oxygen. The observed decline in the controls was likely the result of residual labile dissolved organics in the archived river water used to resuspend the communities. When oxygen content measurements were correlated to the residual carvone data, significant results were obtained for both R-carvone (Kendall's tau, $p=0.02$), and S-carvone (Pearson Correlation, $p = 0.01$)
Protists and grazing activity

Protist abundance was measured to gain insight into the potential effect of protozoan grazing on microbial populations and the effect of microbial populations differentially supporting the growth of protists. Protist numbers were estimated twice: 1) after carvone had been degraded for 1 week (day 13 and 15), and 2) shortly after the cross-over when carvone degradation had completed for the second time (day 22). On the first count (day 13 and 15), the R-carvone samples yielded 551 protists mL⁻¹, the S-carvone samples 504 protist mL⁻¹ and the controls 104 protists mL⁻¹. On the second count (day 22) the number of protists mL⁻¹ in the R-carvone treatment was 3344, in the S-carvone treatment 3328 and in the control 395.

Whilst there were no significant differences between the two carvone treatments, the total number of protists in the carvone treatments was higher than in the control. The second count showed not only a marked increase in protists, but also a significantly wider margin between the number of protists in the carvone replicates and in the control (P < 0.01, ANOVA). The greater abundance of protists in the carvone treatments suggests that carvone served as a growth substrate for the indigenous microorganisms, which in turn supported an increase in protists. The ability of the protists to rapidly respond to an increase in bacterial abundance could have contributed to the unusually low recovery of bacterial DNA from timepoints immediately following the removal of carvone (days 7, 12, 22). Jaquet et al. (2005) report that numbers of protozoa, comparable to that in the carvone treatments, removed up to 7.8% of bacteria in 24 h whereas Domaizon et al. (2003) describe per capita grazing rates from 1.2 x 10³ to 5.1 x 10⁶ bacteria l⁻¹ h⁻¹ for heterotrophic flagellates and from 4.8 x 10⁶ to 6.8 x 10⁷ bacteria l⁻¹ h⁻¹ for mixotrophic flagellates. Hence, grazing by protists might have masked the otherwise rapid increase in microbial growth upon the addition of carvone.

The protozoa most often found in the samples were identified as typical freshwater species such as Amoeba sp. (Sarcodina), Actinosphaerium sp. (Heliozoa), Peranema sp. (Flagellates), Vorticella sp., Coleps sp. and Colpoda maupasi (Ciliates) (Patterson & Hedley, 1996). Both flagellates and ciliates have been observed to significantly

Chemical analysis
The rate of carvone utilization after the cross-over was significantly faster than after the first carvone addition ($p=0.008$; days 4 to 5 versus days 16 to 17 (Figure 2)). This was also supported by dissolved oxygen measurements for those days: on day 4 the mean dissolved oxygen concentration for both carvone treatments was 8.08 mg L^{-1}, on day 16 it was 7.3 mg L^{-1}. It must therefore be concluded that in the majority of samples at least part of the bacterial community consisted of organisms that were able to degrade both enantiomers (van der Werf, 2000). Two replicates, ChemS2 and ChemR1, demonstrated very slow degradation of R-carvone and S-carvone, respectively, before the cross-over. However, after the cross-over, these replicates were among the first to degrade the alternative isomer, indicating that the carvone degrader(s) within these treatments might have been highly enantioselective (Figure 3).

Community analysis – general patterns
To analyze and assess shifts in the phylogenetic structure of the bacterial community in the two treatments and the control replicates, samples were taken both before the addition of carvone (day 0) and at the time points described in Table 1. Analysis of the microbial community by LH-PCR revealed a baseline community at day 0 (Figure 4) with several major bands representing OTUs ranging from 440 base pairs (bp) to 510 bp, suggesting a community of several comparably abundant organisms. A similar community structure was found in the control replicates throughout the study. On day 1 a comparable fingerprint could also be observed for R- and S-carvone treatments. Over the course of the experiment, however, the carvone treated replicates diverged from the community structure seen in day 0 as well as from the controls. The majority of the R-carvone replicates showed a pattern dominated by an intense band around 452 bp (Figure 6) and/or a broad band around 504 bp, whereas the S-carvone replicates displayed three different pattern types: (I) band around 508 bp (Figure 4, day 7a); (II) bands around 452 and 504 bp, similar to the majority of R-carvone
samples (Figure 4, day 7b), and (III) bands around 452, 500 and 506 bp, similar to the controls (Figure 4, day 7c).

A principal components analysis (PCA) for day 7 (explaining 30% of the variance in the data set) shows that in both treatments 7 of 12 replicates showed similar within-treatment fingerprints, but highly dissimilar fingerprints between treatments (Figure 5). The remaining R- and S-carvone replicates from day 7 clustered with the controls. The analysis of the three R-carvone samples clustering with the controls did not produce any discernible bands due to insufficient DNA yield, which potentially explains their ‘outlier’ status on the PCA plot.

The community development of a single replicate (R6) from the R-carvone treatment is shown in Figure 6, highlighting the dynamic nature of the river water system. Of particular interest was that after the cross-over, the newly developed intense bands (Figure 6, day 22) were more akin to the banding patterns that could be seen in many of the S-carvone replicates (Figure 4, day 7b), indicating that the capacity to catabolise both enantiomers of carvone was not always harbored in the same OTU. This result suggests that the capacity to respond to subtly different chemical perturbations might require a significant shift in the dominant microorganisms in the river water.

The significance attributed to the changes in the observed community patterns was provided by ANOSIM (Clarke, 1993), which generates an R-value indicating dissimilarity if close to 1 and similarity if close to 0 (Clarke & Gorley, 2001). Comparing the treatment groups to each other at each time point often showed that differences between the groups were not very marked. On day 7 ANOSIM analysis produced the following R-values: 0.23 for R-carvone compared to control, 0.16 for S-carvone compared to control and 0.33 for R-carvone compared to S-carvone (all R-values were significant). These results mean a) that both the two carvone treatments are more similar to the control than they are to each other, and b) that the difference between the R-carvone and S-carvone samples was not very marked (Clarke, 2001). This similarity might be attributed to the high within-treatment variability or to the often low DNA yields in both carvone treatments and in the controls. A more
insightful use of ANOSIM was to analyze the replicates over time (Chapman and Underwood, 1999). In this way it could be shown that the R-carvone treatment, in particular, went through clear cycles of community structure divergence and convergence.

The R-values displayed in Table 2 describe growing divergence during the process of carvone degradation. On day 12 the communities had become more similar to the initial (day 1) communities again, suggesting that a community reverts back to a similar community structure when it becomes starved for carbon. After the cross-over, the communities once again took on the structure of one of the carvone degrader communities. The development is less pronounced in the S-carvone treatment presumably because instead of one predominant community pattern at the peak degradation activity there were three (Figure 4). The S-carvone treatment appeared to have been predominantly degraded by at least two different organisms as opposed to one (as shown by two bands at 454 bp and 502 bp respectively in Figure 4, day 7, denoted ‘b’). Many of the bands present in the day 7 replicates were also noted at day 1 and the statistical method used might have not been able to detect any further differences.

To investigate diversity, the Parker-Berger index was calculated for all treatments on sampling days 7 and 22. The index provides information about the most dominant species and calculates the percentage an OTU is present in the data set. On day 7, the dominant OTU made up 42, ~60 and 44% of the total microorganisms in the S-carvone, R-carvone and control treatments, respectively. On day 22, the dominant OTU made up 44, ~56 and 72% of the total microorganisms in the S-carvone, R-carvone and control treatments, respectively. The low diversity of the control treatment can be explained by weak PCR products which produced often just one or two bands of a relatively low height. At days 7 and 22, the R-carvone treatment exhibited lower diversity than the S-carvone treatments, suggestive of unequal functional diversity within the R- and S-carvone degrader populations.
Degradation rates for the S-carvone treatment were apparently not related to one particular community make-up but rather to the number of bacteria in the individual samples. Whilst a direct comparison of DNA mass between the different sample bottles was not possible in this study, matching of the measured dissolved O$_2$ content with the community analysis results showed that high relative fluorescence unit (RFU) values coincided with fast degradation. S1 and S3, the samples in which, according to dissolved O$_2$ content, degradation set in first, had distinct and intense bands around 508 bp (Type 1) and 454 bp (Type II), respectively. Samples S8 and S10, two S-carvone replicates whose dissolved O$_2$ content was not observed to change until late into the experiment, displayed a range of low intensity bands (up to 1500 RFU), suggestive of a more diverse community on days 5 and 7. However, on day 12 these had given way to the less diverse patterns and more intense bands (up to 25000 RFU) seen in the fast degrading replicates.

The same could be seen in the R-carvone treatment. The samples R10, and R3 in which rapid degradation took part showed community fingerprints with intense bands even on early sampling days, whereas replicates which had a persistently high dissolved O$_2$ content (such as R1 and R7) had markedly low intensity bands. It seems therefore likely that slow degradation was related to low bacterial counts in the sample bottles.

PCA of the treatments grouped by sampling day frequently showed clusters of rarely more than six replicates of the same treatment. Notably, little inference could be made into functionality (i.e., carvone degradation rate) based on these clusters. The replicates D7S1 and D7S3 on the PCA scatter plot (Figure 5) in which carvone was degraded fastest are a good example for this: though functionally very similar their microbial communities are among the least alike. D7S8 and D7S10 on the other hand are positioned close to D7S1 even though the carvone in S8 and S10 was degraded slowly, whereas S1 harbored a fast degrading community. Many similar examples suggested that PCA of the sampling days was of limited use to understand functionality.
After the cross-over (day 22), replicates S10 and S2 developed a community structure resembling that of R-carvone, while replicates R6 and R7 developed a community structure resembling that of S-carvone. Replicates R6 and R12 (which had a very pronounced R-community pattern) were unable to completely degrade the S-carvone by the termination of the study on day 22, whereas former S-carvone communities had all degraded the R-carvone shortly after the cross-over. In conclusion, the main R-carvone degrading microorganism(s) (450 to 454 bp) appeared enantioselective, whereas the S-carvone degrading microorganism(s) (502 to 508 bp) appeared to have racemic catabolic capacity. The ability to utilize both carvone isomers might explain why 11 of 12 replicates of R-carvone had at least a small band between 502 and 508 bp, indicative of the racemate-utilising OTU. It seems likely that the racemate utilizer might be less efficient at R-carvone utilization than S-carvone, explaining the dominance in one treatment versus another, yet its presence in both. To highlight the importance of the racemate-utilizing OTU, the gel image of R6 on day 22 (Figure 6, day 22) shows an abundant OTU between 450 to 454 bp (denoted by a bright white band) had been replaced with an abundant OTU at 502 bp. Similarly, the chromatograph of R12 on day 22 shows an abundant OTU between 502 and 508 bp and an abundant OTU at 450 bp, suggesting that the reason for the slow degradation had been insufficient numbers of S-carvone degraders.

Identification of possible degraders

The community structures that developed over the course of the experiment as described in the previous sections suggest that the dominant likely degrader in the R-carvone treatment, found between 450 and 456 bp, was enantioselective and could not degrade S-carvone. Therefore replicates that had developed a structure in which this likely degrader was very dominant were slow to re-adjust when the isomers were reversed. The dominant likely degrader in the S-carvone treatment, found between 500 bp and 508 bp, could degrade both S- and R-carvone. This seems evident because bands at 508 bp were prominent in many replicates of both treatments, and they appeared in former R-carvone treatment replicates in which they were not detectable at earlier timepoints but they never disappeared totally in the former S-carvone treatment. The
presence of this likely degrader allowed for a less hierarchical structure in as much as other OTU bands were also prevalent in S-carvone (before and after the cross-over), thus indicating that this organism might in fact have facilitated carvone degradation for other bacteria. One possible bacterium that fits this profile would be *Rhodococcus erythropolis* DCL14 which can degrade both carvone enantiomers by cleaving the ring-structure allowing other bacteria to process the product (van der Werf, 2000). However, this hypothesis was not tested experimentally.

The initial microbial communities at day 1 and in the controls changed to a more hierarchical community structure with fewer and more dominating OTU in the presence of carvone. There was considerable within-treatment variability between replicates. No significant differences exist between the rates of degradation of carvone in the different treatments before the cross-over, however, after the cross-over the S-degrading communities generally degraded R-carvone more efficiently than R-carvone utilisers degraded S-carvone. Therefore, whilst the fast on-set of degradation in most of the replicates after isomer-reversal shows that the initial addition of carvone induced the development of bacterial communities which readily utilized carvone of both types when it was added again, there was nevertheless diversity in function between the two treatment-groups.

It is likely that the observed variability in the extracted DNA and PCR products during the study is a reflection of grazing activity by protists. Predation brings about considerable changes to bacterial population size and structure (Boenigk & Arndt, 2002, Sherr & Sherr, 2002, Corno & Jürgens, 2006). Corno and Jürgens (2006) describe how in chemostats including grazers and sufficient carbon substrate, filamentous bacteria, too long to be grazed, were dominant. In carbon starved environments containing grazers (as in the current experiment towards the later sampling days), the bacteria found when samples were observed under the microscope were, however, not filamentous. The predominant bacterial morphology of the carvone degrader might have been easily bioaccessible to the protist grazers, leading to a rapid decline in bacterial abundance. Corno and Jürgens (2006) also observed the lack of freely suspended bacteria, a fact equally noted in other studies (Jürgens &
Sala, 2000). As samples for the current experiment were taken from the middle depth of the water column, a lack of freely suspended bacteria would have led to very weak DNA extraction products as there would have been relatively low DNA recovery.

Preferential grazing or the absence thereof might have also brought about differences in community composition. Some have described how the absence of protists allowed for the dominance of previously rare species (Suzuki, 1999) and it is assumed by some that protist grazing pressure contributes to bacterial diversity (Boenigk & Arndt, 2002) in as much as the most active bacteria are preferentially grazed thus allowing less dominating groups to coexist (Kent, et al., 2006). Kent et al. (2006) in an experiment to explore mechanisms causing community shifts in a humic lake, name top-down pressure as the most important factor to structure bacterial communities. Hence, protistan grazing could have controlled the absolute population size of the most dominant species, thereby increasing the likelihood of recovering less dominant community members.

As a majority of monoterpenes are released from plants and plant detritus between spring and autumn (Llusia & Penuelas, 2000, Hellen, et al., 2006), it is likely that the river water in this study, acquired in June, might contain a microbial community more readily able to perform carvone degradation than a community extracted from river water in the winter. This might explain why some OTUs present on day 0 are consistent with OTUs present in the fully developed carvone degrading communities. Jaspers et al (2001) found that bacterial strains which were abundant one month could not be isolated only one month later, suggesting the same study presented here might yield considerably different results if initiated in a different season, when secondary plant metabolites are less abundant.

Conclusions
To return to our original hypotheses, there was: 1) enrichment of enantiomer-selective degraders; 2) enrichment of racemic degraders; and 3) enrichment of both enantiomer-selective and racemic degraders. Recognition of the range of outcomes possible from a homogenized river water sample was clearly great and would not have been evident without the many replicate vials employed in this study. The study
has shown great within-treatment variability and the presence of a dynamic bacterial
community system changing rapidly between structures dominated by very few
species in the presence of carvone to more diverse community structures when
carbomone was depleted. Functional diversity was evident during the first carvone
amendment, but became more evident after the cross-over, largely manifested as the
immediate removal of carvone in non-enantioselective populations, whereas carvone
removal was less rapid in highly-enantioselective populations. Notably, despite both
degradation phenotypes being present in both treatment groups, the overall rate of
carbomone degradation varied considerably after the cross-over. Protist grazing likely
impacted the abundance of carvone utilisers, but it remains unclear as to the role
protists play in parameterizing microbial community function. Further study on
protist-free river water using a similarly designed study as this one, may well lend
some insight into these important trophic interactions.
References

Table 1: Overview over the sampling regime for both chemical and community analysis.

Day 0 Addition of Carvone enantiomers and division of water into replicates (12)

Day 1 Chemical and community structure sampling

Days 2/3 Chemical sampling

Day 4 Chemical and community structure sampling

Day 5 Chemical and community structure sampling

Day 6 Chemical sampling

Day 7 Chemical and community structure sampling

Day 8/9/10 Chemical sampling

Day 11 Chemical and community structure sampling

Day 13 Extraction and resuspension of cells in sterile river water containing the carvone isomer that had not been degraded before. Controls were resuspended in sterile river water only.

Day 16, 17, 19 Chemical sampling

Day 22 Chemical and community structure sampling
Table 2. R-values generated by ANOSIM from comparing microbial communities over time from each treatment to the Day 1 community.

<table>
<thead>
<tr>
<th>Sampling Day</th>
<th>R-carvone</th>
<th>S-carvone</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.514<sup>a</sup></td>
<td>0.509<sup>a</sup></td>
</tr>
<tr>
<td>5</td>
<td>0.743<sup>a</sup></td>
<td>0.501<sup>a</sup></td>
</tr>
<tr>
<td>7</td>
<td>0.781<sup>a</sup></td>
<td>0.188<sup>c</sup></td>
</tr>
<tr>
<td>13</td>
<td>0.424<sup>b</sup></td>
<td>0.339<sup>b</sup></td>
</tr>
<tr>
<td>22</td>
<td>0.686<sup>a</sup></td>
<td>0.595<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Represents clear differences between treatment-communities analysed at sampling day noted and treatment-communities at day 1.

^b Represents some dissimilarities between treatment-communities analysed at sampling day noted and treatment-communities at day 1.

^c Represents no differences between treatment-communities analysed at sampling day noted and treatment-communities at day 1.
Figure Legends

Fig. 1. Mean dissolved O$_2$ concentrations in the microbial community analysis bottles. Four replicates per treatment were measured. Error bars mark 95% confidence intervals. S-carvone (gray squares) and R-carvone (dark gray triangles) vary considerably as the O$_2$ concentration responds to the microbial activity, whereas the controls (light gray diamonds) stay constant, except after cross-over when residual dissolved carbon sources in the freshly added river water are digested.

Fig. 2: Carvone degraded faster after the cross-over (light gray rombus/ dark gray squares) than at the outset of the study (black triangles/ light gray dots). Some S-carvone (dark gray squares) remains unprocessed at the end of the experiment, but R-carvone (light gray dots) has been removed. The y-axis denotes the amount of carvone relative to what was initially added, the error bars mark 95% confidence intervals.

Fig. 3. Cavone degradation in replicates ChemS2 and ChemR1, showing rapid degradation after carvone isomer reversal. The fast removal after cross-over (degradation curves starting on day 13) of S-carvone (black) and R-carvone (gray) respectively may show enantioselective degraders.

Fig. 4. Typical LH-PCR microbial community fingerprints as seen before the addition of carvone on day 0, followed by the three different patterns of S-carvone communities at D7. Pattern 1 (day 7a) has an abundant OTU around 508 bp, (day 7b) is similar to the R-carvone structure and (day 7c) resembles more the diversity of day 0. Lighter coloured bands correspond to fluorescence intensity, representing fragment abundance.

Fig. 5. Principal component analysis of binary encoded bacterial communities acquired from the LH-PCR profile for the R-carvone (triangle), S-carvone (square) and control (diamond) treatments on day 7 after most of the carvone had been
consumed. Only 30% of the variance in the data set can be explained by the PCA1 and PCA2.

Fig. 6. Time series of bacterial community LH-PCR in sample R6 on day 1, day 4, day 5, day 7, day 12, and day 22 of the experiment. The replicate had received \textit{R}-carvone first, and had \textit{S}-carvone added after the cross-over. The subsequently developing pattern (day 22) is akin to earlier observed \textit{S}-carvone patterns. The brighter the band, the more abundant is the OTU.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.