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Abstract 
 

We study a particular class of cost sharing games – "data games" – covering situations where 
some players own data which are useful for a project pursued by the set of all players. The 
problem is to set up compensations between players. Data games are subadditive but 
generally not concave, and have a nonempty core. We characterize the core and compute the 
compensation scheme derived from the Shapley value. We then compare it to the nucleolus. 
Although we use the term "data" our analysis actually applies to any good characterized by 
non rivalry and excludability. 
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Introduction

Imagine the following situation. A group of firms are willing to cooperate on a project
requiring the collection of data and one firm already owns some data. The question is then the
following: how should this firm be compensated? If there are n firms and if c is the cost of
reproducing the existing data, a fair payment should be c/n. Each firm pays c/n to the owner
who collects (n-1)c/n = c – c/n. The owner gets c but pays c/n too. Applying the Shapley
value to this cost game gives precisely the compensation described above. It is actually what
any sensible compensation scheme should suggest in such a situation.

We can think of more complicated situations. There may be more than one "player" owning
the same data and the data may be more or less complete. As we shall see, this gives rise to a
cost sharing game which has an interesting and simple structure.

This story actually applies to any good characterized by non rivalry and excludability.1 We
shall however keep using the term "data" for expository reason.

The origin of the present paper is the cost sharing problem faced by the European chemical
industry which must submit detailed analysis for about 30.000 substances that are being
produced. This is a requirement imposed by EU under the acronym "REACH". Individual
firms may submit these analyses but the European Commission encourages firms to get
together, taking advantage of existing data, in order to reduce the overall cost of the program.
In the official documents which are available, the cost sharing problem is described and hints
are given for solving it through a few examples. No precise methodology is however
proposed.

In what follows we set up a class of cost sharing games – "data games" – and analyze their
properties. We show how they are related to airport games and observe that the core is
nonempty as it always contains the no compensation allocation: no coalition can object when
no one is asked to pay. We characterize the core which happens to have a simple and regular
structure and show that in any core allocation only the player with the largest database is
possibly compensated. We then define the compensation rule derived from the Shapley value
and show that the resulting allocation does generally not belong to the core. We finally
compare the Shapley value to the nucleolus, an other solution concept used in cost sharing.
The nucleolus always belongs to the core and, applied to data games, all players except the
one with the largest database, contribute the same amount.

The cost sharing game

We first define formally the notion of cost (sharing) game.2

A set N = {1,…,n} of players have a common project and they face the problem of dividing
its total cost. The cost of realizing the project to the exclusive benefit of the members of any
subset of players ("coalition") is also known. This defines a real-valued function C – a cost
function – on the subsets of N with C() = 0. A pair (N,C) defines a cost game and the total
cost to be divided is C(N).

1 This is what is sometime called a public good with exclusion.
2 See for instance Young (1985) or Moulin (1988, 2003).
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A sharing rule associates a cost allocation y = (N,C) to any cost game (N,C) such that:3

1

( )
n

i
i

y C N




Notation: The letters n, s, t,… will denote the size of the sets N, S, T,… For a vector x, x(S)
will denote the sum over S of its coordinates. Coalitions will be identified as ijk… instead of
{i,j,k}… For any set S, S\i will denote the coalition of which player i has been removed.

We now define data games. We denote by k i the replacement cost of the data owned by
player i. Without loss of generality, we assume that

1 20 ... and 0n nk k k k     (1)

where k i = 0 means that player i does not own data. The objective of the grand coalition N is
to share the data owned by player n. We denote by c i = kn – k i the cost of upgrading player i's
database to a level equivalent to player n's database. The ci's satisfy the following inequalities:

1 2 1... 0n nc c c c     (2)

Assuming that if i < j, player j's database includes player i 's database, the corresponding cost
game (N,C) is defined by:

( ) Min ( ) Min for all ,i S n i i S iC S k k c S N S      (3)

with C() = 0. Hence C(i) = c i and C(N) = 0. We shall denote by (N,c) the data game with
cost parameters c i = kn – ki. Alternatively, the cost function C can be written as:

C(S) = kn – K(S) (4)

where K(S) = MaxiS ki. Given the inequalities (2), the cost function K defines an airport
game. It is well known that the cost functions associated to airport games are monotonically
increasing, concave and thereby subadditive.4 Here kn appears as a fixed cost which applies to
all players and coalitions.5

In the case where a subset D of players own the same data while the other players own no
data, k i = a > 0 if i D and ki = 0 otherwise. The associated cost function is given by:

C(S) = 0 for all S such that S D
(5)

C(S) = a for all S such that S D =

The case referred to in the introduction is the situation where only one player owns date.

3 Equality is a requirement of efficiency.
4 See Littlechild and Owen (1973) and Littlechild and Thomson(1977).
5 The cost function C can also be written as C(S) = – C0(S) where C0(S) = MaxiS (– ci). However C0 does not

define a proper airport game because C0(S) 0 for all S. In particular, the cost function C0 is superadditive.
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It is clear from definition (3) that data games are essential (except in the uninteresting case
where all ki's are equal and no compensations are then needed) and monotonically decreasing:

1

( ) 0

( ) ( )

n

i

C i

S T C S C T




  



It is also subadditive:

( ) ( ) ( )S T C S C T C S T     

Indeed if S and T be two disjoint subsets of N, C(S T) = Min (C(S), C(T)). Assume
C(S) C(T). Then C(S) + C(T) – C(S T) = C(S) 0.6

Subadditivity is a minimum form of scale economies. However the cost function C is not
concave7 except in the particular case where data are owned by only one player. Indeed
C(S) + C(T) C(S T) + C(S T) for all S, T N except if S T , S D,
T D and (S T) D = in which cases the opposite inequality applies:

( ) ( ) 0 ( ) ( )C S C T C S T C S T a      

Such cases do not arise when d 2. This does not imply that C is a convex function because
C(S) + C(T) > C(S T) + C(S T) whenever (S T)D = and S T = .

It is sometimes convenient to consider the division of the surplus generated by the grand
coalition. For any coalition S N, we define v(S) as the gain obtained by coalition S if it
forms:

( ) ( ) ( )
i S

v S C i C S


  (6)

This defines the surplus (sharing) game (N,v) associated to the cost game (N,C). In particular
v(i) = 0 and v(N) > 0 (for essential cost games).8 Shares z in the total surplus v(N) and shares y
in the total cost C(N) are related by the following identities:

zi + yi = C(i) i = 1,…,n (7)

The surplus game (N,v) associated to the data game (N,c) is defined by the characteristic
function

( ) Mini i S ii S
v S c c

 
and

1

( )
n

i
i

v N c


 is the total surplus to be divided.

6 Subadditivity of the cost function C also follows from the superadditivity of the cost function C0.
7 A set function f is concave if f (S) + f (T) f (S T) + f (S T). Hence concavity implies subadditivity.

Alternatively, a set function f is concave if the marginal costs f (S) – f (S\i) are all decreasing.
8 If the cost function C is subadditive (resp. concave) then the surplus function v is superadditive (resp. convex),

and vice versa.
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The core

Individual rationality is the minimal requirement to impose to a cost allocation y:

( ) for alliy C i i N 

i.e. no player should pay more than his or her "stand alone" cost. This defines an imputation.
Extending the argument to coalitions is a stronger requirement: the core is the set of
allocations y against which no coalition can object:

( ) ( ) for ally S C S S N  (8)

i.e. no coalition pays more that its stand alone cost. Equivalently, an allocation y is in the core
if and only if

( ) ( ) ( \ ) for ally S C N C N S S N  

i.e. there is no cross-subsidization: each coalition pays at least its marginal cost.9

Using (7) and (8), the core of the surplus game (N,v) is defined by the allocations z such that

( ) ( ) for allz S v S S N 

The core of a data game as defined by (3) is always nonempty. Indeed, C(S) 0 for all S N,
independently of the choice of the ci's. As a consequence, the trivial allocation defined by the
absence of compensation y0 = (0,0,…,0) belongs to the core for all ci's satisfying (2). Actually,
the core happens to have a very simple structure which depends exclusively on cn-1.

Proposition 1 The core of a data game (N,c) is a regular convex polyhedron whose
vertices are then n vectors (cn-1, 0,…, 0, – cn-1), (0, cn-1, 0,…,0, – cn-1),…,
(0, 0,…, cn-1 , – cn-1) and y0 = (0,…,0).10

Proof We first observe that if y belongs to the core, then 0 yi ci for all i n and
– cn-1 yn 0. Indeed, individual rationality requires y i ci for all i, with cn = 0. For any given
i n, y(N/i) 0 and y(N) = 0 imply y i 0. Finally y(N/n) cn-1 and y(N) = 0 imply yn – cn-1.

We then show that y belongs to the core if and only if there exist 1,…,n-1 in [0,1] such that:

1

1

1

1

1,..., 1

n

i
i

i i ny c i n













  

 (9)

9 See Faulhaber (1975).
10 Hence the core is a polyhedron with n congruent faces. It is an equilateral triangle for n = 3 and a tetrahedron

for n = 4. All vertices are connected together by a line segment of length 21/2cn-1 .
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If y is an allocation defined by (9), the following inequalities hold for all S N

1 1

1 1

1 1 1
1 1

( ) if

0 ( ) if

i n i n
i S i S

n n

i n i n i n i
i S i S i i

i n i S

y c c C S n S

y c c c C S n S



  

 
 

 

  
   

 

   

     

 

   

Hence y belongs to the core.

If y is an element of the core, we have successively:

1 1

2 2 1 1

1

1 1
1

0

0
...

0

n n

n n n n

n

i n
i

y c

y y y c

y y c

 

   






 

   

  

i.e. 0 yi cn-1 for all i = 1,…,n-1. Thei's defined by i = yi/cn-1 then satisfy (9). ü

Figure 1 illustrates the core for the case n = 4.

(c3,0,0,-c3)

(0,c3,0,-c3)

(0,0,c3,-c3)

(0,0,0,0)

Figure 1
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From that proposition, it follows that the core reduces to {y0} if and only if more than one
player owns the full database, independently of the other cost parameters. The size of the core
depends only on cn-1 – the largest compensation player n can expect – and it has full
dimension (n-1) if and only if cn-1 > 0. Furthermore, the core being a regular polyhedron, its
center of gravity11 is simply defined by the average of its vertices, which is the point defined
by (9) for i = 1/n:

1 1 1 1ˆ , ,..., , ( 1)n n n nc c c c
y n

n n n n
       

 

The Shapley value

To each permutation of the n players we associate a vector t of marginal costs. More precisely
the element ik of the vector t associated to the permutation = (i1,...,in) is given by:

1 1

1 1 1

( ) ( )

( ) ( ,..., ) ( ,..., ) for 2,...,
k

i

i k k

t C i

t C i i C i i k n



 



  

There are n! such vectors and the Shapley value is simply the average marginal cost vector:12

1
( , ) ( )

!i iN C t
n 

 


 

where is the set of all permutations. The Shapley value is the unique additive sharing rule
which satisfies symmetry and dummy.13 There exist alternative axiomatizations of the Shapley
value.14 In the context of cost sharing it is shown that the Shapley sharing rule is the unique
sharing rule which allocates fixed costs uniformly.15 The Shapley value is individually
rational for subadditive cost games and it belongs to the core for concave cost games.16

Otherwise it does not necessarily belong to the core.

For the case n = 3, the marginal cost vectors associated to a data game (N,c) are given by:

11 See Gonzales-Diaz and Sanchez-Rodriguez (2007) for a general definition of the center of gravity of the core.
12 The marginal cost vectors are distinct if and only if the cost function is strictly concave.
13 These are the original axioms used by Shapley (1953, 1981): players with identical marginal costs pay the

same amount (symmetry or "equal treatment of equals") and players with zero marginal costs pay nothing
(dummy).

14 See Moulin (2003).
15 See Dehez (2007).
16 The core is typically large and the Shapley value is located somewhere in its centre. See Shapley (1971).

1 2 3
123 c1 c2 – c1 – c2
132 c1 0 – c1

213 0 c2 – c2

231 0 c2 – c2

312 0 0 0
321 0 0 0

Total 2c1 3c2 – c1 – 3c2 – c1
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The compensation derived from the Shapley value is obtained by dividing the totals by n! = 6.
It is given by:

1 2 1 2 1( , , )
3 2 6 2 6
c c c c c

y    

We notice that there are actually four distinct vectors if c1 > c2 and, in the case where c1 = c2,
there are only three distinct vectors. The no compensation vector y0 is always one of these
vectors. It corresponds to the (n-1)! permutations in which the last player comes first.

Using (7) the corresponding allocation of the total surplus c1 + c2 is given by:

1 2 1 2 12( , , )
3 2 6 2 6
c c c c cz c y    

It could have as well been derived from the marginal contribution vectors:17

1 2 3
123 0 c1 c2

132 0 c2 c1

213 c1 0 c2
231 c1 0 c2

312 c1 c2 0
321 c1 c2 0

Total 4c1 3c2 + c1 3c2 + c1

Applied to the airport game (N,K), the cost allocation derived from the Shapley value is well
known and distributes the cost increments uniformly:

1
1

1 2 1
2

3 21 2 1
2

1 21 2 1
1

1

1 2
...

...
1 2

n n
n n n

k
x

n
k k kx
n n

k kk k k
x

n n n

k kk k kx k k
n n

 




 



  

 

     


(10)

17 Notice that 2 and 3 are substitute players. Actually the last two players are always substitutes in the surplus
game associated to a data game: they both contribute cn-1 to any coalition of which they are both members.
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Using (4) and knowing that the Shapley value is a linear operator which satisfies symmetry,
the compensation derived from the Shapley value is given by :

1,...,n
i i

k
y x i n

n
  

i.e.
1 1

1

1 1 2 1 2 1
2

1 2 1 1 21
1 1

1 1
...

... ...
2 2

n

n

n n n n n
n n n n n

k k c
y

n n
k k k k c c cy

n n n n

k k k k c cc
y k k c c

n n
   

 


 

     
 

  
         

(11)

We observe that the resulting allocation corresponds to the airport cost allocation as given by
(10), replacing ki by ci. This is consistent with the fact that C(S) = – MaxiS (– ci).

Formula (11) has a simple recursive structure and the Shapley compensation y can be written
simply as:

y = A.c

where A is a n n triangular matrix whose elements are defined by:

1
if

( 1)( )
1

1

ij

ii

a j i
n j n j

a
n i


 

  




with aij = 0 otherwise. For n = 4, the matrix A is given by:

1/ 4 0 0 0
1/12 1/ 3 0 0
1/12 1/ 6 1/ 2 0
1/12 1/ 6 1/ 2 1

A

 
  
  
 
   

Notice that these matrices are overlapping, starting from the lower right element 1.18 For
instance, if n = 5 the first column starts with 1/5, followed by -1/20.19

18 Actually the element ann is arbitrary because cn = 0. It is equal to 1 in the matrix defining the Shapley value of
an airport game.

19 The elements of any of the first n-1 columns sum up to 1 and the elements of any of the row sum up to 1/n.
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In the particular case where a subset D of players own the same database while the other
players own no data, the associated cost function is defined by (5) and the Shapley value is
simply given by:

if

( ) if

i

i

a
y i D

n
n d a a ay i D

nd n d

 

   

where d is the size of D, 1 d n. Players who do not own the data pay c/n and the amount
collected is redistributed uniformly among the players owning the data. We observe that the
amount received by players in D decreases with d. When d = 1, the game is concave and the
Shapley value belongs to the core. In addition, for that particular game, the Shapley value
coincides with the nucleolus as will be shown later.

We have seen that if more than one player own the full database the core reduces to the single
allocation y0 in which case the Shapley value does definitely not satisfy the core requirements.
Actually no compensation does. The following examples show what may happen when there
are differences in the databases.

Example 1 The cost function associated to c = (100,40,20,0) is given by:

C(1) = 100
C(2) = C(12) = 40
C(3) = C(13) = C(23) = C(123) = 20

and C(S) = 0 for all the other coalitions (i.e. all coalitions including player 4). This game is
not concave and the Shapley compensation (25,5,–5,–25) does not belong to the core. Indeed
y(123) = 25 > C(123).

Example 2 The cost function associated to c = (88,76,64,0) is given by:

C(1) = 88
C(2) = C(12) = 76
C(3) = C(13) = C(23) = C(123) = 64

and C(S) = 0 for all the other coalitions. Although this game is not concave, the Shapley
compensation (22,18,12,–52) belongs to the core.

Using Proposition 1, it is easy to find conditions on the cost parameters c i such that the
Shapley value belongs to the core. For instance, if n = 3, the Shapley compensation belongs to
the core if and only if :

c1 3 c2 (12)

When equality holds, the Shapley compensation is the allocation in the core in which player 1
pays the largest amount.
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Example 3 The vector c = (90,30,0) satisfies (12) with equality. The Shapley compensation
is given by (30,0,–30) and the corresponding surplus allocation is (60,30,30).
Figure 2 illustrates the core of this three-player data game.

The nucleolus

The nucleolus is a solution concept introduced by Schmeidler (1969). Intuitively the idea is to
minimize the loss incurred by coalitions suffering the highest loss – the loss (or excess) of a
coalition being measured by the difference between the amount it pays and its cost. The
nucleolus is always defined and belongs to the core if nonempty. It defines a sharing rule
which satisfies symmetry and dummy but not additivity.20

In the examples 1 and 2, the compensations derived from the nucleolus are given respectively
by (5,5,5,–15) and (16,16,16,–48). They differ significantly from the Shapley compensations.
In particular, only the last player is compensated (this is a feature of the core) and all the other
players contribute the same amount. This is actually a feature of the nucleolus when applied
to data games.21

Proposition 2 The nucleolus of a data game (N,c) is the allocation ŷ where

1 1ˆ n n n
i

c k k
y

n n
 

  for all i = 1 … n–1

20 The nucleolus is a beautiful theoretical construct which however suffers from a number of limitations. The
lack of monotonicity is probably the most serious one: if the cost of a coalition decreases, leaving the cost of
all the other coalitions unchanged, it may be that some players pay more following that change.

21 The equality between the nucleolus and the center of gravity of the core is a consequence of the regularity of
the core. Indeed Maschler et al (1979) have shown that the nucleolus is the lexicographic center of the game.

(0,30,-30)(30,0,-30)

(0,0,0)

Shapley value

Nucleolus: (10,10,-20)

Figure 2
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Proof The excess function e(y,S) = y(S) – MiniS c i is defined all S N (S  and S N)
over the set of individually rational cost allocations y. For each imputation y, the 2n – 2
excesses are ordered in a decreasing order. The vectors obtained are then compared
lexicographically, retaining the allocations corresponding to the lowest sequence. Schmeidler
(1969) proved that this procedure defines a single allocation, called the nucleolus, which
belongs to the core in case it nonempty.22

The core being nonempty, we can use Proposition 1 to restrict the domain to the set

Y = {y Ñn | y(N) = 0, 0 yi ci, i = 1…n–1, – cn-1 yn 0}

In view of the definition of the excess function, we only need to look at the coalitions N/n and
N/i for i = 1…n–1:

e(y,N/n) = y(N/n) – cn-1
(13)

e(y,N/j) = y(N/j) for i = 1…n–1

Indeed, for any given y Y, no excess associated to any other coalition can be higher.
Minimizing over Y then occurs at the allocation y* such that the n excesses defined by (13)
are all equal.

As a consequence

yi = yn + cn-1 for i = 1…n–1

Hence yi = w = yn + cn-1 for i = 1…n–1 and yn = – (n–1)w. It then follows that w = cn-1/n. ü

Whatever are the cost components ci, the nucleolus only compensate the player with the
largest database while all the other players contribute an equal amount. Furthermore the
nucleolus is the no compensation allocation y = y0 if and only if cn-1 = 0, irrespectively of the
other cost parameters. The nucleolus is therefore clearly not an appropriate compensation
scheme except in the extreme case where only one player owns data. In that case all the other
player pay the same amount w = kn/n and the nucleolus coincide with the Shapley value.

In Example 3, the compensation derived from the nucleolus is (10,10,–20) as shown in figure
2, to be compared to the Shapley compensation (30,0,–30). The following example shows
how the two rules may produce compensations which differ considerably in magnitude.

Example 4 Consider the vector k = (0,234,240) and the associated vector c = (240,6,0). The
compensations derived from the nucleolus and the Shapley value are given by (2,2,-4) and
(80,-37,-43) respectively. In any case, the maximum compensation player n can expect in the
core is cn-1 = 6.

22 The nucleolus actually belongs to the least core which, for data games, coincide with the nucleolus.
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Concluding remarks

The cost sharing problem described in the present paper is highly stylized and its solution is
straightforward. More realistic situations where databases are not necessarily interlocking lead
to well defined cost games for which one can compute the Shapley compensation. These
games do not however share the simple structure characterizing data games defined by (3).

If more than one project is involved, the problem can be written as a sum of cost games, one
for each project, in which players who are not concerned are dummies. The Shapley value
being additive, the solution to the global problem is then simply the sum of the Shapley
values applied to the individual data games.

In an actual cost sharing problem, like the one faced by the European chemical industry, there
must be an agreement on the compensation formula and on the value of the costs parameters.
The fact that the compensation derived from the Shapley value may involve cross
subsidization should not be a reason to dismiss it as a fair compensation mechanism. Indeed
we have seen that core compensations are hardly acceptable because either they imply no
compensation at all or only the last player is compensated.

Reaching a consensus on the cost parameters is clearly the most difficult part in particular
because, under the Shapley value, what a player pays decreases with his or her cost parameter
k, giving players an incentive to overvalue their cost parameter. One should however keep in
mind that these cost parameters measure the present cost of reproducing the data and not the
actual cost that has been sunk in the past.
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