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Abstract 
This study reports a meta-analysis on the effects of ethnic minority share in school on 
achievement test scores. Best evidence from the studies that have appeared thus far on 
this topic shows that these compositional effects appear small in general, but may be 
larger when the ethnic minority group is African Americans in the USA, than when the 
minority group consists of immigrants. A high share of students from an ethnic minority 
group seems to affect the achievement from students belonging to the same ethnic group 
more, than the achievement of students belonging to the ethnic majority or to other ethnic 
minority groups. Effects of the share of immigrants on test scores of ethnic majority 
students even seem to be close to zero. Several robustness checks confirm our results. 
The review concludes with a discussion of implications for research and policy practice. 
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Introduction 

In many countries around the world, there is a strong imbalance in the numbers of 

students from ethnic minorities in different schools. According to Rumberger & 

Palardy (2004), in the United States, over 70% of African American and Hispanic 

students attend schools where ethnic minorities constitute the majority of the 

population. In the Netherlands, ethnic minority children attend elementary schools 

with on average 70% ethnic minority students, while this number is 10% for ethnic 

majority students (Gijsberts, 2003); in the United Kingdom, two-third of all ethnic 

minority students would have to change schools in order to obtain an equal 

distribution (Burgess & Wilson, 2005). 

A common viewpoint is that the existence of schools with high proportions of 

ethnic minority students leads to negative educational and social consequences. 

Consequently, in the last decades, policy makers all over the world have developed 

strategies to cope with segregation, ranging from busing, strategic redrawing of 

attendance zones, magnet schools to setting quota for admissions.. The debate on the 

nature and effectiveness of these strategies among policy makers and researchers 

continues till today, as the recent United States Supreme Court Decision in the Seattle 

and Louisville cases shows (Meredith, 2007; Parents Involved in Community Schools, 

2007). 

In order to design evidence-based policy strategies to deal with school 

segregation effectively, systematic knowledge about the extent to which the share of 

ethnic minorities in classes and schools affects students’ educational achievement is 

essential. Therefore, it is important to reconcile the findings from previous studies on 

the effects of minority share on the educational achievement of students by means of a 

meta-analysis, Although several scholars have conducted studies on the compositional 
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effect related to ethnicity, such a meta-analysis has not been carried out yet. The 

present study aimed to fill this gap. 

We will first describe the many similarities in the situations of ethnic 

minorities around the world, in the segregation they face, and in the associated 

compositional effects. Next, we show that despite these similarities, there are also 

differences between ethnic groups that we have to take into account when pooling 

together the previous research on the effects of composition. After that, we describe 

our meta-analytic method, and in the next section the results. The implications and 

limitations of our findings are discussed in the final section. 

 

Ethnic Minority Share in Schools: Similarities and Effects 

The effect of ethnic minority share on academic achievement has been described as 

part of a more general “compositional effect”. A compositional effect is the effect that 

going to school with children with certain background characteristics has on specified 

outcomes. Background characteristics that have been studied include socioeconomic 

status (SES) (e.g. Lee & Bryk, 1989; Rivkin, 2001; Van Ewijk & Sleegers, 2007; 

Willms, 1986), ability (e.g. Sacerdote, 2001; Vigdor & Nechyba, 2004; Zimmerman, 

2003), sex (e.g. De Fraine et al., 2003; Hutchison, 2003), and, the focus of this study, 

ethnicity. The outcome variable that has been studied the most often is academic 

achievement. This is also the outcome we concentrate on. 

The effect of ethnic minority share in schools and classes on academic 

achievement has been described using various terms. Most studies describe it as 

“compositional effect” or simply as the effect of composition. A few others speak 

about “contextual” or “school-mix” effect, but no fundamental difference exists 

between the phenomena these terms refer to (Harker & Tymms, 2004). Consequently, 

some studies even use several terms alternatingly (Harker & Nash, 1996; Peetsma, 
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Van der Veen, Koopman, & Van Schooten, 2005). Economists ordinarily use the term 

“peer effect”. With this, they refer to the same phenomenon, although generally they 

place more emphasis on measuring the “pure” effect of minority share, filtered from 

all correlates and potential biases. In this study, we will use the terms compositional 

effects and effects of composition, since they are the most widely used in the Social 

Sciences. 

The compositional effect of ethnic minority share has been studied for several 

different minorities in several different countries. In virtually all of these countries, 

there is a substantial amount of school segregation along ethnic lines (Burgess & 

Wilson, 2005; Gijsberts, 2003; Gorard & Smith, 2004; Lauder & Hughes, 1999; 

McEwan, 2004; Rumberger & Palardy, 2004; Schindler-Rangvid, 2007). Ethnic 

minorities are also similar in many challenges they face.1 In the USA, large 

achievement gaps exist between Afro Americans and Whites (Thernstrom & 

Thernstrom, 2003), and between Hispanics and Whites (Clotfelter, Ladd, & Vigdor, 

2006b). This pattern of underachievement of ethnic minorities in comparison with the 

country’s ethnic majority can be seen in most countries of the Organisation for 

Economic Co-Operation and Development (OECD) (Demack, Drew & Grimsley, 

2000; OECD, 2003; Schindler-Rangvid, 2007). Outside of the OECD, McEwan 

(2004), shows that students from the indigenous population in Bolivia score lower 

than non-indigenous students. A similar indigenous – non-indigenous gap is found by 

Hoxby (2000) for Native Americans in Texas. 

Not only in school achievement gaps, but also in a variety of other situations, 

ethnic minorities in different countries face similar gaps and problems. Wage-gaps, 

ethnic employment discrimination, racism and discrimination against ethnic 
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minorities have been shown to exist in countries all over the world (Grogger, 1996; 

Riach & Rich, 2002; Canessa, 2004; Stevens, 2007). 

In order to cope with the large achievement gaps and other problems faced by 

ethnic minorities, politicians in different countries have developed strategies to 

combat school segregation along ethnic lines. Many strategies, including residential 

solutions such as mixing of the housing stock and vouchers to help people move to 

better neighborhoods, strategic redrawing of attendance zones, busing and magnet 

schools to attract ethnic majority students to schools with a high ethnic minorities 

share, have often had only limited effects (Angrist & Lang, 2004; Burgess & Wilson, 

2005; Driessen, 2002; Katz et al., 2001; Musterd, 2005; Schindler-Rangvid, 2007). 

Some potentially effective measures accept segregation as a given and aim to improve 

the quality of high ethnic minority share schools by increasing funding to those 

schools, or by increasing the salaries of teachers to keep talented teachers in such 

schools (Clotfelter, Ladd & Vigdor, 2006a; Driessen, 2002). Possibly effective for 

combating school segregation itself, are quota for admissions. If these quota explicitly 

refer to ethnicity, however, legal barriers may form an obstacle, see the recent US 

Supreme Court decision in the Seattle and Louisville cases (Meredith, 2007; Parents 

Involved in Community Schools, 2007) and similar issues raised in The Netherlands 

by the Dutch Equal Treatment Commission, an important anti-discriminatory advisory 

board. 

 

Differences Between Ethnic Minority Groups: Differential Effects 

Although, in broad lines, the situations of disadvantaged ethnic minorities are 

comparable across countries, there are also some important differences. Of course, the 

wideness of (achievement) gaps and the extent of segregation and discrimination, 

vary. But there are also some more fundamental differences. In this, we can roughly 

 5



make a division into three ethnic minority groups according to their history and 

situation: immigrants, African Americans and indigenous people. Immigrants differ 

from the other two groups in that they chose to move to the host country because of 

advantages it had to offer to them: better economic perspectives, freedom from 

oppression, the presence of family members in the new country, or a combination of 

these. Immigrants in different countries are similar to each other in their adaptation 

problems to the culture of the host country and (usually) in their unfamiliarity with the 

host country’s main languages2. African Americans stand out through the forced way 

in which their ancestors had to immigrate and through a long history of overt and 

legal discrimination. Also, the achievement gap with the ethnic majority is larger for 

African Americans than for most other groups (Thernstrom & Thernstrom, 2003). 

Under “indigenous people”, we group the original inhabitants of countries once 

colonized by Europeans and now dominated by their descendants. Native Americans, 

the Maori of New Zealand and the indigenous people of Latin America share a history 

of marginalization and oppression by the still dominant population group and often of 

denial of their own culture: no education in their own language, explicit or implicit 

discouragement of the practicing of their old cultural habits, et cetera. 

Despite these historical and situational differences between groups of ethnic 

minorities, scholars have not made a theoretical distinction between compositional 

effects associated with each of the groups. When authors, in one and the same study, 

examine compositional effects related to more than one ethnic minority, they just 

compare effect sizes, assuming that the mechanisms underlying these effects are the 

same for each of the ethnic minority groups  (e.g. Hanushek, Kain, & Rivkin, 2002; 

Harker & Nash, 1996; Hoxby, 2000; Vigdor & Nechyba, 2004). We follow this 

convention and do not treat effects related to different groups as theoretically 
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different. We do, however, think that there may be differential effects of composition. 

Compositional effects may for example be stronger when the ethnic minority group 

consists of Afro Americans than when the minority consists of immigrants. And 

ethnic minority students themselves may or may not be affected more strongly than 

students belonging to the ethnic majority (Angrist & Lang, 2004; Caldas & Bankston, 

1998; Gould, Lavy, & Paserman, 2004; Hanushek et al., 2002; Hoxby, 2000). 

By performing a meta-analysis, we try to bring structure into the wide variety 

of results that have been found so far on the compositional effect. An important goal 

of this meta-analysis is to find out to what extent compositional effects differ between 

ethnic groups. We therefore will focus on both the ethnic group that causes the effect 

and the group that is affected: both may make an important difference for the size of 

the compositional effect. By introducing a classification in ethnic groups, we can do 

justice to differences that may exist between ethnic groups, while at the same time it 

enables us to make generalizations about the subject at large. Nevertheless, we do 

realize that, when we, for example, group together all immigrants that are in a 

disadvantaged situation, we will not be able to capture possible differences between 

students within one specific ethnic minority group.  

Furthermore, we will also investigate whether other characteristics of the 

included studies, such as their samples (student age, test type) and characteristics of 

their estimation models affect their effect sizes. In this way, we try to shed light on 

why the reported effects of increasing the minority share range from strongly negative 

effects (e.g. Bankston & Caldas, 1996; Strand, 1997), via small effects (e.g. Angrist & 

Lang, 2004) and no significant effects (e.g. Rivkin, 2000), to even some estimates that 

suggest a positive effect of ethnic minority share on test scores (e.g. Link & Mulligan, 

1991; Vigdor & Nechyba).3 
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Causes of the Compositional Effect 

Many causes for the compositional effect of ethnicity have been proposed, although 

virtually no study quantitatively examines the link between proposed causes and the 

taking place of a compositional effect. In the great majority of studies, the size of the 

effect is estimated and some causes are listed as potential explanations for the effect. 

Nevertheless, for a good understanding of compositional effects, it is essential to 

understand how they may work and in which situations each cause might be of 

importance. The proposed causes why a student would perform poorer as the ethnic 

minority share increases, can roughly be grouped into four categories: direct peer 

interaction, teacher practice, school quality and research artifacts. 

 

1. Direct Peer Interaction 

Students who go to school together and interact on a daily basis will inevitably 

influence each others’ attitudes and behavior and may thus influence each other’s 

school performance. Poorly motivated students may convince others that it is not 

worth doing your best at school, or even put pressure on others not to excel (Driessen, 

2002; Hanushek et al., 2002; Harker & Tymms, 2004). Disruptive students may 

prevent others from learning, while students with more knowledge may help their 

classmates. Peers may also influence students’ learning through the general level of 

conversation and through the out-of-class activities that children choose to do (Harker 

& Tymms, 2004). Most of the ways in which ethnic composition affects achievement 

are basically unrelated to students’ ethnicity per se. Peers’ ethnicity is then mainly 

relevant because of its correlation with variables such as motivation, socioeconomic 

status, and ability. Because it is virtually impossible to separate effects of ethnicity 
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from effects of its correlates, researchers are generally interested in the effects of peer 

ethnicity including all its correlates (Card & Rothstein, 2006). 

Two channels of direct peer interaction that are inseparably linked to ethnicity 

are: 1. tensions between races that may interfere with learning (Hoxby, 2000) and 2. 

differences between the ethnic minority students’ mother tongue and the country’s 

official language. The higher the minority share, the higher the chance that minority 

students will mainly speak their mother tongue among themselves in school, have less 

contact with the majority’s language and will therefore learn the official language less 

well. (Driessen, 2002; Peetsma et al., 2005). This factor is expected to be most 

important for immigrants and then especially for their language performance. 

 

2. Teacher practice and teacher quality  

 Teachers may adjust their teaching style to the group of children in the class (Harker 

& Tymms, 2004; Hoxby, 2000; Thrupp, 1995). This may be a deliberate choice, for 

example if teachers adapt their teaching style to the specific needs of their students. 

This may positively affect the students with low skill-levels and specific needs, but 

the achievement of higher-skilled students without these specific needs may suffer: 

they would have performed better in a class with a different composition. Teachers 

can also have unjustified low expectations of ethnic minority students that may (often 

unintentionally) be communicated to the entire class. These low expectations may 

affect students’ believes in their own competence and subsequently lower their 

performances. This phenomenon is known by the name of “Pygmalion effect” 

(Rosenthal & Jacobson, 1968). 

Furthermore, ethnic minority share may also be related to the quality of the 

teachers and the teaching staff. In many countries, schools with a high minority share, 
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or more generally, with a less privileged intake, have difficulties in attracting highly 

qualified teachers (OECD, 2001; Scafidi, Sjoquist, & Stinebrickner, 2007). As a 

result, they often end up with less-qualified or less experienced teachers and have to 

struggle with higher teacher-turnover rates (Clotfelter, et al., 2006a). 

 

3. Artifacts 

A final reason why compositional effects may be found is that they only appear as 

artifacts of the statistical analysis used (Harker & Tymms, 2004; Hauser, 1970; 

Evans, Oates & Schwab, 1992; Hanushek, Kain, Markman & Rivkin, 2001; Nash, 

2003). Even without a causal effect of composition, students in a school or class with 

a high proportion of ethnic minorities will generally score lower on achievement tests. 

This is because there are student characteristics that simultaneously increase the 

expected share of ethnic minority students in their school or class and that negatively 

affect their achievement. For example, an ethnic majority child who goes to school 

with many ethnic minority children and gets low test scores, may either perform 

poorly because of a compositional effect, or just because his parents are poor and 

therefore live in a poor neighborhood where the ethnic minority share is high and 

where the schools also have a high ethnic minority share. Effects of ethnic minority 

share and of background can easily be confounded here. Such a statistical artifact is 

often denoted as “omitted variables bias”, since including all variables as covariates 

that are simultaneously correlated with proportion ethnic minority students and with 

achievement will solve the problem. It is, however, impossible to prove that all such 

covariates have been included. This is especially because the processes that may 

cause a child’s ability and his/her school composition to be correlated can be very 

subtle. Take for example parents who rightfully have high expectations of their child 
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and therefore try harder to get their child into a school with a good reputation (and a 

low ethnic minority share). This may cause a confounding of effects of a child’s own 

talent and those of school composition. But the omitted variables that are relevant 

here, true talent and support at home (stimulation, support with homework, etc.), are 

very hard to measure in a reliable way. 

For such reasons, Economists have developed statistical techniques that can, 

under certain assumptions, overcome this problem and yield unbiased estimates. 

Instrumental variables (IV) approaches and fixed effects analyses are the most 

important of these techniques here. It is often argued that dealing with omitted 

variables is essential when estimating compositional effects (e.g. Harker & Tymms, 

2004; Evans et al., 1992), because researchers otherwise risk overestimating them. 

 

Method 

Criteria for Inclusion 

In this study, we review studies on the effect of ethnic minority share on students’ 

scores on achievement tests. To be included in this review, a study has to fulfill the 

following criteria: 

1. It gives estimates of the effect of an increase in the proportion of ethnic 

minority students. Studies defining composition only by rough categories (for 

instance schools with more versus less than a certain percentage minority 

students) and studies comparing segregated with desegregated schools were 

excluded. 

2. The ethnic minority in question scores lower on achievement tests than the 

country’s ethnic majority. Estimates from the United States, for example, on 

effects of the share of Asians (e.g. Hoxby, 2000) are excluded since (East-
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3. The dependent variable is individual students’ scores on tests of mathematics, 

language, science or general academic achievement (being combinations of 

the three other types of tests). This excludes rough categories such as whether 

students drop out or pass exams. 

4. The estimation (regression) model used in the study, includes individual 

ethnicity as a covariate. Individual ethnicity and proportion ethnic minorities 

among peers are highly correlated, so that not including individual ethnicity 

would lead the proportion minority variable to serve as a proxy for individual 

students’ ethnicity. This would inevitably lead to a considerable 

overestimation of the compositional effect. 

5. The students in the sample are in primary or secondary (high) school (6-18 

years old). 

6. The study is published or presented no earlier than January 1986 and before 

January 2006. Note that while the aim of this study is to cover this twenty-year 

period, the earliest included studies appeared in 1996. Partly this lack of 

earlier studies can be explained by an increased attention to the topic in later 

years (up to the 1980s, focus in the USA was more on effects of desegregation 

attempts than on pure compositional effects, while elsewhere, research into 

compositional effects focused more on socioeconomic status composition); 

partly it can be explained by the introduction and dissemination of statistical 

techniques and programs that made it easier to conduct appropriate analyses 

on large databases. 
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7. The study is written in English. 

8. The study uses students’ present (“level”) test scores, not gain scores, as the 

dependent variable in its model. Estimates using gain scores refer to a 

different type of effect than estimates using level scores, and both types of 

estimates cannot be compared quantitatively, so that they would require 

separate meta-analyses. From the studies fulfilling the previous criteria, 

however, all but one (Hanushek et al., 2002), used level equations. Hence, our 

analyses will remain constrained to estimates from level equations. 

 

Identification of Studies 

Both published and unpublished studies were included in this meta-analysis. Eligible 

studies were identified by systematic searches of electronic databases related to 

different scientific disciplines including ERIC, Sociological Abstracts and EconLit. 

Search terms included combinations of the terms (racial) composition, compositional 

effect, contextual effect, peer, peer effect, peer influence, racial factors, ethnic groups, 

racial segregation, classroom environment and achievement. We thoroughly examined 

each of the identified studies for references to additional studies. In this way, several 

more studies on the compositional effect were identified. 

 

Coding Procedure 

Each study was coded by one of the researchers using a formal scheme. To obtain a 

high degree of coding reliability, all codings were independently verified by the other 

researcher. Differences in codings were discussed until consensus was reached. Using 

the coding form, effect sizes with their standard errors and information on relevant 

potential moderators of the compositional effect were systematically recorded. 
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Potential moderators will be discussed in detail below. Whenever information 

necessary for coding was not reported in the study, we contacted the author(s). A few 

studies had to be excluded, because the authors could not be contacted, or because 

they were unable to retrieve information that was essential for inclusion. 

Most studies gave several estimates of compositional effects. In some cases, a 

clear preference was given for estimates from one (final) model and other estimates 

were only shown as intermediate steps to arrive at this final model. If this was the 

case, only estimates from the preferred model were included; if no clear preference 

was given, all estimates were included. The final database included 177 estimates 

from 13 studies (see Table 1). 

-------------------------------- 

Insert Table 1 about here 

-------------------------------- 

Calculation and Weighting of Effect Sizes 

All included studies used some form of regression analysis. We “standardized” each 

reported effect estimate (being a regression coefficient) into a parameter that reflects 

the effect of an increase in the proportion ethnic minority students on standardized 

test scores. (That is: reported parameter estimates were divided by the standard 

deviation of the achievement test used in the study; if the parameter estimate for 

example referred to an increase in the minority share by one percent, the estimate was 

multiplied by 100 to make it refer to an increase in proportion.) The standard errors to 

the estimates, which were necessary for the weighting procedure described below, 

underwent the same linear transformation.4 

We estimate a mixed-effects meta-regression (Overton, 1998; Lipsey & 

Wilson, 2001) of the following form: 
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(1)  
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In this, Tij is the i’th effect estimate reported in study j of the “true” 

compositional effect. Because of sampling error, Tij can deviate from the true value of 

the compositional effect, which is reflected in the sampling error term, eij, which is 

the standard error to the estimate as reported in the study. Both Tij and eij have been 

standardized as described above. We assume that the true effect is not constant over 

all estimates, and that this variation can be captured partially, but not completely, by 

our set of moderators, Xk. Therefore, we estimate a mixed-effects meta-regression. 

This means that we see the estimates included in this analysis as a random sample 

from all potential estimates that could have been made of the effect. The true effect 

size is assumedly normally distributed over all potential studies, with variance 
2. To 

capture this variation, we add an additional error term, uij, to our model (Overton, 

1998; Raudenbush, 1994). Adding this term enables us to generalize beyond the 

particular set of estimates we included (Hedges & Vevea, 1998). 

Each estimate in the meta-regression is weighted by the inverse of its total 

variance (Lipsey & Wilson, 2001; Raudenbush, 1994): 

(2) 
2

1




ij
ij v

w , 

in which vij is the squared of the sampling error, eij. As discussed, most studies 

contributed several effect estimates for which some of the moderators, Xk, are usually 

different. Weighting simply by wij as described, means that we ignore dependencies 

between estimates coming from the same study. Studies contributing several estimates 

that are not completely independent of each other, therefore get a disproportionally 

large weight. We adjust our weighting procedure to take this into account properly, as 

is described in Appendix 1. We estimate the meta-regression from Equation (1) with 
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these adjusted weights using SPSS by means of restricted maximum likelihood (Hox, 

2002; Thompson & Higgins, 2002). 

Note that although a few studies contribute a large number of estimates, the 

results are by no means predominantly determined by these few studies: the 

regression parameters we estimate are determined by variation between contributed 

effect estimates, and this often comes from variation between studies, so that the 

studies contributing only one or two estimates are very important as well. Also, 

because of the adjustment described in Appendix 1, individual estimates from the few 

studies that contribute many estimates, receive lower weights than individual 

estimates from the average other study. In Appendix 2, we show that deleting the two 

studies that contribute the highest number of estimates, does not affect the robustness 

of our results in an important way. 

In the basic meta-regressions following Equation (1), we start with an empty 

model, and in three following models each time add a set of covariates, Xk. After this, 

we additionally conduct study fixed effects analyses in order to check the robustness 

of our results. In these analyses, we combine meta-regression with panel fixed effects 

techniques as will be described next. 

 

Study Fixed Effects Analyses 

In meta-analyses (as in most analyses on non-experimental data), there is a risk that 

omitted variables may bias the results. Omitted variables are variables that are 

simultaneously correlated with the dependent variable (here: the effect sizes), and 

with the independent variable (here: characteristics of included studies). If these 

omitted variables are not included as covariates in a regression, they will bias the 

results. To give an example: in our meta-analysis, we compare effects of immigrant 
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share with effects of Afro American share. Suppose that the included studies which 

studied the effects of immigrant share on student achievement do not correct for prior 

achievement very often. This will lead to an overestimation of the effects of 

immigrant share (see also the paragraph on moderators below). If we, in our model, 

do not correct for the study characteristic “corrected for prior achievement”, we may 

falsely conclude that the effect of immigrant share is larger than the effect of African 

American share. But this may only be an artifact, arising because of our failure to 

correct for an important covariate. In our meta-analysis, we actually do correct for this 

particular covariate. But we cannot be sure that every other relevant covariate is 

included, and therefore we potentially run the risk of omitted variables bias. 

 Using a meta-regression, instead of a meta-ANOVA, greatly reduces this risk, 

because at least some covariates can be included. But it does not completely solve it: 

included studies differ on many characteristics and it is impossible to include a 

covariate for each of those. We, therefore, check the robustness of the results against 

omitted variables bias by combining fixed effects panel data techniques with meta-

regression analysis. In a fixed effects meta-regression, we use the fact that most of the 

included studies contributed several effect estimates. We filter out all systematic 

differences in effect sizes between studies. All identification now comes from 

differences within studies in the characteristics of the effect estimates they 

contributed. By taking out the between-study differences, we make sure that study 

characteristics that are correlated to our covariates cannot bias our results. We 

estimate a meta-regression of the following form: 

 (3)  



l

k
ijkijkjij eXT

1
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In this, j stands for a fixed effect (cf. dummy variable) per study; the other 

terms are similar to those in Equation (1).5,6 Note that using this specification, no 

estimates on characteristics that are constant within each of the studies can be 

obtained. Also, no constant, 0, can be estimated. And because we use a dummy 

variable per study, R2 is artificially inflated and hence loses its meaning. Since not all 

studies contribute more than one estimate, the number of included estimates is lower 

than in the previous analyses: 174 estimates from 10 studies were included (see Table 

1). 

 

Moderators 

The main question in this meta-analysis is whether the size of the compositional effect 

differs between the ethnic groups that we distinguish. Hence, the main covariates in 

each analysis are dummies indicating whether an effect pertained to increasing the 

share of African Americans, immigrants, or indigenous children and dummies 

indicating whether effects were on test scores of students from the ethnic majority, on 

students from an ethnic minority, or on the entire student population.  

We also investigate whether studies’ sample and estimation model 

characteristics affect the size of the compositional effects they found. Two sample 

characteristics that might moderate the compositional effects are age and test type. 

We expect that as children get older, the influence of adults such as parents and 

teachers on their behavior may decrease, while the influence of peers of their own age 

increases. Hence, the compositional effect may increase in size as students get older. 

The main hypothesis on why compositional effects would differ between test types is 

the so-called contact-hypothesis: a high concentration of ethnic minority students who 

speak another language at home than the language of instruction at school, may lead 
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to less contact with, and hence, proficiency in, the instructional language (Driessen, 

2002; Peetsma et al., 2005). In the case of immigrants, this would suggest a stronger 

compositional effect on language test scores. 

Differences between the studies included in this meta-analysis in how they 

modeled and analyzed the effects of composition lead to a set of five potential 

moderators. The most fundamental difference in approaches is that between studies 

that name the effect peer effect and those that write about compositional or contextual 

effects. The term peer effects is mainly preferred and used by Economists, who have a 

relatively restrictive interpretation of the effect: it is usually meant to be cleaned from 

all correlates that are not by definition tied to minority share, such as school and 

teacher characteristics. As a consequence, Economists measuring peer effects 

generally have a stronger focus on avoiding statistical artifacts such as omitted 

variables bias and may therefore find weaker effects. 

A second characteristic of studies is the level at which they measured minority 

share: at the level of the class, or at the broader level of the entire cohort or school. Of 

the proposed causes of the compositional effect, especially those causes related to 

direct peer interaction and those related to the teacher in the class are dependent on 

the composition of the class. Composition of cohort or school is only relevant here, to 

the extent that it is an approximation of the composition of the class. Since 

approximations contain noise, estimates from data in which composition is measured 

at cohort or school level may suffer from attenuation bias, i.e. a bias toward zero.7 In 

so far that compositional effects are caused by school quality differences, as several 

authors propose, it makes no difference whether composition is measured at class-

level or at school-level. 
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The three other study characteristics pertain to the covariates studies used in 

their models: socioeconomic status, ability and students’ prior achievement. Ethnicity 

correlates with socioeconomic status and ability. Therefore, studies that correct for 

average socioeconomic status, may partially explain away the effect of ethnicity, and 

hence find smaller effects. Similarly, studies that correct for average ability level 

(often measured by averages on a prior test), may also partially explain away the 

effect. If a study corrects for individual students’ prior achievement, this may affect 

its estimates for a different reason: estimating compositional effects without 

correcting for individual students’ prior achievement or ability, is very likely to lead 

to overestimation (Goldhaber & Brewer, 1997; Hanushek et al., 2002; Ho Sui Chu & 

Willms, 1996; Rumberger & Palardy, 2005). The first reason for this is that prior 

achievement may have influenced which school, class, or track the student currently 

attends, and thus also the current ethnic minority share among his peers (in lower 

tracks, there may be more ethnic minority students). Researchers who do not correct 

for individual prior achievement may therefore confound effects of prior achievement 

with effects of current minority share. The second reason is that prior achievement 

may be affected by prior composition. Not correcting for prior achievement then leads 

to a confounding of effects of current composition and those of composition in the 

past. As composition in the past is strongly correlated to current composition, the 

estimated effect will be an accumulation of the compositional effects that a student 

has experienced over all previous school years. 
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Results 

Meta-regression: general differential effects 

Table 2 shows the results from the first basic set of meta-regressions. After estimating 

an empty model, we add dummies that indicate the ethnic group that was studied. 

Next, we add other characteristics of the samples used in the included studies, and 

finally, we add characteristics of their estimation models. 

-------------------------------- 

Insert Table 2 about here 

-------------------------------- 

The empty model (model 1) gives the weighted average effect size over all 

included studies. Recall that effect sizes refer to increasing a proportion: on average, 

the studies find an effect size of -0.18, which indicates that increasing the share of 

students from an ethnic minority by ten percentage points is associated with a 

decrease in individual students’ test scores by 0.018 standard deviation. There is 

considerable variation between the included studies in the effects they find, as is 

indicated by the highly significant systematic variance component. By adding 

covariates in the following models, the systematic variance will decrease. 

Model 2 adds dummies indicating the ethnic groups to which the effects are 

related. The model should be read additively: the constant refers to the effect of 

African American share (the omitted category in the first set of dummies) on test 

scores of students from this same ethnic minority group (the omitted category in the 

second set of dummies). For the effect of African American share on test scores of 

students from the ethnic majority, add 0.128 to the constant; for effects of immigrants 

on immigrants of the same ethnicity, add 0.161 to the constant, and for effects of 

immigrants on students from another ethnicity, add 0.161 plus 0.180, and so forth. 
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Model 3 adds other sample characteristics. The covariate age is centered at 12, 

and the omitted category for test is math8, so that the constant now obtains the 

interpretation of the effect on math scores of 12-year olds. In the final model (model 

4), where we add other characteristics of models and studies, the clear interpretation 

of the constant and the additive nature of the coefficients remain, since for each 

(dummy) covariate, the omitted category refers to the arguably best way of measuring 

compositional effects.9 

The size of the compositional effect seems to differ substantially across the 

ethnic groups. Increasing the share of African Americans is associated with a 

considerably stronger negative effect on test scores than increasing the share of 

immigrants. Effects related to the share of indigenous students lie close to those of 

(and cannot statistically be distinguished from) the African American share. 

Increasing ethnic minority shares mainly seems to affect students who belong to the 

same ethnic minority groups. Students from the ethnic majority and students from 

other ethnic minorities appear to be affected much less (as is indicated by the positive 

parameter estimates). Effects pertaining to test scores of the entire population, being a 

mix of different ethnic minority groups and the ethnic majority, should lie somewhere 

in between of those, depending on the exact ratios of the different groups. That the 

point estimate lies higher than that for the ethnic majority may be due to sampling 

variance. 

By adding up the coefficients as described, we see that the compositional 

effects seem small: increasing the Afro American or indigenous students share by ten 

percentage points is associated with a decrease in test scores of students from those 

same minorities by about 0.027 standard deviation. The effect of this on the 

performance of other ethnic groups (either minority or majority) is about half that 
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size. And so is the effect of immigrant share on immigrants’ own test scores. The 

immigrant share seems to have an effect of around zero on test scores of students 

from other ethnic groups and on students from the ethnic majority. 

Table 2 also shows that age nor test type moderate the size of the 

compositional effect found. The interaction of language test x effects of immigrants, 

which was expected to be negative, is far from significant. This is not surprising, 

given the small effects of immigrant share in general. Researchers focusing on “peer”, 

instead of on “compositional” or “contextual” effects, do not find considerably 

smaller effects, despite their somewhat more delimited definition of the effect and 

their stronger focus on avoiding bias due to omitted variables.10 

The point estimate for the covariate indicating whether a correction for 

individual students’ prior achievement was made is quite strong. This suggests that 

failing to do so leads to a substantial overestimation of the effects of composition. But 

it has such a large standard error that it is not significant. This might either mean that 

correcting for prior achievement is not necessary, or that it is necessary only in certain 

instances, i.e. there where the compositional effect is substantial: if a compositional 

effect is small (for instance the effect of immigrant share on majority’s test scores), it 

makes no difference for the estimate if (due to omitting pre scores) it picks up effects 

of composition in the past.11 

The small coefficient for the effect of correcting for average SES suggests that 

the lower average SES of ethnic minorities at best only explains a small part of the 

compositional effect. This might be an underestimation, as average SES has been 

shown to have a considerable effect on test scores (e.g. Opdenakker et al., 2002; 

McEwan, 2003; Willms, 1986) and given the much lower average SES of ethnic 

minorities. This underestimation may occur because of the way most studies 
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measured average SES. As Van Ewijk & Sleegers (2007) show, using a rough, 

unreliable measure, a measure that only captures certain parts of the SES-concept, or 

measuring average SES at cohort- or school-level instead of at class-level, leads to a 

bias towards zero in the coefficient to average SES. Correcting for average SES in 

these cases affects the size of the ethnicity compositional effect to a much lesser 

extent. Again, the small effect may also be a result of the general small size of the 

compositional effect, which means that correcting for average SES cannot make a 

large difference in absolute sense by definition. The same applies for the level at 

which ethnic minority share is measured: we do not find the expected difference in 

effect size between those instances where composition was measured at school / 

cohort level and those where it was measured at class level. The near-zero coefficient 

for the effect of correcting for average ability level suggests that ability is also not a 

main channel through which composition according to ethnicity has an effect. 

The variance explained in the final model is relatively low, with a bit above 

16%. Nevertheless, the systematic variance component has shrunk by about half by 

adding the set of predictors. This means that our model does quite well on explaining 

that part of the variance that can be explained: much of the unexplained variance is 

due to sampling error which can never be explained by adding covariates. That this 

sampling variance is relatively so large is due to the small sizes of the compositional 

effects: in some cases it is about zero. The closer effects are to zero, the larger the part 

of the variance between estimates that will be due to noise / sampling variance, which 

can by definition not be related to any possible covariate. In the most extreme case, in 

which all studies estimate the same effect with a true size of zero, all differences 

between these estimates will be noise and no variance can be explained. 
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Meta-regression: differential effects specified  

In the first set of models, we made the implicit assumption that e.g. the coefficient for 

“effect is of immigrant share” would be the same in size, irrespective if the affected 

group was the ethnic majority, or ethnic minority students. We may, however, have 

ignored some interaction effects in this way. Our implicit assumption gave us a higher 

power and sharper point estimates and had the added advantage of an easier 

interpretation, but it may have been too strong. In the following, alternative model, we 

try to verify this assumption by using a finer subdivision of the “effects of” and 

“effects on”. Each combination of “effect of” and “on” will be entered as a separate 

covariate, with the reference category being the effect of African American share on 

test scores of African Americans. All other combinations of effect on / of are 

compared to this reference category which is captured by the constant. We also enter 

the set of other covariates from the previous model. The results from this analysis are 

presented in Table 3. 

-------------------------------- 

Insert Table 3 about here 

-------------------------------- 

-------------------------------- 

Insert Table 4 about here 

-------------------------------- 

Effects should again be interpreted additively: the constant plus the parameter 

to an effect on / of combination gives the estimated effect for that combination. Table 

4 shows these added-up estimates and the number of studies and effect estimates that 

were included on each combination in this meta-analysis. Note that for indigenous 

students, only effects on the entire student population are estimated, because of a lack 

of studies giving estimates of the effect of indigenous share on other groups.12 
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The estimates from this second specification generally follow those from the 

first analysis: effects of African Americans and indigenous seem about equal and 

appear larger than effects of immigrants. Effects on the own minority group turn out 

larger than effects on the ethnic majority. Hence, the second analysis strengthens the 

conclusions we drew from the first analysis. One new interaction that shows up is that 

the “African American on other minority” (viz. Hispanics) effect seems about equal to 

the “African American on same minority” (i.e. on African Americans) effect. The 

“immigrant on other minority effect”, on the contrary, appears much weaker than the 

“immigrant on same minority effect”, and even (although nonsignificantly) seems 

positive.13 As in the first analysis, none of the covariates that are unrelated to the 

ethnic groups the effect is of or on, is significant. The point estimates for these 

parameters are also very similar in both analyses. 

 

Study fixed effects analyses 

Table 5 and 6 show the results from the study fixed effects models. These models use 

only within-study variation: variation in the characteristics of the various estimates 

contributed by a study. Hence, some parameters are only estimated using one or two 

studies and some of the covariates from the previous models could not be included. 

The study fixed effects models therefore mainly serve as a robustness check. Recall 

that using this type of model, R2 loses meaning and that a constant cannot be 

estimated, so that we cannot give an estimate for the reference categories (the effect 

of African American share on students from that same minority). However, we can 

compare the size of all other effects to that for the reference categories. 

-------------------------------- 

Insert Table 5 about here 
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-------------------------------- 

The specification of the first study fixed effects analysis follows the first 

“ordinary” meta-regression. The pattern of results is about the same: the effects on 

students from the ethnic majority and on students from another ethnic minority again 

seem smaller than effects on the same ethnic minority, but the difference is smaller. 

The effect of indigenous share now seems stronger than that of African American 

share, but the standard error is very large, so that like the estimate in the first meta-

regression, the difference cannot be statistically distinguished from zero. The effect of 

immigrant share, again, is significantly smaller than the effect of African American 

share. 

Only three studies reported estimates on more than one age group. From those 

studies, it seems that the compositional effect is stronger among older students. That 

this effect did not show up in the earlier analyses may be because now only within-

study differences in the three studies drive the result, while before, unmeasured 

between-study differences may have obscured the age-effect. 

The second study fixed effects analysis follows the second ordinary meta-

regression. Again, the parameter estimates generally follow those from the previous 

analysis, although the exact parameter sizes and a few significance levels differ. 

Notably, the African American on majority / entire population estimates are weaker 

and the immigrant on entire population estimate is larger and now significant. Unlike 

in the first study fixed effects analysis, the effect of indigenous share now seems 

weaker than that found in the ordinary meta-regression, but is again estimated very 

imprecisely, so that strong conclusions cannot be attached. Once more, there is a 

strong indication that compositional effects increase in strength as children get older. 

So, the two study fixed effects meta-regressions generally confirm the robustness of 
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our earlier analyses. Some parameters do differ in size from those in the ordinary 

meta-regressions, but the pattern of results is the same. The notable new finding from 

the study fixed effects analyses is the significant effect of age. 

-------------------------------- 

Insert Table 6 about here 

-------------------------------- 

 

Discussion 

Effects of ethnic minority share on test scores have been examined in many studies 

from several countries. In this study we conducted a meta-analysis in order to bring 

structure into the wide variety of results that have been found so far on this 

compositional effect. We followed the convention from other studies that 

compositional effects are treated as the same in nature, but to do justice to existing 

differences, we also introduced a classification into ethnic groups, both in the type of 

ethnic group that causes the effect and in the type of group that is affected by the 

minority share. Distinguishing between ethnic groups that cause the effect seems 

necessary because important differences exist between ethnic groups in their 

socioeconomic and historical backgrounds. As a result, increasing the share of 

students from one minority group, may have stronger effects than increasing the share 

of students from another minority group. Differentiating between ethnic groups 

among those affected by the minority share, follows ideas on differential effects that 

several authors have addressed recently. They argued that school effects often vary 

between students with different backgrounds. For example, students from poorer 

socioeconomic background seem more sensitive to school factors in their learning 

(Muijs et al., 2005; Palardy, 2008). Similar variations in the effect of composition 
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may be expected between students with different ethnic backgrounds. In a meta-

analysis, we can only distinguish between relatively broad ethnic groups, and there 

may still be variance within these groups that we, out of necessity, ignore. But using 

different specifications of ordinary meta-regressions and fixed effects meta-

regressions, we showed the robustness of our results. This gives confidence in the 

generalizability of these results and strengthens the belief that there are no large, 

fundamental differences within the ethnic groups we distinguish. Nevertheless, sub 

classifications and exceptions may in some cases be very important and should be 

studied in subsequent work. 

The meta-analysis showed that compositional effects on test scores found in 

the existing literature, are generally not very large, but that there is some important 

variation. Effects related to the share of African Americans (and effects related to the 

share of indigenous students) seem considerably stronger than effects related to the 

share of immigrants. Why exactly this is the case, does not become immediately clear 

from the reviewed literature and asks for further research. Most likely, it has to do 

with the situation that African Americans are in, which in a number of aspects is 

arguably worse than the situation other ethnic groups are in. They face larger 

achievement gaps than most groups of immigrants and stand out through a long 

history of overt and legal discrimination. The fact that African American students 

have such a long history of social, economic and educational deprivation may affect 

expectations and strengthen stereotypes held by teachers of these students. The causal 

channel that is largely specific for immigrants, language problems, does not seem to 

weigh up to this. (Besides, we found no evidence that the effect of immigrant share 

was stronger on language performance than on mathematics performance.) 
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The results showed that increasing the ethnic minority share seems to have a 

stronger effect on students from that same ethnic minority group, than on students 

belonging to the ethnic majority or on other minority groups. (For immigrant share, 

the effects on majority’s and other minority’s test scores even seem close to zero.) 

Perhaps the effect on the “own” ethnic group is strongest, because students within 

ethnically mixed schools interact more with students from their own ethnicity than 

with students from other ethnicities (Echenique & Fryer, 2007). Also, they may be 

more vulnerable to the way that a teacher’s teaching style and expectations change as 

the minority share increases. Ethnic minority children may also be more vulnerable to 

compositional effects in general, because of a lower average level of social capital, 

meaning that they are more dependent for their learning process on the school context. 

One issue that we did not address in our meta-analysis is the issue of ethnic 

composition as a non-linear effect. It is possible that compositional effects get 

stronger (or weaker) as the ethnic minority share goes up. Consequently, some 

researchers entered quadratic terms for composition in their regressions, and others 

compared e.g. schools with less than 25% with schools with 25-50% minority 

students. Quadratic effects cannot be quantitatively compared to linear effects: they 

would require a separate meta-analysis. But the number of available studies that 

satisfies our other criteria for inclusion is too low for this. Results from analyses that 

compared schools with different shares of minorities cannot easily be compared with 

each other (e.g. a study using 0-25%, 25-50%, etc. cut-off cannot easily be compared 

to one using 0-33%, etc.), or with the studies included in the present meta-analysis 

and therefore had to be excluded. Hence, this meta-analysis does not enable 

conclusions about the non-linearities that potentially exist in compositional effects. 
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It is often argued that with regard to compositional effects, it is not ethnicity 

that matters, but the highly-correlated socio-economic status. We did not find 

conclusive evidence for this: correcting for average SES does not take away the 

ethnicity compositional effect. However, this may have to do with unreliable 

measurement of SES in several of the included studies (see also Van Ewijk & 

Sleegers, 2007). We also did not find proof for the assumption that compositional 

effects of ethnicity go via average ability level and neither for the expected 

differences in effects between composition measured at class- and at cohort- / school-

level. 

Another often heard argument is that statistically established compositional 

effects are only artifacts of the method used. The extent to which the studies included 

in our meta-analysis are at risk of giving biased estimates differs. Studies using simple 

OLS without a carefully chosen set of covariates will be more at risk than studies 

using IV or a carefully chosen set of covariates, possibly including some fixed effects. 

There are a few parameters in our meta-analytic models that touch on this discussion. 

Not correcting for individual prior achievement when estimating a compositional 

effect, we argued, would be a major source of bias. However, although point 

estimates in our models suggested that this bias may be a major concern, these 

estimates were not significant. Studies defining the effect as peer effect generally had 

a stronger focus on avoiding bias. They found a bit smaller effects, but this difference 

was far from significant. Despite this, there are strong arguments about the risks of 

bias and researchers should always take these into account and carefully choose their 

models. 

For several of the aforementioned parameters, we found large but not 

significant effects compared to the overall effect. Given the total student N over all 
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studies which is enormous, we would have expected either small and insignificant, or 

large and significant effects. That this is not the case and, furthermore, that the 

variance explained in our models is not very large, has three notable causes. First, the 

compositional effects were small. So, the parameters are not large in an absolute 

sense, but large relative to the small primary effects. Second, compositional effects 

varied between combinations of effects of and on different ethnic groups. For 

example correcting for average SES or not correcting for pre scores will probably 

have a larger impact when the compositional effect is large, than when it is around 

zero. Hence, our assumption that the parameters to several covariates are equal for the 

different ethnic groups the effect can be of or on, may have been too strong. We could 

not solve this by adding a set of interactions, since the variance between the included 

estimates did not suffice to do so. Third, the studies included in our analyses all used 

multiple regression. This is usually not the case in meta-analyses. In order to capture 

all differences between the studies, we would have had to include in our meta-

regressions a covariate for each covariate used in the studies and for the way in which 

it was measured. This is not possible. By using meta-regressions instead of univariate 

meta-ANOVA’s, we were able to control for heterogeneity between studies to a 

substantial extent by adding covariates. But remaining heterogeneity (which is dealt 

with by adding a random effects variance term) does increase standard errors. 

Do our results imply that compositional effects are of no importance and that 

mixing schools is not a valid policy objective? It may not be that simple. Rumberger 

& Palardy (2005) have shown that most Afro Americans attend schools where ethnic 

minorities constitute the majority of the population. Taking Afro American students 

from a school with, say, a 70% Afro American share to a school with a 20% share, 

may increase their test score by about 0.13 of a standard deviation; and (as our fixed 
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effects regressions suggest) even more for older students. Moreover, if this effect 

works throughout a child’s entire school career, it can add up considerably. In similar 

situations, test scores of immigrants would increase by a lower amount, but the 

increase would still be of practical importance. Importantly, since the scores of other 

groups are not affected so much, mixing may lead to a net gain: the average test 

achievement in a country or area would increase. Even so, the small negative effects 

found on other ethnic groups, may be held by some as an argument against mixing, as 

may the argument that effects may not be large enough to warrant difficult and often 

expensive attempts at mixing. Of course, there may also be entirely different reasons 

why a society would not want its children to experience schools that are largely 

segregated by ethnicity. This discussion is a political one that goes beyond the scope 

of this study. Still research might help politicians to design evidence-based strategies 

to combat school segregation effectively. Therefore, it is important to carry out meta-

analyses on such effects. It makes it possible to bring structure to a diverse field and 

to see why different studies report varying results on a similar phenomenon. Also, our 

technique of study fixed effects meta-analysis (which we believe is a valuable 

addition to current meta-analytic techniques), made it possible to better examine the 

results reported in a diverse field, using information from differences between 

multiple estimates given by the same study. We hope that future studies will follow 

our example in order to create an empirical knowledge base that can help politicians 

to design evidence-based policies to combat school segregation. 
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Appendix 1 

Adjusting the Weighting Procedure for Multiple Estimates From the Same 
Study 

When a study contributes several estimates to a meta-analysis, an often argued-for 

approach to deal with their mutual dependence, is to include only one of the estimates, 

or to take an average over the estimates (Lipsey & Wilson, 2001). Using this approach 

here would lead to a loss of valuable information, because estimates from the same 

study usually differ on some of the covariates. Another approach, proposed by Hox 

(2002), is to adjust for clustering of data using multilevel meta-analytic models. This 

is a good approach when a study reports estimates on the same (true) parameter using 

different subsamples. Here, however, it is not conservative enough, since the 

estimates often come from exactly the same data on the same (sub)sample; the 

difference lying in a few covariates. If multiple estimates are made on the same data, 

then these data determine all estimates that can be made on it at the same time – 

values on both the predictor of interest and on the dependent variable are the same for 

each estimate. Hence, we call these estimates “codetermined”. Codetermined 

estimates do not necessarily come from the same study: if one and the same database 

of test scores is used in several studies (either by the same or by different authors), 

then estimates from different studies can also be codetermined. (Note that multilevel 

meta-analytic models also do not deal with this dependence between estimates from 

different studies.) Conversely, not all estimates from the same study need to be 

codetermined: for example an estimate using language test scores comes from a 

different sub database than an estimate on math scores. If and only if both data on the 

independent and the dependent variable of interest are the same, we regard estimates 

as codetermined. 
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To deal with such estimates, we start from the assumption that we can get no 

more accurate information from a set of codetermined estimates than the information 

from the most accurate of the estimates, i.e. the one with the smallest estimation 

variance, vij
smallest. The sum of the inverse estimation variances of all codetermined 

estimates should not be higher (nor lower) than exactly this. To this end, we divide 

the smallest estimation variance (“the accuracy”) over all codetermined estimates, 

proportionally according to the accuracy of each, leading to an adjusted sampling 

variance for each estimate of: 

(A1) 

estimates
termined

-code all

* 1
*

ij

smallest
ijijij v

vvv  

This adjusted sampling variance is used in the weighting procedure for the 

meta-regressions. Note that, following the criteria described above, the majority of the 

estimates (101) are not codetermined; there are 21 sets of two estimates that are 

codetermined, four sets of four, two sets of five and one set of eight estimates. 

Although we believe that adjusting the weighting for codeterminedness is important, 

the regression parameters and standard errors hardly change if we leave out this 

correction. An alternative strategy would have been to randomly include only one 

estimate out of each set of codetermined estimates. This leads to a loss in power and 

to increased instability in some coefficients. In estimates we made using three 

different random picks, the main coefficients (effect on / of) proved quite stable 

(although standard errors increased) while some of the other coefficients started 

varying in magnitude due to the loss in power and information, although significance 

levels were unaffected. 
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Appendix 2 

Sensitivity of Results to Removal of Studies Contributing Large Numbers of 
Estimates 

A potential concern in our analyses may be that a few studies contribute a large 

number of effect estimates. As discussed in the main text, our results are not expected 

to depend mainly on these studies. We check this by re-estimating our model after 

deleting the two studies that contributed the largest number of estimates: Hoxby 

(2000) and Angrist & Lang (2004). This leads to a loss of power and information, but 

our regression parameters should not change so much now. After removing the two 

studies, the number of included effect estimates decreases from 177 to 73. Table A1 

shows the results next to the original ones from Table 2. Our results prove reasonably 

robust against this deletion: most coefficients fall easily within each other’s 

confidence intervals. The effect of age becomes significant and “Effect is on students 

from the ethnic majority” becomes insignificant. Both changes, however, are in line 

with our fixed effects models. The effect of indigenous share (of which Hoxby gave a 

number of estimates) becomes negative, but stays insignificant. Effect of immigrant 

share and the interaction with language test also show changes. But given that we 

have deleted quite a bit of valuable information, the number and pattern of noteworthy 

changes seems acceptable. Our results, thus, show not to be predominantly 

determined by the two studies contributing the largest number of effect estimates. 

-------------------------------- 

Insert Table A1 about here 

-------------------------------- 
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Table 1. Summary of studies included in the meta-analysis. 
 
Author(s) (publication 
year) 

Estimates in 
basic meta-
regressions 

Estimates 
in fixed 
effects 
models 

Country Effect of  
on 

Effect size: minimum / maximum for 
combination 

Angrist & Lang (2004) 32 32 USA AA  same 
AA  all 

-6.24 / 1.13 (OLS); -11.15 / -.42 (IV) 
-.41 / .15 (OLS); -1.12 / -.66 (IV) 
 

Bankston & Caldas (1996) 12 12 USA AA  same 
AA all 
AA  maj 

-.68 / -.37 
-.49 / -.30 
-.32 / -.13 
 

Bankston & Caldas (1998) 2 2 USA AA  all -.28 / -.26 
 

Caldas & Bankston (1997) 1 - USA AA  all -.48 
 

Caldas & Bankston (1998) 3 3 USA AA  same 
AA  all 
AA  maj 

-.25 
-.24 
-.28 
 

Harker & Nash (1996) 9 9 New Zealand imm  all 
ind  all 

-1.86 / .76 
-.61 / .17 
 

Hoxby (2000) 72 72 USA AA  same 
AA  imm 
AA  maj 
imm  maj 
imm  same 
imm  other 

-1.07 / .10 
-.86 / -.18 
-.30 / .08 
-.19 / .03 
-.63 / .02 
-.18 / .17 
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ind  other 
ind  maj 

-3.56 / 1.73 
-1.20 / 1.53 
 

McEwan (2003) 6 6 Chile ind  all -.30 / -.30 (school fixed effects) 
-2.77 / 2.70 (siblings & twins fixed effects) 
 

McEwan (2004) 8 8 Chile & 
Bolivia 

ind  all -.33 / .11 

Peetsma et al. (2005) 22 22 Netherlands imm  maj 
imm  all 
imm  other 

-.21 / -.16 
-.15 / .03 
-.20 / .36 

Rivkin (2000) 1 - USA AA  same .20 
 

Strand (1997) 1 - UK imm  all -1.03 
 

Vigdor & Nechyba (2004) 8 8 USA AA  same 
AA  maj 
imm  maj 
imm  same 

-.10 / -.05 
-.13 / -.05 
-.12 / -.12 
.04 / .19 
 

Note: AA = African Americans; imm = immigrants; ind = indigenous; all = entire student population; same = effect is on students from same 
ethnic minority; other = effect is on students from another ethnic minority.



Table 2. Parameter estimates and (standard errors) for the first set of basic meta-
regression models: general differential effects. 
  (1)  (2)  (3)  (4) 

Constant (= effect of African 
American share on students 
from the same ethnic 
minority) 

-0.178 ** 
(0.020) 

-0.364 ** 
(0.048) 

-0.363 ** 
(0.057 ) 

-0.271 ** 
(0.089) 

Effect is of immigrant share   0.161 ** 
(0.044) 

 0.179 ** 
(0.063) 

 0.133 * 
(0.061) 

Effect is of indigenous share   0.056 
(0.069) 

 0.047 
(0.070) 

 0.014 
(0.089) 

Effect is on entire student 
population 

  0.125 
(0.068) 

 0.132 
(0.069) 

 0.121 
(0.067) 

Effect is on students from the 
ethnic majority 

  0.128 * 
(0.055) 

 0.124 * 
(0.055) 

 0.117 * 
(0.049) 

Effect is on students from 
another ethnic minority 

  0.180 * 
(0.070) 

 0.172 * 
(0.070 ) 

 0.153 * 
(0.067) 

Age (centered at 12)   -0.006 
(0.010) 

-0.005 
(0.015) 

Test = language    0.004 
(0.058) 

 0.011 
(0.052) 

Interaction: test = language x 
effect of immigrants 

  -0.058 
(0.083) 

-0.062 
(0.074) 

Studied effect = peer effect 
(ref. cat: compositional effect) 

    0.059 
(0.112) 

No individual prior 
achievement covariate 
included 

   -0.176 
(0.169) 

Composition measured at 
cohort or school level (ref. 
cat.: at class level) 

    0.015 
(0.088) 

Model included covariate for 
average SES 

   0.063  
(0.060) 

Model included covariate for 
average prior achievement / 
ability 

   -0.005 
(0.140) 

     

R2 n.a. 0.109 0.113 0 .163 

Systematic variance 
component (

2) 
0.0221 ** 
(0.0057) 

0.0192 ** 
(0.0052) 

0.0182 ** 
(0.0050) 

0.0119 ** 
(0.0038) 

Note: * = significant at .05 level; ** = significant at .01 level
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Table 3. Parameter estimates and (standard errors) for the second basic meta-
regression model: differential effects specified. 
  

Constant (= effect of African American share on African 
American students) 

-0.265 ** 
(0.088) 

Effect is of African American share on entire student 
population 

 0.157  
(0.088) 

Effect is of African American share on students from another 
ethnic minority (viz. Hispanics) 

-0.053  
(0.091) 

Effect is of African American share on students from the ethnic 
majority 

 0.130 * 
(0.061) 

Effect is of immigrant share on students from the ethnic 
majority 

 0.181 * 
(0.076) 

Effect is of immigrant share on entire student population  0.154  
(0.109) 

Effect is of immigrant share on students from the same ethnic 
minority 

 0.070  
(0.087) 

Effect is of immigrant share on students from another ethnic 
minority 

 0.398 ** 
(0.094) 

Effect is of indigenous share on entire student population  0.127  
(0.085) 

Age (centered at 12) -0.011  
(0.014) 

Test = language  0.011  
(0.047) 

Interaction: test = language x effect of immigrants -0.060  
(0.069) 

Studied effect = peer effect (ref. cat: compositional effect)  0.067  
(0.115) 

No individual prior achievement covariate included -0.196  
(0.174) 

Composition measured at cohort or school level (ref. cat.: at 
class level) 

 0.054  
(0.088) 

Model included covariate for average SES  0.044  
(0.059) 

Model included covariate for average prior achievement / 
ability 

-0.007  
(0.138) 

 

 
R2  0.255 

Systematic variance component (
2) 0.0082 ** 

(0.0031) 
Note: * = significant at .05 level; ** = significant at .01 level 
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Table 4. Added-up estimates from meta-regression I and II; number of contributed 
estimates per combination from meta-regression II. 
Effect of 
increasing the 
share of 

Effect on test scores of Estimate 
from meta-
regression I 

Estimate 
from 
meta-
regressio
n II 

Number of 
studies and 
(effect 
estimates) 
contributed in 
meta-
regression II14 

African 
Americans 

students from the same 
ethnic minority 

-0.271 -0.265 5 (30) 

African 
Americans 

students from another 
ethnic minority 

-0.118 -0.318 1 (8) 

African 
Americans 

entire student 
population 

-0.150 -0.108 5 (22) 

African 
Americans 

students from the 
ethnic majority 

-0.155 -0.135 4 (15) 

     

Immigrants students from the same 
ethnic minority 

-0.139 -0.195 3 (14) 

Immigrants students from another 
ethnic minority 

0.014 0.133 4 (23) 

Immigrants entire student 
population 

-0.018 -0.111 4 (11) 

Immigrants students from the 
ethnic majority 

-0.022 -0.084 3 (13) 

     

Indigenous students from the same 
ethnic minority 

-0.257   

Indigenous students from another 
ethnic minority 

-0.104   

Indigenous entire student 
population 

-0.136 -0.138 4 (41) 

Indigenous students from the 
ethnic majority 

-0.140   

Note: estimates from meta-regression I are derived from the last column of Table 2. 
The estimates from meta-regression II are those from Table 3. The estimates refer to 
effects on math scores of 12-year old pupils; all covariates for study and model 
characteristics not relating to the ethnic group the effect is of or on (see Table 2 and 3) 
are set to zero. 

 45



Table 5. Parameter estimates and (standard errors) for the study fixed effects meta-
regression model, following the first basic meta-regression model (general differential 
effects). 
  

Effect is of immigrant share 0.146 ** 
(0.044) 

Effect is of indigenous share -0.084 
(0.115) 

Effect is on students from the ethnic majority 0.049 
(0.028) 

Effect is on students from another ethnic minority 0.089 
(0.049) 

Test = language 0.015 
(0.029) 

Age -0.044 ** 
(0.011) 

Interaction: test = language x effect of immigrants -0.074 
(0.047) 

Model included covariate for average SES -0.003 
(0.056) 

Note: * = significant at .05 level; ** = significant at .01 level. Predictors that were 
included in the ordinary meta-regression, but are not shown above, could not be 
included in the study fixed effects meta-regression, because of lacking within-study 
variation. 
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Table 6. Parameter estimates and (standard errors) for the fixed effects meta-
regression model, following the second basic meta-regression model (differential 
effects specified). 
  

Effect is of African American share on entire student 
population 

0.060 
(0.071) 

Effect is of African American share on students from another 
ethnic minority (viz. Hispanics) 

-0.085 
(0.073) 

Effect is of African American share on students from the ethnic 
majority 

0.058 
(0.036) 

Effect is of immigrant share on students from the ethnic 
majority 

0.164** 
(0.053) 

Effect is of immigrant share on entire student population 0.204* 
(0.082) 

Effect is of immigrant share on students from the same ethnic 
minority 

0.050 
(0.067) 

Effect is of immigrant share on students from another ethnic 
minority 

0.386** 
(0.075) 

Effect is of indigenous share on entire student population 0.248 
(0.390) 

Age -0.044** 
(0.011) 

Test = language 0.017 
(0.029) 

Interaction: test = language x effect of immigrants -0.075 
(0.047) 

Model included covariate for average SES 0.009 
(0.062) 

Note: * = significant at .05 level; ** = significant at .01 level. Predictors that were 
included in the ordinary meta-regression, but are not shown above, could not be 
included in the study fixed effects meta-regression, because of lacking within-study 
variation. 
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Table A1. Comparison of models with and without the two studies contributing the 
largest numbers of effect estimates. 
 Final model (Table 2) Without Hoxby 

(2000) and Angrist & 
Lang (2004) 

Constant (= effect of African 
American share on students from 
the same ethnic minority) 

-0.271 ** 
(0.089) 

-0.189 * 
(0.091) 

Effect is of immigrant share 
 0.133 * 
(0.061) 

 0.044 
(0.085) 

Effect is of indigenous share 
 0.014 
(0.089) 

-0.167 
(0.140) 

Effect is on entire student 
population 

 0.121 
(0.067) 

 0.037 
(0.053) 

Effect is on students from the ethnic 
majority 

 0.114 * 
(0.049) 

-0.014 
(0.039) 

Effect is on students from another 
ethnic minority 

 0.153 * 
(0.067) 

 0.242 ** 
(0.077) 

Age (centered at 12) -0.005 
(0.015) 

-0.046 ** 
(0.013) 

Test = language  0.011 
(0.052) 

 0.021 
(0.034) 

Interaction: test = language x effect 
of immigrants 

-0.062 
(0.074) 

-0.163 ** 
(0.062)  

Studied effect = peer effect (ref. cat: 
compositional effect) 

 0.059 
(0.112) 

0.083 
(0.149) 

No individual prior achievement 
covariate included 

-0.176 
(0.169) 

-0.013 
(0.170)  

Composition measured at cohort or 
school level (ref. cat.: at class level) 

 0.015 
(0.088) 

0.088 
(0.097) 

Model included covariate for 
average SES 

0.063  
(0.060) 

-0.001 
(0.051) 

Model included covariate for 
average prior achievement / ability 

-0.005 
(0.140) 

-0.019 
(0.161) 

   

R2 0.163 0.650 

Systematic variance component 
(

2) 
0.0119 ** 
(0.0038) 

0.0000 
(0.0010) 

Note: * = significant at .05 level; ** = significant at .01 level.  
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Footnotes 
1In many countries, there are also groups of immigrants that are doing no worse on important 

indicators, such as inter-European Union immigrants in the EU and East-Asians in the USA. 
Generally, these groups are not an important concern to public and politicians, nor are 
compositional effects related to them a source of scientific debate. This study will only focus 
on ethnic minorities in various countries that are in disadvantaged situations, relative to the 
country’s ethnic majority. 

2Some immigrants have the same native language as the main language in their host country. In the 
studies included in our meta-analysis, however, this only applies to a minor part of the 
immigrants in The Netherlands in Peetsma et al. (2005). 

3Earlier meta-analyses in this domain have been carried out in the 1980s (Cook, 1984; Crain & 
Mahard, 1983; Wortman & Bryant, 1985). Since they only focused on effects of lifting de jure 
segregation in the United States and because of the generally poorer quality of the then-
included studies, their general conclusion that desegregation had a small positive effect on 
African Americans’ reading levels, especially if desegregation took place in the earliest grades 
and that desegregation did not have a negative effect (but also little positive effect) on African 
Americans’ math achievement, cannot be generalized to effects in the current situation. Also, 
our scope is broader, as we include countries other than the USA and do not only look at 
effects on students from the ethnic minority. 

4In a few cases, no standard error was reported, but it was only mentioned that the effect was 
significant at e.g. p = .05. We then calculated the standard error (conservatively) assuming a p 
of .05 and analogously for other significance levels (cf. Cooper & Hedges, 1994). 

Some studies reported standard errors that were incorrect, because OLS was used without taking into 
account the clustered nature of the data. These standard errors were adjusted based on the 
distribution of variances over class/cohort and school (which, if not available, was estimated 
from studies using similar datasets) and group sizes. In a few studies, some compositional 
effects had to be calculated as the sum of a main effect (effect of minority share) and an 
interaction effect (minority share * a dummy for own ethnicity). In these cases, the true 
standard error is only calculable if the original data’s variance-covariance data is known, 
which is generally not the case. Instead, the standard error to the interaction parameter was 
taken. If X1 gives the proportion ethnic minorities, X2 is a dummy variable which indicates 
whether a student is from the ethnic minority, X3 gives the interaction (i.e. X1*X2), and 1, 2 
and 3 are the regression parameters to these variables, it can, although it would be too space-
consuming here, easily be proven that SE(1+2) (the true standard error we would like to 
know) is always smaller than SE(3) (the standard error we take), so that the standard error we 
take is an overestimation of the true, unknown standard error. Hence, this is a conservative 
approach. 

5Note that “fixed effect” here refers to something that is entirely different from what is generally meant 
by fixed effects meta-regression (cf. Cooper & Hedges, 1994; Lipsey & Wilson, 2001): such 
models are similar to our equation (1), but omit error term uij. Whenever we mention fixed 
effects, we do not refer to this latter type of model. 

6Since all systematic between-study variation is captured in j, it is not necessary to include a random-
effects error term uij here. 

7Some studies measured composition at the cohort level, but the number of classes per cohort averaged 
little over one, so that cohort and class essentially were the same. We classified studies that 
measured composition in units of on average 40 students or less as measuring at class level. 
Studies measuring composition in larger units, were classified as cohort / school level. (Note 
that in countries of the OECD, average secondary school class sizes are up to 39 (OECD, 
2003). 

8Only one study, Harker & Nash (1996) gave a few estimates on science test scores. The sizes of their 
coefficients roughly lay between those for math and those for language. Since the number of 
estimates for science was too small to use a separate category for them, we grouped them with 
the math estimates, in order to be able to compare the effects of language to those on other 
tests. Science shares with mathematics that it is a technical subject, but its content is much 
more language-dependent. Alternatively, the science estimates could have been grouped with 
the language estimates or be omitted from the meta-analyses. We also estimated these 
alternative models. Neither lead to any meaningful changes in coefficients. 
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9Especially for the covariates “peer” and inclusion of average SES and ability, one might argue for 
another “best” category. We follow the interpretation here that the effects studied are 
compositional effects that do include those parts of the effect going via SES and ability. The 
insignificance of these parameters shows that another way of dummy-coding would not have 
influenced our results in an important way. 

10In an alternative estimation, we replaced the division between studies on peer effects and studies on 
compositional / contextual effects by a division into those studies that used a formal strategy 
to deal with omitted variables (such as instrumental variables and panel data with fixed 
effects) and those that did not. The parameter to this dummy variable did not become 
significant. Some other point estimates changed somewhat, but interpretations remained the 
same and the parameter estimates to the effect of / on parameters were not affected to any 
important extent. 

11 Also of influence may be the estimates from Hoxby (2000): in her models, not including a prior 
achievement covariate will not lead to the same bias as in other studies, because of the very 
different estimation strategy that she uses. 

12Only Hoxby (2000) gives some estimates of indigenous share on test scores of African Americans, 
Hispanics and Whites (but not on test scores of indigenous pupils themselves). To avoid 
parameters in this meta-regression to be determined by only one study and to increase the 
power of the “effect of indigenous on entire population” parameter, we combine Hoxby’s 
estimates by means of a regular fixed effects meta-regression into an effect of indigenous 
share on test scores of the entire population. 

13We should note here that the African American on other minority effect is entirely derived from 
Hoxby (2000). Although the estimate in the table suggests that this effect is not weaker, and 
perhaps even stronger than the African American on African American effect, Hoxby actually 
reports the latter effect to be clearly stronger. This may seem confusing, but can easily be 
explained by the fact that our African American on African American parameter is a weighted 
average over several studies, while our African American on other minority parameter is 
estimated using only Hoxby’s study. The difference is now in the other direction and not 
significant. 

14Note: a few studies gave estimates that could not be classified exactly into one of the categories, for 
example an effect of African American share on scores of a combined group of Whites and 
Hispanics in Vigdor & Nechyba (2004). Such estimates were classified proportionally, in this 
case as 0.96 times effect of African Americans on Whites and as 0.04 times effect of African 
Americans on Hispanics. In counting the contributed number of effect estimates shown in the 
table, the sum of all (complete and proportional) contributions was rounded to the nearest 
integer. In counting the number of contributing studies, a study was only counted if the sum of 
proportions for a certain combination (e.g. in the case of Vigdor & Nechyba, two estimates 
times 0.04 makes 0.08) was at least 0.50, so that the study cumulatively contributed at least 
half an effect estimate. 
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