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Abstract

Two empirical questions concerning the equity and housing have been
studied extensively: (1) Are the price and return serially correlated, and
(2) What is the optimal weight of housing in the portfolio? The answer
to the second question crucially depends on the cross-correlation of assets.
This paper complements the literature by building a simple dynamic general
equilibrium with fully rational agents, and obtain closed form solutions for
the implied auto- and cross-correlations. The length of time horizon, as well
as the persistence of economic shock matter. Implications and future research
directions are then discussed.
Keywords: rational expectation, price and return, serial and cross corre-

lation, market efficiency, predictability
JEL Classification Number: E30, G10, R20
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1 Introduction and Motivation

This paper attempts to shed light on two empirical questions concerning the
equity and housing by building a dynamic general equilibrium model: (1)
Are the price and return of stock, as well as housing, serially correlated, or,
at least partly predictable, (for instance, see Case and Shiller (1989, 1990))?
and (2) What is the optimal weight of housing in the household portfolio? As
observed by Hwang and Quigley (2003), the serial correlations of asset prices
(the first question) are often quoted as evidence for market inefficiency, or
even a basis to question the rationality of economic agents. Cochrane (2001,
especially chapter 20) reviews the literature and concludes that “returns are
predictable”.1

The second question concerns the optimal portfolio allocation in the pres-
ence of housing. Behind this question is an attempt to justify why residential
housing possess such a large share in a typical household portfolio.2 A typical
practice in the literature is to take the correlations of assets from the data,
and then calculate the optimal weight of housing in the portfolio. Clearly,
the answer crucially depends on the cross-correlation of assets. Quan and
Titman (1999) find that the statistical significance of the relationship be-
tween the return of housing and equity depends on whether the data across
countries are pooled together, and whether the measurement intervals are
long enough.3

In response to the first question, this paper builds a tractable, unifying
framework where agents have rational expectation and that the production of
goods, and accumulation of physical and household capital are endogenized.4

We find that even with i.i.d. shocks, the equilibrium correlations of asset
prices and returns are in principle non-zero. With reasonable parameter val-
ues, our numerical work confirm this result. Thus, serial correlations of asset
prices and returns cannot be used as evidence against market efficiency. The
idea is similar to the partial equilibrium model of Wheaton (1999). Wheaton

1See also Gatzlaff and Tirtiroglu (1995) for a survey on the housing literature.
2Again, that literature is too large to be reviewed here. Among others, see Flavin and

Yamashita (2002), Hwang and Quigley (2003).
3Recent works such as Englund, Hwang and Quigley (2002) on Swedish data, Iacoviello

and Ortalo-Magne (2003) on London data suggest that there are large potential gains if
institutions or housing derivatives are established to allow houseowners to hedge the risk.

4Throughout the paper, the terms "residential capital", "household capital", "housing"
will be used interchangably.
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(1999) shows that when the housing stock adjusts sluggishly, the housing
price and return will be serially correlated. He however only considers the
case of rental housing. In his model, the residents only have consumption mo-
tives, while the investors have only investment interests. This paper shared
the intuition about sluggish adjustment of different capital stock, and ex-
tend the analysis to the case with forward-looking owner-occupiers-investors,
and take into account the stochastic structure of the shocks.5 The positive
correlation of asset price and return partly reflects the correlation of output
in adjacent periods, and partly reflect that the general equilibrium nature.
When everyone tries to sell at a given price, no one can actaully sell any-
thing. The asset price and return would adjust and by that time, some would
maintain the portfolio unchanged.
In response to the second question, this paper demonstrates an alter-

native methodology: instead of taking the asset price or return correlation
as given and compute the optimal portfolio, this paper instead derives the
equilibrium asset prices and returns in a dynamic general equilibrium en-
vironment, in which the portfolio problem is solved by the representative
agent in each period. In fact, since the focus of this paper is the dynamic
behavior of prices and returns, it seems appropriate to model them as en-
dogenous rather than exogenous variables: partly because it promotes the
self-discipline in the asset-price modelling, and partly because it reflects the
fact that the asset prices and the fundamental are correlated, as suggested
by some recent empirical research (especially over a longer horizon).6 For
instance, Benzoni, Collin-Dufresne and Goldstein (2005) show that the cor-
relation of labor income and asset return are increasing with the horizon,
and suggest that stock returns and labor income are cointegrated. In this
model, both asset return and labor income would endogenously arise from
the individuals’ maximization problem and market clearing condition, and
would therefore be naturally correlated.7

5Notice that the homeownership in many countries are high. For instance, the home-
ownership rate in the USA is about two-third and in Hong Kong it is about a half. In
some other countries, this number can be even higher. For instance, the homeownership
rates in both Singapore and Taiwan are about 80%.

6For instance, see McQueen and Roley (1993), Wongbangpo and Sharma (2002), Parker
and Julliard (2005).

7On the other hand, the life-cycle consideration emphasized by Benzoni, Collin-
Dufresne and Goldstein (2005), the idiosyncratic housing return faced by a typical house-
hold emphasized by Englund, Hwang and Quigley (2002), are abstracted away here and
can only be left to future research.
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Clearly, this paper is relate to a recent literature on reconciling the ag-
gregate economy on the one hand, and the stock market and/or the housing
sector on the other hand, such as Jermann (1998), Krusell and Smith (1997),
Ang, Piazzesi and Wei (2005), Diebold, Piazzesi and Rudebusch (2005),
among others.8 Piazzesi, Schneider and Tuzel (2003) introduces housing into
an otherwise standard asset pricing framework and attempt to improve the
model’s explanatory power. While Piazzesi, Schneider and Tuzel (2004) is
trying to match the data through a calibrated model, this paper attempts to
produce some analytical results within a dynamic general equilibrium frame-
work. Thus, some simplifying assumptions have to be made and some gen-
erality will be sacrificed. In return, this paper is able to provide some closed
form solutions, and hence making the economic intuition more transparent.
Moreover, since the model is not calibrated but rather analytically solved, it
is exempted from the criticisms of Hansen and Heckman (1996).9 Thus, the
model itself may be of independent interest to researchers. In sum, the two
papers should be viewed as complements rather than substitutes.
The organization of this paper is simple. The next section will present the

basic model, followed by analytical and numerical results. The last section
concludes.

2 A Simple Model

Our model is built on Greenwood and Hercowitz (1991), Hercowitz and
Sampson (1991), Benassy (1995), Kan et. al. (2004), and hence the descrip-
tion will be brief.10 Time is discrete in this model and the horizon is infinite.
The economy is populated by a continuum of infinite-lived agents. The pop-
ulation is fixed over time. In each period t, t = 1, 2, 3,..., the representative
agent derives utility u(Ct, Ht+Hr

t , Lt) from non-durable consumption goods
Ct , the stock of housing (or residential property) owned (rented) by the
agent Ht (H

r
t ), as well as the amount of leisure enjoyed (1− Lt), where Lt

is the amount of time the agent supplied in the market, 0 ≤ Lt ≤ 1. Ht is
broadly defined to include the residential structure, as well as the associated

8See Leung (2004) for a review on the literature relating macroeconomics and housing.
9For more details, see the exchange between Hansen and Heckman (1996), Kydland

and Prescott (1996).
10See also Kwong and Leung (2000), Leung (2001) for related studies.
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amenities. Following Greenwood and Hercowitz (1991), it is assumed that

u(Ct, Ht +Hr
t , Lt) = lnCt + ω1 ln (Ht +Hr

t ) + ω2 ln (1− Lt) , (1)

where ω1, ω2 > 0. The representative agent is assumed to maximize the
expected value of the discounted sum of life time utility E0

P∞
t=0 β

tu(Ct,
Ht + Hr

t , Lt) , participate in the production of consumption goods Ct, and
accumulate business capital stock Kt, and residential property Ht. β is the
time discount factor, 0 < β < 1.11

The representative agent is a price taker in all industries and he/she is
subject to a series of constraints. (To ease the notations, time subscripts
are suppressed unless there is a risk of confusion). First, the total value
of non-durable consumption C, and investment in business capital, residen-
tial property, Ik, Ih respectively, the expenditure on the residential property
purchased from the market, PhH

m, the expenditure on renting residential
property, RhH

r, the expenditure on purchasing new equity, Ps (St+1 − St) ,
cannot exceed the total value of rental income from capital, RK, labor in-
come WL, and dividend SΠd, where Ph is the relative price of housing (in
terms of consumption goods), Ps is the relative price of equity, R is the factor
return for capital, W is the real wage rate, Πd is the total dividend.
Residential investment Ih includes not only new construction, but also

maintenance, renovation, purchase of new furniture, appliance, etc.12 Analo-
gous interpretation applies to Ik as well. Whether it pays to invest or where
to invest depends crucially on the payoff of the investment. Following Her-
cowitz and Sampson (1991) and Benassy (1995), we assume a specific form of
law of motion for different types of capital, which will generate closed forms
of the solution,13

Kt+1 = (Kt)
1−δk (Ikt)

δk , (2)

Ht+1 = (Ht +Hm
t )

1−δh (Iht)
δh , (3)

11See Stokey, Lucas and Prescott (1989, esp. chapter 3) for more discussion on the role
of the time discount factor.
12Downing and Wallace (2002a, b) show that the expenditures for home improvements

and re-modelling total at least 2% of the GDP and is comparable to the expenditure on
new housing construction. It also varies systematically over the business cycle.
13An alternative approach is to adopt a more general framework and then use loglin-

earization as in Campbell (1994). The reduced forms of the dynamics, however, would be
similar. See Lau (2002).
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where 0 < δk, δh < 1. The dynamic programming problem of the represen-
tative agent is now:

V (Kt,Ht, St) = max .u(Ct, Ht +Hr
t , Lt) + βEtV (Kt+1,Ht+1, St+1) (4)

s.t. RtKt+WtLt+StΠ
d
t ≥ Ikt+Iht+Ct+PhtH

m
t +RhtH

r
t+Pst (St+1 − St) , (5)

and (2), (3), where . It is implicitly assumed in (5) that the representative
agent observes the current period productivity At first, and then decides how
much raw materials are to be imported from the “rest of the world”, given
the amount of capital and property the representative agent owns.
The production side of the economy is simple. Output are produced by

combining capital and labor through a concave function,

Yt = At (Kt)
α1 (Lt)

α2 (6)

where At > 0, ∀t, 0 < α1, α2, and α1 + α2 < 1. The productivity is assumed
to have finite mean and variance, 0 < E (At) , V ar(At) < ∞. The factor
markets are assumed to be competitive and the factor returns are equal to
the marginal product,

Rt =
∂Yt
∂Kt

, Wt =
∂Yt
∂Lt

. (7)

It is further assumed that the dividend is equal to the profit Πd
t = Πt, which

is the output net of factor payment,

Πt = Yt −RtKt −WtLt. (8)

As it is standard in the growth model, the objective of the representative
firm is to maximize the profit and hires capital and labor from the factor
market accordingly.
To solve the model, it is necessary to impose market clearing conditions.

Following Lucas (1978), the net trade of housing is assumed to be zero (both
ownership market and rental market) and the total amount of equity is as-
sumed to be unity in every period,

St+1 = St = 1, Hm
t = Hr

t = 0. (9)

In the appendix, we show that the problem can be simplified and prove
the following proposition: (all proofs are contained in the appendix)
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Proposition 1 In this model economy, if

βα1δk (1− β (1− δk))
−1 < 1, (10)

then the amount of working hours, the consumption and different kinds of
investment shares of the output are constant,

Lt = L, Ct = ScYt, Ij,t = SjYt, j = k, h. (11)

The asset prices depend on the output, investment and housing stock,

Pht =

µ
1− δh
δh

¶µ
Iht
Ht

¶
, (12)

Rht =

µ
1− β (1− δh)

β (1− δh)

¶
Pht, (13)

Pst =
β (1− α1 − α2)

1− β
· Yt. (14)

With reasonable market-clearing conditions imposed, this proposition en-
ables to characterize the equilibrium quantities (and prices) in each period as
functions of exogenous variables. In other words, we can trace the evolution
of the whole system.
It is convenient to rewrite in log form, i.e., we write ct = lnCt, yt = lnYt,

pht = lnPht, pst = lnPst, sj = lnSj, j = c, k, h, etc. The economy is hence
represented by the following linear equations:

yt = θy + α1kt + at, (15)

kt+1 = (1− δk) kt + δkikt, (16)

ht+1 = (1− δh)ht + δhiht, (17)

ct = ηc + yt, (18)

ikt = ηk + yt, (19)

iht = ηh + yt, (20)

for some constants θy, and given the initial conditions a0, k0, h0.We also have
the following corollary:
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Corollary 2 In log form, the stock price is linearly correlated to the output,

pst = θs + yt. (21)

In fact, we can also obtain an expression for the housing price in this
model economy.

Lemma 3 The (log) housing price can be written as a function of the current
and previous period output, or productivity shocks,

pht = θh + yt + δh

Ã ∞X
i=0

(1− δh)
i yt−1−i

!
, (22)

= θh +
∞X
i=0

δp(i)at−i, (23)

for some function of parameter, δp(i), i = 0, 1, 2, ....

Now, it is clear that the stochastic structure of the productivity shocks
{at} is crucial in determining all the key correlations. It would be no sur-
prise if a serially correlated productivity shock leads to serially correlated
prices. Therefore, for expositional purpose, we will first examine the case
with serially un-correlated productivity shocks. Interestingly, even in that
case, the asset prices will display serial correlation. In other words, there is a
internal propagation mechanism behind the asset prices. Again, the appendix
contains the proofs.

Proposition 4 Even with serially uncorrelated productivity shocks, the ser-
ial correlation of asset prices will in general be non-zero. The formula for
covariance and variance are given by the following expressions:

cov(pst, ps,t+j)

= σ2a

Ã
α1δk (1− δk + α1δk)

j−1 +
(α1δk)

2 (1− δk + α1δk)
j

1− (1− δk + α1δk)
2

!
> 0, (24)

where σ2a ≡ var(at) and for j = 1, 2, 3,... And for housing prices,

cov(pht, ph,t+j) = σ2a

Ã ∞X
i=0

δp(i) · δp(i+ j)

!
, (25)

9



for j = 1, 2, 3, .... Moreover, the two assets are correlated contemporarily ,

cov(pst, pht) = σ2a ·
" ∞X
i=0

δp(i)δ
s
p (i)

#
, (26)

where δsp (i) > 0, ∀i, are functions of parameters. In general, the correlation
between the current stock price and the subsequent period housing prices are
non-zero. For j = 1, 2, 3, ....

cov(pst, ph,t+j) = σ2a

" ∞X
i=0

δp(j + i)δsp (i)

#
, (27)

Conversely, the correlation between the current period stock price and previ-
ous period housing prices is

cov(pst, ph,t−j) = σ2a

" ∞X
i=0

δp(i)δ
s
p (j + i)

#
, (28)

where the variance of equity price and housing price are given by

var(pst) = σ2a ·
Ã ∞X

i=0

¡
δsp(i)

¢2!
, var(pht) = σ2a ·

Ã ∞X
i=0

(δp(i))
2

!
.

For economic and financial research, it is natural to study not only the
dynamic behavior of prices, but also of the rate of returns. We define the
rate of return of stock and housing as follows.

eRs,t+1 =
Ps,t+1 +Πd

t+1

Pst
, eRh,t+1 =

Ph,t+1 +Rh,t+1

Pht
. (29)

With these definitions, we can prove the following proposition.

Proposition 5 In log form, the rate of return of stock can be written as a
function of output, ers,t+1 = − lnβ + yt+1 − yt, (30)

and that of the housing can be written as a function of housing price,

erh,t+1 = − ln (β (1− δh)) + ph,t+1 − pht. (31)
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In addition, we can show that, for j = 1, 2, 3, ...

cov (ers,t+1,ers,t+1+j)
= σ2a ·

(
δsp (0) δ

s
r (j) +

∞X
i=0

δsr (i+ 1) · δsr (j + i+ 1)

)
, (32)

cov (erh,t+1,erh,t+1+j)
= σ2a ·

(
δp (0) δr (j) +

∞X
i=0

δr (i+ 1) · δr (j + i+ 1)

)
, (33)

where δsr (i) ≡
£
δsp (i)− δsp (i− 1)

¤
, δr (i) ≡ [δp (i)− δp (i− 1)]. In addition,

we can examine the cross-correlation of the two assets’ return. In particular,
the contemporaneous cross-correlation is given by the following formula,

cov (ers,t+1,erh,t+1)
= σ2a ·

(¡
δsp (0) · δp (0)

¢
+

∞X
i=0

δsr (i+ 1) · δr (i+ 1)
)
. (34)

And for j = 1, 2, 3,... the covariance between the current period stock return
and the subsequent period housing return is

cov (ers,t+1,erh,t+1+j)
= σ2a ·

(¡
δsp (0) · δr (j)

¢
+

∞X
i=0

δsr (i+ 1) · δr (i+ j + 1)

)
, (35)

and the covariance between the current period stock return and the previous
period housing return is

cov (ers,t+1,erh,t+1−j)
= σ2a ·

(
(δsr (j) · δp (0)) +

∞X
i=0

δsr (j + i+ 1) · δr (i+ 1)
)
, (36)

where the variance of the stock and housing returns are respectively

var (ers,t+j+1) = σ2a ·
(¡

δsp (0)
¢2
+

∞X
i=0

(δsr (i+ 1))
2

)
,

var (erh,t+j+1) = σ2a ·
(
(δp (0))

2 +
∞X
i=0

(δr (i+ 1))
2

)
.
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This section has provided the model, and the closed form solution for
the difference covariance and variance terms of different asset prices and
returns. However, as argued by Cooley (1995), an analytical model alone
may not provide enough restrictions on the equilibrium quantity and should
be complemented by numerical calculation or simulation, which is the focus
of the next section.

3 Numerical Results

To gain a (quantitative) sense of the model, we substitute in parameter values
that have been used in the literature and then compute the equilibrium
correlations of the asset prices and returns. The following table provide a
summary (on quarterly basis):

(Table 1 about here)

Notice that putting together α1 and α2 implies that “profit” is about
10% of the output, which is consistent with Gort, Greenwood and Rupert
(1999), and a recent survey by Economist magazine. The other parameter
values are pretty standard in the macroeconomics literature and we refer the
readers to the original articles for more discussion. It should be noticed that
this is a stationary model economy, and hence all prices are stationary.14

In practice, however, asset prices are typically non-stationary in practice,
even measured in real terms. Thus, the results here should be compared to
the “de-trended” asset prices (in real terms) in reality rather than the raw
(nominal) prices observed in data.15 An analogous interpretation is applied
to the asset returns. In addition, the correlation formula derived earlier
presumed an infinite time series, while the correlation coefficients estimated
in the literature are based on a finite sample. The potential small sample
bias might be especially serious for housing data. As surveyed by Quan and
Titman (1999), some empirical estimates are based on less than 20 years of
data. On top of that, this paper intends to be a theoretical exploration,
with some numerical examples for illustrations, rather than being a full-scale

14Even for models exhibit economic growth, the common practice for finding the solution
is always to first convert the model economy to a stationary counterpart by dividing all
variables by some appropriate “growth factor”. See King and Rebelo (1999) for more
details.
15In practice, “detrending” can be a very subtle issue. For instance, see Burnside (1998).
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data-matching exercise. Thus, discerpencies between the empirical literature
and the calculations here should be expected. Now we present the results
for the case with i.i.d. shock. (The numbers in the table have been rounded
up).

(Table 2a, b about here)

Several observations are in order. First, with i.i.d. shocks, both the auto-
correlations and cross-correlations of the asset prices are non-zero but very
small in magnitude. Second, there is a very strong “reverting” tendency of
asset return. Notice that both equity and housing returns displays about
−0.5 for one period of lag, and virtually zero correlation after. The intuition
is clear. If the model economy is surprised by a positive shock this period,
agents will increase their holdings in assets. As the short-run supply is always
limited, the asset prices will immediately go up, which gives a surprisingly
good return of asset holding this period. On the other hand, a positive shock
also means that the investment in stock (capital as well as housing) increases,
which tend to depress the future price. Thus, asset prices are expected to fall
in later periods, and hence the future return and current return are negatively
correlated. Third, the cross-correlation of asset prices are also weak, and the
cross-period, cross-asset correlation are numerically significant only for one
period, and then virtually zero afterwards. The similarity of pattern of auto-
correlation and cross-correlation is due to the fact that this model is driven
only by the technological shock.

3.1 Does time horizon matter?

Notice that the previous results are all in quarterly basis, as in the macro-
economics literature. Recent studies such as Parker and Julliard (2005),
Benzoni, Collin-Dufresne and Goldstein (2005), among others, seem to sug-
gest that the time horizon matters. To examine whether it is the case in this
framework, we adjust the depreciation rate, discount factor accordingly and
present the result for the case when each period represents a year.16

(Table 3a, b about here)

16Notice that the utility function is maintained to be in log form, and thus the in-
tertemporal elasticity of substitution is implictly fixed when we change the length of a
period.
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Several observations are in order. First, in percentage terms, the auto-
correlations of asset prices dramatically increase, though the level of those
numbers are still small. Notice that we obtain closed form solutions for
all the covariance and variance terms and hence the difference of results in
quarterly and annual basis are not due to approximation errors. Rather, it
demonstrates that in longer horizon, the asset prices are more correlated, and
are consistent with some recent research that asset pricing models perform
much better in longer horizon (for instance, see Parker and Julliard (2005),
Benzoni, Collin-Dufresne and Goldstein (2005)). Second, the pattern of auto-
as well as cross-correlations of asset return are dramatically similar. It seems
that as arbitrage is at work, the length of the time period does not matter.
Readers should bear these observations in mind, as we are going to compare
with the case with persistent shocks.

3.2 Does the persistence of shocks matter?

Thus far the results presented are restricted to the case with i.i.d. shocks.
In reality, however, one can argue that shocks tend to be persistent. For
instance, a major change in government policy is often followed by more
minor amendments. A major technological breakthrough often takes time
to diffuse across sectors and firms, and often followed by a wave of further
improvement. Therefore, it is important to consider the case with persistent
shocks. To facilitate the comparison with the macroeconomics literature, we
follow Cooley (1995) by assuming that the shock takes a simple AR(1) form:

at = ρat−1 + ut, (37)

where ut is i.i.d., with E(ut) = 0, var(ut) = σ2u <∞, ∀t and cov(ut, us) = 0,
∀s 6= t. According to Cooley, setting the value of ρ as 0.95 is found common
and indeed useful in the macroeconomic literature. This simple structure
tends out to be very tractable. In the appendix, we show how the previous
formula can be modified to adopt the change in assumption. It suffices to say
that by appropriately re-define certain parameters, the closed form solutions
for all the variance and covariance terms maintain. And we tabulate all the
results in table 4.

(Table 4a, b about here)

Several observations are in order. First, equity price becomes very persis-
tent. Housing price is more persistent than before as well. In order words,
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the persistence of shock matters. Second, in terms of auto-correlation of as-
set returns, only the one-period lag equity return for one period is affected.
The effect quickly dies out. For housing, the auto-correlations of returns are
almost identical. Thus, the persistence of shock would have different impact
on different assets in the short run, and almost no impact in the long run.
Third, the cross-correlations of asset prices, whether it is the equity price
leading the housing price, or vice versa, have dramatically increased. It may
not be surprising as the auto-correlations of asset prices have increased sig-
nificantly. What may be interesting, however, is that with any given period
of time lag, the cross-correlation between equity and housing is noticeably
larger than the auto-correlation of different periods of housing prices. Notice
that this phenomenon is consistent with competitive markets and rational
agents, and should not used as evidence against the efficiency of the market.
Fourth, the cross-correlations of returns are affected only in the short-run. It
is similar to the case of the auto-correlations of asset returns.
We have also adjusted different parameter values for the case of annual

frequency under persistent shocks, including the persistence parameter. The
results are reported in table 4c and 4d.

(Table 4c, d about here)

Clearly, there are many qualitative difference with the quarterly case.
What should be noticed, however, is that while the auto-correlation of equity
is only slightly affected by the change of frequency, the auto-correlation of
housing price is significantly changed. It means that we should be cautious
as we compare results using different time frequency, perhaps especially for
housing price. In addition, while the auto-correlation with one period lag of
equity are similar for quarterly and annual data, the numerical values for later
periods auto-correlation are different. In particular, while auto-correlation
with two or three periods of lag may be detected as statistically in-significant
in quarterly data with 1% significant level, it will be detected as significant
with annual data. Again, it is another demonstration that the frequency of
data matters.

4 Concluding Remarks
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The efficiency of asset markets, or markets in general, have long been ques-
tioned. For instance, Lamont and Thaler (2003) review some recent liter-
ature on the violation of the “Law of One Price” in asset markets. Even
for the internet, where the information cost should be minimal, Baye, Mor-
gan and Scholten (2004) do not find empirical support for the “Law of One
Price”. The price dispersion phenomenon identified by Leung, Leong and
Wong (2005) also suggest that the housing market may be inefficient. On
the other hand, the research agenda of establishing the in-efficiency of the
market by studying the asset price or asset return correlation may need to be
refined. As shown in Wheaton (1999), sluggish adjustment in (rental) hous-
ing stock itself is enough to generate housing price auto-correlation. This
paper generalizes this insight in several dimensions. Analytically, we find
that even when agents have rational expectation, the equilibrium prices and
return of assets (housing and equity) will be correlated. Furthermore, the
cross-correlation of the prices and return of the two assets will be non-zero.
The numerical exercises confirm that the equilibrium correlations of asset
prices (both equity and housing) are very sensitive to the length of period
and the persistence of shock. When the shocks are persistent, both the auto-
and cross-correlation of asset prices are can be very significant. The equilib-
rium predictions of asset return correlations, except for the first period, seem
to be relatively invariant to the persistence of shock, as well as to the length
of a period.
Clearly, there are much rooms for improvement for this research. For one

thing, the model is very stylized. There is only one shock in this model. An
ongoing project extends this model to include monetary and other shocks
in the model and examine how the asset price/return correlations change as
more “market frictions” are added into the model. Nevertheless, the results
reported in this research seem to encourage further effort to understand how
asset prices and returns would be correlated in a general equilibrium setting.
The model developed in this paper may also be of independent interest.

In fact, our model is so tractable that in the case of i.i.d. and AR(1) shocks,
closed form solutions for asset price and return correlations are delivered. It
can be extended and modified in different directions for the investigation of
other issues in financial economics. For instance, this paper can be extended
to include risk-free bond, following the formulation of Lucas (1978). A more
interesting research direction would be to include different sources of uncer-
tainty in the model and see how that impact the asset prices and returns
at the equilibrium. And to make the portfolio choice more interesting, this

16



paper should extend to the case with heterogeneous agents. Research along
these lines may deepen our understanding of the asset markets.
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Table 1: parameter values

Parameter Values Source
ω1 1 GH
ω2 1 GH
β 0.99 Cooley (1995)
α1 0.3 Cooley (1995), GGR
α2 0.6 Cooley (1995), GGR
δk 2% GH, KKL
δh 2% GH, KKL

where GH denotes Greenwood and Hercowitz (1991), GGR denotes Gort,
Greenwood and Rupert (1999), KKL denotes Kan, Kwong and Leung (2004).
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Table 2a: Auto-Correlation of Asset Prices and Returns
(Quarterly, i.i.d. shock)

Lag Equity Price Equity Return Housing Price Housing Return
1 0.0073 −0.5000 −0.0069 −0.5000
2 0.0072 0.0000 −0.0070 −0.0001
3 0.0071 0.0000 −0.0069 0.0000
4 0.0070 0.0000 −0.0068 0.0000
5 0.0069 0.0000 −0.0067 0.0000

Table 2b: Cross-Correlation of Asset Prices and Returns
(Quarterly, i.i.d. shock)

Lag EP leads HP EP lags HP ER leads HR ER lags HR
1 −0.0169 0.0029 −0.5049 −0.5000
2 −0.0169 0.0029 −0.0001 0.0000
3 −0.0167 0.0029 0.0000 0.0000
4 −0.0164 0.0028 0.0000 0.0000
5 −0.0161 0.0028 0.0000 0.0000

where Lag denote the number of lags, EP denotes Equity Price, HP de-
notes Housing Price, ER denotes Equity Return, HR denotes Housing Re-
turn.
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Table 3a: Auto-Correlation of Asset Prices and Returns
(Annual, i.i.d. shock)

Lag Equity Price Equity Return Housing Price Housing Return
1 0.0289 −0.4992 −0.0269 −0.4992
2 0.0272 0.0000 −0.0285 −0.0016
3 0.0257 0.0000 −0.0267 0.0000
4 0.0243 0.0000 −0.0251 0.0000
5 0.0229 0.0000 −0.0235 0.0000

Table 3b: Cross-Correlation of Asset Prices and Returns
(Annual, i.i.d. shock)

Lag EP leads HP EP lags HP ER leads HR ER lags HR
1 −0.0169 0.0029 −0.5049 −0.5000
2 −0.0169 0.0029 −0.0001 0.0000
3 −0.0167 0.0029 0.0000 0.0000
4 −0.0164 0.0028 0.0000 0.0000
5 −0.0161 0.0028 0.0000 0.0000

where Lag denote the number of lags, EP denotes Equity Price, HP de-
notes Housing Price, ER denotes Equity Return, HR denotes Housing Re-
turn.
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Table 4a: Auto-Correlation of Asset Prices and Returns
(Quarterly, AR(1) shock)

Lag Equity Price Equity Return Housing Price Housing Return
1 0.9995 −0.9881 0.5879 −0.4927
2 0.9982 0.0053 0.5819 −0.0001
3 0.9961 0.0049 0.5760 0.0000
4 0.9933 0.0045 0.5701 0.0000
5 0.9898 0.0041 0.5641 0.0000

Table 4b: Cross-Correlation of Asset Prices and Returns
(Quarterly, AR(1) shock)

Lag EP leads HP EP lags HP ER leads HR ER lags HR
1 −0.7736 −0.7595 −0.7166 −0.6932
2 −0.7725 −0.7522 −0.0092 0.0000
3 −0.7708 −0.7448 −0.0081 0.0000
4 −0.7689 −0.7373 −0.0075 0.0000
5 −0.7657 −0.7291 −0.0069 0.0000

where Lag denote the number of lags, EP denotes Equity Price, HP de-
notes Housing Price, ER denotes Equity Return, HR denotes Housing Re-
turn.
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Table 4c: Auto-Correlation of Asset Prices and Returns
(Annual, AR(1) shock)

Lag Equity Price Equity Return Housing Price Housing Return
1 0.9944 −0.9561 0.3782 −0.4744
2 0.9900 0.0143 0.3463 −0.0053
3 0.9591 0.0105 0.3210 −0.0019
4 0.9333 0.0075 0.2980 −0.0017
5 0.9040 0.0050 0.2772 −0.0015

Table 4d: Cross-Correlation of Asset Prices and Returns
(Annual, AR(1) shock)

Lag EP leads HP EP lags HP ER leads HR ER lags HR
1 −0.6603 −0.5686 −0.7416 −0.6538
2 −0.6494 −0.5292 −0.0292 0.0011
3 −0.6337 −0.4933 −0.0178 0.0010
4 −0.6147 −0.4605 −0.0124 0.0009
5 −0.5935 −0.4305 −0.0080 0.0008

where Lag denote the number of lags, EP denotes Equity Price, HP de-
notes Housing Price, ER denotes Equity Return, HR denotes Housing Re-
turn.
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Appendix

A Proofs

A.1 Proof of (11), (12), (14)
To start, we first provide the first order conditions of the maximization for
household, i.e. maximizing (4), subject to (5), and (2), (3).
Now we need to derive the first order conditions of the representative

agent. Let λ1t, λ2t, λ3t be the Lagrangian multipliers of the constraints (5),
(3) and (2) respectively. The first order conditions are standard:

λ1t = (Ct)
−1 , (38)

ω2 (1− Lt)
−1 = λ1tWt, (39)

λ3t = βEt

∙
λ1,t+1Rt+1 + (1− δk)

µ
λ3,t+1Kt+2

Kt+1

¶¸
, (40)

λ1t = λ3,t (δk) (Kt+1/Ikt) , (41)
Phtλ1t = λ2t (1− δh) (Ht+1/ (Ht +Hm

t )) , (42)
Rhtλ1t = ω1/ (Ht +Hm

t ) (43)

Pstλ1t = βEt

£
λ1,t+1

¡
Πd
t+1 + Ps,t+1

¢¤
, (44)

λ2t = βEt

"µ
ω1
Ht+1

¶
+ (1− δh)

Ã
λ2,t+1Ht+2¡
Ht+1 +Hm

t+1

¢!# , (45)
λ1t = λ3t (δh) (Ht+1/Iht) , (46)

and the condition that profit is equal to dividend Πd
t = Πt.

To solve this system of equations, the aggregate production function, (6),
market clearing conditions, (9), and factor market conditions, (7) and (8),
need to be imposed. Thus, (5) is simplified as

Ikt + Iht + Ct ≤ Yt. (47)

In addition, we will need to make conjecture about the policy functions of
the agent, as in Ljungqvist and Sargent (2000). Our conjecture is simply
that the consumption and investment shares are constant over time,

Ct = ScYt, Ij,t = SjYt, j = k, h,

where S are all constants, i.e. (11). Combining that with (47), we have
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Sc + Sh + Sk = 1. (48)

Equipped with these, we are ready to prove our results. For instance,
(39) becomes

ω2
1− Lt

=
α2
Lt
· 1Sc

or Lt =
α2

α2 + Scω2
≡ L, (49)

which is constant over time, as long as Sc is indeed a constant. Clearly,
0 < L < 1.
Now, we want to get an expression for Sk. Combining the conjecture,

(11), (40), (7), we get

λ3tKt+1 =
α1β

Sc
+ β (1− δk)Et [λ3,t+1Kt+2] . (50)

Notice that Kt+1 is pre-determined at time t and hence can be extracted
from the expectation operator. Notice also that (50) is of the form of a
forward-looking, stochastic difference equation,

xt = a0 + a1Et (xt+1) ,

where xt = λ3tKt+1, a1 = β (1− δk) , and 0 < a1 < 1. Following Ljungqvist
and Sargent (2000), we impose the no-bubble condition (which is also one of
the transversality conditions in this model),

lim
s→∞

[β (1− δk)]
sEt [λ3,t+sKt+s+1] = 0,

and solving iteratively, it is easy to see that (50) implies

λ3tKt+1 =
α1β

Sc
· 1

1− β (1− δk)
.

From (41), with the conjecture, we have

λ3tKt+1 = (δk)
−1 ¡Sk/Sc

¢
.

Equating these two expressions, we have

Sk =
α1βδk

1− β (1− δk)
, (51)
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which is indeed a constant. Clearly, Sk > 0. The only additional assumption
we need is that Sk < 1, which is indeed (10).
Similarly, with (45), (9), (7), we can show that

λ2tHt+1 = ω1β + β (1− δh)Et [λ2,t+1Ht+2] , (52)

which is analogous to (50). Thus, we impose an analogous no bubble condi-
tion,

lim
s→∞

[β (1− δh)]
sEt [λ2,t+sHt+s+1] = 0,

and solving iteratively, it is easy to see that (52) implies

λ2tHt+1 =
ω1β

1− β (1− δh)
. (53)

From (46), with the conjecture, we have

λ2tHt+1 = (δh)
−1 ¡Sh/Sc

¢
.

Equating these two expressions, we have

Sh =
ω1βδh

1− β (1− δh)
Sc. (54)

Now, combine this with (48) and (51), we have

Sc =

µ
1− α1βδk

1− β (1− δk)

¶µ
1− β (1− δh)

1− β (1− δh) + ω1βδh

¶
,

Sh =

µ
1− α1βδk

1− β (1− δk)

¶µ
ω1βδh

1− β (1− δh) + ω1βδh

¶
, (55)

which are clearly in between 0 and 1, and it completes the verification of (11).
(Recall that the constancy of L, i.e. (49), actually depends on the constancy
of Sc.)
Now, combining (42) and (46) will deliver (12).
To prove (14), we start with (44). With (11), it can be re-written as

Pstλ1t =
(1− α1 − α2)β

Sc
+ βEt [Ps,t+1λ1,t+1] . (56)

Once again, we impose the no-bubble condition,

lim
j→∞

(β)j Et [λ1,t+jPs,t+j+1] = 0,
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and solving iteratively, it is easy to see that (56) implies

λ1tPst =
(1− α1 − α2)β

Sc
· 1

1− β
.

However, by (11) and (38),

λ1t =
1

ScYt
.

Combining the two expressions deliver (14).
Now, we will prove (13). Combining (42), (43) and (9), we get

Pht

Rht
=
(1− δh)

ω1
λ2tHt+1.

And by (53), this expression can be re-written as

Pht

Rht
=

β (1− δh)

1− β (1− δh)
,

which can in turn be written as (13).

A.2 Proof of equations, from (15) to (20)
To prove (15), we start with (6). Since

Yt = At (Kt)
α1 (Lt)

α2

⇒ yt = at + α1kt + α2lt.

However, by (49), lt = lnLt = lnL ≡ l, which is a constant. Thus, we define

θy ≡ α2lt = α2 lnL,

where the formula of L is given by (49).
(16) and (17) can be obtained by taking natural log from (2) and (3)

respectively.
(18) to (20) can indeed be obtained by taking natural log from (11), with

ηj ≡ lnSj, j = c, k, h,

where the formulae for Sj, j = c, k, h are given by (51), (55).
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A.3 Proof of (21)
From (12), (14), we have the following corollary:

pst = θs + yt, ∀t.

Also, from the above expression, we can have

cov(pst, ps,t+j) = cov(yst, ys,t+j), j = 1, 2, 3, ... (57)

We assume that the economic environment is stationary, in the sense that

var(pst) = var(ps,t+j), j = 1, 2, 3, ...

By definition,

cor(pst, ps,t+j) =
cov(pst, ps,t+j)p

var(pst)
p
var(ps,t+j)

,

and analogous expression applies to cor(yst, ys,t+j), j = 1, 2, 3, ....
It is clear that the dynamical system is block-recursive and once we can

dictate the joint dynamics of yt and kt, we will also be able to pin down the
dynamics of all other variables. Since this (intermediate) result is important
in deriving the other results, we first present a formal statement of the result
and then put the proof as a subsection.

Lemma 6 If 0 < E (at) , V ar (at) <∞, the joint dynamics of −−→yt+10 = (yt, kt)
can be described by the following vector equation,

−−→yt+1 =M0 +M1
−→yt +M2

−−→at+1, (58)

where −−→at+10 = (at+1, 0) , and for some constant matricesM0,M1,M2.

With (58), we will be able to dictate the dynamics of the (log) housing
price. Therefore, we would first prove (58).

A.4 Proof of (58) and closed form solution for (yt, kt,
ht)

It is clear that the dynamical system from (15) to (20) is block-recursive and
once we can dictate the joint dynamics of yt and kt, we will also be able to
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pin down the dynamics of all other variables. To start with, we observe that
(15), (16) and (19) can be reduced as

M1
−−→yt+1 = N1 +M2

−→yt +−−→at+1, (59)

where

M1 =

µ
1 −α1
0 1

¶
, N1 =

µ
θy
δkηk

¶
, M2 =

µ
0 0
δk (1− δk)

¶
,

−−→yt+1 =
µ

yt+1
kt+1

¶
, −−→at+1 =

µ
at+1
0

¶
,

with the additional assumption that

0 < E (at) , V ar (at) <∞.

It is easy to see that the solution of (59) can be rewritten as

−−→yt+1 = (M1)
−1N1 + (M1)

−1M2
−→yt + (M1)

−1−−→at+1, (60)

where (M1)
−1 =

µ
1 −α1
0 1

¶−1
=

µ
1 α1
0 1

¶
=M2,

(M1)
−1N1 =

µ
1 α1
0 1

¶µ
θy
δkηk

¶
=

µ
θy + α1δkηk
δkηk

¶
=M0,

(M1)
−1M2 =

µ
α1δk α1 (1− δk)
δk 1− δk

¶
=M1,

which completes the proof of (58). With (58), or more explicitly (60), it is
now possible to simulate (numerically) the evolution of output and business
capital (yt, kt)

0 .
Alternatively, we can also obtain a "closed form solution" for this simple

two-variable system. We can re-write (60) as

−−→yt+1 =M0 +M1(B)
−−→yt+1 +M2

−−→at+1 (61)

whereM1(B) =

µ
α1δkB α1 (1− δk)B
δkB (1− δk)B

¶
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where B is the backshift operator (or Lag operator), Bnxt = xt−n, for all
variable x, n = 1, 2, 3, ..., and Bc = c for all constant c (see Sargent (1987),
Lütkepohl (1993), Lau (1997) for more details). In addition, Sargent (1987),
Lütkepohl (1993) show that

(1− cB)−1 xt =
¡
1 + cB + (cB)2 + (cB)3 + ...

¢
xt

= xt + cxt−1 + c2xt−2 + ...

=
∞X
i=0

(c)i xt−i. (62)

Thus, (61) can be re-arranged as

[I −M1(B)]
−−→yt+1 = M0 +M2

−−→at+1,
or −−→yt+1 = [I −M1(B)]

−1 [M0 +M2
−−→at+1] ,

or −→yt = [I −M1(B)]
−1 [M0 +M2

−→at ] , (63)

where I is the identity matrix. Note,

where I −M1(B) =

µ
1− α1δkB −α1 (1− δk)B
−δkB 1− (1− δk)B

¶
.

We let

[I −M1(B)]
−1 =

µ
a11(B) a12(B)
a21(B) a22(B)

¶
,

and by definition, [I −M1(B)] [I −M1(B)]
−1 = I, where I is the identity

matrix. In other words, we haveµ
1− α1δkB −α1 (1− δk)B
−δkB 1− (1− δk)B

¶µ
a11(B)
a21(B)

¶
=

µ
1
0

¶
,

and
µ
1− α1δkB −α1 (1− δk)B
−δkB 1− (1− δk)B

¶µ
a21(B)
a22(B)

¶
=

µ
0
1

¶
.

By Cramer0s Rule, it is easy to show that

[I −M1(B)]
−1

= (1− (1− δk + α1δk)B)
−1
µ
1− (1− δk)B α1 (1− δk)B
δkB 1− α1δkB

¶
.

In fact, we can obtain "closed form solutions" for the physical capital stock,
aggregate output and the housing stock. We first state the results as a lemma.
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Lemma 7 In log form, the physical capital stock, output and housing stock
can be written as a summation of previous period productivity shocks,

kt =
θy + δkηk
(1− α1)

+ δk

∞X
i=0

(1− δk + α1δk)
i at−1−i, (64)

yt =
θy + α1ηk
(1− α1)

+ at + α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i, (65)

ht = η0h + δhat−1 + δh

∞X
i=0

δh(i)at−2−i, (66)

for some constant η0h, and some positive function of parameter, δh(i) > 0, ∀i.

Now, we will prove this lemma. Recall from (63) that

−→yt = [I −M1(B)]
−1 [M0 +M2

−→at ]
= M0

0 +M0
2(B)
−→at (67)

where

M0
0 =

1

(1− α)

µ
θy + α1ηk
θy + δkηk

¶
,

M0
2 (B) = (1− (1− δk + α1δk)B)

−1
µ
1− (1− δk)B α1
δkB 1

¶
.

We can elaborate the equation (67), we have

yt =
θy + α1ηk
(1− α)

+ at + α1δk

∞X
i=0

(1− δk + α1δk)
iBi+1at

=
θy + α1ηk
(1− α)

+ at + α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i,

which is (65), and

kt =
θy + δkηk
(1− α)

+ δk

∞X
i=0

(1− δk + α1δk)
iBi+1at

=
θy + δkηk
(1− α)

+ δk

∞X
i=0

(1− δk + α1δk)
i at−1−i,
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which is (64).

Finally, we want to prove (66). By combining (17) and (20), we have

ht+1 = δhηh + (1− δh)ht + δhyt
or (1− (1− δh)B)ht+1 = δhηh + δhyt

or ht+1 = (1− (1− δh)B)
−1 (δhηh + δhyt)

ht+1 = ηh + (1− (1− δh)B)
−1 (δhyt) ,

or ht = ηh + δh

Ã ∞X
i=0

(1− δh)
iBi+1yt

!
,

or ht = ηh + δh

Ã ∞X
i=0

(1− δh)
i yt−1−i

!
, (68)

and by (65), it can be re-written as

ht = ηh+δh

Ã ∞X
i=0

(1− δh)
i

Ã
θ0y + at−1−i + α1δk

∞X
j=0

(1− δk + α1δk)
j at−2−i−j

!!

where θ0y =
θy+α1ηk
(1−α) . Clearly, it is equal to

ht =
¡
ηh + θ0y

¢
+ δh

Ã ∞X
i=0

(1− δh)
i at−1−i

!

+α1δhδk

∞X
i=0

(1− δh)
i
∞X

ij=0

(1− δk + α1δk)
j at−2−i−j,

or ht =
¡
ηh + θ0y

¢
+ δh

Ã ∞X
i=0

(1− δh)
i at−1−i

!

+α1δhδk

∞X
i=0

iX
ij=0

(1− δh)
i−j (1− δk + α1δk)

j at−2−i−j,

or ht =
¡
ηh + θ0y

¢
+ δhat−1

+δh

∞X
i=0

⎡⎣(1− δh)
i+1 + α1δk

iX
ij=0

(1− δh)
i−j (1− δk + α1δk)

j

⎤⎦ at−2−i,
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which is (66), with η0h =
¡
ηh + θ0y

¢
, and

δh(i) ≡

⎡⎣(1− δh)
i+1 + α1δk

iX
ij=0

(1− δh)
i−j (1− δk + α1δk)

j

⎤⎦ .
Clearly, δh(i) > 0, ∀i.

A.5 Proof of (22), (23)
By taking log of (12), we also have the following equation:

pht = θh + iht − ht, (69)

where θs = ln (1− α1 − α2), θh = ln
³
1−δh
δh

´
. From (13), we also get

rht = θrh + pht. (70)

Thus, to understand the dynamics of rent, it suffices to characterize the
dynamics of housing price. Now, by (69), we have

pht = θh + iht − ht
= (θh + ηh) + yt − ht. (71)

and by (68), we have

ht = ηh + δh

Ã ∞X
i=0

(1− δh)
i yt−1−i

!
.

Substituting the last expression in (71) gives (22).
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Alternatively, we can also substitute (65) and (66) in (71), which will give

pht = (θh + ηh) + yt − ht

= (θh + ηh) +
θy + α1ηk
(1− α)

+ at

+α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i

−
¡
ηh + θ0y

¢
− δhat−1

−δh
∞X
i=0

⎡⎣(1− δh)
i+1 + α1δk

iX
ij=0

(1− δh)
i−j (1− δk + α1δk)

j

⎤⎦ at−2−i
= θh + at + (α1δk − δh) at−1

+
∞X
i=2

n
α1δk (1− δk + α1δk)

i−1

−δh

⎡⎣(1− δh)
i−1 + α1δk

i−2X
ij=0

(1− δh)
i−j (1− δk + α1δk)

j

⎤⎦⎫⎬⎭ at−i,

where
P0

i=0 x(i) = 1 for any {x(i)}i . Thus, pht = θh+at+(α1δk − δh) at−1+P∞
i=2 δp(i)at−i, ∀t, where

δp(i) =
n
α1δk (1− δk + α1δk)

i−1

−δh

"
(1− δh)

i−1 + α1δk

iX
j=0

(1− δh)
i−j (1− δk + α1δk)

j

#)
,

for i = 2, 3, 4, ....

And, for the sake of convenience, let us define

δp(0) = 1,

δp(1) = (α1δk − δh) .

Thus,

pht = θh +
∞X
i=0

δp(i)at−i. (72)

It completes the proof of (23).
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Notice that the sign of the term
n
α1δk (1− δk + α1δk)

i−1

−δh
h
(1− δh)

i−1 + α1δk
Pi−2

ij=0 (1− δh)
i−j (1− δk + α1δk)

j
io
is uncertain

in general.

A.6 Proof of (24) to (28)
We will first prove the serial correlation of the stock price to be positive. Re-
call from (57) that cov(pst, ps,t+j) = cov(yt, yt+j), j = 1, 2, 3, ... Thus, it suf-
fices to investigate the covariance of output in different periods, cov(yt, yt+j).
Now, recall from (65), we have yt+j =

θy+α1ηk
(1−α) +at+j

+α1δk
P∞

i=0 (1− δk + α1δk)
i at+j−1−i. By definition, cov(at, at+j) = 0,

∀j 6= 0. Therefore,
cov(yt, yt+j)

= cov

Ã
θy + α1ηk
(1− α)

+ at + α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i ,

θy + α1ηk
(1− α)

+ at+j + α1δk

∞X
i=0

(1− δk + α1δk)
i at+j−1−i

!
= cov

³
at, α1δk (1− δk + α1δk)

j−1 at
´

+cov
³
α1δkat−1, α1δk (1− δk + α1δk)

j at−1
´

+cov
³
α1δk (1− δk + α1δk) at−2, α1δk (1− δk + α1δk)

j+1 at−2
´

+...

= α1δk (1− δk + α1δk)
j−1 var(at)

+ (α1δk)
2 (1− δk + α1δk)

j var(at−1)

+ (α1δk)
2 (1− δk + α1δk)

j+2 var(at−2) + ...

= σ2a

³
α1δk (1− δk + α1δk)

j−1

+(α1δk)
2 (1− δk + α1δk)

j £1 + (1− δk + α1δk)
2 + ...

¤´
= σ2a

³
α1δk (1− δk + α1δk)

j−1 +
(α1δk)

2 (1− δk + α1δk)
j

1− (1− δk + α1δk)
2

!
> 0

as (1− δk + α1δk) and other terms are positive, and by definition, var(at) =
var(at−j) ≡ σ2a, j = 1, 2, 3,..., which completes the proof of (24).
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Now, we want to prove that the serial correlation of the housing price is
also non-zero in general. Recall from (23) that pht = θh+

P∞
i=0 δp(i)at−i, and

for j = 1, 2, 3,...,

cov(pht, ph,t+j)

= cov

Ã
θh +

∞X
i=0

δp(i)at−i , θh +
∞X
i=0

δp(i)at+j−i

!
= cov (δp(0)at, δp(j)at)

+cov (δp(1)at−1, δp(j + 1)at−1) + ...

= σ2a

Ã
δp(0)δp(j) + δp(1) · δp(j + 1) +

∞X
i=2

δp(i) · δp(i+ j)

!

= σ2a

Ã ∞X
i=0

δp(i) · δp(i+ j)

!
,

which completes the proof of (25).
Notice further that

var(pst) = var(yt).

Since yt =
θy+α1ηk
(1−α) +at+α1δk

P∞
i=0 (1− δk + α1δk)

i at−1−i, and {at} is serially
uncorrelated,

var(pst) = var(yt)

= var

Ã
at + α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i

!

= σ2a ·
"
1 + (α1δk)

2

Ã ∞X
i=0

(1− δk + α1δk)
2i

!#

or = σ2a ·
" ∞X
i=0

¡
δsp (i)

¢2#
.

Similarly, as pht = θh +
P∞

i=0 δp(i)at−i, ∀t,

var(pht) = σ2a ·
Ã ∞X

i=0

(δp(i))
2

!
.

Now, we can also prove (26). Recall that pst = (cons tan t) + at
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+α1δk
P∞

i=0 (1− δk + α1δk)
i at−1−i, and pht = θh +

P∞
i=0 δp(i)at−i. And

for convenience, we define

δsp(0) = 1

δsp (i) = α1δk (1− δk + α1δk)
i , i = 1, 2, 3,...

Note δsp (i) > 0, ∀i, and as i→∞, δsp (i)→ 0. Then

pst = (cons tan t) +
∞X
i=0

δsp (i) at−i, (73)

and hence

cov(pst, pht)

= cov

Ã ∞X
i=0

δsp (i) at−i,
∞X
i=0

δp(i)at−i

!

= σ2a ·
" ∞X
i=0

δp(i)δ
s
p (i)

#
.

Note that since 0 < α1, δk, δh < 1, |α1δk − δh| < 1. Thus,
1 + (α1δk) (α1δk − δh) > 0. However, we do not know the magnitude of

the expression δp(i)δ
s
p (i) , as δp(i) can be negative for some i.

Similarly, we can show (27), for j = 1, 2, 3, 4,...

cov(pst, ph,t+j)

= cov

Ã ∞X
i=0

δsp (i) at−i,
∞X
i=0

δp(i)at+j−i

!
=

£
δsp (0) δp(j)var (at) + δsp (1) δp(j + 1)var (at−1)

+δsp (2) δp(j + 2)var (at−2) +...]

= σ2a

" ∞X
i=0

δp(j + i)δsp (i)

#
.

Conversely, the current period stock price and previous period housing prices
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have non-zero serial correlation as well, j = 1, 2, 3, ..., as (28) asserts,

cov(ps,t, ph,t−j)

= cov

Ã ∞X
i=0

δsp (i) at−i,
∞X
i=0

δp(i)at−j−i

!
= δsp (j) δp(0)var (at−j) + δsp (j + 1) δp(1)var (at−j−1)

+δsp (j + 2) δp(2)var (at−j−2) + ...

= σ2a

" ∞X
i=0

δp(i)δ
s
p (j + i)

#
.

A.7 Proof of (30) to (36)

We need to first simplify the expressions for the rate of returns. We first
start with the rate of return for stock. By (7), (8), we have

Πd
t = (1− α1 − α2)Yt.

And combining this with (14), we have

Ps,t+1 +Πd
t+1 =

(1− α1 − α2)

1− β
· Yt+1.

Thus, by (29),

eRs,t+1 =
Ps,t+1 +Πd

t+1

Pst

=
1

β
· Yt+1
Yt

,

and in log form, ers,t+1 = − lnβ + yt+1 − yt,

which is (30).
Now, we can modify the expression for the rate of return for housing.

Combining (12) with (13), we have

Ph,t+1 +Rh,t+1 =
1

β (1− δh)
· Ph,t+1,
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and by (29),

eRh,t+1 =
Ph,t+1 +Rh,t+1

Pht

=
1

β (1− δh)
· Ph,t+1

Ph,t
,

which is, in log form,

erh,t+1 = − ln (β (1− δh)) + ph,t+1 − pht,

which is (31).
Note that by (73), (30) can be written as

ers,t+1 = − lnβ + δsp (0) at+1 +
∞X
i=0

£
δsp (i+ 1)− δsp (i)

¤
at−i. (74)

Thus, the rate of return of stock in period t + 1 + j, j = 1, 2, 3,... (in log
form) is

ers,t+j+1 = − lnβ + δsp (0) at+j+1 +
∞X
i=0

£
δsp (i+ 1)− δsp (i)

¤
at+j−i,

and the variance of the return of stock is

var (ers,t+j+1) = σ2a ·
(¡

δsp (0)
¢2
+

∞X
i=0

£
δsp (i+ 1)− δsp (i)

¤2)
.

Hence, the covariance of the rate of return of stock in period t + 1 and
t+ j + 1, j = 1, 2, 3,... is

cov (ers,t+1,ers,t+j+1)
= δsp (0)

£
δsp (j)− δsp (j − 1)

¤
var(at+1)

+
£
δsp (1)− δsp (0)

¤ £
δsp (j + 1)− δsp (j)

¤
var(at)

+
£
δsp (2)− δsp (1)

¤ £
δsp (j + 2)− δsp (j + 1)

¤
var(at−1)

+...
= σ2a ·

©
δsp (0)

£
δsp (j)− δsp (j − 1)

¤
+

∞X
i=0

£
δsp (i+ 1)− δsp (i)

¤ £
δsp (j + 1 + i)− δsp (j + i)

¤)
,
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and applies the definition δsr (i) ≡
£
δsp (i)− δsp (i− 1)

¤
will complete the proof

of (32).

Now, we want to compute the covariance of different period housing re-
turn. First, we need to obtain an expression of the housing price in terms of
the productivity shocks. By (72), (31), we have

erh,t+1 = − ln (β (1− δh)) + ph,t+1 − pht

= − ln (β (1− δh)) + δp (0) at+1 +
∞X
i=0

[δp (i+ 1)− δp (i)] at−i

= − ln (β (1− δh)) + δp (0) at+1 +
∞X
i=0

δr (i+ 1) · at−i, (75)

where
δr (i) ≡ [δp (i)− δp (i− 1)]

Thus, the rate of return of stock in period t + 1 + j, j = 1, 2, 3,... (in log
form) is

erh,t+1+j = − ln (β (1− δh)) + δp (0) at+1+j +
∞X
i=0

δr (i+ 1) · at−i+j.

Hence, the covariance of the rate of return of stock in period t+1 and t+1+j,
j = 1, 2, 3,... is

cov (erh,t+1,erh,t+1+j)
= − (1− α1δk + δh) var (at+1)

− (1− α1δk + δh) [δp (0)− (α1δk − δh)] var (at)

+ [δp (0)− (α1δk − δh)] [δp (1)− δp (0)] var (at−1)

+ [δp (1)− δp (0)] [δp (2)− δp (1)] var (at−2)
+...

= σ2a · {− (1− α1δk + δh) [1 + δp (0)− (α1δk − δh)]

+ [δp (0)− (α1δk − δh)] [δp (1)− δp (0)]

+
∞X
i=0

[δp (i+ 1)− δp (i)] [δp (i+ 2)− δp (i+ 1)]

)
.
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cov (erh,t+1,erh,t+j+1)
= δp (0) [δr (j)] var(at+1)

+ [δr (1)] [δr (j + 1)] var(at)

+ [δr (2)] [δr (j + 2)] var(at−1)
+...

= σ2a · {δp (0) [δr (j)]

+
∞X
i=0

δr (i+ 1) · δr (j + 1 + i)

)
,

It completes the proof of (33).
Notice also that erh,t+1 = − ln (β (1− δh)) + at+1 − (1− α1δk + δh) at +

[δp (0)− (α1δk − δh)] at−1+
P∞

i=0 [δp (i+ 1)− δp (i)] at−2−i, which means that

var (erh,t+1)
= σ2a ·

©
1 + (1− α1δk + δh)

2 + [δp (0)− (α1δk − δh)]
2

+
∞X
i=0

[δp (i+ 1)− δp (i)]
2

)
.

Now, we are ready to compute the cross-correlations of the two assets.
We will start with the contemporaneous correlation. Recall that ers,t+1 =
− lnβ+ δsp (0) at+1+

P∞
i=0 δ

s
r (i+ 1) · at−i , where δsr (i) ≡

£
δsp (i)− δsp (i− 1)

¤
, and erh,t+1 = − ln (β (1− δh)) + δp (0) at+1 +

P∞
i=0 δr (i+ 1) · at−i, where

δr (i) ≡ [δp (i)− δp (i− 1)] . Then,

cov (ers,t+1,erh,t+1)
=

¡
δsp (0) · δp (0)

¢
var (at+1)

+
∞X
i=0

δsr (i+ 1) · δr (i+ 1) · var (at−i)

= σ2a ·
(¡

δsp (0) · δp (0)
¢
+

∞X
i=0

δsr (i+ 1) · δr (i+ 1)
)
,

which is (34). Similarly, we can relate the covariance of the current period
stock price to the subsequent period (or previous period) housing return.
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Formally, for j = 1, 2, 3,...

cov (ers,t+1,erh,t+1+j)
=

¡
δsp (0) · δr (j)

¢
var (at+1)

+
∞X
i=0

δsr (i+ 1) · δr (i+ j + 1) · var (at−i)

= σ2a ·
(¡

δsp (0) · δr (j)
¢
+

∞X
i=0

δsr (i+ 1) · δr (i+ j + 1)

)
,

which is (35). And

cov (ers,t+1,erh,t+1−j)
= (δsr (j) · δp (0)) var (at+1)

+
∞X
i=0

δsr (j + i+ 1) · δr (i+ 1) · var (at−i)

= σ2a ·
(
(δsr (j) · δp (0)) +

∞X
i=0

δsr (j + i+ 1) · δr (i+ 1)
)
,

which is (36).

B The case of AR(1) productivity shock
In this section, we consider the case where {at} is an AR(1), and examine
how the results are affected. Formally,

at = ρat−1 + ut, (76)

where ut is i.i.d., with E(ut) = 0, var(ut) = σ2u <∞, ∀t and cov(ut, us) = 0,
∀s 6= t. By (76), we have

at =
∞X
j=0

(ρ)jut−j.

45



Thus, by above,

pst = θs +
θy + α1ηk
(1− α)

+at + α1δk

∞X
i=0

(1− δk + α1δk)
i at−1−i

= (const) +
∞X
i=0

δsp (i) at−i

= (const) +
∞X
i=0

δsp (i)
∞X
j=0

(ρ)jut−i−j

= (const) +
∞X
i=0

Ã
iX

j=0

δsp (i) (ρ)
i−j

!
ut−i

= (const) +
∞X
i=0

δsrp (i)ut−i

where

δsp(0) = 1

δsp (i) = α1δk (1− δk + α1δk)
i , i = 1, 2, 3,...

and

δsrp (i) ≡
Ã

iX
j=0

(ρ)i−jδsp (i)

!
.

Similarly,

pht = θh +
∞X
i=0

δp(i)at−i

= θh +
∞X
i=0

δp(i)
∞X
j=0

(ρ)jut−i−j

= θh +
∞X
i=0

Ã
iX

j=0

δp (i) (ρ)
i−j

!
ut−i

= θh +
∞X
i=0

δrp (i)ut−i
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where

δp(0) = 1,

δp(1) = (α1δk − δh) ,

and for i = 2, 3, 4, ....

δp(i) =
n
α1δk (1− δk + α1δk)

i−1

−δh

"
(1− δh)

i−1 + α1δk

iX
j=0

(1− δh)
i−j (1− δk + α1δk)

j

#)
,

and

δrp (i) ≡
Ã

iX
j=0

(ρ)i−jδp (i)

!
.

Notice that after some algebraic manipulations, the case with AR(1)
shocks is very similar to the case with iid shock, except that at is now replaced
by ut, δ

s
p (i) by δsrp (i) and δp (i) by δrp (i) . Thus the formula are analogous

and skipped due to the space limitation.

C Computational Appendix
In this section, we will describe how the numerical computations are con-
ducted. In the text, there are total four cases: iid-quarterly, iid-annual,
AR(1)-quarterly, AR(1)-annual. Since they are similar, we will only describe
the case of AR(1)-quarterly and the other cases will be available upon re-
quest. (In fact, we can always see iid as a special case of AR(1), by setting
the persistence coefficient ρ to be zero.
First, we set the parameter values:
α1 = 0.3 (capital share in production)
δk = 0.02 (capital depreciation rate)
δh = 0.02 (housing depreciation rate)
σ2u = 1 (normalization)
Then, we write down the formula that would be used for housing-related

variance and co-variance terms:

δp(0) = 1,

δp(1) = (α1δk − δh) .

47



δp(i) =
n
α1δk (1− δk + α1δk)

i−1

−δh

"
(1− δh)

i−1 + α1δk

iX
j=0

(1− δh)
i−j (1− δk + α1δk)

j

#)
,

for i = 2, 3, 4, ....

and define a new variable

δrp (i) ≡
Ã

iX
j=0

(ρ)i−jδp (i)

!
.

Simiarly, we write down the formula that would be used for equity-related
variance and co-variance terms:

δsp(0) = 1

δsp (i) = α1δk (1− δk + α1δk)
i , i = 1, 2, 3,...

and define a new variable

δrsp (i) ≡
Ã

iX
j=0

(ρ)i−jδsp (i)

!
.

Now, we need to handle infinite sum. We use truncation and then check
whether the results are sensitive to the particular truncations used. For
intance, define S =

P∞
i=0 δp(i) · δp(j + i), then S(T ) ≡

PT
i=0 δp(i) · δp(j + i),

and then we try T = 500, 1000, 5000, etc... and see if there is any noticeable
difference as we change T , (for instance, 0.01% difference).
Now, from the previous section, we know that for stock, j = 1, 2, 3, ...

cov(pst, ps,t+j)

= σ2u

Ã ∞X
i=0

δrsp (i) · δrsp (i+ j)

!
> 0, (77)

and for housing prices,

cov(pht, ph,t+j)

= σ2u

Ã ∞X
i=0

δrp(i) · δrp(i+ j)

!
. (78)
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Clearly, we can use the computer to directly compute these infinite sum by
using the truncation method discussed earlier. Moreover,

cov(pst, pht)

= σ2u ·
" ∞X
i=0

δrp(i)δ
rs
p (i)

#
, (79)

Now, we can also get the co-variance between the current stock price and
the subsequent period housing prices. For j = 1, 2, 3, ....

cov(pst, ph,t+j)

= σ2u

" ∞X
i=0

δrp(j + i)δrsp (i)

#
, (80)

Conversely, the co-variance betwen the current period stock price and previ-
ous period housing prices is

cov(ps,t, ph,t−j)

= σ2u

" ∞X
i=0

δrp(i)δ
rs
p (j + i)

#
. (81)

To compute correlation, we also need variance terms,

var (pst) = σ2u ·
Ã ∞X

i=0

¡
δrsp (i)

¢2!
, (82)

var (pht) = σ2u ·
Ã ∞X

i=0

¡
δrp(i)

¢2!
. (83)

And with the formulae for variance and covariance, it is trivial to compute
the correlation coefficients.
Now we also want to examine the dynamic behavior of the rate of re-

turns. We use the definition stated in the main text or earlier section of the
appendix, we can calculate the co-variance terms of the rates of return. For
j = 1, 2, 3, ...

cov (ers,t+1,ers,t+1+j)
= σ2u ·

(
δrsp (0) δ

rs
r (j) +

∞X
i=0

δrsr (i+ 1) · δrsr (j + i+ 1)

)
,

(84)
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cov (erh,t+1,erh,t+1+j)
= σ2u ·

(
δrp (0) δ

r
r (j) +

∞X
i=0

δrr (i+ 1) · δrr (j + i+ 1)

)
,

(85)

where for i = 0, 1, 2,...

δrsr (i) ≡
£
δrsp (i)− δrsp (i− 1)

¤
,

δrr (i) ≡
£
δrp (i)− δrp (i− 1)

¤
,

In addition, we can examine the cross-co-variance of the two assets’ re-
turn.

cov (ers,t+1,erh,t+1)
= σ2u ·

(¡
δrsp (0) · δrp (0)

¢
+

∞X
i=0

δrsr (i+ 1) · δrr (i+ 1)
)
. (86)

And for j = 1, 2, 3,...

cov (ers,t+1,erh,t+1+j)
= σ2u ·

(¡
δrsp (0) · δrr (j)

¢
+

∞X
i=0

δrsr (i+ 1) · δrr (i+ j + 1)

)
, (87)

cov (ers,t+1,erh,t+1−j)
= σ2u ·

(
(δrsr (j) · δp (0)) +

∞X
i=0

δrsr (j + i+ 1) · δrr (i+ 1)
)
, (88)

and

var(ers,t+1) = σ2u ·
(¡

δrsp (0)
¢2
+

∞X
i=0

[δrsr (i+ 1)]
2

)
,

var(erh,t+1) = σ2u ·
(¡

δrp (0)
¢2
+

∞X
i=0

[δrr (i+ 1)]
2

)
.

And with the formulae for variance and covariance, it is trivial to compute
the correlation coefficients.
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