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Abstract 

We propose a new dynamic model for volatility and dependence in high dimensions, that allows for departures 
from the normal distribution, both in the marginals and in the dependence. The dependence is modeled with a 
dynamic canonical vine copula, which can be decomposed into a cascade of bivariate conditional copulas. Due 
to this decomposition, the model does not suffer from the curse of dimensionality. The canonical vine 
autoregressive (CAVA) captures asymmetries in the dependence structure. The model is applied to 95 S&P500 
stocks. For the marginal distributions, we use non-Gaussian GARCH models, that are designed to capture 
skewness and kurtosis. By conditioning on the market index and on sector indexes, the dependence structure is 
much simplified and the model can be considered as a non-linear version of the CAPM or of a market model 
with sector effects. The model is shown to deliver good forecasts of Value-at-Risk. 
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1 Introduction

Taking account of conditional volatilities and dependence is key for solving many financial
problems, including optimal portfolios and risk management. A large literature has been
devoted to univariate volatility modelling, following Engle (1982). In recent years, attention
has shifted to the joint study of large cross-sections of asset returns. The first multivariate
models that were proposed in the literature were the Constant Conditional Correlation
(CCC) model of Bollerslev (1990), the VEC model of Bollerslev, Engle & Wooldridge
(1988) and the BEKK model of Engle & Kroner (1995). For a recent survey of multivariate
GARCH models, see Bauwens, Laurent & Rombouts (2006) and Silvennoinen & Tersvirta
(2007). Recently, Engle (2002) introduced the Dynamic Conditional Correlation (DCC)
model, which has become the benchmark for multivariate volatility models. The approach
consists first in using a set of univariate GARCH models for each one of the n assets and
then to model the n(n − 1)/2 pairs of correlations jointly. These approaches work for
moderately sized problems (up to 30 stocks in Cappiello, Engle & Sheppard (2006), who
propose and estimate asymmetric DCC models for thirty stock and bond indexes). Another
strand of the literature uses copulas in order to bring more flexibility to the modeling
of dependence. For instance Patton (2006a) introduces bivariate models of time-varying
copulas that allow for departures from normality and symmetry in the dependence, while
Jondeau & Rockinger (2006) work with symmetric time-varying copulas for four stock
indexes. Lee & Long (2009) use copulas to model non-linear dependence in the innovations
of a DCC model for trivariate data, but they mention how to their approach could be
extended to higher dimension. One remaining challenge in multivariate GARCH models
is to come up with flexible distributions and models that are also feasible for the joint
returns of large sets of assets. Andersen, Bollerslev, Christoffersen & Diebold (2006) study
volatility and correlation models in the context of risk management and note that “the
viability of [copula] methods in very high-dimensional systems remains to be established”
(p. 533).
In this paper we introduce the canonical vine autoregressive (CAVA) model, a dynamic
model of dependence based on canonical vine copulas, which we demonstrate to be suit-
able for large cross-sections of assets (more than 30 assets) with time-varying volatilities
and possibly non-Gaussian marginals. The CAVA model is not subject to size limitation,
because it does not involve simultaneous estimation over the whole cross-section of assets.
Our contribution is threefold. First, to the best of our knowledge, the CAVA is the only
model that can be used for high dimensions, while allowing for departures from normality.
Second, the model does not suffer from the curse of dimensionality, nor from an incidental
parameter problem, inherent to the method of covariance targeting, used for multivariate
GARCH models, see Engle, Shephard & Sheppard (2008). Moreover, there is no need to
reestimate the model when more assets are taken into consideration. Third, the model can
take advantage of an existing factor structure in the cross-section of stock returns in order
to capture dependence in a parsimonious way. We now turn to a more detailed discussion
of each of these points.

A recent literature tackles the problem of multivariate GARCH models for very large
cross-sections of assets. Palandri (2009) estimates dynamic conditional correlations sequen-
tially for a cross-section of 69 NASDAQ stocks. Engle & Kelly (2008), with the Dynamic
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Equicorrelation (DECO) model, estimate 500 dynamic correlations under the restriction
that they are equal across assets or groups of assets. Engle (2009) proposes the MacGyver
estimation method which pools the autoregressive DCC parameter estimates from bivari-
ate DCC models by taking their median value. Engle et al. (2008) propose an alternative
estimation method for the DCC, based on selections of pairwise models, which is fast and
leads to consistent estimates of the DCC parameters. While it is well-known that finan-
cial returns exhibit significant departures from normality1 like leptokurtosis, skewness and
asymmetric dependence,2 all these models are based on conditionally Gaussian distribu-
tions. A separate literature tries to extend multivariate volatility models to non-Gaussian
situations. Pesaran & Pesaran (2007) use a multivariate Student t distribution for returns,
that was introduced earlier by Harvey, Ruiz & Shephard (1992). Bauwens & Laurent (2005)
propose an asymmetric Student t distribution and apply it to the innovations of a DCC
model for three exchange rates. Menćıa & Sentana (2003) use the generalized hyperbolic
distribution for five NASDAQ sectorial indexes. These distributions introduce additional
parameters and cannot readily be used in large dimensions. To the best of our knowledge,
the CAVA model is the first one that allows realistic modelling of the empirical features of
the joint distribution of returns for large cross-sections of assets. Our modeling strategy
allows for a great deal of flexibility in the conditional distribution as well as the dynamics.
In particular we are not restricted to Gaussian GARCH models and we can accommodate
fat tails and asymmetry in the marginal distributions. Moreover time-varying canonical
vine copulas allow for departures from a Gaussian dependence structure, like asymmetric
dependence and tail dependence.

Most existing models of volatility and correlation suffer in one way or another from
the curse of dimensionality. This means that when these models are applied to a large
cross-section of assets, the number of parameters that need to be estimated jointly becomes
prohibitively large, rendering estimation impossible. Another problem with multivariate
GARCH models is the need to ensure that the variance covariance matrix of returns is
always positive semidefinite. The DCC avoids this problem, but still suffers from the fact
that an n-dimensional variance covariance matrix needs to be inverted for each observation
in the evaluation of the likelihood. Moreover, models like the BEKK and the DCC must
be based on targeting in order to be estimable in large dimensions (n > 30). In the case
of the DCC this means that one needs an estimate of the variance covariance matrix of
the standardized residuals of the univariate GARCH models and that the DCC parameters
are estimated conditionally on these n(n − 1)/2 parameters. Engle et al. (2008) show
that, due to the incidental parameter problem, this leads to strong downward biases in
estimates of the autoregressive parameters of the DCC when the number n of assets under
consideration gets very large. The CAVA model does not suffer from these problems. The
basic idea underlying our model is that of conditioning. This is the building principle for
canonical vine copulas. Following Sklar (1959), we decompose the joint distribution of all
returns into the product of the marginals and the canonical vine copula, which captures all

1Richardson & Smith (1993) find that stock returns and their idiosyncratic risk, as measured by the
residuals from the Capital Asset Pricing Model (CAPM) exhibit significant departures from normality, both
in the marginal and in the dependence structure.

2For evidence on asymmetry, see Longin & Solnik (1995), Longin & Solnik (2001), Ang & Chen (2002),
Ang & Bekaert (2002), Das & Uppal (2004) and Patton (2004), amongst others.
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the dependence between the returns. Canonical vine copulas were developed by Bedford
& Cooke (2002) and introduced into financial modelling by Aas, Czado, Frigessi & Bakken
(2009). Chollete, Heinen & Valdesogo (2009) use canonical vines in a regime-switching
framework and show that they are capable of capturing the asymmetric dependence that is
present in international financial returns. Canonical vines are multivariate copulas obtained
as a product of iteratively conditioned bivariate copulas. Therefore using as building blocks
bivariate copulas, one can construct a very flexible multivariate canonical vine copula. The
CAVA model consists in making each one of these bivariate copulas potentially time-varying.
We propose an autoregressive model of the copula parameter that can be applied to any
copula in the same way, which facilitates comparison of the time variation across copulas.
This adds a lot of flexibility, as the dynamics is not constrained to be identical across pairs
of assets, contrary to the DCC model. Moreover, since the model is formulated in terms of
bivariate dependence models, there is no need to estimate all the parameters simultaneously.
The decomposition of the joint distribution into the product of the marginals and a product
of iteratively conditioned bivariate copulas opens the way for a stepwise estimation method
that results in a series of low-dimensional optimizations for bivariate dynamic conditional
copulas as in Patton (2006b). This means that while the estimation effort doubles if the
cross-sectional dimension doubles, the complexity remains the same and the estimation
just takes twice as long, since we have to carry out twice as many elementary estimations.
Thus it suffers neither from the curse of dimensionality nor from the incidental parameter
problem, since the estimation is stepwise and conditional; and it does not require any
multivariate non-linear constraint, like positive definiteness, since it is constructed on the
basis of a well-defined multivariate distribution.

Finally, the CAVA model is designed to take advantage of an existing factor structure
in the cross-section of stock returns in order to capture dependence in a parsimonious
way. In its full generality, a canonical vine copula among n variables comprises n(n− 1)/2
bivariate copulas. The CAVA model concentrates attention on the parts of the distribution
which are most relevant from a financial point of view, namely the bivariate dependence
models of each stock with the market. In building our model we add to the cross-section
of stocks the market return and sectorial indexes. We show that once the stock returns
are conditioned on the market and the sector returns, most of the dependence has been
captured adequately. Our strategy consists in carefully modeling the dependence between
each individual stock and the market return as well as the individual stock return and
its sector return, conditioned on the market. Thus, in this version, the CAVA model can
be viewed as a non-linear and non-Gaussian extension of the Capital Asset Pricing Model
(CAPM) model with sectorial effects.

The paper proceeds as follows. Section 2 presents the Canonical Vine autoregressive
(CAVA) model. Section 3 presents the stepwise estimation method. Section 4 deals with
the model specification. Section 5 presents the empirical results for 95 weekly S&P500
stock returns as well as the results of an evaluation of VaR. Section 6 concludes.

2 The Canonical Vine Autoregressive Model

In this section, we introduce the Canonical Vine Autoregressive model (CAVA). We first
provide a brief account of copula theory and canonical vine copulas, which we use to
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describe the dependence. Then we show how we introduce dynamics in the model. Finally
we explain how we adapt a canonical vine to obtain a very flexible factor model for the
cross-section of returns, which can be viewed as a time varying and non-linear extension of
the Capital Asset Pricing Model (CAPM).

2.1 Canonical Vine Copula

Traditionally in finance, the question of the dependence between returns has been addressed
using Pearson’s correlation. This is due in part to the central role of the normal distribution
in statistics and of the CAPM in finance. The CAPM assumes multivariate normality of
returns and measures dependence with correlation. A limitation of Pearson’s correlation
is that it is implicitly based on the assumption of normality, or more precisely it is only a
natural measure of dependence in the elliptical family of distributions. The most prominent
members of this family are the multivariate Gaussian and Student t distributions. Another
limitation of Pearson correlation is that it only measures linear dependence and therefore
misses non-linear relations between variables.3

In empirical finance, there is a vast body of literature suggesting that financial returns
are not normally distributed. Thus, financial returns might display more intricate types of
dependence than what can be captured by the correlation coefficient. One way of accounting
for these more flexible types of dependence is through the use of copulas. Copulas are
a very flexible tool to model patterns of dependence between variables separately from
their marginal distributions, and may be used to model the observed dependence between
financial returns.4 Since we are interested in modeling financial returns, in the remainder we
will use a variety of GARCH models with Gaussian, Student and skewed Student t marginal
distributions. These models provide the necessary flexibility to capture the main features
of returns distributions like heteroscedasticity, leverage, asymmetry and leptokurtosis.

While there exist many bivariate families of copulas, the choice is much more limited
for multivariate copulas. Archimedean copulas can be generalized to the multivariate case,
but they imply the strong restrictions that the dependence is the same across all pairs of
variables. Only the Gaussian and Student t copulas offer the possibility of having differences
in the dependence between pairs of variables. Unfortunately the Gaussian copula cannot
account for tail dependence, while the Student t copula restricts upper and lower tail
dependence to be equal. Actual returns, on the other hand, tend to exhibit more lower
than upper tail dependence, which corresponds to the idea that different stocks are more
likely to crash together, than to thrive together.

We now describe the family of copulas that we use in this paper. Bedford & Cooke
(2002) introduce canonical vine copulas and Aas et al. (2009) and Berg & Aas (2007), whose
presentation we follow here, are the first to use them in a financial application. These very
flexible multivariate copulas are obtained by a hierarchical construction. The main idea is
that a flexible multivariate copula can be decomposed into a cascade of bivariate copulas.

3For instance Embrechts, McNeil & Straumann (2002) demonstrate how Pearson correlation can fail to
capture dependence adequately.

4Copula theory goes back to the work of Sklar (1959). A more detailed account of copulas can be found
in Joe (1997), Nelsen (1999) and in Cherubini, Luciano & Vecchiato (2004) who provide a more finance-
oriented presentation. For work on copulas as a modeling tool for returns, see Embrechts, Klüppelberg &
Mikosch (1997), and Dias & Embrechts (2004).
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It is well known that the joint probability density function of n variables y1, . . . , yn can be
decomposed without loss of generality by iterative conditioning, as follows:

f(y1, . . . , yn) = f(y1) · f(y2|y1) · f(y3|y1, y2) . . . f(yn|y1, . . . , yn−1).

Each one of the factors in this product can be decomposed further using conditional copulas.
For instance the first conditional density can be decomposed as the copula function c12

linking y1 and y2, multiplied by the density of y2:

f(y2|y1) = c12(F1(y1), F2(y2))f2(y2),

where Fi(.) denotes the cdf of yi. In the same way, one (among several) possible decompo-
sition of the second conditional density is:

f(y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1))f(y3|y1),

where c23|1 denotes the conditional copula of y2 and y3, given y1. Further decomposing
f(y3|y1) leads to:

f(y3|y1, y2) = c23|1(F2|1(y2|y1), F3|1(y3|y1))c13(F1(y1), F3(y3))f3(y3).

Finally, combining the last expressions, one obtains the joint density of the first three
variables in the system as a function of marginal densities and bivariate conditional copulas:

f(y1, y2, y3) = f1(y1)f2(y2)f3(y3) · c12(F1(y1), F2(y2)) · c13(F1(y1), F3(y3))·
c23|1(F2|1(y2|y1), F3|1(y3|y1)).

(1)

The copula density can be written as:

c (F1(y1), F2(y2), F2(y3)) = c12(F1(y1), F2(y2))c13(F1(y1), F3(y3))c23|1(F2|1(y2|y1), F3|1(y3|y1)).

Conditional distribution functions are computed using a formula of Joe (1996):

F (y|v) =
∂Cy,vj |v−j

(F (y|v−j), F (vj |v−j)

∂F (vj |v−j)
,

where v−j denotes the vector v excluding the component vj. This decomposition leads to
a canonical vine, in which one variable plays a pivotal role, in our example, y1. In the
first stage of the copula we model the bivariate copulas of y1 with all other variables in the
system. Then we condition on y1, and consider all bivariate conditional copulas of y2 with
all other variables in the system etc. For an n-dimensional set of variables, this leads to
the n-dimensional canonical vine copula density:

c (F1(y1), . . . , Fn(yn)) =
n−1
∏

j=1

n−j
∏

i=1

cj,j+i|1,...,j−1(F (yj |y1, . . . , yj−1), F (yj+i|y1, . . . , yj−1)),

where the conditioning set is empty if j = 1.
The advantages of a canonical vine copula are immediately apparent: whereas there are
only very few flexible multivariate copulas, there exists a wide menu of bivariate copulas.
When specifying a canonical vine copula, we can therefore choose each one of the building
blocks involved from a very long list, which allows for a very large number of possible
copulas. In a sense, this reverses the traditional problem of not having enough multivariate
copulas to having too many to choose from!
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2.2 Dynamic Dependence

In the previous section we define the canonical vine copula that we use in this paper.
Combined with GARCH models for the marginal distributions of returns, a canonical vine
provides a very flexible tool to model dependence. In recent years, attention of financial
econometricians has turned to models of time-varying correlations. Longin & Solnik (1995)
were amongst the first to document that correlations between asset returns are not constant
over time. Tse (2000) develops a test for constant correlations in a multivariate GARCH
model. Engle (2002) and Tse & Tsui (2002) introduce models that are designed to capture
time-varying correlations. One limitation of these models is that they are restricted to
the Gaussian distribution if one models a large number of returns. It is well-known that
financial returns are characterized by leptokurtosis, skewness and asymmetric dependence.
Some models have been suggested in the literature, that are designed to take these features
into account in multivariate GARCH models. Bauwens & Laurent (2005) introduce the
asymmetric Student t distribution and evaluate its performance in terms of value-at-risk
(VaR) on three exchange rates, while Menćıa & Sentana (2003) use the generalized hyper-
bolic distribution with five sectorial indexes of the NASDAQ. Unfortunately these models
are often difficult to estimate and therefore not easily applied to a large cross-section of
returns.
In this paper we propose to model dependence with a canonical vine copula and we let
all the bivariate conditional copulas that compose the canonical vine be potentially time
varying. This requires adding time variation to a number of different bivariate conditional
copulas. Several approaches have been put forth in the literature for modeling dependence
with time varying bivariate copulas. This line of research was started by Patton (2004),
Patton (2006a), who proposes autoregressive models of the copula parameter. A non-linear
function is used, that maps the real line into the domain of the parameter of the copula. In
the real line the conditional copula parameter is modeled as an ARMA(1,1) of an innovation
term. The fundamental question with all the dynamic copula models is the same: what
should the innovation term on the right hand side of the conditional dependence parameter
be? The inputs into the copula are a pair of uniform variables (u1,t, u2,t), that can be
mapped into the real line with the inverse CDF of the normal distribution: ǫt = (ǫ1,t, ǫ2,t),
where ǫi,t = Φ−1(ui,t). Since the original variables are uniform [0, 1], ǫi,t will be univariate
standard normals. Patton (2006a) uses the cross-product of past innovations computed over
ten periods for the Gaussian and Student t copulas, 1

10

∑10
i=1 ǫ1,t−iǫ2,t−i, while he uses the

absolute value of the difference between the uniforms for other copulas: 1
10

∑10
i=1 |u1,t−i −

u2,t−i|. Such a model has the disadvantage that the current value is a non-linear function of
lagged values of conditional dependence. Moreover, the dynamics is not easily comparable
across copulas. Of course in the Gaussian world, there are some well-known suggestions
in the literature: the DCC of Engle (2002), the model of Tse & Tsui (2002), used by
Jondeau & Rockinger (2003) for the Student t copula, and the SCC model of Palandri
(2009), who applies a linear ARMA to the Fisher transforms of conditional correlation and
of an exponentially smoothed version of the cross-product of past innovations.
We choose, instead, to specify the time variation in the same way for all bivariate copulas,
and base it on the DCC equations, as follows:

Qt = Ω(1 − α − β) + αǫt−1ǫ
′

t−1 + βQt−1, (2)
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where Ω is a symmetric 2 × 2 matrix, with ones on the diagonal, that can be interpreted
as the unconditional variance covariance matrix of ǫt, and α and β are the autoregressive
parameters satisfying the restrictions α > 0, β > 0, and α + β ≤ 1. We standardize Qt as
in the DCC:

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2. (3)

Now ρt = Rt[1, 2], the off-diagonal element of the matrix Rt, is guaranteed to be in the
range [−1, 1]. We then transform ρt into a Kendall’s tau:

τt = 2arcsin(ρt)/π. (4)

The relation between the Kendall’s tau and any copula with parameter θ is given by:5

τ = 4

∫

[0,1]2
C(u, v, θ)dC(u, v, θ) − 1. (5)

By inverting this relation, the Kendall’s tau can be mapped into the parameter of each one
of the copulas. This can be done in closed form for all the copulas we use, except for the
Frank copula.6 So at each period t, we transform τt, the Kendall’s tau corresponding to ρt

by Equation (4), into θt, the coefficient of each one of the copulas that we estimate. The
specification of the dynamics is summarized in Figure 1. Equation (4) is the well-known
relation between the copula parameter of the Gaussian and Kendall’s tau, see for instance
Joe (1997). This implies that for every copula that we estimate, the dynamic Kendall’s
tau is such that ρt can be interpreted as the parameter of the Gaussian copula that would
prevail, if the copula were indeed Gaussian. The dynamic Gaussian copula obtains if we
plug the parameter ρt into the density of the Gaussian copula. The same holds true for
the Student t copula, except that the inverse CDF of the Student t distribution with
the corresponding degrees of freedom replaces the inverse CDF of the Gaussian in the
calculation of ǫt. Equations (2), (3) and (4), imply that ρt, the parameter of the Gaussian
copula follows the dynamic equations of the DCC.7 Moreover, if the GARCH innovations
are Gaussian and we use the Gaussian copula we recover the model of Palandri (2009), but
with DCC dynamics.

There is a potential problem with the approach that we describe above. Some copulas
are restricted to have positive dependence, and in that case we replace qt, the off-diagonal
element of Qt by max(qt, 0). This is a somewhat ad hoc way to guarantee that the model
is well-defined in all situations. We do not view this as a problem, since, in general, we do
not end up selecting such models. In situations where the dependence is negative during
some periods, copulas that also allow for negative dependence fare much better, which
translates into higher values of the likelihood. It is important to realize that the non-linear
transformations from ρt to the copula parameters are part of the way in which we specify

5See for instance Embrechts et al. (2002).
6In the case of the Gumbel copula or its rotated version the transformation is θt = 1/(1 − τt), in the

case of the Clayton, the transformation is θt = 2/(1 − τt). For the Frank, the parameter obtains by solving
numerically for the solution of τt = 1− 4

θt
[1−D1(θt)], where Dk(x) is the Debye function, which is defined

for any positive integer k by Dk(x) = k
xk

R x

0
tk

exp(t)−1
dt.

7An alternative possibility is to use the Tse & Tsui (2002) approach.
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Qt = Ω(1 − α − β) + αǫt−1ǫ
′

t−1 + βQt−1

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2

ρt = Rt(1, 2)

τt

θt = sin(τπ/2) = ρt θt = 2τ/(1 − τt) θt = 1/(1 − τt)
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Figure 1: Dynamics of the copula parameter
This figure shows how we specify the dynamics in the copula parameters. First, the inputs into the copula

are a pair of uniform variables (u1,t, u2,t), that can be mapped into the real line with the inverse CDF of

the normal distribution: ǫt = (ǫ1,t, ǫ2,t), where ǫi,t = Φ−1(ui,t). For the case of the Student t copula we

use the inverse CDF of the Student t distribution with the corresponding degrees of freedom to calculate

ǫt. Then we calculate, Qt = Ω(1 − α − β) + αǫt−1ǫ
′

t−1 + βQt−1. We standardize Qt like in the DCC:

Rt = {diag(Qt)}
−1/2Qt{diag(Qt)}

−1/2. Now, the off-diagonal element of the matrix Rt, ρt is transformed

into a Kendall’s tau according to τt = 2arcsin(ρt)/π. Finally, we use the fact that there is one to one

relationship between Kendall’s tau at time t, τt, and the parameters of the copula at time t, θt, given by

τt = 4
R

[0,1]2
C(u, v, θt)dC(u, v, θt) − 1, to transform the corresponding Kendall’s tau, τt into the coefficient

of each one of the copulas that we estimate, θt.

the dynamics. We carry out estimation of the parameters of the model for each copula, but
for a given pair of returns, the estimated coefficients Ω, α and β, tend to be quite similar
across copulas. This is not surprising and is comparable to what happens to the parameters
of a GARCH estimated with different distributional assumptions.

2.3 The Dependence Structure: a Nonlinear CAPM

In the previous section we describe the canonical vine copula that we are using in this paper.
In a small dimensional case, one could simply use a full canonical vine and decompose the
joint distribution to the fullest level of generality. This is the strategy followed by Aas
et al. (2009) in a static non Gaussian case with five series, and by Palandri (2009) in a
time varying Gaussian model. This leads to estimating n(n − 1)/2 bivariate copulas for a
cross section of n stocks. In the empirical application of this paper, this means we would
have to estimate the parameters of (95)(94)/2 = 4465 bivariate copulas! Given the size of
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the problem at hand we prefer to follow an alternative strategy and devote more modeling
effort to those parts of the model that matter most.

Financial theory has devoted a lot of attention to the cross-section of asset returns, and
in particular to factor models. The most prominent model in that vein is the CAPM, which
implies that the cross section of returns can be explained by a single factor, the market
return. This suggests that the most relevant bivariate dependence models in the cross-
section of assets are between each asset and the market. The traditional CAPM assumes
joint normality of individual returns ri,t, of the market return rM,t and of the idiosyncratic
cross-sectionally and serially independent error terms εi,t. This implies the following linear
relation:

ri,t = βirM,t + εi,t.

There has been evidence that the factor loading βi varies over time, see amongst others
Ang & Chen (2007) and more recently Kristensen & Ang (2009). Therefore in the simplest
version of our model, we estimate potentially time-varying bivariate copula models for the
dependence between each asset and the market, and we consider that conditionally on this,
the returns can be characterized by a static Gaussian copula.
Our model goes beyond a certain number of limitations of the CAPM, like non-normality
and non-linear dependence, that financial economists have long been aware of. For instance
Richardson & Smith (1993) show that asset returns and residuals from CAPM exhibit
significant departures from normality. We explicitly allow for departures from the normal
distribution, both via more general marginal distributions and in the dependence structure
via the use of copulas.
In the context of CAPM, alternative measures of risk, like semivariance, which focuses on
the variability of returns on the down side was proposed by Hogan & Warren (1974), and
Bawa & Lindenberg (1977) propose a downside beta as a measure of risk. Ang, Chen & Xing
(2006) show that stocks with high downside risk, as measured by downside beta, tend to
have higher returns in a cross-section. Hong, Tu & Zhou (2007) propose a statistic, based on
exceedance correlation to test for asymmetric dependence. Ang & Chen (2002) use a regime-
switching model to document the existence of asymmetries in the correlation of individual
stocks and portfolios with the market. Correlations conditional on positive returns are
typically found to be lower than correlations conditional on negative returns. This non-
linear dependence between stocks and the market return is captured in our model with
asymmetric lower tail dependent copulas. In addition, whereas CAPM assumes that the
idiosyncratic error terms are independent, we model the remaining dependence conditionally
on the market with a Gaussian copula. In that sense our model can be viewed as an
extension of the CAPM to non Gaussian GARCH marginals with non-linear possibly time-
varying dependence captured by a copula.
We propose two versions of the model. The first model, which we call the market model
is a non-linear equivalent of a CAPM model, where each stock return has some potentially
non-linear, dynamic and asymmetric dependence with the market. In order to clarify the
structure of the model, we show the joint density implied by this model in the case of
four stock returns, taken from two different sectors, S1 and S2. Denote by rM , the market
return, rS1

1 and rS1
2 the returns of assets belonging to sector 1, and rS2

1 and rS2
2 the returns

of assets belonging to sector 2. The market model implies the following joint distribution
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for the four stocks and the market returns:

f(rM , rS1
1 , rS1

2 , rS2
1 , rS2

2 ) =

f(rM ) · f(rS1
1 ) · f(rS1

2 ) · f(rS2
1 ) · f(rS2

2 ) Marginals

·c
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F (rM ), F (rS1
1 )
)

· c
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(
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(6)
where c

M,r
Sj
i

is the copula between the market and the i-th stock belonging to sector j,

and c
r

S1
1 ,r

S1
2 ,r

S2
1 ,r

S2
2 |rM

is the multivariate Gaussian copula for the dependence between the

stocks conditioning on the market.
A generalization of this model consists in enriching the factor structure with sector-specific
indexes. Denote by rS1 and rS2 the returns of sector 1 and sector 2 respectively. In this
configuration, each stock is assumed to depend on the market and on its own sector return.
Again, the dependence considered here is potentially non-linear or asymmetric and is more
general than under a standard CAPM. With respect to a full canonical vine structure, we
assume that conditionally on the market, the stocks are independent of sector returns other
than their own. Moreover we assume that conditionally on the market, the sectorial returns
are independent. This second model, which we call the market sector model implies the
following decomposition of the joint density of stock, sector and market returns:

f(rM , rS1 , rS2 , r
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2 , rS2
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2 ) =
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· c
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· c
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(7)
where cM,rSj

is the copula between the market and the sector j, c
Sj ,r

Sj
i |rM

is the cop-

ula between sector j and stock i of the same sector conditioning on the market and
c
r

S1
1 ,r

S1
2 ,r

S2
1 ,r

S2
2 |rM ,rS1

,rS2

is the multivariate Gaussian copula that models the dependence

between the stocks conditioning on the market and sectors.
At this point it is important to notice that the market model and the market sector model
have some common parts, namely the marginals for the market and the stocks, as well as
the bivariate copulas between the market and the stocks. Another possibility, that we leave
for further work, is to explore the three classical Fama & French (1992) factors instead of
the market sector structure.
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3 Stepwise Estimation

In this section we develop the stepwise procedure that we use to estimate the market
sector model. We use a 4-step procedure that is a straightforward extension of a two-step
procedure that has been studied in a time series copula context by Patton (2006a), but that
also underlies the estimation of the DCC model as explained in Engle & Sheppard (2001).
Both cases are applications of general theorems of Newey & McFadden (1994). We assume
that the marginal distribution functions and the joint distribution function are continuous
and sufficiently smooth for all required derivatives to exists.
Equation (7) shows that we can decompose the joint density function into four parts, one
for the marginals, one for the dependence with the market, one that reflects the dependence
structure of the stocks with the own sector conditioning on the market, and finally, one for
the multivariate Gaussian copula that we use to model the dependence between the stocks
conditioning on the market and the sectors. This decomposition also applies to the log-
likelihood function, and this is important, since it opens the way for a stepwise estimation
procedure. Without loss of generality we assume that there are J sectors and in each sector

there are I stocks. We denote by rSj the return of sector j and r
Sj

i refers to the return of the

i-th stock belonging to sector j. Define RM = {rM,t}T
t=1, RSj = {rSj ,t}T

t=1, R
Sj

i = {rSj

i,t}T
t=1

and R = (RM , RS1 , RS2 , · · · , RSJ
, RS1

1 , · · · , RSJ
I ). The log-likelihood L(R,Ω) is obtained

as a sum of the log-likelihoods of the four components:

L(R,Ω) = L1(R;α) + L2(R;α,ΘM ) + L3(R;α,ΘM ,ΘS) + L4(R;α,ΘM ,ΘS ,ΘG),

L1(R, α) =
∑T

t=1

(

log(f(rM,t;αM )) +
∑J

j=1 log(f(rSj ,t;αSj ))
)

+
∑T

t=1

∑J
j=1

∑I
i=1 log(f(r

Sj

i,t ;α
Sj

i )),

L2(R, α,ΘM ) =
∑T

t=1

∑J
j=1 log(cM,rSj

(F (rM,t;αM ), F (rSj ,t;αSj ); θM,Sj))

+
∑T

t=1

∑J
j=1

∑I
i=1 log(c

M,r
Sj
i

(F (rM,t;αM ), F (r
Sj

i,t ;α
Sj

i ); θ
Sj

M,i)),

L3(R, α,ΘM ,ΘS) =
∑T,J,I

t,j,i log(c
Sj ,r

Sj
i |rM

(F (rSj ,t|rM ;αM , αSj , θM,Sj), F (r
Sj

i,t |rM ;αM , α
Sj

i , θ
Sj

M,i); θSj ,i)),

L4(R;α,ΘM ,ΘS ,ΘG) =
∑T

t=1 log(cG|rM ,rS1
,··· ,rSJ

(·; θG)),

where α = (αM , αS1 , · · · , αSJ
, αS1

1 , · · · , αSJ
I ), are the parameters of the marginals models,

ΘM = (θM,S1, · · · , θM,SJ
, θS1

M,1, · · · , θSJ
M,I) are the parameters of the bivariate copulas for the

dependence with the market, while ΘS = (θS1,1, θS1,2, · · · , θSJ ,I) are the parameters of the
dependence structure of the stocks with the own sector, conditioning on the market, and
ΘG is the parameter of the multivariate Gaussian copula of the stocks conditional on the
market and the sectors. Finally Ω = (α,ΘM ,ΘS , θG), is the collection of all parameters.
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The method proceeds sequentially, as follows:

α̂ = argmax
α

L1(R;α),

Θ̂M = argmax
Θ0

L2(R; α̂,ΘM ),

Θ̂S = argmax
ΘS

L3(R; α̂, Θ̂M ,ΘS),

Θ̂G = argmax
ΘG

L4(R; α̂, Θ̂M , Θ̂S ,ΘG).

At each step, estimation is carried out conditionally on the parameters estimated in ear-
lier steps. The central part of the model is the dependence with the market, and those
parameters are only conditioned on the marginals, like the parameters of the DCC. The
most conditioning that can occur is in the last step, when estimating the Gaussian copula.
This contrasts with the method of Palandri (2009), where the conditioning is done with
respect to an ever increasing set of parameters, with as many steps as the dimension of
the problem. His SCC model is essentially a full decomposition of the canonical vine under
normality. Our method is subject to much less snowballing of estimation error, since we
condition on at most three previous steps. The market model without sectors obtains by
leaving out the third step in the procedure. This estimation is straightforward and can
itself be further separated. When we estimate the parameters of the marginals, α, this can
be done individually:

α̂M = argmax
αM

L1(R;αM ),

α̂S1 = argmax
αSj

L1(R;αSj ), for j = 1, · · · , J

α̂
Sj

i = argmax

α
Sj
i

L1(R;α
Sj

i ), for j = 1, · · · , J and i = 1, · · · , I.

We then collect all the estimates into a single vector α̂ = (α̂M , α̂S1 , · · · , α̂SJ
, · · · , α̂SJ

I ). The
same holds when we estimate the dependence structure with the market:

θ̂M,Sj = argmax
θM,Sj

L2(R; α̂, θM,Sj), for j = 1, · · · , J

θ̂
Sj

M,i = argmax

θ
Sj
M,i

L2(R; α̂, θ
Sj

M,i), for j = 1, · · · , J and i = 1, · · · , I.

We collect the estimated parameters into a vector: Θ̂M = (θ̂M,S1, θ̂M,S2, · · · , θ̂SJ
M,I). Given

the previous estimates, we can estimate the parameters of the dependence of the stocks
with the own sector, as follows:

θ̂Sj,i = argmax
θSj,i

L3(R; α̂, Θ̂0, θSj,i), for j = 1, · · · , J and i = 1, · · · , I.

This means that the whole model can be decomposed into a series of estimations for the
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marginals and for iteratively conditioned bivariate copulas.8 Each one of these bivariate
copula estimations is easy to carry out. This brings about important advantages of the
model and of its estimation procedure. First, the complexity of the model does not depend
on its size, contrarily to what happens with most MGARCH models. Second, the estimation
effort is linear in the number of stocks. Finally, the model does not need to be reestimated
as more stocks are added.

4 Model Specification

Our framework allows for a great deal of flexibility in the specification of the model. The
building blocks of the model are marginal distributions for every asset we consider and
bivariate copulas for the dependence of each asset with the market in the case of the market
model, and of each asset with its sector-specific return, conditionally on the market in the
case of the market sector version of the model. We choose each one of these blocks from
a list of possible models. Although the models that are not nested, we use the Bayesian
Information Criterion (BIC) which includes a penalty term for the number of parameters
and will lead us to choose more parsimonious models.9 In the remainder of this section we
first list the GARCH models that we consider, followed by the bivariate copulas that we use
as building blocks for the canonical vine copula. The exact specifications of the GARCH
models and bivariate copulas appear in Sections 7.1 and 7.2, respectively.

4.1 GARCH Models for the Marginal Distributions

For the marginal models we follow Cappiello et al. (2006) in selecting the best GARCH
model from a list of possible models using Bayesian Information Criterion. We estimate
models with Gaussian innovations, but also with the Student-t, as well as the skewed Stu-
dent t distribution of Hansen (1994). The volatility specifications we consider are: GARCH
[Bollerslev (1986)], GJR-GARCH [Glosten, Jagannathan & Runkle (1993)], ZARCH [Za-
koian (1994)], AVGARCH [Taylor (1986)], EGARCH [Nelson (1990) Nelson (1991)], APARCH
[Ding, Granger & Engle (1993)] and NARCH [Higgins & Bera (1992)].

4.2 Bivariate Conditional Copulas

The conditional bivariate copulas are the building blocks we use in order to construct a large
dimensional canonical vine copula. The bivariate copulas that we consider are: Gaussian,
Student t, Frank, Gumbel, rotated Gumbel and Clayton. We also consider some mixture
copulas: mixture of Gaussians, Gaussian and rotated Gumbel, Gaussian and Frank, Gumbel
and rotated Gumbel and Frank and rotated Gumbel.

8This further reduces the number of parameters that one is conditioning on at each step. For instance,
the copula parameter between the market and a stock is estimated conditionally on only the marginal of
the market and of that stock.

9Possible alternatives are the Vuong (1989) likelihood ratio test or the Clarke (2007) distribution-free
test for non-nested hypotheses. However these tests are designed for pairwise comparison of models, and
they can lead to rejecting both models or not ejecting any. This makes them difficult to use in our context,
since we are looking to order alternative models and in particular to use a procedure that always delivers
an unambiguously preferred model.
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ENERGY 14.01 INDUSTRIAL 11.74 HEALTH 11.25 FINANCIAL 17.34 UTILITIES 3.57
XOM 27.84 GE 22.73 JNJ 13.78 BAC 8.14 EXC 12.91
CVX 11.62 UTX 5.06 PFE 9.94 JPM 7.65 SO 6.36
COP 8.01 BA 4.54 MRK 6.05 C 6.29 FPL 6.17
SLB 7.17 MMM 3.80 ABT 5.85 AIG 5.70 D 5.84
OXY 4.24 CAT 3.58 WYE 4.41 WFC 4.81 DUK 5.38
ESV 0.55 PLL 0.30 MYL 0.29 HBAN 0.17 TEG 0.83
BJS 0.49 AW 0.29 MIL 0.28 SOV 0.13 TE 0.82
SUN 0.31 R 0.29 PKI 0.23 MBI 0.11 PNW 0.78
RDC 0.25 CTAS 0.28 WPI 0.22 FHN 0.10 CMS 0.77
TSO 0.20 RHI 0.27 THC 0.21 MTG 0.07 GAS 0.40

MATERIALS 3.61 CONS DISCR 8.60 CONS STAP 10.33 IT 16.14 TELECOM 3.41
DD 10.00 MCD 6.56 PG 16.07 MSFT 11.93 T 56.62
DOW 8.61 CMCSA 6.20 WMT 10.43 IBM 8.53 VZ 26.48
AA 6.93 DIS 5.98 KO 9.13 AAPL 8.23 S 6.21
PX 6.58 TWX 5.49 PEP 8.61 CSCO 7.87 CTL 0.90
NUE 5.10 HD 4.65 CVS 4.66 INTC 6.85 CZN 0.82
SEE 0.90 KBH 0.18 BF.B 0.47 TLAB 0.11
IFF 0.77 LIZ 0.17 TSN 0.38 NOVL 0.11
ASH 0.70 JNY 0.14 WFMI 0.37 CPWR 0.11
BMS 0.60 MDP 0.12 MKC 0.37 QLGC 0.10
HPC 0.50 DDS 0.11 STZ 0.29 UIS 0.07

Table 1: Sample Composition and Market Capitalization shares
This table lists the S&P500 stocks that we use in the sample. The sample contains 10 stocks from each of

the 10 sectorial indexes that compose the S&P500, except for the Telecom sector where only 5 stocks were

present during the whole sample period. For each sector we pick the 5 largest and the 5 smallest stocks in

the sector, based on market capitalization shares of June 2008.

For each of these copulas we estimate both a static and a dynamic version, except for the
mixture copulas where we only consider the static case, and for each pair of returns we use
the BIC to choose the best of all static and dynamic copulas.

5 Empirical Results

5.1 Data

We use a data set of returns of 95 stocks from the S&P500 downloaded from Datastream.
The stocks are chosen from 10 different sectors, for which Standard and Poor reports
returns. The sector indexes are Energy, Industrials, Health, Financials, Utilities, Materials,

Consumer Discretionary, Consumer Staples, Information Technology and Telecom. For
each sector we pick the 5 largest and the 5 smallest stocks in terms of market capitalization
data of June 2008, except for the Telecom sector, where there are only the 5 stocks that
are present during all of our sample period. We use weekly data from January 1, 1995 to
June 30, 2008, which gives us 703 returns. In addition to the stocks we use the S&P500
and the 10 sectorial stock indexes. Table 1 lists the tickers of the stocks we include as well
as their market capitalization. For sectors the market capitalization is given as a fraction
of the S&P500, while the individual stocks are quoted as a fraction of their sector.
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GARCH GJR ZARCH AVGARCH EGARCH APARCH/NARCH Total

Gaussian 4 1 0 2 1 0 8
Student t 33 5 12 22 12 0 84
Skew-Student t 3 4 2 2 3 0 14
Total 40 10 14 26 16 0 106

Table 2: Summary results of the GARCH models selected by BIC criterion
This table summarizes the results of the marginal models. It breaks up the results into type of GARCH
and distribution selected by the BIC criterion.

5.2 Estimation Results

As in the DCC model, the first stage of the estimation consists in selecting the best marginal
model for each of the 106 return series: the S&P500 index return, the 10 sectorial index
returns and the 95 stocks. A summary of the result is shown in Table 2, and the detailed
result is available in the Supplemental material, in Table 10. The main difference compared
to the DCC model is that we are no longer bound to the Gaussian distribution and we can
allow for fatter tails with the Student t and additionally for skewness with the skewed
Student t. We use a autoregressive moving average model with up to two lags for the
conditional mean and select using the BIC criterion. Only 17 out of 106 series exhibit some
dynamics, with AR(1) models in all cases but one, where we use an AR(2), and they are
mostly sectorial index returns or big stocks. Turning to the GARCH models, we observe
that the innovations are distributed as Student-t in 84 cases, where the degrees of freedom
go from a minimum of 3.79 for SEE to a maximum of 12.66 for SLB. For the remaining
cases the innovations are distributed as skewed Student t for 14 cases and we select a
Gaussian innovation in only 8 cases.

The skewness parameters we estimate are negative in all cases except one, which implies
that the distributions are negatively skewed, a well-known stylized fact of stock returns.
Leaving out MSFT , the values of the skewness parameter range from −0.29 for the S&P500
index return to −0.12 for WPI. This asymmetry can be due to aggregation10 and, not
surprisingly, it is found mostly in the indexes: the S&P500 and the Energy, Industrials,
Health and Financials indexes. These results show the limits of using the Gaussian as
marginal distribution for the returns. Clearly, the Student t is preferred, but it does not
solve all the problems, since for some of the more aggregate series, taking skewness into
account is also important. As far as the dynamics of the conditional variance in concerned,
we observe that the standard GARCH model is selected in 40 cases, followed by the AV-
GARCH model in 26 cases. In 38% cases the selected GARCH model presents some sort
of leverage effect: 16 cases for the EGARCH, 14 for ZARCH and 10 for the GJR-GARCH
specification. APARCH and NARCH are never selected, but some models we select are
special cases of these more general specification. Given that we use the BIC criterion, that
is quite conservative, this result is not surprising, as we tend to select parsimonious models.
Another remarkable feature of the results is that there is clustering in the leverage effect:
most of the stocks in the Industrials and Financials sectors present a leverage effect, while

10Let X and Y be two random variables with symmetric marginals but with an asymmetric underlying
copula. Then the density function of X + Y is asymmetric.
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MARKET ENE. IND. HEAL. FIN. UTIL. MAT. C. DISCR C. STAP IT TEL. Total
Independence 0 0 0 2 0 0 0 0 2 0 0 4
Gaussian 13 3 2 3 5 5 2 4 0 2 1 40
Student-t 6 0 1 1 3 2 1 1 3 1 1 20
Frank 22 2 3 1 0 0 3 5 1 4 1 42
Gumbel 0 0 2 2 0 0 0 0 2 0 0 6
Rgumbel 14 0 1 0 0 0 0 0 0 0 0 15
Clayton 1 0 0 0 0 0 0 0 0 0 1 2

Mixture Copulas
Gaussian-Gaussian 0 0 0 0 0 0 0 0 0 0 0 0
Gaussian-Rgumbel 0 0 0 0 0 0 0 0 0 0 0 0
Gumbel-Rgumbel 0 1 0 1 0 0 0 0 0 0 0 2
Frank-Rgumbel 5 0 0 0 0 0 0 0 0 0 0 5
Rgumbel-Rgumbel 0 0 0 0 0 0 0 0 0 0 0 0
Gaussin-Frank 1 0 0 0 1 1 0 0 0 1 0 4

Time varying Copulas
Gaussian tv 18 1 1 0 0 0 3 0 2 2 0 27
Student-t tv 5 1 0 0 1 2 0 0 0 0 1 10
Frank tv 9 2 0 0 0 0 1 0 0 0 0 12
Gumbel tv 0 0 0 0 0 0 0 0 0 0 0 0
Rgumbel tv 11 0 0 0 0 0 0 0 0 0 0 11
Clayton tv 0 0 0 0 0 0 0 0 0 0 0 0
% Time Varying 41 40 10 0 10 20 40 0 20 20 20 30
% Asymetry 30 10 30 30 0 0 0 0 20 0 20 20

Table 3: Summary results of the bivariate copulas selected by BIC criterion

only two stocks in the Utilities sector have leverage, and almost none of the stocks in the
Health and Utilities sectors present a significant leverage effect.

Having selected the marginal models for all series, we move to selecting all the bivariate
copulas that we use as components of the canonical vine copula. Tables 3 and 4 show the
results of the dependence structure of the data. The left panel of Table 4 contains the
copulas for the dependence of each sector or stock with the S&P500 index return, while
the right panel contains the copulas that capture the dependence between every stock and
its sectorial return, conditional on the S&P500 index return. The Gaussian copula is not
always selected, which is an indication that the Gaussian dependence which is underlying
the traditional DCC is not appropriate. The same applies with the Student t copula. A
multivariate Student t copula implies that all the dependence models with the market are
Student t copulas with the same degrees of freedom for each stock or sectorial index. This
is clearly not the case, again indicating that the results do not support the DCC with a
multivariate Student t distribution. Moreover, in 20% of all cases the copula that we select
presents some kind of asymmetry. Most of this asymmetry can be found in the dependence
of stocks and sectors with the S&P500 index return. In 30% of the cases, the copulas
for the dependence of the individual stocks or sectors with the market are asymmetric as
can be seen in the left panel of Table 4, and the proportion is much lower in the case of
sectorial dependence, conditional on the market. Not all sectors present the same kind
of asymmetry in the dependence, though, and we can break up sectors into roughly three
groups depending on the number of asymmetric copulas that we select for the stocks in
each sector. The low asymmetry group contains Financials (1/0)11, IT (0/0) and Telecom

(0/1), since there are almost no stocks in these sectors that present asymmetry. The second
group contain sectors with low to average asymmetry. This group contains sectors where
the percentage of asymmetric copulas is equal to or lower than 20%, and its members

11(x/y): x is the number of asymmetric copulas selected between the stocks of the specific sector and
the S&P500 index return. y is the number of asymmetric copulas in the case of sectorial dependence,
conditional on the market.
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Dependence with the market Dependence with the own sector given the market
Model τ/ω Dof τ Prob α β Model τ/ω Dof τ Prob α β

ENERGY RGumbel 0.31
XOM RGumbel 0.44 0.04 0.93 Gaussian 0.63
CVX Gaussian 0.27 Gumbel RGumbel 0.54 0.61 0.50
COP Gaussian 0.24 Student t 0.80 7.40 0.02 0.97
SLB RGumbel 0.25 Frank 0.51
OXY Gaussian 0.25 Gaussian 0.44 0.03 0.97
ESV RGumbel 0.18 Gaussian 0.44
BJS Student t 0.20 7.86 Gaussian 0.42
SUN RGumbel 0.23 Frank 0.51 0.04 0.95
RDC RGumbel 0.22 Frank 0.48
TSO Clayton 0.17 Frank 0.24 0.05 0.94
INDUST RGumbel 0.86 0.05 0.93
GE Student t 0.49 6.77 Gaussian 0.61 0.04 0.91
UTX Student t 0.40 12.54 Student t 0.26 8.77
BA Gaussian 0.51 0.04 0.93 Gaussian 0.24
MMM Frank 0.34 Gumbel 0.23
CAT Frank 0.61 0.05 0.92 Gaussian 0.25
PLL RGumbel 0.44 0.05 0.91 Frank 0.11
AW Frank 0.13 0.02 0.98 RGumbel 0.05
R RGumbel 0.32 Gumbel 0.15
CTAS Student t 0.33 7.51 0.02 0.98 Frank 0.12
RHI Frank 0.59 0.05 0.91 Frank 0.07
HEALTH RGumbel 0.66 0.08 0.88
JNJ RGumbel 0.37 0.05 0.88 Gaussian 0.40
PFE Frank 0.51 0.07 0.85 Gumbel RGumbel 0.42 0.56 0.69
MRK Frank 0.52 0.07 0.87 Student t 0.42 11.56
ABT RGumbel 0.37 0.05 0.89 Gaussian 0.36
WYE Frank RGumbel 0.18 0.57 0.73 Gaussian 0.35
MYL RGumbel 0.15 Gumbel 0.09
MIL Frank 0.31 Independent
PKI Frank 0.31 Independent
WPI RGumbel 0.20 Gumbel 0.08
THC RGumbel 0.18 Frank 0.15
FINAN Student t 0.87 11.40 0.06 0.90
BAC Gaussian 0.45 Gaussian Frank 0.59 0.32 0.50
JPM Frank RGumbel 0.57 0.45 0.41 Student t 0.40 8.07
C Gaussian 0.52 Student t 0.37 13.20
AIG Student t 0.64 9.08 0.05 0.87 Gaussian 0.34
WFC Gaussian 0.42 Student t 0.39 11.11
HBAN Gaussian 0.54 0.05 0.92 Student t 0.19 8.54 0.02 0.98
SOV Gaussian 0.33 Gaussian 0.14
MBI Frank 0.57 0.06 0.88 Gaussian 0.24
FHN Frank 0.35 Gaussian 0.31
MTG Frank 0.55 0.04 0.93 Gaussian 0.24
UTIL Gaussian 0.49 0.02 0.97
EXC Gaussian 0.30 0.03 0.96 Student t 0.77 5.34 0.02 0.97
SO RGumbel 0.01 0.02 0.98 Student t 0.51 6.72
FPL Gaussian 0.34 0.03 0.96 Student t 0.71 7.69 0.04 0.86
D Gaussian 0.34 0.02 0.96 Gaussian Frank 0.59 0.35 0.68
DUK Gaussian 0.38 0.03 0.96 Gaussian 0.52
TEG RGumbel 0.21 Gaussian 0.41
TE Gaussian 0.39 0.02 0.97 Student t 0.46 8.98
PNW Gaussian 0.32 0.03 0.96 Gaussian 0.45
CMS Frank 0.45 0.02 0.97 Gaussian 0.36
GAS Gaussian 0.39 0.02 0.97 Gaussian 0.32
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Dependence with the market Dependence with the own sector given the market
Model τ/ω Dof τ Prob α β Model τ/ω Dof τ Prob α β

MATERIALS Gaussian 0.70 0.07 0.90
DD Gaussian 0.58 0.04 0.93 Gaussian 0.53 0.02 0.98
DOW Gaussian 0.53 0.04 0.94 Gaussian 0.60 0.03 0.96
AA Gaussian 0.45 0.05 0.94 Student t 0.43 7.72
PX RGumbel 0.33 0.02 0.98 Gaussian 0.31 0.02 0.97
NUE RGumbel 0.20 0.01 0.99 Frank 0.34
SEE Frank RGumbel 0.61 0.12 0.42 Gaussian 0.16
IFF Frank 0.32 Gaussian 0.11
ASH RGumbel 0.30 Frank 0.15
BMS Gaussian Frank 0.56 0.22 0.43 Frank 0.08 0.02 0.98
HPC Frank 0.30 Frank 0.29
C DISCR Gaussian 0.78 0.02 0.98
MCD Gaussian 0.30 Frank 0.14
CMCSA RGumbel 0.30 Frank 0.12
DIS Student t 0.55 7.03 0.03 0.93 Frank 0.22
TWX RGumbel 0.47 0.02 0.97 Frank 0.09
HD Frank RGumbel 0.56 0.32 0.36 Gaussian 0.36
KBH RGumbel 0.33 Gaussian 0.12
LIZ Frank 0.30 Gaussian 0.20
JNY Frank 0.30 Gaussian 0.21
MDP Frank RGumbel 0.14 0.45 0.40 Frank 0.13
DDS Frank 0.31 Student t 0.22 9.77
C STAP Student t 0.67 6.48 0.05 0.92
PG Student t 0.22 7.31 Student t 0.43 9.69
WMT Student t 0.32 11.87 Frank 0.13
KO Gaussian 0.44 0.10 0.83 Student t 0.44 9.99
PEP Student t 0.24 6.45 Gaussian 0.56 0.02 0.97
CVS Gaussian 0.23 Gaussian -0.07 0.01 0.99
BF.B RGumbel 0.40 0.05 0.92 Student t 0.20 8.68
TSN Frank 0.19 Gumbel 0.07
WFMI Frank 0.37 0.07 0.82 Independent
MKC RGumbel 0.13 Gumbel 0.12
STZ Gaussian 0.16 Independent
IT Gaussian 0.56 0.02 0.98
MSFT Frank 0.41 Gaussian 0.52 0.03 0.96
IBM Frank 0.39 Gaussian 0.29
AAPL Frank 0.24 Gaussian 0.22
CSCO Frank 0.42 Student t 0.45 11.88
INTC Frank 0.40 Gaussian Frank 0.34 0.68 0.65
TLAB Frank 0.36 Frank 0.21
NOVL Gaussian 0.29 Frank 0.13
CPWR Frank 0.31 Frank 0.16
QLGC Frank 0.29 Gaussian 0.07 0.02 0.98
UIS Frank 0.32 Frank 0.17
TELECOM Gaussian 0.45
T Gaussian 0.46 0.03 0.95 Student t 0.66 7.62 0.02 0.98
VZ Frank 0.34 Student t 0.51 6.86
S Frank 0.32 Gaussian 0.29
CTL Gaussian 0.30 Frank 0.19
CZN Frank 0.24 Clayton 0.11

Table 4: Copula results
The half left part contain the results of the dependence models of each individual stock and sector with the S&P500 market return. The half right part of the table contains the results of the

dependence between individual stock returns and the sectors given the market. ”Dof” contains the degrees of freedom for the Student t copula. ”τ/ω” refers to the Kendall’s tau in the case

of constant models and to the constant in the time-varying models. ”τ” and ”Prob” respectively refer to the Kendall’s tau of the second copula in a mixture model and the weight of the first

copula component in the mixture. ”α” and ”β” are the autoregressive coefficients of the dynamic copulas.
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Figure 2: Time varying Kendall’s tau for two stocks with the market
This figure shows the time-varying Kendall’s tau implied by the estimated rotated Gumbel copulas of XOM
(Energy) and PX (Materials) with the market.

are Utilities (2/0), Materials (4/0) and Consumer Staples (2/2). The last group contains
sectors with more prevalent asymmetry and contains Energy (6/1), Industrials (2/3), Health

(6/2) and Consumer Discretionary (5/0). In the case of the Energy, Industrials and Health

sectors, in addition to the asymmetry between the stocks and the market return, there is
also asymmetry between the sectorial returns and the market. If we focus on the type of
dynamics, it is striking that most of the copulas that are selected with the BIC are constant,
and we select time-varying copulas only in 30% of all cases.

As far as time varying dependence is concerned, most of the selected time varying
copulas are found for the dependence of stocks and sectors with the S&P500 index return.
Forty-three (out of 105) of the copulas for the dependence of the individual stocks or sectors
with the market are time varying. Moreover these 43 cases represent 72% of all selected time
varying copulas. Another important feature is that the estimated autoregressive parameters
are not equal across stocks in the same sector, nor across stocks with the same type of
copula. However, there is a tendency for stocks in the same sector with time varying copula
to present similar autoregressive parameters. Moreover, we find that in 13 cases the sum of
the autoregressive parameters are very close to 1. This can be due to structural breaks in
the dependence parameter, but plotting the time-varying dependence parameter over the
sample period reveals that in most cases the dependence is smoothly trending upwards.
Figure 2 plots the dynamic Kendall’s tau implied by the estimated rotated Gumbel copulas
of XOM (Energy) and PX (Materials) with the market. While XOM (left panel) shows
mean-reverting dependence, PX (right panel) is close to being integrated and shows an
upward trend. The dynamic structure we find seems incompatible with the DCC, which
implies that the autoregressive parameters are the same across all stocks.
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Figure 3: Histogram of Spearman rank correlation of the 95 S&P500 stock returns
The three plots show the histograms of the Spearman rank correlation for all pair of assets returns. The
top graph is computed on the returns after the marginal models have been estimated. The middle graph
shows the Spearman correlation after the dependence with the market has been taken into account. Finally
the bottom graph shows the rank correlations after the effect of the dependence with the market and the
sectors have been taken out.

Figure 3 and Table 5 show how the overall level of dependence between all pairs of
stocks is modified by conditioning on the S&P500 and the sectorial returns. Figure 3
shows histograms of the empirical Spearman rank correlation for all pair of assets returns.
From top to bottom, it shows the Spearman rank correlation of the returns, after the
marginal models have been estimated (top panel), after the dependence with the market
has been taken into account (middle panel), and after the effect of the dependence with
the market and the sectors have been taken out (bottom panel).12 Table 5 contains some
descriptive statistics for the distributions that we plot in Figure 3. The histograms show
how the Spearman rank correlations get more and more concentrated around zero after
conditioning on the market (S&P500). The average Spearman rank correlation is reduced
from 0.22 to 0.03, while there is no change in the standard deviation. With absolute values,
the average dependence is still reduced very significantly from 0.22 to 0.07 and there is also a
decrease in the standard deviation, from 0.10 to 0.08. After conditioning on the market and
the sectors, the average Spearman rank correlation gets even closer to zero, from 0.03 to 0.01

12The top graph shows the empirical Spearman rank correlation of F (rS1

1 ), F (rS1

2 ), · · ·F (rSJ

I ), where
F (·) is the marginal model for each return. The middle graph shows the empirical Spearman rank
correlation of F (rS1

1 |rM ), F (rS1

2 |rM ), · · · , F (rSJ

I |rM ), where F (·|rM ) is the marginal model for each re-
turn given the market. Finally the bottom graph shows the empirical Spearman rank correlation of
F (rS1

1 |rM , rS1
, · · · , rSJ

), F (rS1

2 |rM , rS1
, · · · , rSJ

), · · · , F (rSJ

I |rM , rS1
, · · · , rSJ

), where F (·|rM , rS1
, · · · , rSJ

)
is the marginal model for each return given the market and all sectors.
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Mean Std dev Max Min Mean Std dev
abs. value abs. value

ρS 0.22 0.10 0.81 -0.04 0.22 0.10
ρS condtional on market 0.03 0.10 0.79 -0.20 0.07 0.08
ρS cond. on market and sector 0.01 0.06 0.60 -0.35 0.04 0.04

Table 5: Descriptive statistics of Spearman rank correlation of stock returns
The first line is computed with Spearman rank correlations after GARCH effects have been taken out. The

second line is the same, but after the dependence with the market has also been taken out. Finally, the

third line is computed after GARCH effects and dependence with market and sectors have been taken into

account.

but the main change is the sharp reduction in standard deviation, from 0.10 to 0.06. The
same behavior is present in the case of the absolute value of the Spearman rank correlation:
the average is reduced from 0.07 to 0.04, and the standard deviation decreases from 0.08 to
0.04. These results mean that most of the dependence between stocks can be captured by
the S&P500 and the sectorial returns, since, after conditioning on the market and sectors,
only 33% of all possible pairs have an absolute Spearman rank correlation higher than
0.05 and this percentage is reduced to 6% when we consider an absolute Spearman rank
correlation of 0.10. If the CAPM model holds, then even after controlling only linearly for
the market, the idiosyncratic error terms should all be independent. However, we want to
account for the fact that even though the remaining dependence is generally small, it is not
exactly zero. In order to be sure that we capture the remaining dependence we estimate
a multivariate Gaussian copula for the dependence between stock returns conditional on
market and sector returns. A likelihood ratio test strongly rejects the null hypothesis of
independence for the Gaussian copula parameter with a test statistic of 8744.2 for a 5%
critical value of χ2

[95.94/2] = 4621.3, which implies a p-value of 0.00.
To summarize, our results confirm that many of the restrictions imposed on the data

by the DCC can be very limiting. First, it appears clearly that the marginal distributions
of the returns are not Gaussian and moreover the dependence with the market is not
Gaussian, as is implied by the DCC. In 30% of the cases we select an asymmetric copula
for the dependence with the market. Also, the DCC imposes that the persistence in the
dependence between all pairs of assets is the same. Again our results demonstrate that this
is not the case. For many assets, we find that the dependence between the market and the
stocks does not vary over time. For some stocks, we find on the contrary that the sum of
the autoregressive parameters is one, implying that the dynamics of the rank correlation
is integrated. This shows the difficulties that arise if one restricts the dynamics to be the
same for all pairs of asset, as is done in the DCC. Finally, we are able to capture nearly all
the dependence present in the data, just by conditioning on the market and the sector with
a dynamic and flexible copula model. For the remaining dependence we use a multivariate
Gaussian copula.
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5.3 Evaluation of VaR

We evaluate the performance of our model13 in terms of its ability to generate good esti-
mates of Value at Risk. We use two criteria to judge performance. The first one is the
likelihood ratio test of correct unconditional coverage of Kupiec (1995), based on the bi-
nomial distribution. The comparison of the VaR forecast and the realized returns of the
portfolio defines a sequence of binary variables, It, called hits. A hit occurs whenever the
observed return is lower than the predicted VaR, resulting in a violation of the threshold.
A successful VaR model at a threshold α should have close to a fraction α of violations in
sample. Kupiec (1995) proposes to test H0 : f = α against H1 : f 6= α, where f is the fail-
ure rate (estimated by f̂ , the empirical failure rate). Under the null hypothesis, the Kupiec
likelihood ratio statistic LR = 2ln[f̂N(1 − f̂)T−N ] − 2ln[αN (1 − α)T−N ] is asymptotically
distributed as a χ2(1), where N is the number of VaR violations, T is the total number of
observations (703 in our case) and α is the failure rate of the null hypothesis. The second
criterion is the likelihood ratio test of conditional coverage of Christoffersen (1998). This
test is a combination of the unconditional coverage and the independence tests. For the
independence test, Christoffersen (1998) considers a binary first-order Markov chain for the
hits, with transition probability matrix Π1

Π1 =

[

1 − π01 π01

1 − π11 π11

]

,

where πi,j = Pr(It = j|It−1 = i). Under the null hypothesis, H0 : π01 = π11 = α the
likelihood ratio test of conditional coverage,

LR = 2ln[(1 − π̂01)
n00 π̂01

n01(1 − π̂11)
n10 π̂11

n11 ] − 2ln[αN (1 − α)T−N ],

is asymptotically distributed as a χ2(2), where nij is the number of hits with value i followed
by j, π̂01 = n01/(n00 + n01) and π̂11 = n11/(n10 + n11).

We use the DCC model as a benchmark for the evaluation of our model. The problem
with the DCC in large dimensions is that it requires inversion of a large correlation matrix
at each period and that its parameters suffer from a downward bias, as explained in Engle
et al. (2008). Instead of attempting a direct estimation of the DCC model for the whole
vector of returns, we rely on the profile likelihood approach of Engle et al. (2008) and
estimate the parameters that maximize the sum of likelihoods of bivariate DCC models of
50 pairs, chosen randomly from the whole cross-section of the data. Even though our model
is suitable for very large dimensional problems, we concentrate on portfolios of eight stocks,
four big and four small, taken from two sectors, Health and Consumer Staples. They are,
in decreasing order of market capitalization, JNJ, PFE, WPI, THC for the Health sector
and PG, WMT, MKC and STZ for the Consumer Staples sector. We consider six different
portfolios whose weights are shown in Table 6. We compute the upper and lower tail
percentiles of these portfolios, which corresponds to analyzing the risk of, respectively, long
and short positions in the portfolios of Table 6. All models are tested with a VaR14 level

13We consider only the market sector model, based on the structure of Equation (7) which, for the rest
of this section we refer to as the CAVA model.

14The VaR for the CAVA model has been calculated by simulating 50.000 observations, following the
algorithm of Section 7.4.
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Portfolio Portfolio weights
Sector 1 Sector 2

Big Small Big Small

1: Long all stocks 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
2: Long sector 1 1/4 1/4 1/4 1/4 0 0 0 0
3: Long sector 2 0 0 0 0 1/4 1/4 1/4 1/4
4: Long big stocks, short small stocks 1/8 1/8 -1/8 -1/8 1/8 1/8 -1/8 -1/8
5: Long big stocks 1/4 1/4 0 0 1/4 1/4 0 0
6: Long small stocks 0 0 1/4 1/4 0 0 1/4 1/4

Table 6: Portfolios for Value at Risk computation
This table shows the weights of the 6 portfolios we use to evaluate Value at Risk.

α of 10%, 5%, 2.5% and 1%, and their performance is assessed by likelihood ratio tests of
correct unconditional and conditional coverage, shown in Table 7.

To compare the results of the models, we use a summary performance measure, Grade(β),
which is the percentage of p-values above the β critical value for long and short positions.
The level of the test β should not be confused with the level α at which VaR is evaluated.
For instance, for the correct unconditional coverage test, in Table 7, when we consider long
positions at the critical value β = 5%, we have 5 rejections out of 24 portfolios for the
DCC, which implies that its Grade(5%) is 79%, compared to 100% for the CAVA model. If
instead we consider a critical value of β = 10%, we have 6 rejections for the DCC and 1 for
the CAVA model, which implies Grade(10%) of 75% for the DCC and 92% for the CAVA.
Overall the CAVA model performs better than the DCC model for both the conditional and
the unconditional coverage tests. We repeat this analysis with another set of stocks: XOM,
OXY, ESV, TSO for the Energy sector and GE, CAT, PLL and RHI for the Industrials

sector, given in decreasing order of market capitalization. We consider the same portfolios
as in the previous exercise and a summary of the results is shown in Table 8. Overall the
results in terms of Grade(5%) and Grade(10%) are quite similar to the ones in Table 7.
The CAVA performs better than the DCC and the main differences are in short trading
positions.

So far we have evaluated VaR in-sample and this exercise can be viewed as providing
diagnostics for the model. Given that the CAVA is more heavily parameterized than the
DCC, it is of interest to check that its good in-sample performance carries over to an out-
of-sample setting. In order to do this, we split the sample into an estimation period of 500
observations and leave 203 observations for the out-of-sample evaluation. We specify and
estimate the models15 on the first 500 observations and perform a series of 203 one-step
ahead VaR forecasts. Keeping the structure constant, we reestimate the parameters of each

15This includes the type of GARCH models for both the DCC and the CAVA, as well as the bivariate
copulas for the CAVA model.
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Unconditional Coverage Conditional Coverage
Long positions Short positions Long positions Short positions

α CAVA DCC CAVA DCC CAVA DCC CAVA DCC
Long all 10% 0.07∗ 0.92 0.59 0.02∗∗ 0.05∗ 0.08∗ 0.75 0.07∗

5% 0.19 0.25 0.59 0.03∗∗ 0.16 0.17 0.78 0.04∗∗

2.5% 0.30 0.09∗ 0.91 0.37 0.55 0.14 0.77 0.51
1% 0.29 0.01∗∗ 0.72 0.69 0.18 0.02∗∗ 0.85 0.88

Long 10% 0.73 0.78 0.51 0.05∗∗ 0.58 0.56 0.10∗ 0.06∗

sector 1 5% 0.88 0.74 0.59 0.02∗∗ 0.34 0.34 0.19 0.03∗∗

2.5% 0.30 0.02∗∗ 0.70 0.09∗ 0.29 0.05∗ 0.64 0.20
1% 0.29 0.00∗∗ 0.99 0.99 0.49 0.00∗∗ 0.93 0.93

Long 10% 0.59 0.11 0.55 0.19 0.86 0.27 0.08∗ 0.42
sector 2 5% 0.71 0.71 0.99 0.71 0.51 0.88 0.17 0.19

2.5% 0.42 0.56 0.53 0.37 0.65 0.73 0.59 0.52
1% 0.47 0.16 0.21 0.99 0.69 0.14 0.45 0.93

Long big, 10% 0.43 0.01∗∗ 0.55 0.51 0.68 0.02∗∗ 0.59 0.80
short small 5% 0.99 0.28 0.51 0.88 0.81 0.16 0.80 0.77

2.5% 0.42 0.53 0.14 0.21 0.38 0.59 0.33 0.44
1% 0.72 0.99 0.47 0.29 0.85 0.93 0.69 0.18

Long big 10% 0.82 0.24 0.29 0.06∗ 0.95 0.49 0.26 0.07∗

5% 0.59 0.28 0.99 0.59 0.15 0.05∗ 0.16 0.19
2.5% 0.89 0.89 0.30 0.73 0.65 0.65 0.29 0.56
1% 0.47 0.29 0.47 0.29 0.69 0.49 0.69 0.49

Long small 10% 0.15 0.73 0.59 0.11 0.31 0.40 0.75 0.29
5% 0.07∗ 0.25 0.59 0.10∗ 0.02∗∗ 0.01∗∗ 0.43 0.05∗

2.5% 0.91 0.21 0.89 0.25 0.21 0.21 0.72 0.25
1% 0.99 0.04∗∗ 0.72 0.21 0.16 0.01∗∗ 0.85 0.45

Grade(5%) 100% 79% 100% 83% 96% 75% 100% 92%
Grade(10%) 92% 75% 100% 71% 92% 67% 92% 75%

Table 7: Unconditional and conditional coverage tests for in-sample weekly VaR
This table shows p-values of the Kupiec test for unconditional coverage (left panel) and of the Christoffersen

test of conditional coverage (right panel) for the portfolios described in Table 6. The portfolios are composed

of eight stocks, four big and four small, taken from two sectors, Health and Consumer Staples. They are,

in decreasing order of market capitalization, JNJ, PFE, WPI, THC for the Health sector and PG, WMT,

MKC and STZ for the Consumer Staples sector. One star, respectively two, indicates that we reject the

null at the 10%, respectively 5% level of significance. Grade(β), is the percentage of p-values above the β

critical value for long and short positions. The level of the test β should not be confused with the level α

at which VaR is evaluated.

model every 20 periods, using an expanding window. We evaluate VaR using the same
portfolios and the same two sets of stocks that we use in-sample and the results are given
in Table 9. The results show that the CAVA outperforms the DCC in all cases. Overall
we reject the null of correct coverage more often than in the in-sample exercise, which is a
reflection of the difficulty of forecasting. The difference between both models are smaller
than in the in-sample exercise, which can be due to the fact that the sample size is much
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Unconditional Coverage Conditional Coverage
Long positions Short positions Long positions Short positions
CAVA DCC CAVA DCC CAVA DCC CAVA DCC

Energy - Industrials

Grade(5%) 100% 100% 100% 75% 100% 100% 96% 96%
Grade(10%) 100% 75% 87% 58% 100% 87% 96% 71%

Table 8: Summary results of in-sample weekly VaR for an alternative set of stocks
This table shows summary results of the Kupiec test for unconditional coverage (left panel) and of the

Christoffersen test of conditional coverage (right panel) for an alternative set of stocks: XOM, OXY, ESV,

TSO for the Energy sector and GE, CAT, PLL and RHI for the Industrials sector, given in decreasing order

of market capitalization. We consider long and short positions in the same 6 portfolios presented in Table

6. The table presents Grade(β), a performance measure, which reports the percentage of p-values above the

β critical value for long and short positions for the correct coverage test and the conditional coverage test.

smaller. There is however a pattern in that the CAVA offers higher improvements over the
DCC in short positions than in long positions.

6 Conclusion

This paper introduces the canonical vine autoregressive (CAVA) model, a new multivariate
GARCH model which does not suffer from the limitations of the existing models. It can
easily be used for high-dimensional cross-sections of assets while allowing for empirically
relevant departures from elliptical distributions, like skewness, kurtosis and asymmetric
dependence. Using the concept of copulas, we split the joint distribution function of the
returns into two parts, one for the marginals and one that captures the multivariate depen-
dence with a series of dynamic bivariate copulas. The idea of breaking the joint distribution
into marginals and dependence is not new, as it underlies the DCC model, which separates
the dynamics of the volatility of each asset and the conditional correlation between all
assets. However, unlike the DCC, the CAVA does not restrict the marginal GARCH mod-
els to be Gaussian. In order to model dependence we use a canonical vine copula, which
was recently introduced into the financial literature by Aas et al. (2009), and which ac-
commodates very flexible types of dependence. It is based on decomposing iteratively a
multivariate copula into a product of bivariate conditional copulas, each of which can be
chosen from a long list, producing a large, flexible class of models. Moreover, as a fully
general decomposition of the canonical vine model for really large dimensions would not
be sensible, we follow financial practice and focus on the dependence between stocks and
the market return. In that sense our model can be viewed as a time-varying non-Gaussian
extension of the CAPM. We use weekly returns on 95 S&P500 stocks taken from 10 dif-
ferent sectors. A first model considers the dependence between all stocks and the market
and uses a Gaussian copula for the remaining dependence between the stocks, conditional
on the market. A second model considers a market sector model, where after conditioning
on the market we consider the dependence with the sectorial returns. Our results confirm
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Unconditional Coverage Conditional Coverage
Long positions Short positions Long positions Short positions
CAVA DCC CAVA DCC CAVA DCC CAVA DCC

Health - Consumer Staples

Grade(5%) 96% 92% 83% 67% 100% 92% 92% 83%
Grade(10%) 92% 88% 67% 54% 88% 83% 83% 71%

Energy - Industrials

Grade(5%) 88% 88% 58% 50% 96% 96% 79% 75%
Grade(10%) 88% 79% 54% 46% 96% 88% 67% 63%

Table 9: Summary results of out-of-sample weekly VaR
This table shows summary results of the Kupiec test for unconditional coverage (left panel) and of the

Christoffersen test of conditional coverage (right panel) for two sets of eight stocks. The first set is composed

of four big and four small stocks, taken from two sectors, Health and Consumer Staples. They are, in

decreasing order of market capitalization, JNJ, PFE, WPI, THC for the Health sector and PG, WMT,

MKC and STZ for the Consumer Staples sector. The second set is composed of XOM, OXY, ESV, TSO

belonging to the Energy sector and GE, CAT, PLL and RHI belonging to the Industrials sector, given in

decreasing order of market capitalization. We consider long and short positions in the same 6 portfolios

presented in Table 6. The table presents Grade(β), a performance measure, which reports the percentage

of p-values above the β critical value for long and short positions for the correct coverage test and the

conditional coverage test.

that many of the restrictions imposed by the DCC can be very limiting. First it appears
clearly that neither the marginal distribution nor the dependence structure is Gaussian, as
is implied by the DCC. Second, the DCC imposes that the persistence in the dependence
between all pairs of assets is the same. Again our results demonstrate that this is not the
case. In terms of in-sample and out-of-sample VaR we show that the CAVA performs better
than the DCC in all portfolios that we consider.
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7 Supplemental Materials

7.1 GARCH Models

GARCH

ht = ω + αǫ2
t−1 + βht−1

GJR-GARCH

ht = ω + αǫ2
t−1 + γ1[ǫt−1<0]ǫ

2
t−1 + βht−1

AVGARCH

h
1/2
t = ω + α|ǫt−1| + βh

1/2
t−1

ZARCH

h
1/2
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log(ht) = ω + α

(

|ǫt−1|
√

ht−1

− E

∣

∣

∣

∣

∣

ǫt−1
√

ht−1

∣

∣

∣

∣

∣
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+ βlog(ht−1)

APARCH
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δ/2
t = ω + α (|ǫt−1| + γǫt−1)

δ + βh
δ/2
t−1

NARCH

h
δ/2
t = ω + α|ǫt−1|δ + βh

δ/2
t−1

7.2 Copulas

7.2.1 Gaussian Copula

The distribution function of the Gaussian copula is:

CN (u1, . . . , un; Σ) = ΦΣ(Φ−1(u1), . . . ,Φ
−1(un)),

where Φ−1 denotes the inverse cumulative density of the standard normal and ΦΣ(x1, . . . , xn; Σ)
denotes the standard multivariate normal cumulative distribution:

ΦΣ(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞

1

(2π)n/2|Σ|1/2
exp

(

−1

2
v′Σ−1v

)

dv,

where v = (v1, . . . , vn) and Σ is a correlation matrix, that is symmetric, semi-definite posi-
tive with ones on the diagonal and off-diagonal terms between −1 and 1. The corresponding
density is:

cN (u1, . . . , un; Σ) = |Σ|−1/2exp

[

−1

2

(

x′Σ−1x − x′x
)

]

,
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where x = (Φ−1(u1), . . . ,Φ
−1(un)). The bivariate version that we use in the canonical vine

copulas is:

cN (u1, u2; ρ) =
1

√

1 − ρ2
exp

[−[Φ−1(u1)
2 + Φ−1(u2)

2 − 2ρΦ−1(u1)Φ
−1(u2)]

2(1 − ρ2)
+

Φ−1(u1)
2 + Φ−1(u2)

2

2

]

,

Define the conditional copula h(u1, u2, θ) = F (u1|u2) =
∂Cu1,u2 (u1,u2,θ)

∂u2
. For the normal

copula, it is given by

hN (u1, u2, ρ12) = Φ

(

Φ−1(u1) − ρ12Φ
−1(u2)

√

1 − ρ2
12

)

,

and its inverse for a given value of the conditioning variable is:

h−1
N (u1, u2, ρ1,2) = Φ

(

Φ−1(u1)
√

1 − ρ2
12 + ρ1,2Φ

−1(u2)

)

,

where ρ is a correlation coefficient that lies between −1 and 1.
The Gaussian copula has zero upper and lower tail dependence, λU = λL = 0, except in
the case of perfect correlation, ρ = 1.

7.2.2 Multivariate Student t Copula

The distribution function of the Student t copula is:

CT (u1, . . . , un; Σ, ν) = TΣ,ν(T
−1
ν (u1), . . . , T

−1
ν (un)),

where T−1
ν (v) is the inverse of the cumulative distribution function of the univariate Student

t with ν degrees of freedom and TΣ,ν is given by:

TΣ,ν(x1, . . . , xn; ) =

∫ x1

−∞
. . .

∫ xn

−∞

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n|Σ|

(

1 +
v′Σ−1v

ν

)
−ν+n

2

dv,

where v = (v1, . . . , vn) and Σ is a correlation matrix, that is symmetric, semi-definite posi-
tive with ones on the diagonal and off-diagonal terms between −1 and 1. The corresponding
density is:

cT (u1, . . . , un; Σ, ν) =
Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n|Σ|
1

∏n
i=1 fν(T

−1
ν (ui))

(

1 +
x′Σ−1x

ν

)
−ν+n

2

,

where x = (T−1
ν (u1), . . . , T

−1
ν (un)) and fν(.) is the density of the Student t distribution

with ν degrees of freedom, ρ ∈ (−1, 1) and ν > 2. The bivariate version that we use in the
canonical vine copulas is:
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cT (u1, u2; ρ, ν) = Γ

(

ν + 2

2

) 1 +
(

T−1
ν (u1)2+T−1

ν (u2)2−2ρT−1
ν (u1)T−1

ν (u2)
ν(1−ρ2)

)−( ν+2
2 )

fν(T
−1
ν (u1))fν(T

−1
ν (u2))νΠΓ(ν

2 )
√

1 − ρ2
.

The conditional copula is given by:

hT (u1, u2, ρ12, ν) = Tν+1





T−1
ν (u1) − ρ12T

−1
ν (u2)

√

(ν+(T−1
ν (u2))2)(1−ρ12)

ν+1



 ,

and its inverse for a given value of the conditioning variable is:

h−1
T (u1, u2, ρ12, ν) = Tν



T−1
ν+1(u1)

√

(ν + (T−1
ν (u2))2)(1 − ρ1,2)

ν + 1
+ ρ12T

−1
ν (u2)



 .

The Student t copula has the same lower and upper tail dependence for every pair of

variables: λU = λL = 2tν+1

(

−
√

ν + 1
√

1−ρ
1+ρ

)

.

7.2.3 Bivariate Gumbel and Rotated Gumbel Copula

The Gumbel copula has the following distribution:

CG(u1, u2, θ) = exp
(

−((− log u1)
θ + (− log u2)

θ)1/θ
)

,

and the following density:

cG(u1, u2, θ) =
CG(u1, u2, θ)(log u1. log u2)

θ−1

u1u2((− log u1)θ + (− log u2)θ)2−1/θ

(

((− log u1)
θ + (− log u2)

θ)1/θ + θ − 1
)

,

where θ ∈ [1,∞).
The conditional copula is given by:

hG(u1, u2, θ12) = C12(u1, u2; θ12)
1

u2
(− log u2)

θ12−1[(− log u1)
θ12 + (− log u2)

θ12 ]1/θ12−1.

There is not analytical formula for the inverse of the conditional copula, therefore it has to
be be calculated numerically.
We use the rotated version of the Gumbel defined as: CRG(u1, u2, θ) = u1 +u2−1+CG(1−
u1, 1−u2, θ) and cRG(u1, u2, θ) = cG(1−u1, 1−u2, θ). hRG(u1, u2, θ12) = 1−hG(1−u1, 1−
u2; θ12). For the Rotated version of the Gumbel, λL = 2 − 2−1/θ, λU = 0.
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7.2.4 Bivariate Clayton Copula

The Clayton copula has the following distribution

CC(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−1/θ,

and the following density:

cC(u1, u2; θ) = (1 + θ)(u1v1)
−θ−1(u−θ

1 + u−θ
2 − 1)−2−1/θ,

where θ ∈ [−1,∞)\0.
The conditional copula is given by:

hC(u1, u2, θ12) = u−1−θ12
2

(

u−θ12
1 + u−θ12

2 − 1
)−1−1/θ12

and its inverse for a given value of the conditioning variable is:

h−1
C (u1, u2, θ12) =

(

(u1u
θ12+1
2 )−θ12/(θ12+1) + 1 − u−θ12

2

)−1/θ12

The Clayton copula has lower but not upper tail dependence: λL = 2−1/θ, λU = 0.

7.2.5 Bivariate Frank copula

The Frank copula has the following distribution

CF (u1, u2; θ) = −1

θ
log

(

(

1 − e−θ
)

−
(

1 − e−θu1
) (

1 − e−θu2
)

(1 − e−θ)

)

,

and the following density:

cF (u1, u2; θ) =
θ
(

1 − e−θ
)

e−θ(u1+u2)

(1 − e−θ) − (1 − e−θu1) (1 − e−θu2)
,

where θ ∈ (−∞,∞)\0.
The conditional copula is given by:

hF (u1, u2, θ12) =
(e−θ12u1 − 1)(θ12e

−θ12u2)

θ12((e−θ − 1) + (e−θ12u1 − 1)(e−θ12u2 − 1))
,

and its inverse for a given value of the conditioning variable is:

h−1
F (u1, u2, θ12) = − log

(

eθ12u2(1 − u1)/u1 + e−θ12

1 + e−θ12u2(1 − u1)/u1

)

/θ12.

The Frank copula has zero upper and lower tail dependence, λU = λL = 0, except in the
limit when θ → ∞.
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7.2.6 Mixture Copulas

In mixture models we can easily evaluate the tail dependence and Spearman rank correlation
of the mixture, since they are linear combinations of their components:

ρS = pρ
(1)
S + (1 − p)ρ

(2)
S .

The same holds for tail dependence:

λ = pλ(1) + (1 − p)λ(2).

This is obvious from the definition. Denote C(u, v) =
∑N

i=1 piC
(i)(u, v) a mixture copulas,

with N components C(i)(u, v), each with weight pi,
∑N

i=1 pi = 1, and Spearman rank
correlation ρi

S . Then the Spearman rank correlation ρS of the mixture copula is given by:

ρS = 12

∫ ∫

[0,1]2
C(u, v)dudv − 3 =

N
∑

i=1

pi

(

12

∫ ∫

[0,1]2
C(i)(u, v)dudv − 3

)

=

N
∑

i=1

piρ
(i)
S .

The same holds for tail dependence. Denote λ(i) the tail dependence of each component
copula and λ the tail dependence of the mixture copula:

λ = lim
u→0+

C(u, u)/u = lim
u→0+

N
∑

i=1

piC
(i)(u, u)/u =

N
∑

i=1

piλ
(i).

The conditional copula for a mixture is a linear combination of the conditional copulas of
their components. Denote h(1) and h(2) the conditional copulas for each component. Then,
we have:

hM = ph(1) + (1 − p)h(2).

The inverse of the conditional copula has to be evaluated numerically.

7.3 GARCH estimation results
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µ AR1 AR2 Model ω α γ β ν λ
S&P 500 0.17 -0.11 GJR GARCH 0.14 0.00 0.17 0.88 14.51 -0.29
ENERGY 0.26 GJR GARCH 0.32 0.00 0.12 0.89 36.00 -0.20
XOM 0.28 -0.14 GARCH 0.94 0.10 0.78 8.71 -0.18
CVX 0.21 GARCH 4.31 0.17 0.31
COP 0.25 GJR GARCH 0.76 0.01 0.10 0.87
SLB 0.32 AVGARCH 0.09 0.05 0.94 12.66
OXY 0.31 AVGARCH 0.12 0.05 0.93
ESV 0.37 AVGARCH 0.10 0.06 0.94
BJS 0.39 GARCH 1.13 0.11 0.87
SUN 0.14 AVGARCH 0.12 0.05 0.93 6.47
RDC 0.28 GARCH 0.32 0.05 0.94
TSO 0.21 GJR GARCH 1.34 0.02 0.12 0.89 7.32
INDUST 0.16 ZARCH 0.10 0.00 0.14 0.91 13.74 -0.19
GE 0.17 AVGARCH 0.05 0.07 0.93 8.18
UTX 0.30 ZARCH 0.11 0.03 0.11 0.90 5.48
BA 0.16 EGARCH 0.05 0.04 -0.07 0.98 8.16
MMM 0.15 AVGARCH 0.03 0.04 0.96 6.02
CAT 0.24 GJR GARCH 0.12 0.00 0.03 0.98 6.93
PLL 0.11 GARCH 0.20 0.03 0.96 4.33
AW 0.18 EGARCH 0.02 0.09 -0.04 0.99 5.68
R 0.16 EGARCH 0.15 0.21 -0.07 0.95 10.24
CTAS 0.11 GARCH 0.09 0.04 0.95 7.72
RHI 0.26 ZARCH 0.52 0.04 0.14 0.83 5.35
HEALTH 0.20 -0.11 AVGARCH 0.04 0.08 0.92 10.18 -0.16
JNJ 0.25 -0.15 GARCH 0.03 0.05 0.95 10.28
PFE 0.15 GARCH 0.23 0.04 0.94 7.32
MRK 0.10 AVGARCH 0.11 0.06 0.93 5.26
ABT 0.18 GARCH 0.23 0.06 0.92 9.09
WYE 0.15 GARCH 0.31 0.08 0.90 7.78
MYL 0.07 GARCH 0.36 0.02 0.97 3.88
MIL 0.18 GARCH 0.09 0.04 0.96 4.63
PKI 0.19 GARCH 0.12 0.05 0.95 4.95
WPI 0.12 AVGARCH 0.03 0.03 0.97 5.26 -0.12
THC -0.08 GARCH 4.53 0.09 0.78 4.29 -0.13
FINAN 0.17 -0.14 EGARCH 0.08 0.23 -0.09 0.96 10.65 -0.23
BAC 0.12 EGARCH 0.06 0.21 -0.07 0.98 5.13 -0.16
JPM 0.16 GJR GARCH 0.34 0.02 0.16 0.89 8.38 -0.15
C 0.18 GARCH 0.12 0.09 0.91 5.79
AIG 0.11 -0.14 ZARCH 0.25 0.03 0.18 0.84 9.73
WFC 0.24 -0.13 EGARCH 0.02 0.17 -0.05 0.99 7.98
HBAN -0.07 GJR GARCH 0.17 0.04 0.11 0.90 4.73
SOV 0.09 -0.12 EGARCH 0.07 0.16 -0.06 0.98 5.79
MBI -0.19 ZARCH 0.29 0.03 0.24 0.82 8.31
FHN -0.04 GARCH 0.14 0.08 0.91 6.74
MTG -0.10 ZARCH 0.19 0.02 0.15 0.90 5.65
UTIL 0.10 AVGARCH 0.06 0.11 0.89 8.87
EXC 0.28 AVGARCH 0.09 0.06 0.93 6.14
SO 0.15 AVGARCH 0.08 0.12 0.88 6.78
FPL 0.21 -0.10 AVGARCH 0.10 0.10 0.88 8.11
D 0.14 AVGARCH 0.12 0.11 0.87 5.13
DUK 0.07 AVGARCH 0.04 0.06 0.94 8.15
TEG 0.11 -0.14 GARCH 0.10 0.06 0.93 8.62
TE 0.01 GARCH 0.26 0.09 0.89 6.54
PNW 0.07 GARCH 0.19 0.07 0.91 7.46
CMS -0.05 0.11 0.10 ZARCH 0.10 0.01 0.10 0.93 5.12 -0.13
GAS 0.09 EGARCH 0.08 0.08 -0.09 0.96 5.39
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MATERIALS 0.14 ZARCH 0.08 0.01 0.10 0.93 10.14
DD 0.06 AVGARCH 0.03 0.04 0.96 11.29
DOW 0.07 AVGARCH 0.05 0.06 0.94 8.20
AA 0.18 GARCH 1.79 0.11 0.81 8.86
PX 0.32 GJR GARCH 0.16 0.00 0.08 0.95 8.11 -0.16
NUE 0.24 GARCH 1.18 0.04 0.91 7.88
SEE 0.12 ZARCH 0.14 0.00 0.14 0.92 3.79
IFF -0.02 GARCH 0.10 0.03 0.96 5.40
ASH 0.10 EGARCH 0.02 -0.05 -0.03 0.99 6.11 -0.13
BMS 0.09 EGARCH 0.03 0.06 -0.08 0.99 6.16
HPC -0.11 EGARCH 0.06 0.06 -0.07 0.98 6.11
C DISCR 0.12 EGARCH 0.07 0.13 -0.13 0.96
MCD 0.20 GARCH 0.28 0.08 0.90 9.39
CMCSA 0.23 -0.15 GARCH 0.25 0.07 0.92 7.59
DIS 0.11 EGARCH 0.05 0.12 -0.10 0.98 7.48
TWX 0.41 GARCH 0.08 0.07 0.93 12.35
HD 0.13 EGARCH 0.08 0.17 -0.08 0.97 6.75
KBH 0.15 GJR GARCH 1.43 0.00 0.11 0.91 6.71
LIZ 0.08 GARCH 0.04 0.03 0.97 5.32
JNY 0.12 EGARCH 0.05 0.15 -0.06 0.99 5.12
MDP 0.12 0.11 ZARCH 0.12 0.07 0.11 0.87 6.22
DDS -0.10 AVGARCH 0.10 0.06 0.94 5.05
C STAP 0.15 GARCH 0.04 0.07 0.92 9.47
PG 0.20 AVGARCH 0.04 0.06 0.94 6.25
WMT 0.27 -0.13 GARCH 0.08 0.04 0.96 7.59
KO 0.11 GARCH 0.02 0.04 0.96 4.88
PEP 0.23 -0.17 GARCH 0.05 0.07 0.93 9.26
CVS 0.26 ZARCH 0.09 0.02 0.08 0.94 6.05
BF.B 0.23 AVGARCH 0.13 0.10 0.88 10.83
TSN 0.01 ZARCH 0.81 0.04 0.16 0.73 7.81
WFMI 0.32 GARCH 0.13 0.02 0.98 4.03
MKC 0.20 GARCH 0.42 0.05 0.90 5.47
STZ 0.21 GARCH 0.00 0.01 0.99 3.85
IT 0.19 GARCH 0.09 0.07 0.92
MSFT 0.29 GARCH 0.08 0.05 0.95 4.12 0.14
IBM 0.27 AVGARCH 0.07 0.07 0.93 4.71
AAPL 0.41 AVGARCH 0.06 0.03 0.97 4.72
CSCO 0.36 GARCH 0.26 0.06 0.93 8.54
INTC 0.25 GARCH 0.22 0.05 0.95 7.41
TLAB -0.04 AVGARCH 0.26 0.10 0.89 5.68
NOVL -0.14 AVGARCH 0.11 0.05 0.95 3.82
CPWR 0.11 ZARCH 0.14 0.02 0.09 0.93 4.69
QLGC 0.50 GARCH 0.04 0.06 0.94 5.34
UIS -0.11 GARCH 0.86 0.04 0.94 4.09
TELECOM 0.05 GJR GARCH 0.23 0.01 0.10 0.91 8.72
T 0.09 -0.10 AVGARCH 0.07 0.08 0.92 11.29
VZ 0.06 -0.11 AVGARCH 0.08 0.07 0.92 6.50
S -0.01 ZARCH 0.18 0.03 0.12 0.90 5.19
CTL 0.14 GARCH 0.13 0.05 0.95 4.51
CZN 0.01 EGARCH 0.04 0.14 -0.07 0.99 4.93

Table 10: Garch results

This table shows the results of the marginal models. Columns 2 to 4 contain the type of dynamics of the conditional mean. Column 5 to 12 contain

the type of GARCH model specification that has been selected as well as the estimated parameters. ν is the degree of freedom for the Student-t/skewed

Student t distribution and λ is the skewness parameter of the skewed Student t distribution.
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7.4 Simulation Algorithm for VaR

In this section we explain the algorithm we use for simulating from the market-sector model.
This algorithm generate one sample of random variables drawn from the CAVA model.
Without loss of generality we assume that there are J sectors and in each sector there are I
stocks. In the specific application of this paper J = 10. First we sample (ωrM , ωS1 , · · · , ωSJ

)

independent uniform on [0, 1] and then (ωS1
1 , ωS1

2 , · · · , ωSJ
I ) from a multivariate Gaussian

copula with parameter ΘG.

• for j = 1 to J

– for i = 1 to I

ω
Sj

i = h−1

Sj ,r
Sj
i |rM

(ω
Sj

i , ωSj ; θSj ,i)

ω
Sj

i = h−1

M,r
Sj
i

(ω
Sj

i , ωrM
; θ

Sj

M,i)

r
Sj

i = F−1(ω
Sj

i ;α
Sj

i )

– end for

ωSj = h−1
M,Sj

(ωSj , ωrM
; θM,Sj )

rSj = F−1(ωSj ;αSj )

• end for

rM = F−1(ωrM
;αM )

where h−1(·) is the inverse of the conditional copula, see Section 7.2.
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