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Daniela Di Cagno
LUISS Guido Carli

Emanuela Sciubba
Birkbeck College

May 2009

Abstract

We run a computerised experiment of network formation where all
connections are bene�cial and only direct links are costly. Players simul-
taneously submit link proposals; a connection is made only when both
players involved agree. We use both simulated and experimentally gen-
erated data to test the determinants of individual behaviour in network
formation. We �nd that approximately 40% of the network formation
strategies adopted by the experimental subjects can be accounted for as
best responses. We test whether subjects follow alternative patterns of
behaviour and in particular if they: propose links to those from whom
they have received link proposals in the previous round; propose links to
those who have the largest number of direct connections. We �nd that
together with best response behaviour, these strategies explain approxi-
mately 75% of the observed choices. We estimate individual propensities
to adopt each of these strategies, controlling for group e¤ects. Finally
we estimate a mixture model to highlight the proportion of each type of
decision maker in the population.

Keywords: network formation, experiments, mixture models

JEL classi�cation:

1 Introduction

In the era of virtual social networks such as Facebook, or LinkedIn, there is very
little doubt that network membership is generally seen as a positive ingredient
for personal achievement and increased chances of success.
The mesh of interpersonal and community relations which facilitate com-

munication, information and exchange is part of what has been called "social

�This paper has bene�ted from useful comments and discussion by seminar participants at
the Max-Planck Institute of Economics in Jena, University of Westminster in London, ESA
2008 in Lyon, IAREP 2008 in Rome, IMEBE 2009 in Granada, and LABSI 2009 in Florence.
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capital". This is a nebulous concept and di¢ cult to quantify but it is generally
agreed that it strongly a¤ects behaviour and individual outcomes. Given that
personal success can be both the result and the pre-requisite of a large social
network, any attempt to quantify the impact of social capital on outcomes has
to take into account the process of network formation.
Individual strategies for network formation can be extremely complex. The

main reason for this is that a network di¤ers from a series of bilateral relation-
ships because of the value that accrues to agents through indirect connections:
any two economic agents who have to decide whether to establish a social tie
take into account not only their own characteristics and the characteristics of
the prospective partner, but also their (and the prospective partner�s) position
in the social network.
The theoretical literature on endogenous network formation stems from two

seminal contributions by Jackson and Wolinsky (1996) and Bala and Goyal
(2000). Both papers follow a game-theoretic approach to the formation of social
ties where the main idea is that players earn bene�ts from being connected both
directly and indirectly to other players and bear costs for maintaining direct
links.
Predicted outcomes are typically not unique. Even for those cases where the

stable network architecture is unique (for example, the star network in infor-
mation communication models à la Bala and Goyal or Jackson and Wolinsky),
the coordination problem of which agent occupies which position in the network
still remains.
In presence of multiplicity of equilibria and coordination problems, it is

hardly surprising that most experimental contributions on this topic have high-
lighted the di¢ culty in obtaining convergence to a stable network architecture
as predicted by the theory. More in detail, while convergence may be more
easily achieved in experimental settings where the stable network architecture
is the wheel (for positive results see Callander and Plott (2005) and Falk and
Kosfeld (2003); for a negative result see Bernasconi and Galizzi (2005)), conver-
gence is always problematic in frameworks where the prediction for the stable
network is the centre-sponsored star (Falk and Kosfeld (2003), Berninghaus et
al (2004), Goeree et al. (2005)). Falk and Kosfeld (2003) and Berninghaus et
al (2004) highlight the role of complexity and lack of coordination in preventing
convergence. Deck and Johnson (2004) avoid coordination failures by introduc-
ing heterogeneity among agents and by constructing a framework where the
stable network is indeed unique.
Even in absence of coordination, the observed network structures are ulti-

mately the outcome of individual linking decisions. In this paper we focus on
the analysis of individual decision making for the formation of social networks.
In particular we ask which variables correlate with the propensity that agents
have to behave optimally in a network formation game. When they do not, we
ask which other strategies or rules of thumb may explain individual behaviour,
and the proportion of individuals in the population behaving according to each
of these strategies.
We run a computerised experiment of network formation, where all connec-
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tions are bene�cial and only direct links are costly. The network formation
protocol that we adopt, unlike the one used by most of the experimental liter-
ature that has focussed on convergence, requires that links are not unilateral,
but have to be mutually agreed in order to form. In particular, players simulta-
neously submit link proposals and a connection is made only when both players
involved agree1 .
We run 9 sessions, with each session involving 6 participants and a minimum

of 15 rounds of network formation. We use both simulated and experimentally
generated data to test the underlying model of network formation.
When all agents are expected utility maximisers and form static expectations

about what the other players will do, and under the assumption that the unitary
cost of link formation is lower than the bene�t obtained from each connection,
the model admits non-trivial equilibrium network architectures. More in detail,
any minimally connected network is stable.
Minimally connected graphs are often reached in our experimental sessions,

but are typically unstable. Convergence to a minimally connected network is
only observed in one out of the nine experimental sessions (session 7 displayed
at page 9), where a minimally connected graph is reached and then kept for four
rounds until the end of the session. However 40% of the individual choices are
rational in that subjects take the current network as given and propose links by
maximising expected payo¤s (best response).
Best response requires individuals to reciprocate link proposals to those that

they do not reach in the current network and to delete direct connections when
inexpensive indirect connections are available (redundant links).
We compare the frequency of best responses for our experimental subjects

to the likelihood of seemingly optimal behaviour in simulated samples where
individuals choose at random. We �nd that in the experimental sample subjects
follow best response behaviour a signi�cantly higher proportion of time. Hence
we conclude that best response behaviour is �conscious�.
As for the remainder of the sample (60% of non-best response behaviour)

we �nd that experimental subjects have a tendency to: propose links to those
from whom they have received link proposals in the past and to propose links
to those who have a large number of links. Also, we �nd that the actual pro�ts
obtained when following these alternative strategies of �almost best-response�
are not very distant from best response pro�ts. Together with best response
behaviour these strategies explain approximately 75% of the observed choices.
We estimate individual propensities to adopt each of these strategies con-

trolling for group e¤ects. We �nd that group e¤ects matter greatly when best
response strategies are implemented, while individual e¤ects play a major role
when the other two strategies are adopted.
In order to discriminate among these three types of systematic behaviour,

we estimate a mixture model to �nd that these strategies are well identi�ed and
separated in our sample.
The paper develops as follows. Section 2 describes the experimental design:

the model and the experimental procedure. Section 3 and 4 present the results
respectively for the experimental network architectures that we obtain, and for
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the individual linking strategies. Section 5 concludes the paper. The instruc-
tions (in their English translation) can be found in the appendix. The software
used for the experiment is available from the authors upon request.2

2 The Experimental Design

2.1 The Model

We model network formation as a non-cooperative simultaneous move game.
As in Goyal and Joshi (2006) we assume that players�strategies are vectors of
intended links and that links are only formed when they are mutually agreed,
i.e. desired by both parties involved. There are positive network externalities
in that both direct and indirect connections are bene�cial; however direct links
are costly.
Consider a set N of n � 3 players, indexed by i = 1; 2; :::; n. Each player i

submits a vector of intended links:

si = (si1; si2; :::; sin)

An intended link is sij = 0; 1 where sij = 1 means that player i intends to link
to player j, while sij = 0 means that player i does not intend to link to player
j. A link between i and j is formed if and only if sij = sji = 1. We denote
the formed link by gij = gji = 1, while we represent the fact that there is no
mutually agreed link between i and j by setting gij = gji = 0. A strategy pro�le
for all players

s = (s1; s2; :::; sn)

induces an (undirected) network of links g = fgijgi;j2N , where players are nodes
and links are the edges between them. We say that i and j are connected in
the graph g if there exists a path of adjoining nodes k1; k2; :::; km such that
gik1 = gk1k2 = ::: = gkm�1km = gkmj = 1.
Denote by ndi the number of direct neighbours of player i, and by ni the

number of his direct and indirect connections. More in detail, denote by ndi
the number of elements of the set Nd

i = fj j gij = 1g and by ni the number
of elements of the set Ni = fj j there is a path in g from i to jg: Notice that
if i and j are directly linked, then there is a path between them (of length 1):
hence necessarily ni � ndi . Player i�s payo¤, given his position in the network
g, is assumed to be equal to:

�i (g) = b � ni � c � ndi
where b and c are non-negative constants that represent respectively the unitary
bene�t from (direct and indirect) connections and the unitary cost of direct links.
Players aim at maximising their payo¤s and can rationally form new links or

sever existing ones to this aim. Goyal and Joshi (2006) characterise equilibrium
networks by introducing the notion of pairwise stable networks. A pairwise
stable network is such that there exists a Nash equilibrium strategy pro�le
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that induces the network (so that no agent has any incentive to deviate from
his current vector of intended links) and such that no pair of agents have any
incentive to form a new link. More in detail, for any two agents who are not
linked in a pairwise stable network, if one of the two gains by establishing a new
link, it must be the case the other player involved is made strictly worse o¤ by
the new link. Formally:

De�nition: A network g is a pairwise stable network if the following conditions
hold:

1. there is a Nash equilibrium strategy pro�le (s�i ; s
�
�i) that induces g;

2. for gij = 0; if �i(g + gij)� �i(g) > 0 then �j(g + gji)� �j(g) < 0

Goyal and Joshi show that all Nash networks are minimal. A minimal graph
is such that there is at most one path connecting any two agents: there are
no redundant links. The intuition why this has to hold is that if there are
redundant links then there are agents that can be reached both directly and
indirectly. Players could obtain higher payo¤s by deleting their (costly) direct
links to all those nodes that they are able to reach indirectly through others.
As long as b > c, then all pairwise stable networks are both minimal and

connected (or minimally connected), i.e. there is one and only one path con-
necting any two agents3 . The intuition of why this is so is that if there is any
isolated node, given that the bene�t from an extra connection is higher than
the cost of a direct link (b > c), then there are incentives for a new link to be
formed between the isolated player and at least another node in the graph.
The complete network, where every node is directly connected to every other,

is an example of connected graph. The complete network is clearly not minimal,
as there are many redundant links. Examples of minimally connected graphs
are the star and the chain.

Complete Network Chain

Star (Another) Minimally Connected Network

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

Examples of network architectures.

2.2 The Experimental Procedure

The experimental sessions were conducted in Spring 2006 at CESARE, LUISS
University in Rome. Subjects were �rst year Economics students and in total
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we had 54 participants. Each subject participated in only one session and none
had previously participated in a similar experiment. We run 9 computerised ex-
perimental sessions, with 6 participants each. Each experimental session lasted
between 30 and 45 minutes. Subjects total earnings were determined by the
sum of the pro�ts in each round and were paid using a conversion rate of 100
points per euro. Participants earned approximately 27 euros on average, on top
of a 5 euros participation fee.
We implemented a single treatment, for which detailed parameters are in

the table below:4

Participants Initial Endowment Cost Bene�t
Sessions 1 - 9 6 500 90 100

All relevant parameters were equal across participants and displayed on the
screen at any time throughout the experiment.
At the beginning of each session subjects were told the rules of conduct

and provided with detailed written instructions, which were read aloud by the
experimenters.
Sessions consisted of a minimum of 15 rounds, with a random stopping rule

determining the end of the experiment.5 In each round subjects were asked to
submit (anonymously and independently) a vector of intended links. The initial
screen for each participant is shown in �gure 1.

Figure 1: The initial screen.

Participants are represented on the screen by di¤erent symbols which we
considered neutral in that they do not provide subjects any particular clue
when deciding to establish a link with another player in the group.6 Subjects
do not know their symbol (or the other participants�symbols) in advance and
can identify themselves on the screen because their symbol is circled in red. The
screen also displays the relevant parameters for the session at play. After all
subjects have con�rmed their choice of network partners, the computer checks
which links are mutually desired and activates them. At the end of each round
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pro�ts are computed and displayed on the screen. Great care was put in making
sure that all information available to experimental subjects was provided in a
user-friendly way. For this reason the graphical interface was designed so that
actual links are visualised on the screen as a graph, rather than as a list of
activated ties, or as a matrix of 0/1 connections.
As an example, �gure 2 shows the participants�screen at the end of round

number 4. It displays the graph of all active links, total revenues, costs and
pro�ts in the round. It also provides information on past unmatched proposals:
at the end of the round each subject is informed of those players who have
proposed a link to them but whom they have not reciprocated. At any time
during the experiment participants have access to a great deal of information on
past history: by clicking on the bar corresponding to each round they are able
to visualise the graph of active links and the pro�ts obtained in that round.

Figure 2: The participants�screen at the end of round 4.

3 Experimental Networks

Under our parametric assumptions any minimally connected graph is a pair-
wise stable network. Minimally connected graphs are also e¢ cient in that they
maximise aggregate pro�ts.
As typical examples of the observed experimental networks, we show below

the outcome of sessions 1, 3 and 7.
In session 1 we notice that there is a tendency to inclusion, but not minimal-

ity: after the 3rd round, there are no isolated nodes, however many redundant
links persist until the end of the session. Only once (in round 8) the network
observed is minimally connected as predicted by the theory.
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Session 1.

In session 3 we observe a tendency to both inclusion and minimality: in 75%
of the rounds (15 out of 20) the obtained networks are connected; 27% of these
connected networks are also minimally connected. In this particular session
coordination on minimally connected networks is achieved through subject 1,
who serves as a hub by accepting links with most of the others.

Session 3.

In session 7 we obtain convergence to a minimally connected network: from
the 15th round onwards (to round 18) a minimally connected network is achieved
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and remains stable. Although, as discussed above, in most of our sessions we
can observe both a tendency to connectedness and minimality, session 7 is the
only one in our sample where a de�nite convergence is obtained.

Session 7.

We believe that convergence to a minimally connected graph is made very
di¢ cult by two main factors. First of all, as it has been remarked by the litera-
ture (see Kosfeld (2004)), the game that agents play has multiple equilibria and
players �nd it very di¢ cult to coordinate on the same Nash equilibrium (clearly
communication was prevented during the experiment). Secondly, subjects dis-
play some aversion to inertia and, whenever a minimally connected graph is
reached in early rounds, it is often abandoned later (in same cases to be reached
again) by subjects who cannot resist to the experimentation of new strategies.
The focus of this paper is not on convergence of experimental networks to

a stable network architecture, but rather on individual linking strategies in
network formation. In the next section we turn to this micro-level analysis. In
particular, we attempt to identify individual behaviour that may lead to each
of the three types of network architecture exempli�ed above:

1. networks where there is a tendency to inclusion but not to minimality, as
in session 1;

2. networks where one or more subjects serve as hubs for a minimally con-
nected network, although convergence may not occur, as in session 3;

3. networks where convergence to a minimally connected architecture is achieved,
as in session 7.

9
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4 Link Formation

In each round of link formation individuals have 32 available strategies. For each
player a strategy is given by a 5-dimensional vector of 0s and 1s. For player
1, for example, a possible strategy is to propose a link to each of the other 5
players in the game:

(1; 1; 1; 1; 1)

Strategy (0; 0; 0; 0; 0) corresponds to the choice of not proposing a link to any of
the other players; while (1; 1; 0; 0; 0) corresponds to the choice of proposing to
the �rst two players (other than player 1) and not the other ones; and so forth.
More in detail, the set of strategies for each of the players is as follows:

(0; 0; 0; 0; 0) (1; 0; 0; 0; 0) (0; 1; 0; 0; 0) (0; 0; 1; 0; 0)
(0; 0; 0; 1; 0) (0; 0; 0; 0; 1) (1; 1; 0; 0; 0) (1; 0; 1; 0; 0)
(1; 0; 0; 1; 0) (1; 0; 0; 0; 1) (0; 1; 1; 0; 0) (0; 1; 0; 1; 0)
(0; 1; 0; 0; 1) (0; 0; 1; 1; 0) (0; 0; 1; 0; 1) (0; 0; 0; 1; 1)
(1; 1; 1; 0; 0) (1; 1; 0; 1; 0) (1; 1; 0; 0; 1) (1; 0; 1; 1; 0)
(1; 0; 1; 0; 1) (1; 0; 0; 1; 1) (0; 1; 1; 1; 0) (0; 1; 0; 1; 1)
(0; 1; 1; 0; 1) (0; 0; 1; 1; 1) (1; 1; 1; 1; 0) (1; 1; 1; 0; 1)
(1; 1; 0; 1; 1) (1; 0; 1; 1; 1) (0; 1; 1; 1; 1) (1; 1; 1; 1; 1)

Under the assumption of static expectations, each player expects the other
5 participants to play in round t the same strategy that they have played in
round t� 1. Hence given these expectations on what the others will play, each
participant best respond by selecting the strategy (or the strategies) within the
strategy set above whereby pro�ts are maximised. Typically there will be more
than one strategy that maximises pro�ts. For example: if player 2 did not pro-
pose a link to player 1 in the previous round, player 1 will be indi¤erent between
proposing or not proposing a link to him in the current round. Given that link
proposals need to be reciprocated in order to generate payo¤s, proposing to
someone that does not propose to you yields exactly the same payo¤ as not
proposing.
There are less trivial ways in which players may be indi¤erent between mul-

tiple best responses: suppose that in the previous round all other players were
connected to each other and to player 1, so that a complete network was ob-
served. Any of the following one-link strategies is a best response for player
1:

(1; 0; 0; 0; 0) (0; 1; 0; 0; 0) (0; 0; 1; 0; 0) (0; 0; 0; 1; 0) (0; 0; 0; 0; 1)

In other circumstances the best response for a player could be strict (i.e.
unique). Suppose that in the previous round the observed network is a star
where player 1 is the hub: all other players propose links to player 1 and to
player 1 only. In the current round the best response of player 1 is unique and
it is to propose to all other players:

(1; 1; 1; 1; 1)

10
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4.1 Best Response Behaviour

4.1.1 Choices

In our sample 40% of the individual choices are best responses. In order to assess
whether this is a �high�percentage of choices or not, we need to compare it to
the proportion of times that a player that selects a strategy at random would
end up selecting a strategy that happens to be a best response, even though it
is selected at random. This comparison is particularly useful in our framework
where the set of best responses contains more than one strategy. Assume, for
example, that in a typical round the experimental network that has been formed
is such that for the next round a good half of the available strategies are best
responses, then even someone choosing a strategy at random would have a very
good chance of selecting a best response.
For sake of comparison, we assume that all individuals select strategies at

random, with each of the 32 strategies having a probability equal to 1/32 of
being selected. Under this assumption we simulate 1000 samples with the same
number of sessions, rounds and participants as in our experiment. We �nd that
in the simulated samples a best response is selected on average a signi�cantly
lower number of times than in the experimental sample (32%). More in detail,
in the experimental sample 360 choices conform to best response behaviour; in
the simulated samples 284.38 choices on average can also be characterised as
best responses (s.e. = 0.414).
Having established that a signi�cant share of choices in our experiment cor-

respond to a �conscious�best response, we go on to examine the determinants
of the propensity to best respond. In particular we examine the role of both
group (session) and individual e¤ects.
In order to highlight the individual propensity to best respond, we report in

�gure 3 the histogram of the proportion of best responses by individual. Many
subjects follow best response behaviour more than 50% of the time. Most of
the individuals do best response for 40% of their decisions. Figure 4 shows the
cumulated frequency of the proportion of best response adoption by individ-
ual. We compare the cumulated distribution for the experimental sample to
the average cumulated distribution resulting from the simulated samples where
agents select strategies at random. To con�rm the hypothesis that experimental
subjects follow best response behaviour in a conscious manner, we �nd that the
cumulated distribution of the experimental sample lies below the one obtained
on average in the simulated samples. Hence there are more subjects who do
best response more often in the experimental sample than they would if playing
at random. In particular, while in the simulated samples an average of 95% of
subjects conform to best response behaviour less than 50% of the times, in the
experimental sample only 75% of subjects do best response less than 50% of the
times. In other words, 25% of our experimental subjects do best response more
than 50% of the time, while only 5% of the players in the simulated samples
would do the same.
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Figure 3: Proportion of best responses by individual.
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Figure 4: Cumulated frequency of the proportion of best responses by
individual: experimental sample versus average of simulated samples.

While the average number of best responses across sessions is 40%, a few
sessions di¤er greatly from this average. In session 1 the proportion of best
responses is very low (about 15%); by contrast, in session 7 almost 65% of the
choices can be accounted for as best responses. In sessions 2, 3, 5 and 6 around
45% of choices correspond to best response behaviour. In sessions 4, 8 and 9
players appear to best respond 30% of the times. Figure 5 shows the proportion
of best responses by session, also displaying individual averages.

12

Jena Economic Research Papers 2009 - 095



0
.2

.4
.6

.8

1 2 3 4 5 6 7 8 9
session

average proportion of best responses by individual
average proportion of best responses by session

Figure 5: Average proportion of best response choices by session and by
individual.

In order to separate individual from group (session) e¤ects, we model the
individual propensities to best respond as a function of an individual e¤ect, a
session (cluster) e¤ect and an error term. Let the jth individual in the overall
sample be the ith subject in the cth session. Then individual i�s propensity to
best respond yBR

�

ict is:

yBR
�

ict = �c + 
i + "ict i = 1; :::; 6 c = 1; :::; 9 t = 1; :::; Tc (1)

"ict � N [0; 1] 
i � N [0; �2
 ]

Here there are two regression intercepts: the intercept 
i varies across in-
dividuals (individual-speci�c random e¤ect). We assume that 
i is a normally
distributed random variable that does not depend on any observable. In the
network formation game that the experimental subjects play, individual deci-
sions within a session may well be correlated because individuals are in�uencing
each others�decisions. Such correlation may also arise because of unobservable
common shocks to all individuals in the same session: for example, because all
individuals observe the same sequence of graphs occuring during a session. Our
method for controlling for dependence on unobservables within a session is to
model the intercepts �c as random unobservables (cluster-speci�c �xed e¤ects
model). Basically, we assume that the inclusion of the session-speci�c �xed
e¤ect �c is su¢ cient to control for any form of correlation within a session.
The available data is an unbalanced panel, since the number of rounds in

each session (Tc) depends on a random stopping rule that decides, after round
15, whether or not to continue with another round of the game.
The observational rule is the following:

yBRict = 1 if sit is a best response

yBRict = �1 otherwise

13
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The log-likelihood contribution of subject i is

llBRi = LogLBRi (�c; �
 j si1; :::; siTc) =
Z 1

�1

TcY
t=1

�[yBRict � (�c + 
)]f(
; �
)d


(2)
where �[�] and f(�) are respectively the standard normal cumulative distribution
function and the normal density function for the random variable 
i. This
model corresponds to an individual random e¤ects probit model with session
�xed e¤ects. It is consistently estimated because the number of observation per
session Nc is su¢ ciently large, with Nc = Tc � 6 ranging between 84 and 114.7
Results are displayed in table 1. We �nd that session �xed e¤ects matter

greatly in determining the propensity to best respond. Individual unobserved
heterogeneity does not seem to matter. This result suggests that the propensity
to best respond may be increased by the fact that more subjects in the same
group are also more likely to best respond.

Probit random effect of players’ propensity to best respond
(players = 54; obs. = 888)

specification
(1) (2)

sess2 ­ 0.942***
(0.226)

sess3 ­ 1.029***
(0.221)

sess4 ­ 0.736***
(0.222)

sess5 ­ 0.933***
(0.229)

sess6 ­ 0.922***
(0.225)

sess7 ­ 1.429***
(0.226)

sess8 ­ 0.521**
(0.230)

sess9 ­ 0.641***
(0.231)

cons ­0.266*** ­1.074***
(0.068) (0.658)

σi 0.378*** 0.133
(0.068) (0.088)

LL ­587.563 ­567.942
*** 1%significance level; ** 5%significance level.

Table 1

4.1.2 Pro�ts

We compare average pro�ts obtained through best response and non-best re-
sponse choices. Actual average pro�ts obtained are not signi�cantly di¤erent:
best response choices yielded our experimental subjects an average of 175.056
(s.e. 7.901) experimental units, while non-best response choices earned them
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179.091 (s.e. 5.506) experimental units. Actual average pro�ts obtained in each
of the sessions are displayed in �gure 6.
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Figure 6: Average pro�ts by session.

We can also compute expected pro�ts under the assumption of static ex-
pectations. Not surprisingly for this case we �nd that expected returns from
non-best response behaviour (153.921; s.e. 5.053) are signi�cantly lower than
expected returns from best responses (231.944; s.e. 7.559). If subjects had been
correct in their static expectations, best response behaviour would have yielded
higher pro�ts by construction.

4.1.3 Distance from Best Response

The empirical analysis in this section is motivated by the observation that many
individual choices that cannot be strictly accounted for as best responses are
nevertheless �close� to best response in terms of pro�ts. With this in mind,
we focus on a measure of distance from best response behaviour given by the
di¤erence between maximum attainable expected pro�t (i.e. pro�t that the
agent would obtain by best responding) and the expected pro�t given the actual
choice made.
More in detail, we propose an index of distance from best response obtained

not in the domain of strategies, but in the domain of expected pro�ts. Call s�it
the best response strategy by agent i in round t. By de�nition of best response,
strategy s�it maximises expected pro�ts of agent i in round t, given that all other
players are playing the same strategy in t as they did in t � 1 (assumption of
static expectations):

s�it = argmax
si
E[�(si; s�i;t�1 )]
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Keeping the assumption of static expectations on the behaviour of others,
expected pro�t to player i by choosing a non-best response strategy bsit in round
t is equal to:

E[�(bsit; s�i;t�1 )]
As a measure of distance from best response we focus on the di¤erence

between these two expected payo¤s, which we normalise with respect to the
maximum payo¤ obtainable in each round (under our parametric assumptions,
equal to 410) and which most importantly we penalise for the proportion of
strategies within the strategy set of player i that correspond to best responses.
The reason why we penalise for this proportion is that we want to put more
weight to a discrepancy from best response that occurs in those cases where a
large part of the strategy set corresponds to best response, than to those cases
where only few strategies (possibly one) are best responses. In our framework
it may occur that an agent in a given round has a large share of his available
strategies that all constitute best responses (for example, 16 out of 32); in
contrast it may also occur that only one (or very few) out of the 32 available
strategies are best responses. We consider agent i to be more distant from a
best response when he selects a non-best response strategy although many of
his/her available strategies are best responses. The reason why we introduce this
weighting is that we believe it may capture both the complexity of computing
the best response and how consciously the subject deviates from it. If a large
share of the available strategies are best responses, then identifying the vector
of intended links that maximises pro�ts is relatively easy. Hence we consider
all those who do not follow best response behaviour in these circumstances as
�farther� away from best response behaviour compared to those who do not
follow best response behaviour when this is (at least in probabilistic terms)
more di¢ cult to identify in the set of available strategies.
More in detail, the index of distance from the best response that we propose

is the following:

dit =
(E[�(s�it; s�i;t�1 )]� E[�(bsit; s�i;t�1 )])=410

(1� pit)�

where pit is de�ned as the proportion of strategies that constitute best responses
(out of the available 32) for individual i in round t; � � 0 is a parameter.
For � = 0, the index does not penalise for the proportion of strategies that
correspond to best responses; larger values of � denote stronger penalisation.
Clearly the proposed index is always non-negative and it is equal to zero only
when the strategy chosen in round t by individual i is a best response. In what
follows we assume � = 1:5; alternative values for � do not a¤ect our results
from a qualitative point of view.
Figure 7 displays individual distances from best response by session. We

notice that for each individual the distribution of distance from best response is
rather concentrated, especially when the median is close to zero, as in sessions
5 and 7.
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Figure 7: Boxplot for distance from best response, by subject.

The distribution of our measure of distance from best response for our ex-
perimental sample is displayed in �gure 8: it seems to follow an exponential
distribution and we will model it as such. The exponential distribution is char-
acterised by a single parameter referred to as the rate parameter: the larger the
rate parameter, the more concentrated towards zero is the distribution. Figures
7 and 8 suggest us to model each individual as characterised by his own ideal
distance from the best response; they also suggest that this individual distance
is exponentially distributed over the population. We assume that at each round
individuals make mistakes such that the individual distance from the best re-
sponse is centred on his ideal distance and deviates for a normally distributed
random error:

dict = �i + uict �i � Exp(1=�) uict � N [0; �2c ] (3)

Here we consider statistical inference under the assumption of intra-session
heteroschedasticity. By doing so we take into consideration common shocks that
may a¤ect all subjects in the same session.
By estimating model (3) on the data from our experimental sample, we

obtain that the rate parameter � is rather precisely estimated to equal 3:438
(s.e. 0.275).8
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Figure 8: Distance from best response.

We also estimate the rate parameter � for each of the simulated samples.
Summary statistics are reported in table 2. We �nd that the rate parameter
for the experimental sample is signi�cantly larger than the one obtained in the
simulation. This con�rms that the experimental sample is more concentrated
towards best response behaviour than if players were playing at random.
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Figure 9
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Summary statistics of estimated scale parameter from the distance from best
response model (controlling for intra­cluster heteroschedasticity)

λ̂
1000 simulated samples (N = 54)
(LL = ­726.2642)
Mean 2.755
(Standard error) 0.008
Median 2.784
Standard deviation 0.240
Minimum 1.718
Maximum 3.328
average number of observations per subject = 15.78

Table 2

The � so obtained is a parameter that is able to summarise the distribution
of our measure of distance from best response. We have tested if � decreases
over time through learning, to �nd that time does not play a role here.9 Only
in sessions 2 and 7 the average distance from best response eventually reduces
(see �gure 10).
These �ndings con�rm the analysis described in the previous section.
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Figure 10: Average distance from best response, by round.

4.2 Other-than-Best Response Behaviour

4.2.1 Choices

In the previous section we showed that 40% of individual choices can be ac-
counted for as best responses. As for the remaining 60%, our analysis of dis-
tance from best response showed that they are not very far from best response

19

Jena Economic Research Papers 2009 - 095



behaviour. In this section we ask whether there are �nuances�of best response
that may explain in a systematic fashion individual behaviour other than best
response.
First, we speculate that subjects may act as to maximise the number of direct

links in the game, as a proxi for maximising pro�ts. A subject who maximises
links rather than pro�ts is someone who does not recognize that he could be
making more money by deleting redudant links, i.e. links to those nodes that
can be reached indirectly through connections put in place by others. Someone
who plays the network formation game with the aim of maximising direct links,
under the assumption of static expectations, always proposes a link back to those
from whom he has received a link proposal in the previous round. We call this
strategy the �reciprocator�. Second, we speculate that some subjects may have
attempted a rule of conduct that is somehow complementary to reciprocator in
providing a best response: rather than maximising the number of direct links,
some subjects may indeed have attempted to maximise the number of indirect
connections achieved through a single link. A subject who follows this rule
adopts the strategy to propose links to those that had the maximal number of
direct links in the previous round. We call this strategy �opportunistic�.
Both reciprocator and opportunistic strategies are well represented in our

sample: 37% of choices can be accounted for as being dictated by the recipro-
cator strategy; 34% of choices can be accounted for as being dictated by the
opportunistic strategy.
By comparing these percentages with those obtained from the simulated

samples where individuals choose at random, we notice that reciprocator and
opportunistic behaviour occur less often than in our experimental sample. More
in detail: only 192.86 (s.e. 0.332) choices are explained by reciprocator in the
simulated samples, compared to 331 in our experimental sample; only 212.35
(s.e. 0.461) choices are explained by opportunistic in the simulated samples,
compared to 305 in our experimental sample.
Many choices can be explained by more than one strategy at a time: there

are occurrences when the best response strategy coincides with reciprocator, or
opportunistic, or both; also there are occurrences when reciprocator and oppor-
tunistic strategies coincide, while not coinciding with best response behaviour.
Table 3 shows the overlap between the strategies and compares it to what

arises from our simulated samples (theoretical distribution under the hypothesis
that all agents are selecting strategies at random). The Pearson�s chi-square test
shows that the frequency distribution of the experimental sample di¤ers from
the distribution of the simulated samples (p-value < 0:001).
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Table 3.

Similarly to the analysis in section 4.1.1 we examine the individual propen-
sities to adopt reciprocator and opportunistic strategies through a probit model
with individual random e¤ects and session �xed e¤ects. The distributional as-
sumptions are the same as in the probit model for best response behaviour (see
equation (1)). Here the observational rules for reciprocator and opportunistic
behaviour are the following:

yRCict = 1 if sit is a reciprocator choice

yRCict = �1 otherwise

yOPict = 1 if sit is an opportunistic choice

yOPict = �1 otherwise

As a result, the log-likelihood contributions of subject i are respectively:

llRCi = LogLRCi (�c; �
 j si1; :::; siTc) =
Z 1

�1

TcY
t=1

�[yRCict � (�c + 
)]f(
; �
)d


(4)

llOPi = LogLOPi (�c; �
 j si1; :::; siTc) =
Z 1

�1

TcY
t=1

�[yOPict � (�c + 
)]f(
; �
)d


(5)
The results of our analysis are in table 4. We �nd that group e¤ects (as

measured through session �xed e¤ects) are not signi�cant10 , while unobserved
heterogeneity matters greatly. This is in stark contrast with our results for
the propensity to adopt best response, where group e¤ects were the only de-
terminant. Figures 11 and 12 compared to �gure 5 illustrate this point: there
appears to be much more dispersion around the session average for non-best
response behaviour than for best responses; also, in contrast with best response
behaviour, for reciprocator and opportunistic most of the heterogeneity is across
individuals rather than across sessions.
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Probit random effect of players’ propensity to reciprocate and to behave opportunistically
(players = 54; obs. = 888)

Reciprocator Opportunistic
(1) (2) (1) (2)

session fixed effects no yes no yes
­0.388*** ­0.612*** ­0.472*** ­0.220constant

(0.095) (0.148) (.101) (0.254)
0.607*** 0.542*** 0.647*** 0.519***σi

(0.084) (0.080) (0.090) (0.079)
LL ­545.629 ­540.930 ­524.214 ­514.728

*** 1%significance level; ** 5%significance level.

Table 4.
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Figure 11: Average proportion of reciprocator choices, by session and by
individual.
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Figure 12: Average proportion of opportunistic choices, by session and by
individual.

Figures 13 and 14 show respectively the cumulated frequency of the propor-
tion of reciprocator and opportunistic behaviour by individual. In each case we
compare the cumulated distribution for the experimental sample to the average
cumulated distribution resulting from the simulated samples where agents se-
lect strategies at random. To con�rm the hypothesis that experimental subjects
follow reciprocator or opportunistic behaviour in a conscious manner, we �nd
that, with the exception of very low proportions, the cumulated distribution of
the experimental sample lies below the one obtained from the simulated sam-
ples. Hence there are more subjects who reciprocate (or are opportunistic) more
often in the experimental sample than they would if playing at random.
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Figure 13.
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Figure 14.

4.2.2 Strategies, Networks and Returns

Figure 15 reports percentages of strategies adoption by session. Session 7 is
characterised by the fact that a large majority of experimental subjects played
according to best response. Recall that session 7 (illustrated in section 3) is
the only session where convergence to a minimally connected network has been
obtained. Session 3 is characterised by a large majority of opportunistic choices.
Recall that in this session subject 1 served as a hub for the experimental net-
work with most other subjects linking to him (session 3 is illustrated in section
3). Session 1 is an example of a session where best response behaviour was
particularly scarce. In this session redundant links were not eliminated and
convergence was not obtained (session 1 is illustrated in section 3).
By comparing average pro�ts obtained through each of the three strategies,

we �nd that average pro�ts obtained by best response choices are not signif-
icantly di¤erent from those obtained by reciprocators: best response choices
yielded our experimental subjects an average of 175.056 (s.e. 7.901) experimen-
tal units, while reciprocators earned 182.930 (s.e. 7.433) experimental units.
By contrast, opportunistic choices lead to signi�cantly higher pro�ts (221.180;
s.e. 7.595) both with respect to best response and with respect to reciprocator.
Figure 16 shows that this pattern applies not just on average, but also for most
sessions. In particular, opportunistic behaviour seems to earn a premium over
the other two strategies in sessions 6 and 7. Sessions 6 and 7 are characterised
by the fact that many individuals adopted the reciprocator strategy (see �gure
15). This may explain why opportunistic behaviour was particularly pro�table
in these sessions.
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Figure 15: Percentages of strategies adoption, by session.
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Figure 16: Average pro�ts, by strategy and session.

We also ask how average pro�ts vary with the frequency with which subjects
adopt each of the three di¤erent strategies. More in detail, �gure 17 shows the
average pro�t obtained by individuals who followed each of the strategies for a
given percentage of choices. We see that the highest pro�ts across all sessions
is achieved by those (few) who follow an opportunistic strategy more than 80%
of the time. By contrast, the lowest levels of average pro�ts are achieved by
the only player who follows the reciprocating strategy for more than 90% of
the times. Average pro�ts obtained by those who follow best response do not
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seem to vary greatly as the percentage of choices in which best response itself
is adopted increases. For the range of proportions of strategy adoptions where
most of individuals lie (i.e. in the range 10% to 40%) we observe that average
pro�ts obtained by following best response are not too dissimilar from average
pro�ts obtained by adopting the reciprocator strategy. For the same range, the
average pro�t of those who have followed the opportunistic strategy were lower.
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Figure 17: Average pro�ts by strategy adoption.

4.3 The Mixture Assumption

Taking into account the fact that di¤erent individuals may behave di¤erently in
network formation, we adopt the solution of using a mixture model (see McLach-
lan and Peel (2000)). We restrict attention to the three candidate strategies that
we have described above and we assume that each subject is of one type: best
response, reciprocator or opportunistic. We proceed by assuming that a pro-
portion �BR of the population from which the experimental sample is drawn
behaves according to best response; a proportion �RC behaves according to
reciprocator; and �nally a proportion �OP = 1� (�BR + �RC) behaves accord-
ing to opportunistic.
The parameters (�BR; �RC ; �OP ) are known as the mixing proportions and

are estimated along with the other parameters of the model.
The likelihood contribution of subject i is then:

LogLi = �BR � llBRi + �RC � llRCi + �OP � llOPi

where llBRi ; llRCi and llOPi have been de�ned respectively in equations (2), (4)
and (5) above.
As displayed in table 5, we �nd that 31% of the population does best re-

sponse; 27% behaves as a reciprocator; 42% behaves as a opportunistic. In
accordance with our �ndings in the probit regressions (see tables 1 and 4), we
�nd that while best response behaviour is not a¤ected by individual speci�c
attitudes but only by group e¤ects, for the reciprocator and the opportunistic
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types session �xed e¤ects are only slightly signi�cant with most of the action
being played by individual attitudes.

Mixture model of the three different type of behaviours, each individual is one type
(players = 54; obs. = 888)

Specification 1
Best response Reciprocator Opportunistic

session fixed effects No No No
constant ­0.874***

(0.198)
­1.228
(0.745)

­1.061***
(0.196)

σi 0.293
(0.218)

0.442**
(0.205)

0.911***
(0.197)

mixing proportions 0.220***
(0.080)

0.305***
(0.084)

0.474***
(0.088)

LL ­452.637

Specification 2
Best response Reciprocator Opportunistic

session fixed effects Yes Yes Yes
constant ­1.133***

(0.205)
­0.732
(0.397)

­0.450
(1.453)

σi 2.76e­10
(.)

0.000
(0.089)

0.589***
(0.149)

mixing proportions 0.314***
(0.080)

0.268***
(0.068)

0.417***
(0.082)

LL ­426.057
*** 1%significance level; ** 5%significance level.

Table 5.

Having estimated a mixture model, one obvious thing to do is to compute the
posterior probabilities of each experimental subject being of each type. Using
Bayes�rule we have the following posterior probabilities:

Pr [type k j si1; :::; siTc ] =
Pr [type k]� Pr [si1; :::; siTc j type k]

Pr [si1; :::; siTc ]

=
�k � Pr [si1; :::; siTc j type k]

Pr [si1; :::; siTc ]
=
�k � llki
LogLi

for k 2 fBR;RC;OPg:
Posterior probabilities are depicted in �gure 18. Each of the 54 subjects is

represented by a single point in the graph. Subjects who are in the bottom
left corner are of the opportunistic type; subjects who are in the bottom right
corner are of the best response type; �nally those who are in the top left corner
are of the reciprocator type. The vast majority of subjects are located very
close to one of the vertices of the triangle, a minority is close to the lower edge
and virtually nobody is in the middle. This �nding con�rms that the mixture
model segregates the three types of individuals well, with most of them being of a
particular type. Only for a small number of subjects we cannot determine if they
are best response or opportunistic, or if they are best response or reciprocator.
This technique has been previously been used by Conte et al (2009).
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Figure 18: Posterior probabilities.

5 Conclusions

Our empirical results provide an explanation for individual behaviour in the
network formation game.
Approximately 40% of the network formation strategies adopted by the ex-

perimental subjects can be accounted for as best responses. The individual
attitude to best respond is heavily group driven, with agents being more likely
to best respond when others in the same session also do, while individual e¤ects
are not signi�cant.
We link such empirical �ndings to the fact that there is a multiplicity of

equilibria around which the group needs to coordinate.
We also observe that many of the experimental subjects�choices which can-

not be strictly accounted for as best responses are nevertheless �close�to best
response. With this in mind, we focus on a measure of distance from best
response behaviour given by the di¤erence between maximum attainable ex-
pected pro�t (i.e. pro�t that the agent would obtain by best responding) and
the expected pro�t given the actual choice made.
We compare the empirical distributions of such distance from the best re-

sponse to the theoretical ones obtained in a simulation where all subjects are
assumed to play randomly. We �nd that the empirical distributions are signi�-
cantly di¤erent from the ones in which subjects are assumed to play at random.
Moreover the empirical distributions are much more concentrated towards the
best response than the theoretical ones.
For this �close� to best reponse behaviour we go farther and attempt to

identify regularities in the way in which experimental subjects behave. First,
we speculate that subjects may indeed act as to maximise the number of direct
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links in the game, as a proxi for maximising pro�ts. A subject who maximises
links rather than pro�ts is someone who does not recognize that he could be
making more money by deleting redudant links, i.e. links to those nodes that
can be reached indirectly through connections put in place by others. Someone
who plays the network formation game with the aim of maximising direct links,
under the assumption of static expectations, always proposes a link back to
those from whom he has received a link proposal in the previous round. We
call this strategy �reciprocator�. Second, we speculate that some subjects may
have indeed attempted a rule of conduct that is somehow complementary to
reciprocator in providing a best response: rather than maximising the number
of direct links, some subjects may have attempted to maximise the number of
indirect connections achieved through a single link. A subject who follows this
rule adopts the strategy to propose links to those that had the maximal number
of direct links in the previous round. We call this strategy �opportunistic�.
Given that there is obviously some overlap across best response behaviour

and each of these strategies, we go on to test econometrically if a mixture
assumption can be validated for our sample. We �nd that it is safe to assume
that each individual belongs to one type, with mixing proportions approximately
equal to 42%, 31% and 27% for opportunistic (the leading type), best response,
and reciprocator respectively.
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Appendix
Instructions (English Translation)

Welcome
This is an experiment on the formation of links among di¤erent subjects. If

you make good choices you will be able to earn a sum of money that will paid
to you in cash immediately at the end of this session.
You are one of the 6 participants to this experiment; at the very beginning

the computer will randomly assign to you an initial budget (equal across par-
ticipants). Also, the computer will randomly assign to you an icon (Dropper,
Radio, Cube, Floppy disk, Hand lens, Hour glass) that will identify you
throughout the experiment and will assign you an initial budget (equal across
participants). The icon that identi�es you is circled in red on your screen.
The experiment consists of a random number of rounds: there will be at least

15 rounds, after which a lottery administered by the computer will determine
whether there is any further round or the experiment is over.
Each participant to this experiment represents a node. At the beginning of

the experiment all nodes are isolated. In each round the computer will ask you
whether you want to propose any link and to whom. You can propose 0, 1 or
more links. The computer will collect the proposals from all participants and will
activate only the links which are desired by both subjects involved (reciprocated
proposals).
Your screen will show the graph of active links. The box at the bottom right

of your screen will show you who has proposed you a link in the previous round
and whom you have not reciprocated.
Each link that you manage to activate has a cost (equal across participants)

that is indicated on the screen. In each round the computer may reject your
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link proposals if they entail an expenditure that is higher than your budget for
that round.
Your revenues in each round are automatically computed and are given by

the product by the revenue per node (equal across subjects and indicated on
your screen) and the number of nodes that you manage to reach both through
your direct links and the links activated by other participants.

Computing costs and revenues

Example: subject Radio is directly linked to Floppy disk and Dropper and
indirectly, that is through Dropper, to Hand lens.

Unitary revenue:  10
Cost of each connection: 3

The profit of Radio is:
total revenues –total costs

total revenues = number of nodes reached (directly and indirectly) x revenue per node = 3 x 10 = 30
total costs = direct connections x cost of each connection = 2 x 3 = 6

profit = 24

In each round the computer will work out your pro�t and will display it on
your screen. The overall pro�t from the experiment is given by the sum of your
revenues in all rounds. At the end of the experiment you will be paid in cash
an amount in euros equivalent to 10% of your total pro�t.

More in detail

At the beginning of the experiment please wait for instructions from the
experimenters without touching any key.
When the experimenter will ask you to do so, please double-click only once

on the �Network Client�icon on your desktop.
The following screen will appear:
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The screen gives you all the information regarding the round that you are
about to play.
Be careful: each round has a maximum time duration given by the number

of seconds indicated in red at the top-right corner of your screen. If you have not
managed to make your choice by then, the computer will immediately proceed
to the next round.
Your screen shows all the relevant data useful for the current round (available

budget, costs and revenues) as well as the results that you have obtained from
each of the previous rounds.
At the end of each round, the graph will show the links which have been ac-

tivated by you and the other participants (as shown above). Moreover the table
that summarises your performance in the current round will be updated. You
will have the possibility to review the situation of previous rounds by clicking on
the corresponding bar in the same table. The table at the bottom right of your
screen gives you additional information on proposals that you have received but
not matched in the previous rounds.

32

Jena Economic Research Papers 2009 - 095



When the message "Round is now active" appears at the bottom of your
screen, you can make your choice by ticking the boxes corresponding to the
icons that you want to propose a link to. When you are done, press �Con�rm�.
When all participants have con�rmed their choices, the computer will show the
results of the round on the screen.
You will be advised of the beginning of a new round by a "New Round"

message. Be careful: after the 15th round, red and green lights will �ash on the
screen. If the lights stop as green, you will play another round; if they stop as
red, the experiment is over.
It is very important that you make choices independently and that you do

not communicate with other participants during the experimental session.
At the end of the last round the experiment is over and you will be paid

in cash for a sum corresponding to your pro�t during the course of the whole
experiment.
For any problem, please contact the experimenters.
Enjoy.
May 2006
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