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Abstract 
A large number of parameterizations have been proposed to model conditional variance 
dynamics in a multivariate framework. This paper examines the ranking of multivariate 
volatility models in terms of their ability to forecast out-of-sample conditional variance 
matrices. We investigate how sensitive the ranking is to alternative statistical loss functions 
which evaluate the distance between the true covariance matrix and its forecast. The 
evaluation of multivariate volatility models requires the use of a proxy for the unobservable 
volatility matrix which may shift the ranking of the models. Therefore, to preserve this 
ranking conditions with respect to the choice of the loss function have to be discussed. To do 
this, we extend the conditions defined in Hansen and Lunde (2006) to the multivariate 
framework. By invoking norm equivalence we are able to extend the class of loss functions 
that preserve the true ranking. In a simulation study, we sample data from a continuous time 
multivariate diffusion process to illustrate the sensitivity of the ranking to different choices of 
the loss functions and to the quality of the proxy. An application to three foreign exchange 
rates, where we compare the forecasting performance of 16 multivariate GARCH 
specifications, is provided. 
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1 Introduction

A special feature of economic forecasting compared to general economic modeling is that we can

measure a model’s performance by comparing its forecasts to the outcomes when they become

available. Generally, several forecasting models are available for the same variable and models are

compared through the computation of a loss function. Elliott and Timmermann (2008) provide

an excellent survey on the state of the art of forecasting in economics. Details on volatility and

correlation forecasting can be found in Andersen, Bollerslev, Christoffersen, and Diebold (2006).

The evaluation of the forecasting performance of volatility models raises an important problem.

The variable of interest (i.e. volatility) being unobservable, the evaluation of the loss function has

to rely on a proxy which may change the ordering. The impact on the ordering of the substitution

of the true volatility by a proxy has been investigated in detail by Hansen and Lunde (2006).

They provide conditions, for both the loss function and the volatility proxy, under which the

approximated ranking (based on the proxy) is consistent for the true ranking (based on the true,

but unobservable volatility).

Hansen and Lunde’s (2006) results have important implications for all testing procedures for

superior predictive ability as in Diebold and Mariano (1995), West (1996), Clark and McCracken

(2001), the reality check by White (2000), and the recent contributions of Hansen and Lunde

(2005) with the superior predictive ability (SPA) test and Hansen, Lunde, and Nason (2003)

with the Model Confidence Set test, among others. When the target variable is unobservable,

an unfortunate choice of the loss function may deliver unintended results even when the testing

procedure is formally valid.

In this paper, we extend findings of Hansen and Lunde (2006) to the multivariate framework.

To forecast the conditional variance matrix of a portfolio of financial assets, we focus on multi-

variate GARCH models (MGARCH) (see Bauwens, Laurent, and Rombouts (2006) for a survey),

though the extension to other multivariate volatility models, like stochastic volatility and Markov

switching models is straightforward. With respect to ranking models in the multivariate GARCH

class, where conditional variance matrices are compared, little is known about the properties of

the loss function.

We have four main contributions in this paper. First, we select a set of loss functions well

suited to evaluate the differences in sequences of symetric positive definite matrices. We consider

six different loss functions based on matrix norms, namely the p-norm with p = 1 and p = 2

(the latter is known as the Frobenius norm), the spectral norm and their squared transformations.

These loss functions are frequently used in practice.

Second, we derive conditions for consistent ranking for the multivariate case and we show

that, though violating their conditions, a loss function might still lead to a consistent ranking if
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norm equivalence can be invoked with respect to a consistent loss function. This result allows us

to extend the requirements stated for univariate volatility models in Hansen and Lunde (2006)

allowing loss functions that would be classified as inconsistent in the univariate case. For each of

the loss functions considered in this paper we verify whether they satisfy the conditions to ensure

a consistent ranking.

Third, through a comprehensive Monte Carlo simulation, we study the impact of the deteri-

oration of the quality of the proxy on the ranking of MGARCH models with respect to different

choices for the loss function. The true model is a multivariate diffusion from which we compute

the integrated covariance as the true daily covariance. The MGARCH models are estimated on

daily returns and used to compute 1-step ahead forecasts. The proxy of the daily covariance is

Realized Covariance as defined in Andersen, Bollerslev, Diebold, and Labys (2003). The quality

of this proxy is controlled through the level of aggregation of the simulated intraday data used

to compute Realized Covariance. The main conclusion of this simulation is that inconsistent loss

functions are not per se inferior to consistent ones. When the quality of the proxy is sufficiently

good, consistency between the true and the approximated ranking can still be achieved. As the

accuracy of the proxy deteriorates, the objective bias (i.e. the discrepancy between the true and

the approximated ranking) becomes relevant and may affect the ordering between models.

Fourth, we illustrate our findings using three exchange rates (Euro, UK pound and Japanese

yen against US dollar). We consider 16 MGARCH specifications which are frequently used in

practice. The advantage of choosing a consistent loss function to evaluate model performances is

striking. The ranking based on an inconsistent loss function, together with an uninformative proxy,

is found to be severely biased. In fact, inferior models, that is models based on the RiskMetrics

approach, emerge though it is unlikely that these are the best forecasting models. Overall, the set

of 16 MGARCH models seem to produce conditional variance matrix predictions that are quite

close.

The rest of the paper is organized as follows. Section 2 introduces the set of selected loss

functions and revisits Hansen and Lunde’s (2006) conditions for consistent ranking. An additional

condition, based on the notion of norm equivalence, is introduced. Section 3 provides a brief

overview of several GARCH specification considered in this paper and thus constituting the fore-

casting models set. In Section 4, we introduce realized covariance as a proxy for the unobserved

conditional variance matrix. A detailed simulation study in Section 5 investigates the robustness

of the ranking subject to consistent and inconsistent loss functions with respect to the level of

accuracy of the proxy. The empirical application is presented in Section 6. Section 7 concludes.
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2 Consistent ranking and distance metrics

As explained in Andersen, Bollerslev, Christoffersen, and Diebold (2006), the problem when com-

paring and ranking forecasting performance of volatility models is that the true conditional vari-

ance is unobservable so that a proxy for it is required. Let us define the true, or underlying,

ordering between volatility models as the ranking implied by a loss function, evaluated with re-

spect to the unobservable conditional covariance. The substitution of the latter by a proxy may

introduce, because of its randomness, a ranking of volatility models that differs from the true

one. Hansen and Lunde (2006) provide a theoretical framework for the analysis of the ordering of

stochastic sequences and identify conditions that a loss function and the volatility proxy have to

satisfy to deliver an ordering consistent with the true ranking when a proxy for the conditional co-

variance is used. In this section, we discuss and extend these conditions to the case of multivariate

volatility models.

We first fix some basic notations and make explicit what we mean by consistent ranking. For

N time series at time t we have M candidate models for the conditional variance matrix denoted

by Hit i = 1, . . . , M . Define L(·, ·) an integrable loss function from RN×N → R+ such that

L(Σt, Hit) is the loss function using the true but unobservable conditional variance matrix Σt.

Similarly L(Σ̂t, Hit) is the loss function using Σ̂t, a proxy of Σt. Consistency of ranking means

that E(L(Σt, Hit)) ≥ E(L(Σt, Hjt)) ⇔ E(L(Σ̂t, Hit)) ≥ E(L(Σ̂t, Hjt)) is true for all i �= j.

2.1 Hansen and Lunde’s (2006) conditions for consistent ranking

Without loss of generality we can redefine the function L(., .) from the space of the N × N

matrices to R+ as a scalar valued function from RN(N+1)/2 → R+ of all unique elements of the

matrices Σt and Hit since these are covariance matrices and therefore symetric. Let us denote

σt = [σkj,t] = vech(Σt) and hi,t = [hkj,it] = vech(Hit) where vech(.) is the operator that stacks

the lower triangular portion of a matrix into a vector. As developed by Hansen and Lunde (2006)

for univariate volatility models, similar relevant sufficient conditions to achieve consistency of the

ranking for multivariate models are:

(i) L(Σt, Hit) and L(Σ̂t, Hit) have the same parametric form ∀i so that uncertainty depends

only on Σ̂t and �t is a filtration such that Σt and Hit are �t−1 measurable.

(ii) ∂2L(Σt,Hit)
∂σkj,t∂σkj,t

is finite and does not depend on hkj,it ∀k, j, and, ξt = (σ̂t − σt) is a vector

martingale difference sequence with respect to �t.

To illustrate the validity of the above conditions, consider the second order Taylor expansion

of L(Σt, Hit) around the true value Σt:

L(Σ̂t, Hit) ∼= L(Σt, Hit) +
(

∂L(Σt, Hit)
∂σt

)′

(σ̂t − σt) +
1
2

[
(σ̂t − σt)′

∂2L(Σt, Hit)
∂σt∂σ

′
t

(σ̂t − σt)
]

. (1)
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Taking conditional expections with respect to �t−1 we get

E(L(Σ̂t, Hit)|�t−1) ∼= E(L(Σt, Hit)|�t−1) +
1
2

[
E

(
ξ
′
t

∂2L(Σt, Hit)
∂σt∂σ

′
t

ξt|�t−1

)]
. (2)

When condition (i) and (ii) are satisfied we have

(a) E((L
′
(Σt, Hit))

′
ξt|�t−1) = (L

′
(Σt, Hit))

′
E(ξt|�t−1) = 0 whenever σ̂t is conditionally unbi-

ased with respect to σt;

(b)
(

∂2L(Σt,Hit)
∂σt∂σt

)
= f(σ2

t , .) does not depend on model i.

Hence E(L(Σ̂t, Hit)|�t−1) and E(L(Σt, Hit)|�t−1) induce the same ordering over i.

The discrepancy between the true and the approximated ordering which is likely to occur

whenever condition (ii) is violated, is defined as objective bias. The objective bias must not

be confused with the sampling error. While the latter tend to disappear asymptotically (i.e.

T−1ΣtL(Σ̂t, Hit)
p→ E(L(Σ̂t, Hit))), the presence of the objective bias may induce the sample

evaluation to be inconsistent for the true one independently from the sample size.

To conclude, (2) implies that in order to achieve consistency of the approximated ranking, the

equivalence between E(L(Σ̂t, Hit)|�t−1) and E(L(Σt, Hit)|�t−1) is not required, but it is sufficient

that the discrepancy,
[
E
(
ξ
′
tf(σ2

t , .)ξt|�t−1

)]
is constant across models, thus not affecting the

ranking. Notice, that the last term on the right hand side of (2) depends on the variance of

the proxy. Hence, even if condition (ii) is violated, that is
(

∂2L(Σt,Hit)
∂σt∂σt

)
= f(σ2

t , hit), the more

accurate the proxy, the less likely the objective bias. That is,
[
E
(
ξ
′
tf(σ2

t , hit)ξt|�t−1

)]
, though

depending on i, becomes negligible, leaving the ranking unaffected.

2.2 Norm equivalence

When the loss function is defined in terms of a matrix norm on the space of N×N positive definite

matrices, SN×N , that is L(Σt, Hit) = ‖.‖a, a useful property of matrix norms, namely the norm

equivalence, can be invoked. Norm equivalence is defined as follows (see Golub and Van Loan,

1996 or Horn and Johnson, 1985 for details). For any two matrix norms ‖.‖a and ‖.‖b on a finite

dimensional space, norm equivalence is defined as

k ‖A‖a ≤ ‖A‖b ≤ l ‖A‖a , (3)

for 0 < k < l < ∞ and A ∈ SN×N . If two norms are equivalent then they introduce the same

topology on SN×N . This property is preserved under functional transformations - e.g. f(.) and

g(.) of the matrix norms ‖.‖a and ‖.‖b, provided f(‖.‖a) and g(‖.‖b) have the same degree of

homogeneity.

A loss function based on matrix norms that satisfies condition (i) but violates (ii) may still

yield a consistent ordering. This is the case when norm equivalence between a consistent and
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an inconsistent loss function can be established. In this case, the inconsistent loss function can

introduce the same ordering as the consistent one. This allows for the additional condition (iii)

which can be stated as follows.

(iii) Given a consistent loss function La(Σt, Hit) and another loss function Lb(Σt, Hit): kLa(Σt, Hit) ≤
Lb(Σt, Hit) ≤ lLa(Σt, Hit) holds for 0 < k < l < ∞.

If (i) and (iii) holds for Lb(Σt, Hit) then it is equivalent to the consistent loss function La(Σt, Hit)

and thus induces the same ordering.

The next section focuses on two families of loss functions which have been widely used in the

literature: the p-norm, the eigenvalue norm, and we also consider their square transformation. It

should be noted that while the p-norm and the Eigenvalue norm are valid norms, their squared

versions are not since, though sharing most of the properties of matrix norms, they violate the

homogeneity assumption, as they are homogeneous of degree two.

2.3 P-norm loss function

The p-norm between two matrices (Σt and Hit) is defined as the pth-root of the sum of element-wise

differences to the power p, i.e.

L(Σt, Hit)p =

⎛
⎝ ∑

1≤k,j≤N

|σkj,t − hkj,it|p
⎞
⎠

1/p

. (4)

When p = 2 this norm is known as the Frobenius norm, while L(Σt, Hit)22 denotes its square

transformation. It is easy to show that, while the Frobenius norm does not satisfy condition

(ii), its squared version does, provided that Σ̂t is conditionally unbiased for Σt, that is when

E(σ̂2
kj,t|�t−1) = σ2

kj,t. In this paper, we consider also p = 1 (sum of absolute element-wise

differences) and its square L(Σt, Hit)21. The p-norm with p = 1 (and its square) violates condition

(ii) because it is not differentiable. However, we can show that L(Σt, Hit)21 satisfies condition (iii)

with respect to L(Σt, Hit)22 because of the following inequalities:

L(Σt, Hit)22 ≤ L(Σt, Hit)21 ≤ N2L(Σt, Hit)22, (5)

which comes directly from the norm equivalence between L(Σt, Hit)2 and L(Σt, Hit)1. We illustrate

the proof in the bivariate case (N = 2). Let akj,t = (σkj,t − hkj,it) ∀k, j = 1, 2, so that

L(Σt, Hit)22 =
∑

k,j=1,2

a2
kj,t (6)

L(Σt, Hit)21 =

⎡
⎣ ∑

k,j=1,2

|akj,t|
⎤
⎦

2

(7)

=
∑

k,j=1,2

a2
kj,t + 2|a12,t|2 + 2|a11,t||a22,t| + 4|a11,t||a12,t| + 4|a12,t||a22,t| (8)
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≥ L(Σt, Hit)22, (9)

since for any two positive scalars akj and alm, 2akjalm ≤ a2
kj + a2

lm. We also have that

L(Σt, Hit)21 ≤ 4
∑

k,j=1,2

a2
kj,t = 4L(Σt, Hit)22, (10)

which proves the result in (5). Using similar arguments for the p-norm with p = 1 we have

L(Σt, Hit)2 ≤ L(Σt, Hit)1 ≤ NL(Σt, Hit)2. (11)

But in this case, since both L(Σt, Hit)1 and NL(Σt, Hit)2 do not satisfy condition (ii), though

equivalent, condition (iii) cannot be applied because condition (iii) is violated.

2.4 Eigenvalue loss function

The eigenvalue norm, also called spectral norm, is widely used in principal component analysis.

It is defined as the square root of the largest eigenvalue of the matrix (Σt − Hit)2 and denoted

by L(Σt, Hit)E =
√

λmax(Σt, Hit). As before, we also consider its square transformation, i.e.

L(Σt, Hit)2E = λmax(Σt, Hit). As an illustration, the square of the eigenvalue norm becomes in

the bivariate case

L(Σt, Hit)2E = λmax[(Σt − Hit)2] (12)

=
1
2
f(σ11,t, σ12,t, σ22,t, hij,t) +

1
2

√
g(σ11,t, σ12,t, σ22,t, hij,t), (13)

where

f(σ11,t, σ12,t, σ22,t, hkj,it) = (σ11,t − h11,it)2 + 2(σ12,t − h12,it)2 + (σ22,t − h22,it)2 (14)

g(σ11,t, σ12,t, σ22,t, hkj,it) =

√√√√√
[
(σ11,t − h11,it)2 − (σ22,t − h22,it)2

]2 +

4(σ12,t − h12,it)2 [(σ11,t − h11,it) + (σ22,t − h22,it)]
2

. (15)

The second derivative of the loss function with respect to σ2
kj,t is

1
2

(
f

′′
σ2

kj,t
+ g

′′
σ2

kj,t

)
. (16)

Since g
′
σ2

kj,t
and g

′′
σ2

kj,t
depend on hkj,t condition (ii) is violated. However, we can show that

condition (iii) is satisfied with respect to the square of the Frobenius norm which in turn is

consistent by condition (ii). We can rewrite the Frobenius norm as

L(Σt, Hit)22 = Trace[(Σt − Hit)2] =
∑
N

λi, (17)

where λi are the postive eigenvalues of the matrix (Σt − Hit)2. Therefore, we have

L(Σt, Hit)2E = λmax ≤
∑
N

λi = L(Σt, Hit)2 (18)
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L(Σt, Hit)2E = λmax ≥ λ̄ = N−1
∑
N

λi = N−1L(Σt, Hit)2, (19)

which proves the following equivalence:

N−1L(Σt, Hit)22 ≤ L(Σt, Hit)2E ≤ L(Σt, Hit)22. (20)

Therefore, using this loss function yields a consistent ranking because L(Σt, Hit)22 does.

As explained in Section 2.3, if we consider the spectral norm itself (i.e. the square root of the

highest eigenvalue of the matrix (Σt − Hit)) then by norm equivalence it holds

N−1/2L(Σt, Hit)2 ≤ L(Σt, Hit)E ≤ L(Σt, Hit)2. (21)

This confirms L(Σt, Hit)E to be ranking inconsistent because condition (iii) is violated.

3 Forecasting models set

In this paper, we focus on the ranking of multivariate volatility models that belong to the

MGARCH class. Consider a N -dimensional discrete time vector stochastic process rt. Let

μt = E(rt|�t−1) be the conditional mean vector and Hit = E(rtr
′
t|�t−1) the conditional vari-

ance matrix for specification i so that we can write the model of interest as:

rt = μt + H
1/2
it zt, (22)

where H
1/2
it is a (N×N) positive definite matrix and zt is an idependent and identically distributed

random innovation vector with E(zt) = 0 and V ar(zt) = IN .

In the application, we consider 16 specifications for Hit which are frequently used in prac-

tice. For the simulation study, we take a slightly different forecasting models set made up of 10

models, details are in Section 5, in order to control for the degree of similarity between models.

The specifications considered in this paper are: the diagonal BEKK of Engle and Kroner (1995)

and the multivariate RiskMetrics procedure, J.P.Morgan (1996), developed by J.P. Morgan. The

set also includes four variations of the Constant Correlation (CCC) model (Bollerslev, 1990), of

the Dynamic Conditional Correlation (DCC) model of Engle (2002), and of the Generalized Or-

thogonal GARCH (GOGARCH) model of van der Weide (2002), with GARCH (Bollerslev, 1986),

GJR (Glosten, Jagannathan, and Runkle, 1992), Exponencial GARCH (Nelson, 1991), Asymmet-

ric Power ARCH (Ding, Granger, and Engle, 1993), Integrated GARCH (Engle and Bollerslev,

1986), RiskMetrics (J.P.Morgan,1996) and Hyperbolic GARCH (Davidson, 2004) specifications

for the conditional variance equations. In the GJR model, the impact of squared innovations on

the conditional variance is different when the innovation is positive or negative. The asymmet-

ric power ARCH model (APARCH) is a general specification which includes seven other ARCH

extensions as special cases. The Exponential GARCH model (EGARCH) accomodates the asym-

metric relation between shocks and volatility by expressing the latter as a function of both the
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magnitude and the sign of the shock. The Integrated GARCH (IGARCH) model is a variation

of the GARCH model in which the sum of the variance parameters are constrained to be equal

to one, while the RiskMetrics model (RM) is basically an IGARCH model where the constant is

set to zero and the ARCH and GARCH coefficients are fixed ex ante. Finally, the Hyperbolic

GARCH model (HYGARCH) allows to account for long run dependence in the volatility. The

functional forms for Ht are briefly defined in Table 1. See Bauwens, Laurent, and Rombouts

(2006) for further details. All the specifications are characterized by a constant conditional mean

and the models are estimated by quasi maximum likelihood using G@RCH 5.0 (Laurent, 2007).

The sample log-likelihood is given by (up to a constant)

− 1
2

T∑
t=1

log | Hit | −1
2

T∑
t=1

(rt − μ)
′
H−1

it (rt − μ), (23)

and we maximize numerically for μ and the parameters in Ht.

4 A proxy for the conditional variance matrix

An interesting aspect of volatility is that it becomes observable ex-post. Recent literature has

focused on defining a theoretical framework for the estimation of the conditional variance of

financial assets returns, which is essentially based on the analysis of high frequency data. McAller

and Medeiros (2008) provide a survey on this subject. Following Andersen, Bollerslev, Diebold,

and Labys (2003), we rely on the realized covariance (RCov) to proxy the ex post variance. In

the ideal case of no microstructure noise, this measure, being based on intraday observations, is

characterized by a degree of accuracy that decreases as sampling frequency lowers.

Let us assume the observed return vector to be generated by a conditionally normal N-

dimensional log-price diffusion dy(u) and a (N(N + 1)/2)-dimensional covariance diffusion dσ(u),

with σ(u) = vech(Σ(u)) = [σij(u)] for i, j = 1, ..., N , i ≥ j and u ∈ [t, t + 1], with mean vector

process b(u)du and covariance matrix a(u) = s(u)s(u)
′
, driven by a N(N + 3)/2 vector of inde-

pendent standard Brownian motions W (u). Hence the diffusion process of the system admits the

following representation
⎡
⎣ dy(u)

dσ(u)

⎤
⎦ = b(u)du + s(u)dW (u), (24)

with b(u) and s(u) locally bounded and measurable. Consider now the following partition for the

covariance matrix of the system in (24) as

a(u) = s(u)s(u)′ =

⎡
⎣ Σ(u) Cov(dyu, dσu)

Cov(dyu, dσu) V ar(dσu)

⎤
⎦ . (25)
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Table 1: Summary of the forecasting models set

Model Ht # parameters in

MGARCH(1,1)

N = 2

DBEKK Ht = C∗′
0 C∗

0 + A∗′εt−1ε
′
t−1A

∗ + G∗′Ht−1G
∗ N(N+5)

2
(diagonal BEKK) 7

RiskMetrics Ht = (1 − α)εt−1ε
′
t−1 + αHt−1

α = 0.96 0

GOGARCH Ht = V 1/2ZQtZV 1/2,

(generalized orthogonal GARCH) Qt = diag(σ2
p1,t

, . . . , σ2
pm,t

) 1 + univ. GARCH

Z = PΛ1/2U , U =
∏

i<j Ri,j(δi,j) − π ≤ δi,j ≤ π

DCC Ht = DtRtDt

(dynamic conditional correlations) Rt = Q∗−1
t QtQ

∗−1
t 3 + univ. GARCH

Dt = diag(h
1/2
11t . . . h

1/2
NNt)

Qt = (1 − α − β)Q̄ + αut−1u
′
t−1 + βQt−1

Q∗−1
t = diag(q

1/2
11t . . . q

1/2
NNt)

CCC Ht = DtRDt

(constant conditional correlations) Dt = diag(h
1/2
11t . . . h

1/2
NNt) 1 + univ. GARCH

Univariate GARCH models in Qt and Dt

GARCH(1, 1) hl,t = ωl + αlε
2
l,t−1 + βlhl,t−1 3 ∀l = 1, . . . , N

EGARCH(1, 0) log(hl,t) = ωl + g(zl,t−1) + βllog(hl,t−1) 4 ∀l = 1, . . . , N

g(zl,t−1) = θl,1zl,t−1 + θl,2(|zl,t| − E(|zl,t|))

GJR(1, 1) hl,t = ωl + αlε
2
l,t−1 + γlS

−
l,t−1ε

2
l,t−1 + βlhl,t−1 4 ∀l = 1, . . . , N

S−
l,t = 1 if εl,t < 0; S−

l,t = 0 if εl,t ≥ 0

APARCH(1, 1) h
δl
l,t = ωl + αl[|εl,t−1| − γlεl,t−1]

δl + βlh
δl
l,t−1 5 ∀l = 1, . . . , N

HY GARCH(1, d, 1) hl,t = ωl[1 − βl]
−1 +

{
1 − [1 − βl]

−1αl[1 + γl(1 − L)d]
}

ε2l,t 5 ∀l = 1, . . . , N
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Since Σu identifies the continuous time process for the covariance matrix of the returns, we can

define the Integrated Covariance (ICov) as (see Barndorff-Nielsen and Shephard, 2004)

ICovt+1 =
∫ t+1

t

Σ(u)du. (26)

Let us now define the intraday returns as rt+Δ = yt+Δ − yt for t = Δ, 2Δ, ..., T and Δ = 1/m,

where m is the number of intervals per day. In this setting ICovt can be consistently estimated

by the Realized Covariance (RCov) (Andersen, Bollerslev, Diebold, and Labys, 2003) which is

defined as

RCovt+1,Δ =
1/Δ∑
i=1

rt+iΔr′t+iΔ. (27)

In fact, since the process defined by (24) does not allow for jumps in the returns, it holds that

plim
Δ→0

RCovt+1,Δ = ICovt+1. (28)

In this paper, the RCov serves as a proxy for the true conditional variance matrix when evaluating

the forecasting performance of the different MGARCH models. The result (28) suggests that the

higher is the intraday frequency used to compute RCov, and hence the amount of information

available, the higher the accuracy of the proxy.

However, as noted by Andersen, Bollerslev, Diebold, and Labys (2003), positive definiteness

of the covariance matrix is ensured only if the number of assets is larger then m (where m is the

number of intervals per day). When this condition is violated then the realized covariance matrix

fails to be of full rank (i.e. rank(Rcov) = m < dim(RCov)) and RCov will meet only the weaker

requirement to be semi-positive definite.

5 Simulation study

We investigate the ranking of the MGARCH models with respect to two main dimensions: the

quality of the volatility proxy and the choice of the loss function. As expected, we find that if

the quality of the proxy is good, both consistent and inconsistent loss functions rank properly.

However, when the quality of the proxy is poor, only the consistent loss functions rank properly.

Our findings also hold when the sample size in the estimation period increases.

5.1 Setup

Varying the quality of the proxy requires the simulation of a multivariate diffusion process. For

our simulation, we select the bivariate CCC-EGARCH(1,0) model (see Table 1) which admits a

diffusion limit of the type introduced by (24), defined by the continuous time vector stochastic
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process [y1t, y2t, log(σ2
1t), log(σ2

2t)]
′, with drift and scale given respectively by

b(y, Σ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

ω1 − θ1 log(σ2
1t)

ω2 − θ2 log(σ2
2t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

and

a(y, Σ) = s(y, Σ)s(y, Σ)′

=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
1t ρσ1tσ2t α1σ1t ρα2σ1t

ρσ1tσ2t σ2
2t ρα1σ2t α2σ2t

α1σ1t ρα1σ2t α2
1 + γ2

1(1 − 2/π) ρα1α2 + γ1γ2C

ρα2σ1t α2σ2t ρα1α2 + γ1γ2C α2
2 + γ2

2(1 − 2/π)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (30)

where C = 2
π

[√
1 − ρ2 + ρ arcsin(ρ) − 1

]
. The conditional covariance is computed, at each point

in time as σ(1,2),t = ρ
√

σ2
1,tσ

2
2,t. The matrix s(y, Σ) is computed from a(y, Σ) by spectral decom-

position.

The CCC-EGARCH specification has been preferred to alternative MGARCH specifications -

e.g. the DCC model - because it is sufficient to ensure a certain degree of dissimilarity between

the true DGP and the set of models while keeping the limiting diffusion fairly tractable.

For the simulation study we use the following parameter values: ωi = −0.02, θi = 1−βi = 0.03,

αi = −0.09, γi = 0.4 and ρ = 0.9. Our results are based on 500 replications with an estimation

sample of 2000 observations and a forecasting sample of T=500 observations. The continuous time

process of (24) is approximated by generating 7200 observations per day - i.e. 5 observations per

minute. The set of MGARCH models is estimated on daily returns and recursive 1-step ahead

forecasts are computed.

The true conditional covariance matrix is measured by the integrated covariance (ICov) defined

in (26). To proxy the daily covariance matrix, we use the realized covariance (RCovt,Δ), as defined

in (27), based on intraday returns sampled at 14 different frequencies, ranging from 1 minute (most

accurate) to 24 hour (least accurate), over the forecasting horizon. It is important to stress that

given the bivariate DGP we should in principle stop at the 12 hour frequency to ensure a positive

definite realized variance matrix at time t. Though, when reporting our simulation results next,

we also include the 24 hour frequency to investigate what happens when a realized variance matrix

which is not positive definite enters the loss functions.

As underlined by Hafner (2007) it is difficult to derive temporal aggregation results for the

process generated by (24) and (29)-(30) due to the non-linearity of the variance matrix Σt. The

only thing which we require, in the spirit of Meddahi (2002) and Voev and Lunde (2006), is
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to generate continuous time paths such that the resulting RCov estimators, at different time

sampling frequencies, are consistent for ICov. Contrary to the previous literature, the diffusion

approximation we introduce here allows to control better for the nature and the size of the leverage

effect and to preserve the correlation structure of the vector stochastic process [y1t, ..., σ
2
1t, ...]

′

ensuring internal consistency of the model.

Note that since we are comparing estimated models, the underlying order, other than for the

best model, is unknown. The initial set of models is defined such that all models are expected to be

inferior. Apart from the CCC-EGARCH(1,0), the set of models includes the diagonal BEKK, Risk-

Metrics, CCC-GARCH(1,1), CCC-IGARCH(1,1), CCC-RiskMetrics, GOGARCH-GARCH(1,1),

GOGARCH-EGARCH(1,0), GOGARCH-IGARCH(1,1) and GOGARCH-HYGARCH(1,1).

The considered loss functions and their classification are summarized in Table 2.

Table 2: Classification of the loss functions

Matrix Norms (MN) Type Transform. of MN Type
p-norm (p=1) inconsistent p-norm (p=1) squared consistent
Frobenius norm inconsistent Frobenius norm squared consistent
Eigenvalue norm inconsistent Eigenvalue norm squared consistent

5.2 Sample performance ranking and objective bias

We focus first on the ability of the loss function to detect the true model as the best. We compute

the frequencies at which each model shows the smallest sample performance where the latter is

defined as the mean value of the loss function T−1
∑

T L(Σt, Hit).

Table 3 reports these frequencies for the consistent loss functions: the squares of the Frobenius

norm, the p-norm with p = 1 and of the eigenvalue norm. Unsurprisingly, we find the CCC-

EGARCH model ranking first most often for all consistent loss functions at all frequencies for

RCov. When ICov is used, this frequency is about 51%. The remaining 49% is distributed among

the other models (from 0% to 7%) in such a way that no model dominates. One exception is the

GOGARCH-EGARCH (17%) which is not surprising since this model is the only one in the set that

allows for a leverage effect. Note that the frequency associated to the GOGARCH-EGARCH is

stable across RCov frequencies, that is, it only represents the ability of the GOGARCH-EGARCH

to mimic the dynamics in the covariance structure generated by the true DGP.

The fact that frequencies associated to the true model seem low when the loss is computed

with respect to the true covariance is explained by the fact that we allow for a fairly high degree

of similarity between models. The true CCC-EGARCH model with a moderate leverage effect can

also be accounted for by other models in the set. However, the presence of the leverage effect in the

DGP should imply that all symmetric models are detected as inferior. From Table 3 we also learn
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that when the quality of the proxy deteriorates (the sampling frequency decreases), the sample

performance is invariant, showing the consistency of the ranking of the loss functions across RCov

frequencies. The informative content of the loss function is therefore independent from the proxy

quality allowing to correctly order the models only on the basis of their forecasting ability.

An interesting case is the CCC-RM. The frequencies associated to the CCC-RM increase

progressively from about 8% at ICov to about 10% at RCov12h revealing a behavior that, as we

will see in the following, is typically due to the presence of the objective bias. However, the set

of models includes also the CCC-IGARCH, a model which shares most of the characteristics of

the CCC-RM. The frequencies of the CCC-IGARCH decrease from 5% to 1.5% in such a way to

compensate, at each RCov frequency, the increase in the frequency associated to the CCC-RM.

The joint probability of CCC-IGARCH and CCC-RM to rank first is indeed about 13% and is

constant across RCov.

Table 4 reports the same frequencies but for the inconsistent loss functions, i.e. the Frobenius

norm, the p-norm with p = 1 and the eigenvalue norm. Recall that, when using the true volatility

(ICov), these loss functions deliver the true ranking. Indeed, the CCC-EGARCH is correctly

detected as the best model in 53% of the cases. When relying on RCov1m to RCov1h, the

frequencies associated to each model remain stable and there is no dominant model other than

CCC-EGARCH. Hence, there is no evidence of the presence of objective bias. Starting from

RCov2h, the frequency at which the CCC-EGARCH model ranks first starts declining while the

performance of potentially inferior models increases rapidly as the quality of the proxy lowers.

The CCC-EGARCH frequency drops from about 52% to about 38% and 28% at the 12h and daily

frequency respectively. Interestingly, for lower levels of proxy quality other inferior models seem to

emerge, namely the GOGARCH-EGARCH and the CCC-RM. These models rank first in 18% and

about 5% of the cases respectively when using RCov computed from very high frequency data.

When using 12h returns to proxy the unobservable covariance (i.e. RCov12h) these frequencies

increase to about 29% and 20% respectively, meaning that these models rank first quite often.

This improvement in the sample performance of these models, as the frequency of RCov lowers,

signals the presence of objective bias.

In the first part of the analysis we focused on the detection of the best model in terms of

sample performance. However, the analysis carried out so far, offers only a partial insight on the

role of the objective bias. Indeed, in presence of a high degree of dissimilarity between the true

and the competing models, the detection of the best model may not be affected by the presence of

the objective bias. However, the objective bias may still be relevant for what concerns the other

positions in the ranking. We now investigate whether the whole ordering is preserved despite the

deterioration of the quality of the proxy. Since we are ranking over a set of estimated volatility

models, the true ranking, except for the best model, is not known ex ante. However the underlying
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Table 3: Frequencies at which each model shows the smallest sample loss: consistent loss functions

Square of the Frobenius norm
D-BEKK RM CCC-G CCC-E CCC-I CCC-RM GOG-G GOG-E GOG-I GOG-HY

ICov 0.002 0.008 0.058 0.508 0.052 0.068 0.036 0.172 0.076 0.020
RCov1m 0.002 0.006 0.058 0.510 0.048 0.068 0.040 0.172 0.072 0.024
RCov5m 0.002 0.006 0.060 0.504 0.048 0.076 0.042 0.166 0.070 0.026
RCov10m 0.004 0.004 0.054 0.512 0.040 0.084 0.036 0.168 0.070 0.028
RCov15m 0.002 0.008 0.056 0.504 0.040 0.076 0.038 0.174 0.076 0.026
RCov20m 0.002 0.006 0.048 0.520 0.044 0.082 0.036 0.172 0.074 0.016
RCov30m 0.002 0.004 0.058 0.512 0.042 0.084 0.038 0.170 0.072 0.018
RCov1h 0.002 0.002 0.058 0.522 0.032 0.092 0.034 0.156 0.072 0.030
RCov2h 0.006 0.004 0.048 0.528 0.030 0.070 0.034 0.172 0.070 0.038
RCov3h 0.002 0.006 0.038 0.526 0.036 0.090 0.034 0.152 0.080 0.036
RCov4h 0.006 0.002 0.044 0.496 0.040 0.098 0.026 0.170 0.074 0.044
RCov6h 0.002 0.006 0.042 0.524 0.026 0.082 0.022 0.162 0.096 0.038
RCov8h 0.006 0.006 0.040 0.494 0.018 0.130 0.040 0.152 0.080 0.034
RCov12h 0.010 0.000 0.050 0.526 0.018 0.100 0.022 0.158 0.078 0.038
RCov1d 0.006 0.002 0.036 0.526 0.008 0.130 0.024 0.162 0.066 0.040

Square of the p-norm with p=1
ICov 0.006 0.012 0.058 0.470 0.050 0.094 0.036 0.174 0.082 0.018
RCov1m 0.006 0.012 0.054 0.472 0.050 0.090 0.036 0.182 0.078 0.020
RCov5m 0.006 0.008 0.058 0.470 0.050 0.086 0.036 0.178 0.084 0.024
RCov10m 0.006 0.006 0.058 0.464 0.046 0.098 0.032 0.176 0.086 0.028
RCov15m 0.008 0.010 0.062 0.470 0.040 0.084 0.038 0.182 0.076 0.030
RCov20m 0.004 0.008 0.056 0.480 0.050 0.098 0.038 0.162 0.082 0.022
RCov30m 0.006 0.004 0.056 0.484 0.044 0.102 0.038 0.168 0.074 0.024
RCov1h 0.002 0.004 0.060 0.498 0.036 0.094 0.034 0.166 0.076 0.030
RCov2h 0.010 0.006 0.046 0.496 0.038 0.086 0.030 0.174 0.070 0.044
RCov3h 0.006 0.008 0.050 0.494 0.032 0.104 0.030 0.154 0.082 0.040
RCov4h 0.008 0.002 0.048 0.480 0.034 0.106 0.030 0.168 0.072 0.052
RCov6h 0.008 0.008 0.050 0.498 0.022 0.086 0.020 0.164 0.090 0.054
RCov8h 0.004 0.006 0.038 0.462 0.030 0.146 0.034 0.158 0.082 0.040
RCov12h 0.014 0.002 0.048 0.504 0.014 0.116 0.020 0.156 0.078 0.048
RCov1d 0.004 0.002 0.032 0.498 0.008 0.146 0.026 0.174 0.068 0.042

Square of the Eigenvalue norm
ICov 0.004 0.008 0.058 0.502 0.050 0.072 0.040 0.174 0.072 0.020
RCov1m 0.002 0.006 0.056 0.498 0.050 0.076 0.036 0.174 0.076 0.026
RCov5m 0.004 0.006 0.060 0.508 0.046 0.074 0.038 0.166 0.072 0.026
RCov10m 0.004 0.008 0.054 0.504 0.042 0.084 0.034 0.172 0.072 0.026
RCov15m 0.006 0.006 0.058 0.496 0.036 0.078 0.038 0.178 0.076 0.028
RCov20m 0.004 0.006 0.052 0.516 0.044 0.078 0.036 0.168 0.076 0.020
RCov30m 0.008 0.006 0.058 0.504 0.036 0.086 0.038 0.172 0.074 0.018
RCov1h 0.006 0.006 0.054 0.514 0.032 0.088 0.036 0.162 0.072 0.030
RCov2h 0.006 0.006 0.048 0.526 0.026 0.072 0.036 0.178 0.064 0.038
RCov3h 0.004 0.006 0.038 0.524 0.034 0.090 0.036 0.152 0.080 0.036
RCov4h 0.008 0.002 0.046 0.492 0.036 0.100 0.030 0.168 0.072 0.046
RCov6h 0.006 0.006 0.042 0.512 0.026 0.084 0.022 0.166 0.092 0.044
RCov8h 0.006 0.006 0.040 0.500 0.020 0.128 0.036 0.148 0.078 0.038
RCov12h 0.012 0.000 0.052 0.528 0.016 0.096 0.020 0.158 0.078 0.040
RCov1d 0.006 0.002 0.036 0.522 0.008 0.134 0.026 0.164 0.060 0.042

Note: D-BEKK: Diagonal BEKK; RM: RiskMetrics; CCC-G,-E,-I,-RM: Constant Conditional Correlation with GARCH,
EGARCH, IGARCH and Riskmetrics univariate conditional variances; GOG-G,-E,-I,-HY: Generalized Orthogonal GARCH
with GARCH, EGARCH, IGARCH and HYGARCH univariate conditional variances. RCov1d is separated by a horizontal
line indicating that the realized covariance matrix is not positive definite at the daily frequency.
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Table 4: Frequencies at which each model shows the smallest sample loss: inconsistent loss func-
tions

Frobenius norm
D-BEKK RM CCC-G CCC-E CCC-I CCC-RM GOG-G GOG-E GOG-I GOG-HY

ICov 0.000 0.002 0.046 0.528 0.034 0.050 0.030 0.182 0.106 0.022
RCov1m 0.000 0.002 0.048 0.526 0.032 0.050 0.030 0.182 0.108 0.022
RCov5m 0.000 0.002 0.048 0.526 0.026 0.056 0.034 0.180 0.108 0.020
RCov10m 0.000 0.002 0.046 0.528 0.026 0.058 0.032 0.182 0.104 0.022
RCov15m 0.000 0.002 0.044 0.536 0.028 0.052 0.030 0.180 0.104 0.024
RCov20m 0.000 0.002 0.044 0.534 0.024 0.054 0.028 0.184 0.108 0.022
RCov30m 0.000 0.002 0.044 0.528 0.022 0.058 0.028 0.180 0.110 0.028
RCov1h 0.000 0.002 0.038 0.528 0.028 0.072 0.022 0.188 0.096 0.026
RCov2h 0.000 0.002 0.046 0.502 0.032 0.084 0.012 0.214 0.084 0.024
RCov3h 0.000 0.004 0.032 0.508 0.024 0.094 0.014 0.206 0.094 0.024
RCov4h 0.002 0.006 0.038 0.480 0.028 0.110 0.010 0.216 0.084 0.026
RCov6h 0.006 0.016 0.018 0.444 0.022 0.132 0.010 0.256 0.078 0.018
RCov8h 0.002 0.020 0.020 0.422 0.018 0.170 0.004 0.256 0.072 0.016
RCov12h 0.010 0.026 0.012 0.392 0.010 0.202 0.000 0.290 0.050 0.008
RCov1d 0.012 0.048 0.006 0.294 0.004 0.288 0.002 0.298 0.042 0.006

p-norm with p=1
ICov 0.004 0.004 0.054 0.506 0.024 0.060 0.030 0.186 0.110 0.022
RCov1m 0.004 0.004 0.052 0.504 0.028 0.060 0.032 0.182 0.110 0.024
RCov5m 0.004 0.004 0.046 0.506 0.024 0.066 0.038 0.180 0.108 0.024
RCov10m 0.006 0.004 0.042 0.516 0.024 0.064 0.034 0.174 0.108 0.028
RCov15m 0.006 0.002 0.040 0.512 0.022 0.068 0.030 0.180 0.114 0.026
RCov20m 0.006 0.002 0.040 0.506 0.024 0.072 0.032 0.178 0.116 0.024
RCov30m 0.006 0.002 0.044 0.506 0.022 0.068 0.028 0.184 0.114 0.026
RCov1h 0.008 0.002 0.046 0.504 0.024 0.076 0.018 0.190 0.106 0.026
RCov2h 0.010 0.002 0.052 0.476 0.022 0.096 0.010 0.218 0.090 0.024
RCov3h 0.010 0.008 0.042 0.474 0.022 0.100 0.016 0.212 0.092 0.024
RCov4h 0.012 0.008 0.030 0.458 0.022 0.122 0.010 0.224 0.088 0.026
RCov6h 0.016 0.018 0.012 0.424 0.020 0.150 0.008 0.258 0.070 0.024
RCov8h 0.018 0.028 0.012 0.402 0.010 0.178 0.008 0.260 0.068 0.016
RCov12h 0.024 0.028 0.006 0.376 0.010 0.208 0.000 0.292 0.052 0.004
RCov1d 0.022 0.052 0.004 0.272 0.002 0.298 0.002 0.298 0.046 0.004

Eigenvalue norm
ICov 0.002 0.002 0.050 0.520 0.032 0.050 0.032 0.180 0.110 0.022
RCov1m 0.000 0.002 0.052 0.516 0.032 0.054 0.030 0.184 0.106 0.024
RCov5m 0.002 0.002 0.046 0.518 0.028 0.058 0.036 0.182 0.108 0.020
RCov10m 0.000 0.002 0.042 0.522 0.026 0.058 0.032 0.182 0.112 0.024
RCov15m 0.000 0.002 0.044 0.534 0.026 0.056 0.030 0.178 0.104 0.026
RCov20m 0.002 0.002 0.052 0.520 0.022 0.054 0.028 0.178 0.120 0.022
RCov30m 0.002 0.002 0.044 0.514 0.022 0.060 0.026 0.184 0.114 0.032
RCov1h 0.002 0.002 0.042 0.526 0.026 0.070 0.022 0.188 0.092 0.030
RCov2h 0.000 0.002 0.046 0.506 0.028 0.082 0.014 0.216 0.080 0.026
RCov3h 0.004 0.004 0.036 0.498 0.022 0.094 0.016 0.206 0.096 0.024
RCov4h 0.004 0.008 0.040 0.472 0.024 0.108 0.014 0.222 0.084 0.024
RCov6h 0.008 0.020 0.016 0.444 0.020 0.130 0.012 0.248 0.082 0.020
RCov8h 0.010 0.024 0.020 0.422 0.012 0.162 0.002 0.260 0.070 0.018
RCov12h 0.014 0.028 0.010 0.394 0.010 0.198 0.000 0.288 0.050 0.008
RCov1d 0.016 0.052 0.004 0.296 0.004 0.280 0.002 0.298 0.042 0.006

Note: D-BEKK: Diagonal BEKK; RM: RiskMetrics; CCC-G,-E,-I,-RM: Constant Conditional Correlation with GARCH,
EGARCH, IGARCH and Riskmetrics univariate conditional variances; GOG-G,-E,-I,-HY: Generalized Orthogonal GARCH
with GARCH, EGARCH, IGARCH and HYGARCH univariate conditional variances. RCov1d is separated by a horizontal
line indicating that the realized covariance matrix is not positive definite at the daily frequency.
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ordering implied by a given loss function, can be identified by ranking the models with respect to

the true covariance ICov.

A general result appears from Tables 3 and 4. Unsurprisingly, the frequencies reported are

homogeneous between loss functions within each group. This is a direct result of the equivalences

stated in (5) and (20), for the consistent, (11) and (21) for the inconsistent loss functions. Hence,

without loss of generality, we consider next only one consistent (Frobenius norm squared) and one

inconsistent (Frobenius norm) loss function. Figure 1(a) shows the ranking based on the average

performance (over the 500 replications) implied by the consistent loss function for various levels

of proxy quality. This ranking is fairly stable across RCov frequencies meaning that the squared

Frobenius norm is able to consistently order models even when the quality of the proxy deteriorates.

Shifts in position affect only the middle of the classification and can be justified by the extremely

close average sample performances between the models, with differences at RCov1d smaller than

10−2 (Figure 1(b)). Figures 1(b) and 1(c) provide some insights to disentangle the role of the

accuracy of the covariance proxy. Figure 1(c) reports models average performances normalized

to the average performance of the CCC-EGARCH model. The converging pattern towards the

true model, together with constant deviations between models across RCov frequencies (Figure

1(b)) suggests that the loss of accuracy only translates into a increase in the level of the average

sample performances for all models. Constant discrepancies between models imply that not only

the ordering but also the degree of similarity, and therefore the relationships between models,

are preserved across frequencies. However, the increase in the variability of the proxy induces an

increase in the variability of the loss function which, in empirical applications, may result in the

impossibility to effectively discriminate between models.

A different picture emerges when considering the inconsistent loss function (Figure 2(a)). In

this case, the ranking is preserved up to one hour sampling frequency. Due to the appearance of

the objective bias, we observe major shifts at lower frequencies at most levels of the classification.

The impact of the objective bias is amplified by the fact that except for the first two positions,

i.e. CCC-EGARCH and GOGARCH-EGARCH, all the other models exhibit very close average

sample performances (Figure 2(b)), with differences smaller than 10−2 at RCov1d. Inferior models

like RiskMetrics and CCC-RM, 10th and 9th respectively according to ICov, improve up to the

3rd and 2nd positions respectively. The CCC-EGARCH is classified as the best forecasting model

at all frequencies, followed by the GOGARCH-EGARCH. This result is due to the fact that

these two models are sufficiently different from the others (they are the only models in the set to

allow for leverage effect of the same type as implied by the true model), with the CCC-EGARCH

clearly dominating the GOGARCH-EGARCH (Figure 2(b)). Although the objective bias does not

become an issue when ordering between these two models, Figure 2(b) shows that, as the frequency

for RCov lowers, the average sample performance of the latter gets closer to the CCC-EGARCH
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performance. Since, as underlined above, the variability of the loss function increases along with

the variability of the proxy, the probability to rank the GOGARCH-EGARCH first increases at

low frequences. This conclusion is consistent with the results reported in Table 4.

Besides varying the proxy quality and studying several loss functions we also investigate the

impact of the estimation sample size on the rankings. We increase the sample size by 50% to 3000

observations and we find qualitatively identical results (results available on request).

6 Empirical application

6.1 Data description and estimation results

The empirical application is based on the Euro, British Pound and the Japanese Yen exchange

rates expressed in US dollars (EUR, GBP and JPY). The sample period is January 6, 1987

through June 30, 2004 totaling 4287 trading days. Intraday returns and realized covariances

are computed from five-minutes intervals last mid-quotes, implying 288 intraday observations.

The data have been provided by Olsen & Associates. Missing values are replaced by linearly

interpolating the closest previous and the first following 5-minute price. The dataset has been

cleaned from weekends, holidays and early closing days. Days with too many missing values

and/or constant prices are also removed. Five-minute returns are computed as the first difference

of the logarithmic prices. The estimation sample ranges from January 6, 1987 to December 28,

2001 (3666 trading days), while the remaining observations (621 trading days) are used for the

out-of-sample forecasts evaluation. Table 5 reports descriptive statistics for the estimation sample

and the forecasting sample. With respect to the daily frequency, the EUR and GBP exchange

rates share similar data characteristics and are relatively highly correlated. JPY has quite a higher

kurtosis and a more pronounced skewness. The 5-minute realized variances and correlations are

quite dispersed. For example the correlations vary between -0.12 and 0.85. We also remark that

the variances are positively skewed and the correlations negatively skewed.

The proxy for the conditional covariance is realized covariance (RCov) as defined in (27)

computed at 14 different frequencies ranging from 5 min. to 24 h. We stress again, like in the

simulation study, that we should stop at the 8h frequency if we want to have a positive definite

realized variance matrix at each point in time. We include the results until the 24h frequency to

illustrate what happens when the realized variance matrix is not positive definite. One-step-ahead

forecasts are computed from 4:05 pm to 4:00 pm ET and are contrasted to the realized measure of

volatility using one consistent (Frobenius norm squared) and one inconsistent (Frobenius norm)

loss function. Estimation results for the 16 MGARCH models are reported in Table 6. Note that

there is no Riskmetrics and CCC-RM procedures reported in Table 6 since they do not require

parameter estimation (the sample correlation is used for the CCC-RM). Generally speaking, we
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Figure 1: Consistency of the ranking based on average performance - Frobenius norm squared
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Figure 2: Consistency of the ranking based on average performance - Frobenius norm
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Table 5: Descriptive statistics
Series min mean max std.dev skew. kurt.
Estimation sample: January 6, 1987 to December 28, 2001 (3666 observations)
EUR −3.557 −0.003 3.419 0.683 0.043 4.939
GBP −4.168 −0.002 3.425 0.623 −0.161 6.140
JPY −4.207 0.003 7.724 0.729 0.619 9.503
Forecasting sample: January 3, 2002 to June 30, 2004 (621 observations)
EUR −2.001 0.051 1.837 0.647 −0.227 3.270
GBP −1.756 0.035 2.051 0.524 −0.221 3.873
JPY −2.203 0.033 2.686 0.595 −0.129 4.260
RCov5m,EUR 0.122 0.457 2.526 0.200 3.024 24.52
RCov5m,GBP 0.079 0.315 1.564 0.156 2.410 14.02
RCov5m,JPY 0.041 0.413 2.385 0.235 3.221 20.52
RCor5m,EUR,GBP 0.012 0.550 0.852 0.120 −0.303 3.359
RCor5m,EUR,JPY −0.035 0.410 0.800 0.147 −0.343 2.639
RCor5m,GBP,JPY −0.122 0.279 0.653 0.127 −0.131 2.885
The estimated correlations for the estimation sample are ρEUR,GBP = 0.720, ρEUR,JPY =

0.493 and ρGBP,JPY = 0.415. The estimated correlations for the forecasting sample are

ρEUR,GBP = 0.721, ρEUR,JPY = 0.490 and ρGBP,JPY = 0.416.

observe that the parameters estimates for the conditional variance, covariance and correlations

imply highly persistent processes. Furthermore, in almost all cases, the null of no leverage effect

cannot be rejected at standard significance levels.

6.2 Model comparison

The empirical ranking of the 16 MGARCH models, as a function of the level of aggregation of

the data used to compute RCov, is reported in Figures 3 and 4. The consistent loss function in

Figure 3(a) points to the CCC-GARCH as the best forecasting model at almost all frequencies.

More generally we can conclude that the subset given by both the CCC and the DCC both with

GARCH and GJR outperforms all the other models. This model is followed by the CCC-GJR, with

differences between the two rather negligible (Figure 3(b)). The overall ranking is well preserved

across all frequencies.

The GOGARCH model is always largely dominated by all other models regardless the condi-

tional variance specification. There is no clear dominance between the CCC and the DCC models

and their ranking position depends on the model chosen for the conditional variance. Here the

GARCH/GJR represents the best combination, followed in the order by the APARCH, the RM

and finally the IGARCH. Interestingly, the three models which are based on the RiskMetrics

approach, which assumes dynamics for the variance process independent of the data by fixing a

smoothing parameter ex ante (RiskMetrics, CCC-RM and DCC-RM) are positioned in the middle

of the classification. Figure 3(a) shows that between 10 min. and 1 h., the ranking is particularly

stable but rather volatile outside this range of frequencies. The accuracy of the volatility proxy

plays an important role here. As pointed out by Hansen and Lunde (2006) we can observe discrep-

ancies between the empirical and the approximated ranking in finite samples (i.e. sampling error).
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Table 6: Estimation results
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Indeed, as the accuracy of the proxy deteriorates, the loss function becomes less informative. As a

result, it is more difficult to identify superior models. This effect becomes more severe when there

is a high degree of similarity between models under evaluation. The relationship between intraday

frequency and accuracy has been discussed in Section 4 and 5. However, we underline that RCov

may also be severely biased when based on intraday returns sampled at very high frequency, due

to the presence of jumps and microstructure noise.

Figure 4(a) illustrates how the presence of the objective bias can affect the ranking when an

inconsistent loss function is used. The overall ordering between models is generally preserved and

stable across frequencies with three striking exception. The CCC and the DCC models with RM

conditional variances rank 8th and 9th respectively at RCov5min, but they rapidly climb towards

the top of the classification as the frequency for RCov lowers. Starting from 15min frequency for

RCov they reach the top of the classification, ranking first and second. Interestingly, (Figure 4(b)),

the sample performances of these two models are extremely close, with discrepancies from the

average across models at each frequency ranging between 0 and 0.003. Similarly, the RiskMetrics

model, ranking 11th when RCov5m is used, joins the top of the ranking at a relatively high

frequency. When RCov is computed using data sampled at a frequency equal or lower then 40

minutes, the RiskMetrics model ranks 3rd, behind the CCC-RM and DCC-RM model. Given

that these models are characterized by a dynamic in the variance structure imposed ex ante and

independent from the data (with the only exception of the DCC-RM for which the parameters

of the dynamic correlation are data dependent), it is unlikely that such models are the best

forecasting model. The presence of a biased ordering is therefore striking. The ranking obtained

at low frequencies is in no way compatible with the one obtained when a more accurate proxy

is used. Since model performances are extremely close (Figure 4(b)), the objective bias severely

affects the ranking even when the proxy used in the evaluation is based on rather high frequency

data.

In Figures 5 and 6, we concentrate the analysis on a reduced set of models that includes only

non nested models (CCC is excluded), since the CCC and the DCC models are rather equivalent

in terms of sample performances. Since we consider models characterized by a lower degree of

similarity, the impact of sampling error is now reduced. The ranking implied by the consistent

loss function is highly stable for a larger range of frequencies. Again, when the inconsistent loss

function is used the appearance of the objective bias clearly affects the ordering. In Figure 6(b),

we observe the relative improvement in terms of sample performances of the DCC-RM and the

RiskMetrics models with respect to all the others models in the set, with a striking dominance of

the DCC-RM.
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Figure 3: Consistency of the ranking based on sample performances - Consistent loss function
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Figure 4: Consistency of the ranking based on sample performances - Inconsistent loss function
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Figure 5: Consistency of the ranking based on sample performances (reduced set) - Consistent
loss function
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Figure 6: Consistency of the ranking based on sample performances (reduced set) - Inconsistent
loss function
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6.3 Model confidence set

To illustrate the crucial role of an adequate choice of the loss function for model selection based on

forecasting ability, we apply the Model Confidence Set (MCS) test of Hansen, Lunde, and Nason

(2005) to the set of models with lower degree of similarity. The MCS test allows to identify a

subset of equivalent models in terms of predictive ability which are superior to the others. Being

the selection based on the ordering implied by the loss function used to evaluate the deviations from

the target volatility (i.e. the implied orderings shown in Figures 5(a) and 6(a)), an unfortunate

choice of the loss function can deliver an unintended result even when the testing procedure is

formally correct. Table 7 summarizes the results for three different sampling frequencies for the

covariance proxy RCov.

We apply first the MCS test using the Frobenius norm squared (consistent). The results

reported in Table 7 are consistent across frequencies. Furthermore, the set of equally good models

gets larger as the sampling frequency for RCov lowers. This result is due to the loss of accuracy

of the proxy which translates in a higher variability of the sample evaluation associated to each

model, which consequently makes more difficult to discriminate between models.

Table 7: Model Confidence Set test.

Loss function RCov5m RCov20m RCov8h

DCC-APARCH DCC-GARCH DCC-APARCH
Frobenius norm squared DCC-GARCH DCC-GJR DCC-GARCH

DCC-GJR DCC-GJR
D-BEKK

DCC-GARCH DCC-GARCH DCC-RM
Frobenius norm DCC-GJR DCC-GJR

DCC-RM
Notes: The initial set contains 11 models. Significance level α = 0.05.
Sample size 621 obs. Standard errors based on 1000 bootstrap resamples.

When the test is based on the inconsistent Frobenius norm, the result appears clearly affected

by the objective bias. In fact, the MCS gets smaller and its composition changes as the frequency

for RCov lowers. At RCov8h the set is made of the only DCC-RM. Indeed, this model shows a

largely better performance with respect to all other models, as shown in Figure 6(b).

7 Conclusion

Two important issues arise when we want to rank several multivariate volatility models with

respect to their forecasting performance. First, there is the choice of the loss function (how can

we compare predicted variance matrices) and second the choice of a proxy of the unobservable

volatility measure used to evaluate models forecasts. In fact, when the unobservable volatility is

substituted by a proxy, the ordering implied by some loss functions may be biased with respect to
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the intended one.

In this paper, we extend Hansen and Lunde (2006) conditions for consistent ranking to the

multivariate case. Interestingly, it turns out that, being in a multivariate framework, we can put

forward a new condition for consistent ranking based on norm equivalence that broadens the class

of admissible loss functions. We discuss in this paper several loss functions which are based on

transformations of existing matrix norms and verify whether they satisfy the conditions to ensure

a consistent ranking. The proxy of the unobservable volatility matrix is the realized covariance

matrix.

In the simulation study, we sample from a continuous time multivariate diffusion process and

estimate discrete time multivariate GARCH models to illustrate the sensitivity of the ranking to

different choices of the loss functions and to the quality of the proxy. We observe that if the quality

of the proxy is good, both consistent and inconsistent loss functions rank properly. However, when

the quality of the proxy is poor, only the consistent loss functions rank properly. Our findings

also hold when the sample size in the estimation period increases. This is an important message

for the applied econometrician.

The application to three foreign exchange rates nicely illustrates, with respect to losses and a

model confidence set test, what happens when we pick a poor proxy combined with an inconsistent

loss function in an out-of-sample forecast comparison among 16 multivariate GARCH models.

We actually observe that for the foreign exchange rates series the models perform similarly in

predicting conditional variance matrices.

There are interesting extensions for future research. First, this paper ranks multivariate volatil-

ity models based on statistical loss functions only and focuses on conditions for consistent ranking

from a more theoretical viewpoint. At some point an economic loss function has to be introduced

when the forecasted volatility matrices are actually used in financial applications such as portfolio

management and option pricing. It is clear that the model with the smallest statistical loss is al-

ways preferred but it may happen that other models with small statistical loss have economic loss

properties that are indistinguishable. This issue has not been addressed in this paper. Second,

multivariate volatility forecast comparison for higher horizons than one day is not studied yet.

Third, other proxies than realized covariance that enter the loss functions should be investigated.
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Université de Montréal Working paper.

Nelson, D. (1991): “Conditional Heteroskedasticity in Asset Returns: a New Approach,” Econo-

metrica, 59, 349–370.

van der Weide, R. (2002): “GO-GARCH: A Multivariate Generalized Orthogonal GARCH

Model,” Journal of Applied Econometrics, 17, 549–564.

Voev, V., and A. Lunde (2006): “Integrated Covariance Estimation Using High Frequency Data

in Presence of Noise,” Journal of Financial Econometrics, 5.

West, K. (1996): “Asymptotic Inference About Predictive Ability,” Econometrica, 64, 1067–

1084.

White, H. (2000): “Reality Check for Data Snooping,” Econometrica, 68, 1097–1126.

31



Recent titles 
CORE Discussion Papers 

 
2008/47. Shin-Huei WANG and Cheng HSIAO. An easy test for two stationary long processes being 

uncorrelated via AR approximations. 
2008/48. David DE LA CROIX. Adult longevity and economic take-off: from Malthus to Ben-Porath. 
2008/49. David DE LA CROIX and Gregory PONTHIERE. On the Golden Rule of capital accumulation 

under endogenous longevity. 
2008/50. Jean J. GABSZEWICZ and Skerdilajda ZANAJ. Successive oligopolies and decreasing returns. 
2008/51. Marie-Louise LEROUX, Pierre PESTIEAU and Grégory PONTHIERE. Optimal linear taxation 

under endogenous longevity. 
2008/52. Yuri YATSENKO, Raouf BOUCEKKINE and Natali HRITONENKO. Estimating the dynamics 

of R&D-based growth models. 
2008/53. Roland Iwan LUTTENS and Marie-Anne VALFORT. Voting for redistribution under desert-

sensitive altruism. 
2008/54. Sergei PEKARSKI. Budget deficits and inflation feedback. 2008/55. Raouf 

BOUCEKKINE, Jacek B. KRAWCZYK and Thomas VALLEE. Towards an understanding of 
tradeoffs between regional wealth, tightness of a common environmental constraint and the 
sharing rules. 

2008/56. Santanu S. DEY. A note on the split rank of intersection cuts. 
2008/57. Yu. NESTEROV. Primal-dual interior-point methods with asymmetric barriers. 
2008/58. Marie-Louise LEROUX, Pierre PESTIEAU and Gregory PONTHIERE. Should we subsidize 

longevity? 
2008/59. J. Roderick McCRORIE. The role of Skorokhod space in the development of the econometric 

analysis of time series. 
2008/60. Yu. NESTEROV. Barrier subgradient method. 
2008/61. Thierry BRECHET, Johan EYCKMANS, François GERARD, Philippe MARBAIX, Henry 

TULKENS and Jean-Pascal VAN YPERSELE. The impact of the unilateral EU commitment on 
the stability of international climate agreements. 

2008/62. Giorgia OGGIONI and Yves SMEERS. Average power contracts can mitigate carbon leakage. 
2008/63. Jean-Sébastien TANCREZ, Philippe CHEVALIER and Pierre SEMAL. A tight bound on the 

throughput of queueing networks with blocking. 
2008/64. Nicolas GILLIS and François GLINEUR. Nonnegative factorization and the maximum edge 

biclique problem. 
2008/65. Geir B. ASHEIM, Claude D'ASPREMONT and Kuntal BANERJEE. Generalized time-

invariant overtaking. 
2008/66. Jean-François CAULIER, Ana MAULEON and Vincent VANNETELBOSCH. Contractually 

stable networks. 
2008/67. Jean J. GABSZEWICZ, Filomena GARCIA, Joana PAIS and Joana RESENDE. On Gale and 

Shapley 'College admissions and stability of marriage'. 
2008/68. Axel GAUTIER and Anne YVRANDE-BILLON. Contract renewal as an incentive device. An 

application to the French urban public transport sector. 
2008/69. Yuri YATSENKO and Natali HRITONENKO. Discrete-continuous analysis of optimal 

equipment replacement. 
2008/70. Michel JOURNÉE, Yurii NESTEROV, Peter RICHTÁRIK and Rodolphe SEPULCHRE. 

Generalized power method for sparse principal component analysis. 
2008/71. Toshihiro OKUBO and Pierre M. PICARD. Firms' location under taste and demand 

heterogeneity. 
2008/72. Iwan MEIER and Jeroen V.K. ROMBOUTS. Style rotation and performance persistence of 

mutual funds. 
2008/73. Shin-Huei WANG and Christian M. HAFNER. Estimating autocorrelations in the presence of 

deterministic trends. 
2008/74. Yuri YATSENKO and Natali HRITONENKO. Technological breakthroughs and asset 

replacement. 



Recent titles 
CORE Discussion Papers - continued 

 
2008/75. Julio DÁVILA. The taxation of capital returns in overlapping generations economies without 

financial assets. 
2008/76. Giorgia OGGIONI and Yves SMEERS. Equilibrium models for the carbon leakage problem. 
2008/77. Jean-François MERTENS and Anna RUBINCHIK. Intergenerational equity and the discount 

rate for cost-benefit analysis. 
2008/78. Claire DUJARDIN and Florence GOFFETTE-NAGOT. Does public housing occupancy 

increase unemployment? 
2008/79. Sandra PONCET, Walter STEINGRESS and Hylke VANDENBUSSCHE. Financial constraints 

in China: firm-level evidence. 
2008/80. Jean GABSZEWICZ, Salome GVETADZE, Didier LAUSSEL and Patrice PIERETTI. Pubic 

goods' attractiveness and migrations. 
2008/81. Karen CRABBE and Hylke VANDENBUSSCHE. Are your firm's taxes set in Warsaw? Spatial 

tax competition in Europe. 
2008/82. Jean-Sébastien TANCREZ, Benoît ROLAND, Jean-Philippe CORDIER and Fouad RIANE. 

How stochasticity and emergencies disrupt the surgical schedule. 
2008/83. Peter RICHTÁRIK. Approximate level method. 
2008/84. Çağatay KAYI and Eve RAMAEKERS. Characterizations of Pareto-efficient, fair, and strategy-

proof allocation rules in queueing problems. 
2009/1. Carlo ROSA. Forecasting the direction of policy rate changes: The importance of ECB words. 
2009/2. Sébastien LAURENT, Jeroen V.K. ROMBOUTS and Francesco VIOLANTE. Consistent 

ranking of multivariate volatility models. 
 

Books 
 
Y. POCHET and L. WOLSEY (eds.) (2006), Production planning by mixed integer programming. New York, 

Springer-Verlag. 
P. PESTIEAU (ed.) (2006), The welfare state in the European Union: economic and social perspectives. 

Oxford, Oxford University Press. 
H. TULKENS (ed.) (2006), Public goods, environmental externalities and fiscal competition. New York, 

Springer-Verlag. 
V. GINSBURGH and D. THROSBY (eds.) (2006), Handbook of the economics of art and culture. 

Amsterdam, Elsevier. 
J. GABSZEWICZ (ed.) (2006), La différenciation des produits. Paris, La découverte. 
L. BAUWENS, W. POHLMEIER and D. VEREDAS (eds.) (2008), High frequency financial econometrics: 

recent developments. Heidelberg, Physica-Verlag. 
P. VAN HENTENRYCKE and L. WOLSEY (eds.) (2007), Integration of AI and OR techniques in constraint 

programming for combinatorial optimization problems. Berlin, Springer. 
 

CORE Lecture Series 
 
C. GOURIÉROUX and A. MONFORT (1995), Simulation Based Econometric Methods. 
A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality. 
J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization. 
B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through 

Vertical Agreements. 
D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming 

problems: theory and practice. 
R. AMIR (2002), Supermodularity and complementarity in economics. 
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming. 


