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Abstract. Long dated contingent claims are relevant in insurance, pension
fund management and derivative pricing. This paper proposes a paradigm
shift in the valuation of long term contracts, away from classical no-arbitrage
pricing towards pricing under the real world probability measure. In contrast
to risk neutral pricing, the long term excess return of the equity market,
known as the equity premium, is taken into account. Further, instead of the
savings account, the numéraire portfolio is used, as the fundamental unit of
value in the analysis. The numéraire portfolio is the strictly positive, tradable
portfolio that when used as benchmark makes all benchmarked nonnegative
portfolios supermartingales, which means intuitively that these are downward
trending or at least trendless. Furthermore, the benchmarked real world price
of a benchmarked claim is defined to be its real world conditional expectation.
This yields the minimal possible price for its hedgable part and minimizes
the variance of the benchmarked hedge error. The pooled total benchmarked
replication error of a large insurance company or bank essentially vanishes due
to diversification. Interestingly, in long term liability and asset valuation, real
world pricing can lead to significantly lower prices than suggested by classical
no-arbitrage arguments. Moreover, since the existence of some equivalent risk
neutral probability measure is no longer required, a wider and more realistic
modeling framework is available for exploration. Classical actuarial and risk
neutral pricing emerge as special cases of real world pricing.

Key words and phrases: long term pricing, real world pricing, risk neutral pricing,
numéraire portfolio, law of the minimal price, strong arbitrage, hedge simulation, di-
versification, liquidity premium.
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1 Introduction

Long dated contingent claims are relevant in insurance, pension fund management
and derivative pricing. This paper proposes a paradigm shift in the valuation of
long term contracts, away from classical no-arbitrage pricing, towards pricing un-
der the real world probability measure. In contrast to risk neutral pricing, the long
term excess return of the equity market, known as the equity premium, is taken
into account. Further, instead of the savings account, the numéraire portfolio is
used as the fundamental unit of value in the analysis. The numéraire portfolio is
the strictly positive, tradable portfolio that when used as a benchmark makes all
benchmarked nonnegative portfolios supermartingales. This means their current
benchmarked value is greater than, or equal to its expected future benchmarked
values. Furthermore, the benchmarked real world price of a benchmarked claim is
defined to be its real world conditional expectation. This yields the minimal pos-
sible price for its hedgable part and minimizes the variance of the benchmarked
hedge error. It is shown that the pooled total benchmarked replication error of a
large insurance company or bank essentially vanishes due to diversification. In-
terestingly, in long term liability and asset valuation, real world pricing can lead
to significantly lower prices than suggested by classical no-arbitrage arguments.
Moreover, since the existence of some equivalent risk neutral probability measure
is no longer required, a wider and more realistic modeling framework may be
explored. Classical actuarial and risk neutral pricing emerge as special cases of
real world pricing.

In recent years the problem of accurately valuing the long term assets and liabil-
ities held by insurance companies, banks and pension funds has become increas-
ingly important. How these institutions perform such valuations often remains
unclear. However, the recent experience with mortgage-backed securities and
credit derivatives suggests they do sometimes get these valuations wrong. One
possible explanation, which we explore in this article, is that the risk neutral
pricing paradigm itself may be inherently flawed, especially when it is applied to
the valuation of long dated claims.

The academic literature on the valuation of contingent claims is very rich, and
stretches from the traditional actuarial approach to various equilibrium-style val-
uation concepts, including risk neutral pricing and related no-arbitrage pricing
methods. As this literature has developed, various concepts, such as deflators,
pricing kernels, state-price densities and stochastic discount factors, have been
introduced. However, what has been missing is an overarching framework for
studying and comparing these methods and for performing the essential task of
long term valuation in a consistent and robust manner. The benchmark approach,
developed in Platen & Heath (2006), proposes such a framework. Instead of re-
lying on the domestic savings account as the reference unit, the best performing,
tradable strictly positive portfolio, namely the numéraire portfolio, whose origin
can be traced back to Long (1990), is chosen as numéraire. Since the existence
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of an equivalent risk neutral probability measure is no longer postulated, a wider
and more realistic modeling framework becomes available. In particular, the un-
derlying idea of the benchmark approach is to denominate all quantities in units
of the numéraire portfolio, and to examine them under the real world probability
measure.

Philosophically, the benchmark approach suggests a move from an abstract form
of relative pricing to an economically motivated, transparent form of absolute
pricing. As opposed to risk neutral pricing, the long term excess return of the
equity market, known as the equity premium, plays an important role in the
analysis.

The benchmarked real world price of a benchmarked claim is defined as its real
world conditional expectation. Due to the supermartingale property of any non-
negative benchmarked portfolio it provides the minimal possible price for its
hedgable part and minimizes the variance of the benchmarked hedge error. The
latter can be essentially removed via diversification when pooled. It is worth
emphasizing the fact that real world pricing can lead to significantly lower prices
for variable annuities than suggested by standard no-arbitrage arguments. The
acknowledgement of the presence of the equity premium under the benchmark
approach is likely to make a range of long term insurance and pensions products
more affordable.

This paper will avoid technicalities and focusses on an explanation of the key
elements of the paradigm shift, represented by the benchmark approach, the core
statements of which are model independent and, therefore, extremely robust.

The structure of the paper is as follows: Section 2 gives a brief survey on the
literature about pricing methods in insurance and finance for variable annuities.
Section 3 introduces the benchmark approach. Real world pricing is described
in Section 4. Two examples on real world pricing of long term contracts are
illustrated in Sections 5 and 6, and Section 7 concludes.

2 Valuation Methods for Variable Annuities

One of the most dynamic areas in the current risk management literature is
the valuation of variable annuities. These represent long term contracts with
payoffs that depend on insured events and on underlying assets that are traded
in financial markets. There is an increasing literature on the pricing of variable
annuities which we briefly survey in this section. The aim is to list established
pricing methods without aiming for completeness.

Various valuation principles have been proposed by different authors and some-
times even by the same author. One of the earliest articles treated variable
annuities from an actuarial perspective in Sloane (1970). The appropriate mod-
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eling of the long term evolution of stochastic equity markets for actuarial use has
been analyzed, for instance, in Wise (1984b), Wilkie (1985, 1987, 1995), Schmidli
(1995), Bilodeau (1997), Boyle & Hardy (1997, 2003), Wirch & Hardy (1999),
Tiong (2000), Cairns (2001), Hardy (2003) and Wüterich, Bühlmann & Furrer
(2008). The papers by Bernard (1993), Mitchell (1994) and Ravindran & Edelist
(1996) discuss the implications of various actuarial modeling assumptions.

The matching of well-defined cash flows with liquidly traded ones, while mini-
mizing the risk of reserves, has been a widely used pricing method in insurance.
For instance, Wise (1984a, 1984b, 1987a, 1987b, 1989), Wilkie (1985) and Keel
& Müller (1995) study contracts when a perfect match is not possible.

The main stream of the research, however, follows the concept of no-arbitrage
pricing, in the sense of Ross (1976) and Harrison & Kreps (1979). This approach
has been widely used in finance, where it appears in the guise of risk neutral
pricing. The earliest applications of no-arbitrage pricing to variable annuities are
the papers by Brennan & Schwartz (1976, 1979) and Boyle & Schwartz (1977).
These authors extended Black-Scholes-Merton option pricing (see Black & Sc-
holes (1973) and Merton (1973)) to the case of equity-linked insurance contracts.
After more than 35 years of development no-arbitrage remains the dominant
pricing paradigm for variable annuities linked to financial assets. Other papers
worth mentioning in this regard include Delbaen (1986), Bacinello & Ortu (1993,
1994, 1996), Briys & Varenne (1997), Pennachi (1999), Boyle, Kolkiewicz & Tan
(2001), Jorgensen (2001, 2004), Milevsky & Posner (2001), Milevsky & Salisbury
(2001, 2006), Melnikov, Volkov & Nechaev (2002), Melnikov (2003, 2004c), Pelsser
(2003), Tanskanen & Lukkarinen (2003), Hürlimann (2004), De Felice & Moriconi
(2005), Siu (2005), Biffis & Millosovich (2006), Milevsky, Moore & Young (2006),
Chu & Kwok (2006, 2007), Bauer, Kling & Russ (2007) and Kling, Richter &
Russ (2007) for European style payoffs; and Grosen & Jorgensen (1997, 2000,
2002), Bacinello (2001, 2005), Ballotta, Haberman & Wang (2003), Vannucci
(2003), Ballotta (2004) and Costabile, Massabo & Russo (2007) for American-
type contracts. The effect of stochastic interest rates on the risk neutral value of
a guarantee has been discussed, for instance, in Bacinello & Ortu (1993, 1996),
Aase & Persson (1994), Albizzati & Geman (1994), Nielsen & Sandmann, (1995,
1996, 2008), Ekern & Persson (1996), Persson & Aase (1997), Miltersen & Persson
(1999) and Huang & Cairns (2004, 2005).

In reality, one has to deal with the fact that markets are incomplete and the
choice of a risk neutral pricing measure is, therefore, not unique, as pointed out
by Föllmer & Sondermann (1986), Föllmer & Schweizer (1991), Hofmann, Platen
& Schweizer (1992), Gerber & Shiu (1994), Gerber (1997) and Jaimungal & Young
(2005). Duffie & Richardson (1991) and Schweizer (1992) address this issue by
suggesting certain mean-variance hedging methods based on a form of variance-
or risk-minimizing objective, assuming the existence of a particular risk neutral
measure. In the latter case, the so-called minimal equivalent martingale measure,
due to Föllmer & Schweizer (1991), emerges as the pricing measure. It allows
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for the pricing of all non-traded risk under the real world probability measure,
but changes the pricing measure for traded risk to a risk neutral measure. This
valuation method is also known as local risk minimization and was considered by
Möller (1998, 2001), Schweizer (2001) and Dahl & Möller (2006) for the valuation
of insurance products.

We draw the reader’s attention to the study by Windcliff, Forsyth & Vetzel
(2001), which investigated reset and optional features in variable annuities, under
the assumptions of the risk neutral approach. These authors conclude that some
insurers may be underpricing certain guarantees, since the risk neutral prices
appear to be higher than those charged in the market. It will become clear that
the risk neutral price of a claim can be well above the economically correct price
under the real world pricing approach, which we develop in Section 4.

Following the ideas of Föllmer & Leukert (1999, 2000), the pricing and hedging
of equity-linked insurance products using shortfall risk or quantile hedging has
been studied by Krutchenko & Melnikov (2001), Melnikov (2004a, 2004b, 2004c),
Melnikov, Romaniuk & Skornyakova (2005), Melnikov & Skornyakova (2005),
Melnikov & Romaniuk (2006) and Wang (2009).

Another approach involves the maximization of expected terminal utility, see
Karatzas et al. (1991), Kramkov & Schachermayer (1999) and Delbaen et al.
(2002). In this case the valuation of variable annuities is based on a particular
form of utility indifference pricing. This form of valuation has been applied
to the problem of derivative pricing subject to transaction costs by Hodges &
Neuberger (1989) and later by Davis (1997). It has been used to value equity-
linked insurance products by Young & Zariphopoulou (2002, 2002), Young (2003)
and Moore & Young (2003). In Jaschke & Küchler (2001) “good-deal” bounds
for valuation purposes have been suggested, which go back to Cerny & Hodges
(1999). They aim to fill the gap between classical arbitrage pricing and expected
utility maximization.

There is an ongoing debate on the links between the valuation of insurance liabil-
ities and financial economics, for which the reader may refer to Reitano (1997),
Longley-Cook (1998), Babbel & Merrill (1998), Möller (1998, 2002), Phillips,
Cummins & Allen (1998), Girard (2000), Lane (2000) and Wang (2000). Equilib-
rium modeling from a macro-economic perspective has been the focus of another
major line of research that can be traced back to Debreu (1982). Duffie (2001)
and Starr (1997), among others, studied the existence of a market equilibrium
and Pareto efficiency, which has links to expected utility maximization.

Note that stochastic mortality rates are easily incorporated in the pricing of insur-
ance products as demonstrated by Milevsky & Promislow (2001), Dahl (2004),
Kirch & Melnikov (2005), Cairns, Blake & Dowd (2006a, 2006b, 2008), Biffis
(2005), Melnikov & Romaniuk (2006, 2008) and Jalen & Mamon (2008). Most of
these authors assume that the market is complete with respect to mortality risk,
which means that it can be removed by diversification, as a result of the Law of
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Large Numbers.

Several no-arbitrage pricing concepts have been developed in finance that are
equivalent to the risk neutral approach under certain assumptions. For instance,
Cochrane (2001) employs the notion of a stochastic discount factor. The use
of a state-price density, a deflator or a pricing kernel have also been considered
by Constantinides (1992), Cochrane (2001) and Duffie (2001). Another form
of no-arbitrage pricing was pioneered by Long (1990) and further developed by
Bajeux-Besnainou & Portait (1997) and Becherer (2001). It uses the numéraire
portfolio as numéraire, instead of the savings account, and employs the real world
probability measure as the pricing measure. This line of research comes closest to
the real world pricing proposed in this paper. The primary difference is that we do
not assume the existence of an equivalent risk neutral probability measure. In so
doing we allow for a much richer class of models to be available for consideration.

The version of the Fundamental Theorem of Asset Pricing obtained by Delbaen
& Schachermayer (1998) establishes a correspondence between the “no free lunch
with vanishing risk” no-arbitrage concept and the existence of an equivalent risk
neutral probability measure. This important result demonstrates that classi-
cal no-arbitrage pricing is based on the restrictive assumption that an equivalent
risk neutral probability measure must exist. More precisely, the (Radon-Nikodym
derivative) density process of the corresponding risk neutral pricing measure is
assumed to be a martingale. As we will see, a major consequence of this assump-
tion is that classical no-arbitrage pricing methods ignore the real world long term
trend of the equity market above that of the savings account and represent a form
of relative pricing. Thus, the presence of the highly relevant equity premium is
neglected. The existence of the equity premium is what makes long term invest-
ments in the stock market worthwhile. Therefore, it should play a significant
role in the valuation of long term contingent claims. For the valuation of short
term contracts the presence of the equity premium does not matter much and
classical risk neutral pricing gives reasonable results. However, as we shall see
in Sections 5 and 6, for long dated payoffs there may exist significantly cheaper
self-financing hedge portfolios that exploit systematically the equity premium.

As alluded to above, what is missing from the literature is a pricing framework
that takes into account the long term equity risk premium. Such a concept,
presented in Section 4, has been developed in Platen (2002), Bühlmann & Platen
(2003), Platen & Heath (2006) and Platen (2006). It chooses the best-performing,
strictly positive, tradeable portfolio as benchmark and makes it the central object
for modeling. The restrictive assumption of the existence of an equivalent risk
neutral probability measure is no longer required, in contrast to Long (1990),
Bajeux-Besnainou & Portait (1997) and Becherer (2001). Instead, all pricing is
done with respect to the real world probability measure, and the approach is,
therefore, labelled “real world pricing”.

Real world pricing generalizes risk neutral pricing and other no-arbitrage pricing
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theories. It also generalizes actuarial pricing, as will be demonstrated in Section 4.
Most recent detailed results on the role of the numéraire portfolio, the central
building block of the benchmark approach, can be found in Karatzas & Kardaras
(2007) and Kardaras & Platen (2008). An application of real world pricing to
the valuation of variable annuities, in a case when no equivalent risk neutral
probability measure exists, has been presented by Marquardt, Platen & Jaschke
(2008). Sections 5 and 6 give illustrative examples for the pricing of long dated
contingent claims.

3 Benchmark Approach

This section introduces the benchmark approach, which allows the formulation
of the concept of real world pricing. The key idea is that there exists a best per-
forming strictly positive tradable portfolio in the given investment universe. This
benchmark portfolio can be interpreted and used as a universal currency. It allows
the formulation of powerful results about diversification, portfolio optimization
and contingent claim valuation.

We begin by considering a market comprising a finite number of primary security
accounts. An example of such an instrument could be an account containing
shares of a company with all dividends reinvested in that stock. A savings account
held in any currency is another example of a primary security account.

Continuous time models can provide a compact and elegant mathematical descrip-
tion of asset dynamics. However, in reality, continuous trading is not possible.
The time interval between potential trading times, as facilitated by electronic
exchanges, can become extremely small. To be realistic, we consider a count-
able set of potential trading times 0 = t0 < t1 < . . ., which can be random
and are assumed to be observable, where limn→∞ tn

a.s.
= ∞ almost surely. Note

that discretely observed continuous time models can be employed in our general
framework.

The benchmarked value of a security represents its value, when denominated in
units of the benchmark, which we assume to exist and characterize later as the
numéraire portfolio. Denote by Ŝj

tn the benchmarked value of the jth primary
security account, j ∈ {0, 1, . . .}, at time tn ≥ 0, n ∈ {0, 1, . . .}. The particular
dynamics of the primary security accounts are not important for the main results.
Taxes and transaction costs are neglected for simplicity.

The market participants can form self-financing portfolios with primary security
accounts as constituents. A portfolio at time tn is described by the number δj

tn

of units held in the jth primary security account, j ∈ {1, 2, . . .}, n ∈ {0, 1, . . .}.
Assume that for all n ∈ {0, 1, . . .} the values δ0

tn , δ1
tn , . . ., for any given strategy

δ = {δtn = (δ0
tn , δ1

tn , . . .)>, n ∈ {0, 1, . . .}}, depend only on information available
at the potential trading time tn. The value of the benchmarked portfolio, which

7



means its value denominated in units of the benchmark, is then given by

Ŝδ
tn =

∞∑
j=0

δj
tn Ŝj

tn , (3.1)

n ∈ {0, 1, . . .}. Since there is only finite total wealth available in the market,
we consider only strategies whose associated portfolios are finite at all potential
trading times.

Let Etn(X) denote the expectation of a random variable X under the real world
probability P , conditioned on the information available at time tn, see Shiryaev
(1984). The main assumption that the benchmark approach imposes is the fol-
lowing:

Assumption 3.1 There exists a strictly positive benchmark portfolio, which
makes each benchmarked nonnegative portfolio Ŝδ

tn a supermartingale. In other
words, we have

Ŝδ
tn ≥ Etn

(
Ŝδ

tn+1

)
(3.2)

for all n ∈ {0, 1, . . .}.

We refer to the relation above as the supermartingale property of benchmarked
securities. The assumed benchmark coincides with the numéraire portfolio for
the particular model settings studied by Long (1990) and Becherer (2001). Since
we are only requesting the existence of the numéraire portfolio, that is condition
(3.2), the benchmark approach reaches significantly beyond the risk neutral world.

It is obvious that when using the best performing portfolio as benchmark, the
current observed benchmarked value of a nonnegative portfolio is greater than or
equal to its expected future benchmarked values. This means intuitively, if there
is any long term trend in a benchmarked nonnegative portfolio, then the trend
can only point downward. Assumption 3.1 guarantees the main properties of
nonnegative securities in a financial market. For example, it implies the absence
of economically meaningful arbitrage, as discussed in Platen (2006).

It is easily shown that the benchmark portfolio, if it exists, is unique. To see this,
consider two strictly positive portfolios that are supposed to be numéraire port-
folios. The first portfolio, when expressed in units of the second one, must satisfy
the supermartingale property (3.2). By the same argument, the second portfolio,
when expressed in units of the first one, must also satisfy the supermartingale
property. Consequently, by Jensen’s inequality both portfolios must be identical,
and the value process of a numéraire portfolio that starts at a given strictly pos-
itive value is unique. Due to possible redundancies in the set of primary security
accounts, this does not imply uniqueness for the trading strategy that generates
the benchmark portfolio.
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Note that we do not rely on continuous time semimartingales to drive asset prices
in our setup. Only the discrete-time supermartingale property (3.2) needs to be
satisfied. If one lets the trading frequency tend to infinity, then the resulting
weak limit does not need to represent a semimartingale, which allows to model
long-range dependence; see Mandelbrot & Van Ness (1968).

Assumption 3.1 is satisfied for almost all reasonable financial market models. It
simply asserts the existence of a best performing portfolio that does not “ex-
plode”. The requirement that such a portfolio should not “explode” follows from
basic arbitrage considerations. In Platen & Heath (2006) condition (3.2) is veri-
fied for jump-diffusion markets. This type of model already covers a wide range
of possible dynamics. We emphasize that we allow models that only satisfy
the supermartingale property (3.2) at a discrete sequence of observable potential
trading times. From a practical perspective this is reasonable since continuous
trading is not possible in reality.

By referring to results in Platen (2005) and Le & Platen (2006) one can say that
the numéraire portfolio is not only a theoretical construct, but can be approx-
imated by well diversified portfolios, e.g. the S&P500 total return index when
the investment universe represents the US equity market. The MSCI total return
world index turns out to be a good proxy of the numéraire portfolio when the
global market is modeled. Crucial is that under the benchmark approach a proxy
of the numéraire portfolio becomes physically identified and plays later a role in
valuation and hedging.

A special type of security emerges when equality holds in condition (3.2).

Definition 3.2 A security is called fair if its benchmarked value V̂tn, n ∈
{0, 1, . . .}, is the best forecast of its future benchmarked values, that is,

V̂tn = Etn

(
V̂tn+1

)
(3.3)

for all n ∈ {0, 1, . . .}.

One can say that (3.3) represents the discrete-time martingale property of fair
securities. The above notion of a fair security is based on a comparison with
the best performing portfolio. This is different to many other notions for “fair”
prices. Also note that the benchmark approach allows us to consider securities
that are not fair. This important flexibility will be required when modeling the
equity premium of the stock market.

4 Real World Pricing

As stated earlier, the primary difference between the benchmark approach and
the risk neutral approach is the choice of numéraire. Here we use the numéraire
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portfolio for valuation, while the savings account is the chosen numéraire in the
risk neutral approach. The supermartingale property (3.2) ensures that the ex-
pected return of a benchmarked nonnegative portfolio can be at most zero. In
the case of a fair benchmarked portfolio, the expected return is precisely zero.
The current benchmarked value of such a portfolio is, therefore, always the best
forecast of its benchmarked future values at any possible future trading time.

It is well-known and quite intuitive that within a family of nonnegative super-
martingales, which approach the same random value, the supermartingale with
the smallest initial value is a martingale, see Shiryaev (1984). There can be many
supermartingales that approach the same future random value. The martingale
that matches the future random value is the minimal supermartingale. This
fundamental fact allows us to deduce directly the following Law of the Minimal
Price:

Theorem 4.1 (Law of the Minimal Price) If a fair portfolio replicates a
given nonnegative payoff at an observable potential trading time, then this portfo-
lio represents the minimal replicating portfolio among all nonnegative portfolios
that replicate this payoff.

There may exist unfair self-financing hedge portfolios in a benchmark setting.
Consequently, the classical Law of One Price does not hold, in general. Never-
theless the Law of the Minimal Price provides access to a consistent price system
for any kind of derivative contract.

For a given hedgable payoff the corresponding fair hedge portfolio represents
the least expensive hedge portfolio. From an economic point of view this is
also the correct price in a competitive market. As we will see later, there may
exist several self-financing portfolios that hedge one and the same payoff. Only
the fair portfolio hedges the payoff at minimal cost. Pricing based purely on
hedging via classical no-arbitrage arguments, see Ross (1976), may lead to more
expensive prices than those given by the corresponding fair price. This fact will
be demonstrated later in Sections 5 and 6.

Now, let us consider the problem of pricing a given payoff. Define a benchmarked
contingent claim ĤT as a nonnegative payoff, which is expressed in units of the
benchmark. It is assumed to have finite expectation

E0

(
ĤT

)
< ∞, (4.1)

and has to be delivered at maturity T = tN ∈ {t1, t2, . . .}, which can be an
observable, random potential trading time.

If for a benchmarked contingent claim ĤT , T ∈ {t1, t2, . . .}, there exists a fair
portfolio SδH which replicates this claim at maturity tN = T , that is ĤT = ŜδH

T ,
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then, by the Law of the Minimal Price, its minimal replicating price process is at
time tn ∈ {t0, t1, . . . , tN} given by

ŜδH
tn = Etn

(
ĤT

)
. (4.2)

By multiplying both sides of equation (4.2) with the value of the benchmark
at time t, which we denote by S∗tn when denominated in domestic currency, we
obtain the real world pricing formula

SδH
tn = ŜδH

tn S∗tn = S∗tn Etn

(
HT

S∗T

)
, (4.3)

where HT = ĤT S∗T is the payoff denominated in domestic currency.

Formula (4.3) is called the real world pricing formula because it involves the
conditional expectation Etn with respect to the real world probability measure.
It requires only the existence of the numéraire portfolio and the finiteness of the
expectation in (4.1). These are conditions that can hardly be weakened. At the
end of this section we justify the real world pricing formula also as a natural
pricing rule for nonhedgable claims.

An important special case of the real world pricing formula (4.3) arises when HT

is independent of S∗T . In this case one obtains the actuarial pricing formula

SδH
tn = P (tn, T ) Etn(HT ), (4.4)

which discounts with the fair zero coupon bond price

P (tn, T ) = S∗tn Etn

(
(S∗T )−1

)
. (4.5)

The derivation of (4.4) from (4.3) exploits the fact that the expectation of a
product of independent random variables equals the product of their expectations.
The formula (4.4) has been used by actuaries for centuries to obtain net present
values.

Now, let us highlight the link between real world pricing and risk neutral pricing.
Risk neutral pricing uses the domestic savings account Btn as numéraire. We
can derive risk neutral prices from real world prices by rewriting the real world
pricing formula (4.3) in the following form

SδH
tn = Etn

(
ΛT

Λtn

Btn

BT

HT

)
. (4.6)

Here we employ the benchmarked normalized savings account Λtn =
Btn S∗0
S∗tn B0

, which

arises as the (Radon-Nikodym derivative) density process of the putative risk
neutral measure Qtn in a complete market model for the time horizon tn.

For illustration, let us interpret the S&P500 total return index as the benchmark
and numéraire portfolio for the US equity market. Its monthly observations in
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Figure 4.1: Discounted S&P500 total return index.

units of the US savings account are displayed in Figure 4.1 for the period from
1920 until 2009.

This allows us to plot in Figure 4.2 the resulting density process of the putative
risk neutral probability measure Qtn . Although we only have one sample path to
work with, it seems highly unlikely that the path in Figure 4.2 is the realization of
a martingale. It is much more likely to be the trajectory of a strict supermartin-
gale, in which case the density process does not describe a probability measure.
We will see this in Section 5 in an example by calculating the conditional expec-
tation E0(ΛT ), which yields the total mass QT (Ω) of the putative risk neutral
measure QT for the time horizon T > 0, where Ω denotes the set of all events.

For illustration, Figure 4.2 also displays the total mass of the putative risk neutral
measure as a function of the time horizon T assuming the minimal market model
(MMM), which we describe in detail in Section 5. We only remark here that the
MMM models the density process realistically as a strict supermartingale and
not as a martingale. We will see that the putative risk neutral measure QT is
under the MMM not a probability measure since its total mass QT (Ω) is not
the constant one but decreasing for increasing T . A substantial modeling error
is made in long term valuations when assuming that the density process is a
martingale. But this is the key assumption in classical no-arbitrage pricing, see
Delbaen & Schachermayer (1998). By the supermartingale property (3.2) of the
normalized benchmarked savings account process Λ = {Λtn , n ∈ {0, 1, . . .}} it
follows from (4.6) that 1 = Λ0 ≥ E0(ΛtN ). Together with equation (4.6) this
yields the inequality

SδH
0 ≤

E0

(
ΛT

B0

BT
HT

)

E0(ΛT )
. (4.7)

Equality holds in relation (4.7) only under the unrealistic assumption that the
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Figure 4.2: Radon-Nikodym derivative and total mass of putative risk neutral
measure in dependence on time T .

savings account is fair and the density process Λ of the putative risk neutral
measure QT is a martingale. In this particular case the expression on the right
hand side of (4.7) is the conditional expectation of the discounted contingent
claim under the assumed equivalent risk neutral probability measure QT with
Radon-Nikodym derivative ΛT = dQT

dP
by an application of Bayes’ formula. Only

in this case can the relation (4.7) yield the classical risk neutral price

SδH
0 =

E0

(
ΛT

B0

BT
HT

)

E0(ΛT )
= EQT

0

(
B0

BT

HT

)
,

for a contingent claim HT , see Ross (1976) and Harrison & Kreps (1979). Here
EQT

0 denotes the conditional expectation under the assumed equivalent risk neu-
tral probability measure QT . In this particular case, risk neutral pricing is also
equivalent to pricing with a stochastic discount factor, see Cochrane (2001). As
long as an equivalent risk neutral probability measure exists, several other clas-
sical pricing approaches are also consistent with (4.3). This applies to the use of
a state-price density, see Constantinides (1992), or pricing kernel, see Ingersoll
(1987). Similar is the use of a deflator, see Duffie (2001), or numéraire portfolio,
see Long (1990) or Becherer (2001).

The martingale assumption for the density process underpins the classical no-
arbitrage pricing approach. If this crucial assumption is violated, then the ex-
pected excess return of the S&P500 over the savings account, namely the equity
premium, is ignored. It follows that risk neutral prices obtained by calculating
the right hand side of the inequality (4.7) can be substantially higher than the
corresponding real world prices on the left hand side of (4.7). This will be demon-
strated in the examples presented in Sections 5 and 6. Of course, the real world
price of a claim is the lowest price only if one does not change the underlying
dynamics in such a comparison.
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Now, let us consider the pricing of nonhedgable contingent claims. Recall that
a conditional expectation can be interpreted as a least squares projection of fu-
ture random variables into currently observable random variables, see Kallian-
pur (1980) or Shiryaev (1984). Consequently, the real world pricing formula
(4.3) provides, with its conditional expectation, the least squares projection of a
given benchmarked contingent claim into the set of possible current benchmarked
prices. Since in a least squares projection the forecasting error has mean zero and
minimal variance, see Kallianpur (1980), also the benchmarked hedge error has
exactly mean zero and achieves minimal variance.

The benchmarked hedge errors of benchmarked contingent claims can be pooled in
an insurance company or bank and, thus, can be removed via diversification. More
precisely, if these errors are generated by sufficiently many independent sources
of uncertainty, a situation which can be achieved in a large institution, then via
the Law of Large Numbers it follows that the total benchmarked replication error
has not only mean zero, it has also a variance that vanishes asymptotically with
an increasing number of independent sources of uncertainty. Large insurance
companies or banks can make the market asymptotically complete by pooling
benchmarked hedge errors. This means that real world pricing makes perfect
sense for nonhedgable claims from the perspective of a diversified institution.
Higher prices than real world prices would make the company less competitive
and lower prices would not be sustainable for the institution in the long run.

Finally, note that utility indifference pricing, in the sense of Davis (1997), has been
shown in Platen & Heath (2006) for unhedgable contingent claims to be consistent
with the real world pricing formula (4.3). This means that the particular choice
of the utility function and the underlying market dynamics do not matter. In the
light of the previous discussion this makes good sense and is also a satisfactory
theoretical insight.

5 Pricing a Long Term Zero Coupon Bond

Now, let us use the US equity market to illustrate real world pricing by providing
a realistic example for a long term zero coupon bond. We use the US 90 Day T
Bill Rate as the short rate for the savings account. For the S&P500 total return
index, our benchmark portfolio, we employ monthly S&P500 total return data,
provided by Thomson Financial and Global Financial Data for the period from
January 1920 until March 2009. The savings account discounted S&P500 total
return index was displayed in Figure 4.1.

For simplicity, we assume that the short rate is deterministic. By making the
short rate random we would only complicate the exposition. However, we would
obtain very similar (and even slightly more pronounced) results, due to the effect
of stochastic interest rates on bond prices as a consequence of Jensen’s inequality.
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A similar comment applies to the choice of the S&P500 total return index, as
numéraire portfolio. It is likely that there exist other diversified portfolios which
are better proxies for the numéraire portfolio, see Le & Platen (2006). These
would, however, exhibit an even larger long term trend and the price difference
we will demonstrate would be even stronger.

Let D(tn, T ) = Btn

BtN
denote the price at time tn, n ∈ {0, 1, . . . , N}, of the, so-

called, savings bond with maturity T = tN , where Btn denotes again the savings
account. Its logarithm is shown as the upper graph in Figure 5.1, whereas its
benchmarked value is displayed as the upper graph in Figure 5.2. As already

-8

-7

-6

-5

-4

-3

-2

-1

0

1

1930 1940 1950 1960 1970 1980 1990 2000

time

ln(savings bond)
ln(fair zero coupon bond)

Figure 5.1: Logarithms of savings bond and fair zero coupon bond.
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Figure 5.2: Benchmarked savings bond and benchmarked fair zero coupon bond.

noted in Figure 4.2, the benchmarked savings account, and therefore, the bench-
marked savings bond, show a systematic downward trend. Consequently, by our
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previous discussion, an equivalent risk neutral probability measure is unlikely
to exist in any realistic complete market model. We emphasize that the ob-
served systematic long term negative trend of the benchmarked savings bond in
Figure 5.2 simply reflects the presence of the equity premium and, thus, makes
economic sense. This premium is the reason why investors hold stocks for long
term investment and, thus, the economic basis for the existence of the stock mar-
ket. We argue in this paper that its presence has to be properly modeled in the
long term.

Now, let us price at time tn a zero coupon bond with maturity T . The fair zero
coupon bond price

P (tn, T ) = S∗tn Etn

(
1

S∗T

)
(5.1)

results from the real world pricing formula (4.3), see also (4.5). It provides the
minimal price for a portfolio that aims to replicate $1 at maturity T . Note that
under real world pricing the fair zero coupon bond becomes an index deriva-
tive. The underlying assets are the benchmark (here the S&P500 total return
index) and the savings account, which will both appear in a corresponding hedge
portfolio.

To determine the price of a fair zero coupon bond, one has to compute the
conditional expectation in (5.1). For this calculation one needs a realistic model
for the real world distribution of the random variable (S∗T )−1. Recall that the
initial price in 1920 of the benchmarked savings bond with maturity in 2009 is
shown in Figure 5.2. Due to the presence of the equity premium for an extreme
term to maturity T it is clear that the probability mass of the distribution for one
benchmarked dollar (S∗T )−1 should be concentrated much closer to zero than the
initial benchmarked price of the savings bond. Any realistic model that takes the
systematic downward trend of the benchmarked savings bond into account, will
value the above benchmarked fair zero coupon bond in 1920 much lower than the
corresponding benchmarked savings bond. There is also an economic explanation
for this. The savings bond gives the holder the right to exit the contract at any
time without penalty. A fair zero coupon is a fixed term deposit without this
right and an exit would cause severe penalties. In this sense the savings bond
carries a liquidity premium, which makes it more expensive.

The benchmarked fair zero coupon is the best forecast of its benchmarked payoff
(S∗T )−1. To facilitate a tractable evaluation of a fair zero coupon bond we employ a
discretely observed continuous time model for the benchmarked savings account.
The inverse of the benchmarked savings account is the discounted numéraire port-
folio S̄∗t =

S∗t
Bt

. It satisfies in a continuous market model the stochastic differential
equation

d S̄∗t = αt dt +
√

S̄∗t αt dWt, (5.2)

for t ≥ 0 with S̄∗0 > 0, see Platen & Heath (2006). Here W = {Wt, t ≥ 0} is a
Wiener process, and α = {αt, t ≥ 0} is a strictly positive process, which models
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the trend αt of S̄∗t the discounted benchmark portfolio. This trend can be in-
terpreted as the discounted “fundamental” value of wealth that is generated per
unit of time by the companies traded in the equity market. In a first approx-
imation one can assume that the discounted S&P500 total return index grows
exponentially. If at time t the trend of the discounted S&P500 total return index
S̄∗t is modeled by an exponential function αt = α exp{η t}, then the stylized ver-
sion of the minimal market model (MMM) emerges from (5.2), see Platen (2001,
2002). Since we know explicitly the transition density of the diffusion process
S̄∗, see Platen (2002), this gives us the distribution of (S∗T )−1. Under the MMM
the benchmarked savings bond is not fair. It is the inverse of a time-transformed
squared Bessel process of dimension four and, therefore, a strict supermartingale,
see Revuz & Yor (1999). Its strict supermartingale property captures the pres-
ence of the equity premium in the real market. A reflection of this is given in
Figure 4.2, which also displays its expected (Radon-Nikodym derivative) density
process Λ. The conditional expectation

E0(ΛT ) = 1− exp

{
− 2 η S̄∗0

α(exp{η T} − 1)

}

equals the total mass

QT (Ω) = EQT
0

(
1{ω∈Ω}

)
= E0

(
ΛT 1{ω∈Ω}

)
= E0(ΛT )

of the putative risk neutral measure QT under the MMM. Here 1{ω∈Ω} denotes
the indicator function for the event ω to be part of the set of all events Ω. Since
QT (Ω) < 1 for T > 0, the putative risk neutral measure is not a probability
measure. This is also the case for any other model where the benchmarked
savings account is a strict supermartingale.

Fitting the logarithm of the observed discounted S&P500 total return index by
standard linear regression yields an estimate of about 0.054 for the net growth rate
η. This is consistent with estimates from various other sources where the growth
rate of the US equity market above the interest rate during the last century has
been estimated close to 5%, see for instance Dimson, Marsh & Staunton (2002).
The second parameter of the MMM is the scaling parameter α, which can also be
estimated via linear regression. For this purpose one can exploit the fact that the
slope of the estimated quadratic variation of the square root of the normalized

index Ytn =
S̄∗tn
αtn

theoretically equals 0.25, see Platen & Heath (2006). Such linear
regression produces for the given monthly data an estimate of α ≈ 0.01468, where
the initial value S̄∗0 in January 1920 of the discounted S&P500 was equal to 0.3865.

Under the stylized MMM the transition density of the discounted numéraire port-
folio S̄∗tn is explicitly known and yields for the fair zero coupon bond price by (5.1)
the explicit formula

P (tn, T ) = D(tn, T )

(
1− exp

{
− 2 η S̄∗tn

α (exp{η T} − exp{η tn})
})

(5.3)
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for 0 ≤ tn ≤ T < ∞, see Platen & Heath (2006). Figure 5.2 displays with the
lower graph the evolution of the benchmarked fair zero coupon bond price with
maturity T in March 2009. By (5.3) the price of the benchmarked fair zero coupon
bond always remains below that of the benchmarked savings bond. The latter
can be interpreted as the risk neutral zero coupon bond price. Under the MMM
only the fair zero coupon bond provides (with its current benchmarked value) the
best forecast for its future benchmarked payoff of one benchmarked US dollar at
maturity. It represents the minimal price process for the given payoff. All other
benchmarked replicating portfolios that may be feasible have some downward
trend. One example is given by the benchmarked savings bond. Recall that the
benchmarked fair zero coupon bond is a martingale. Therefore, it is minimal
among the supermartingales formed by benchmarked replicating portfolios.
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Figure 5.3: Savings bond and fair zero coupon bond.

Figure 5.3 exhibits with its upper graph the price evolution of the savings bond
and with its lower graph that of the fair zero coupon bond in US dollar denomi-
nation. Closer to maturity the fair zero coupon bond follows the trajectory of the
savings bond almost perfectly. Both self-financing portfolios replicate the payoff
at maturity. However, they start with significantly different initial prices. The
presence of two self-financing replicating portfolios is possible under the bench-
mark approach. Note that this contradicts classical no-arbitrage assumptions and
the classical Law of One Price.

As indicated earlier, there is an additional difference between both self-financing
portfolios that the classical no-arbitrage paradigm does not allow: namely the fair
zero coupon bond is a term deposit which delivers the payoff of $1 at maturity,
where no intermediate access is permitted to its value. On the other hand, the
savings bond can be interpreted as the limit of a roll-over short term bond account
where the terms to maturity vanish. It can be liquidated at any trading time
without any extra costs. Therefore, one could say that some liquidity premium
makes the savings bond more expensive than the fair zero coupon bond. We see
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in Figure 5.3 that this liquidity premium can have a significant impact on the
price of a bond over long time periods. Obviously, the liquidity premium vanishes
when the time to maturity vanishes.

In our example, the savings bond with maturity in March 2009 had in January
1920 a price of D(0, T ) ≈ $0.0335. The fair zero coupon bond was far less
expensive and priced at only P (0, T ) ≈ $0.00077. The fair zero coupon bond
with term to maturity of about 88 years costs less than 2.3% of the savings bond.
This reveals a substantial liquidity premium for always allowing access to the
invested wealth.

Figure 5.2 illustrates that any model, which captures reasonably well the distri-
bution of the benchmarked payoff 1

S∗T
, would yield a similar small initial bench-

marked fair zero coupon bond price. There is significant robustness in the mod-
eling under the benchmark approach. Figure 5.1 illustrates this by showing the
logarithms of the savings bond and the fair zero coupon bond. Most important is
the fact that the fair zero coupon bond initially follows the S&P500 total return
index and exploits, in this way, the presence of the equity premium. Closer to
maturity, the trajectory of the fair zero coupon bond slides into that of the savings
bond. The strategy by which this is achieved in Figures 5.1–5.3 is a consequence
of the explicit zero coupon bond pricing formula obtained under the MMM. It
facilitates what financial planning has always suggested for life cycle investment,
which cannot be explained under the classical no-arbitrage pricing paradigm.

To demonstrate how realistic the hedge of the fair zero coupon bond payoff is
under the simple MMM for monthly reallocation, we form a self-financing hedge
portfolio. At the trading time ti the corresponding theoretical number of units
of the S&P500 to be held in the hedge portfolio is given by the formula

δ∗ti =
∂P̄ (ti, T )

∂S̄∗ti

= D(0, T ) exp

{ −2 η S̄∗ti
α (exp{η T} − exp{η ti})

}
2 η

α (exp{η T} − exp{η ti}) ,

see Platen & Heath (2006). The remaining wealth is kept in the savings account
Bti . We perform a delta hedge similar to the one known for options under the
Black-Scholes model. The self-financing hedge portfolio started in January 1920.
Each month the fraction invested in the S&P500 was adjusted, in a self-financing
manner, according to the above prescription. The resulting maximum absolute
benchmarked profit and loss for this delta hedge turned out to be very small,
and amounted only to about 0.00006. This benchmarked hedge error is so small
that the resulting hedge portfolio, when additionally plotted in Figure 5.3, would
not be distinguishable from the path of the displayed fair zero coupon bond price
process.
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6 Pricing a Long Term European Put

Variable annuities often have guarantees with option type payoffs on an index.
Therefore, let us consider another long term derivative under the MMM. This
second example is the fair price p(tn, S

∗
tn , T,K, r) at time tn ∈ {t0, t1, . . . , tN} of a

European put option on the benchmark, the S&P500 total return index denoted
by S∗T , with strike K and maturity T = tN . For simplicity, we assume a constant
short rate r. The fair price of the put is according to (4.3) given by the real world
expectation

p(tn, S
∗
tn , T,K, r) = S∗tn Etn

(
(K − S∗T )+

S∗T

)
,

and can be calculated explicitly via the formula

p(tn, S∗tn , T, K, r) = −S∗tn χ2(d1; 4, l2) + Ke−r(T−tn)
(
χ2(d1; 0, l2)− exp {−l2/2}

)
,

(6.1)
with

d1 =
4ηK exp{−r(T − tn)}

Btn αtn(exp{η(T − tn)} − 1)

and

l2 =
4ηS∗tn

Btn αtn(exp{η(T − tn)} − 1)
,

see Platen & Heath (2006). Here χ2(x; ν, l) is the non-central chi-square distribu-
tion function with ν ≥ 0 degrees of freedom and non-centrality parameter l > 0,
i.e.

χ2(x; ν, l) =
∞∑

k=0

exp
{− l

2

} (
l
2

)k

k!

(
1− Γ

(
x
2
; ν+2k

2

)

Γ
(

ν+2k
2

)
)

,

see Platen & Heath (2006). The risk neutral put price under the putative risk
neutral measure Q is higher than the fair put price, and the difference can be
shown to amount to

Ke−r(T−tn) exp

{
− 2 η S̄∗tn

α (exp{η T} − exp{η tn})
}

, (6.2)

see Platen & Heath (2006). It can be seen from the fair put formula (6.1) that
when the numéraire portfolio S∗tn becomes very small, the fair put value is also
very small. For a very small value S̄∗tn a put price derived under the risk neu-
tral pricing paradigm would be significantly larger than the fair put price by an
amount of approximately Ke−r(T−tn), as follows from (6.2).

In Figure 6.1 we show on logarithmic scale with the upper graph the evolution
of a savings bond with face value K = 1500 with the middle graph, a formally
obtained risk neutral put price and with the lower graph a fair put price. One
notes that the long term risk neutral put price (the middle graph) evolves initially
like K times the savings bond. The logarithm of the fair put price, exhibited as
lower graph, behaves initially much like the logarithm of the S&P500 total return
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Figure 6.1: Logarithms of K times savings bond, risk neutral put and fair put.

index and exploits in this way the presence of the equity premium. Closer to
maturity the fair put price finally merges with the risk neutral put price and
converges to the put payoff. This strategy is facilitated by the above explicit
fair put pricing formula. A corresponding delta hedge in the S&P500 and the
savings account, similar to the one for the fair zero coupon bond, also replicates
the given put payoff, see Hulley & Platen (2008). We emphasize that the initial
fair put price turns out to be substantially lower than the corresponding formally
obtained risk neutral put price.

One can say that by shifting the pricing paradigm from risk neutral to real world
pricing, one is able to replicate more cost efficient payoffs which have to be de-
livered far in the future. More precisely, one can expect savings to arise for
payoffs that do not vanish when the benchmark approaches zero, see Platen &
Heath (2006). This applies to a range of payoffs that are typically embedded in
variable annuities including puts and bonds. Many variable annuities can be less
expensively hedged than suggested by most of the literature that was discussed in
Section 2. It is beyond the scope of this paper to go into any details of the pricing
of particular variable annuities under the benchmark approach. An illustration
of the valuation of a guaranteed minimum death benefit under real world pricing
is given in Marquardt, Platen & Jaschke (2008).

7 Conclusion

The paper proposes a move away from risk neutral pricing towards the more
general real world pricing of long dated contingent claims. Such an approach
allows the presence of the equity premium and does not assume the existence of
an equivalent risk neutral probability measure. As a consequence, the resulting
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real world prices can be much lower than those obtained under the classical risk
neutral paradigm. Additionally, it has been pointed out that pricing by hedging
may not yield the minimal possible price. The proposed real world pricing uses
the numéraire portfolio and the real world probability when forming expectations.
It identifies the minimal price for a contingent claim, while its hedge error can be
removed via diversification in a large pool of claims. Real world pricing generalizes
classical risk neutral pricing but also actuarial pricing in natural ways. Examples
for the pricing of long dated zero coupon bonds and European puts illustrate
how cost efficient real world prices of long term contracts are when compared to
classical risk neutral prices.
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Platen, E. (2002). Arbitrage in continuous complete markets. Adv. in Appl.
Probab. 34(3), 540–558.

Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework.
Asia-Pacific Financial Markets 11(1), 1–22.

Platen, E. (2006). A benchmark approach to finance. Math. Finance 16(1),
131–151.

Platen, E. & D. Heath (2006). A Benchmark Approach to Quantitative Finance.
Springer Finance. Springer.

Ravindran, K. & W. Edelist (1996). Deriving benefits from death in frontiers.
In A. Konishi and R. E. Dattatreya (Eds.), Derivatives: State-of-the-Art
Models, Valuation, Strategies and Products. New York: McGraw Hill.

Reitano, R. R. (1997). Two paradigms for the market value of liabilities. North
American Actuarial J. 1(4), 104–129.

Revuz, D. & M. Yor (1999). Continuous Martingales and Brownian Motion
(3rd ed.). Springer.

29



Ross, S. A. (1976). The arbitrage theory of capital asset pricing. J. Economic
Theory 13, 341–360.

Schmidli, H. (1995). Cramer-Lundberg approximations for ruin probabilities
of risk processes perturbed by diffusion. Insurance: Mathematics and Eco-
nomics 16(2), 135–149.

Schweizer, M. (1992). Mean-variance hedging for general claims. Ann. Appl.
Probab. 2, 171–179.

Schweizer, M. (2001). From actuarial to financial valuation principles. Insur-
ance: Mathematics and Economics 28, 31–47.

Shiryaev, A. N. (1984). Probability. Springer.

Siu, T. (2005). Fair valuation of participating policies with surrender options
and regime switching. Insurance: Mathematics and Economics 37, 533–552.

Sloane, W. R. (1970). Life insurance, variable annuities and mutual funds: A
critical study. J. of Risk and Insurance 37, 99.

Starr, R. M. (1997). General Equilibrium Theory: An Introduction. CUP, Cam-
bridge.

Tanskanen, A. & J. Lukkarinen (2003). Fair valuation of path-dependent
participating life insurance contracts. Insurance: Mathematics and Eco-
nomics 33, 595–609.

Tiong, S. (2000). Valuing equity-indexed annuities. North American Actuarial
J. 4, 149–170.

Vannucci, E. (2003). An evaluation of the riskiness of unit linked policies with
minimal return guarantees. In Proceedings of the VI Spanish-Italian Meeting
on Financial Mathematics, pp. 569–582. Trieste.

Wang, S. S. (2000). A class of distortion operators for pricing financial and
insurance risks. J. of Risk and Insurance 67, 15–36.

Wang, Y. (2009). Quantile hedging for guaranteed minimum death benefits.
working paper, University of York, Canada, to appear in Insurance: Math-
ematics and Economics.

Wilkie, A. D. (1985). Portfolio selection in the presence of fixed liabilities: A
comment on ”The matching of assets to liabilities”. J. Institute of Actuar-
ies 112, 229–277.

Wilkie, A. D. (1987). An option pricing approach to bonus policy. J. Institute
of Actuaries 114, 21–77.

Wilkie, A. D. (1995). More on a stochastic asset model for actuarial use (with
discussion). British Actuarial J. 1, 777–964.

Windcliff, H., P. Forsyth, & K. Vetzel (2001). Valuation of segregated funds:
Shout options with maturity extensions. Insurance: Mathematics and Eco-
nomics 29(1), 1–21.

30



Wirch, J. L. & M. R. Hardy (1999). A synthesis of risk measures for capital
adequacy. Insurance: Mathematics and Economics 25, 337–347.

Wise, A. J. (1984a). The matching of assets to liabilities. J. Institute of Actu-
aries 111, 445–501.

Wise, A. J. (1984b). A theoretical analysis of the matching of assets to liabili-
ties. J. Institute of Actuaries 111, 375–402.

Wise, A. J. (1987a). Matching and portfolio selection: Part I. J. Institute of
Actuaries 114, 113–133.

Wise, A. J. (1987b). Matching and portfolio selection: Part II. J. Institute of
Actuaries 114, 551–568.

Wise, A. J. (1989). Matching. J. Institute of Actuaries 116, 529–535.
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