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Abstract

We propose new closed-form pricing formulas for interest rate options which guarantee per-
fect compatibility with volatility smiles. These cap pricing formulas are computed under
variance optimal measures in the framework of the market model or the Gaussian model
and achieve an exact calibration of observed market prices. They are presented in a gen-
eral setting allowing to study model and numéraire choice effects on the computed prices.
Numéraire dependence is particularly emphasized. A numerical example and an empirical
application on market data are given to illustrate the practical use of the calibration proce-

dure.
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Introduction

For accounting and regulatory purposes, assessing the value of a portfolio of interest rate
derivative assets is one of the tasks given to financial institutions. Such financial assets are
routinely used to tailor the interest rate risk exposure induced by existing deposits and loans,
and are now part of standard financial products such as capped mortgage loans. Financial
institutions such as investment banks must valuate them in accordance with observed prices
of liquid financial products, following the “mark-to-market” principle. For banks managing
large portfolios, only a few option prices are observed and unobserved prices must thus be
infered in order to get the current market value of the book. Indeed the relevant information
is difficult and costly to obtain and only a small part of portfolios corresponds to assets whose
prices are easily available. The unobserved option prices are in general rebuilt through the
use of pricing models.

A first typical aspect of interest rate pricing models is their multiplicity. Furthermore
none of those can really be considered as a benchmark (unlike the BLACK- SCHOLES (1973)
paradigm for stocks). This calls for unifying approaches. The framework of HEATH, JAR-
ROW and MORTON (hereafter HIM) (1992) with its applications in the Gaussian case (see
e.g. EL KAROUI, MYNENI and VISWANATHAN (1992), EL KAROUI and LACOSTE (1993),
JAMSHIDIAN (1993)), in the log-normal case (see e.g. MILTERSEN, SANDMANN and SON-
DERMAN (1994, 1997), JAMSHIDIAN (1997), BRACE, GATAREK and MUSIELA (1997)), and
in the square root case (RITCHKEN and SANKARASUBRAMANIAN (1995)) provides an il-
lustration. Another example is given by models with Markov state variables (LANGETIEG
(1980), Cox, INGERSOLL and Ross (1985), DUFFIE and KAN (1996)).

A second characteristic of interest rate modelling is the importance of the change of
numéraire technique (EL KAROUI and ROCHET (1989), GEMAN, EL KAROUI and ROCHET
(1995), JAMSHIDIAN (1993, 1997)). Forward measures, Libor and dual swap measures prove
to be a key tool for computing pricing formulas for interest rate options such as caps and
swaptions.

There is also a mounting concern about the calibration of pricing models to observed
prices : perfect calibration to the initial yield curve (the HJM framework), calibration of the
term structure of implied volatilities (e.g. HULL and WHITE (1990), BRACE and MUSIELA
(1994)).

More recently some authors have raised the problem of calibrating models to volatility
smiles. In the case of options on stocks or on exchange rates (MADAN and MILNE (1994),
RUBINSTEIN (1994), BUCHEN and KELLY (1996), JACKWERTH and RUBINSTEIN (1996),
MAGNIEN, PRIGENT and TRANNOY (1996)) one can extract risk neutral densities from a

finite set of observed option prices. The aim of this paper is to provide a presentation of this



approach for interest rate options taking into account the special features of interest rate
modelling (multiplicity of pricing models and numéraires). Our approach allows to recover
in a simple way caplet pricing formulas given by well known models (the market model
and the Gaussian model) and also to derive new explicit formulas consistent with observed
volatility smiles. Thus we will be able to forecast the unobserved price of a cap contract
from a given sequence of observed cap prices while achieving a perfect calibration of these
prices (mark-to-market principle). As already mentioned, this cross price forecast technique
is particularly useful for the valuation of large portfolios of interest rate derivative products.

The paper is organized in two main parts.

The first part goes from Sections 1 to 3. It provides the theoretical background re-
garding numéraires, price operators, state price measures and caplet pricing formulas. This
framework is static and the state space can either be discrete or continuous. These sections
are intended both to provide a review and pave the way towards the more applied sections
by providing suitable mathematical tools and notations. A close look at the spaces of risk
neutral measures is given in order to ease the choice of a specific one which is done in the
second part.

In Section 1, we recall market practice regarding Libor rates and present payoffs and
numéraires that are commonly used in interest rate modelling such as FRAs, caps, ...

In Section 2, we briefly review the HARRISON and KREPS (1979) setting (price operators,
state price measures) and adapt this framework to the presence of different numéraires
used in interest rate modelling. We review the state price measure invariance property of
GEMAN, EL KAROUI and ROCHET (1995) which allows to link the forward measure to the
Libor measure. We also detail the spaces of risk neutral measures and provide nonemptiness
conditions.

Section 3 is dedicated to the presentation of general caplet pricing formulas and their
relations with risk neutral measures. We restate and generalize previous results obtained
by MERTON (1973), BREEDEN and LITZENBERGER (1978), and EL KAROUI and ROCHET
(1989). We are then able to propose simple formulas for options on discount bonds and caps
in a static framework without relying on stochastic calculus. Several examples illustrate this
integrated framework which facilitates the implementation and shifts between models from
a computerized point of view (see BRACE (1996)).

In the second part, the more practically oriented Sections 4 to 7 deal with the implemen-
tation of caplet pricing models consistent with observed caplet prices based on an a priori
model.

In Section 4 we describe the implied model approach with an L? distance. We focus
on the variance optimal signed measures and on the variance optimal probability measures

of SCHWEIZER (1992), DELBAEN and SCHACHERMAYER (1996), GOURIEROUX, LAURENT



AND PHAM (1998) and we study the numéraire dependence effect. We link the induced price
with the approximation price, i.e. the price of the best mean-variance hedging portfolio.

Section 5 is the main contribution of the paper. We consider closed-form pricing formulas
for caps and options on discount bonds that are consistent with observed volatility smiles.
These pricing formulas are simple and easy to compute.

Section 6 studies bounds on the prices provided by the theoretical pricing formulas thanks
to the concept of super-replication used by EL KAROUI and QUENEZ (1995). In the presence
of traded caps, the bounds for the unobserved cap prices are narrowed.

Eventually, Section 7 contains a numerical example and an empirical application based
on real market data (DEM caplet prices). This section aims to show that the calibration
procedure is straightforward to implement and can be used in real time applications.

Concluding remarks are given in Section 8.

1 The market

We begin with the description of what forms the basement of our analysis. For concreteness,
we focus on Libor rates (i.e. money market rates quoted among banks in London) and later
consider asset payoffs that depend on these Libor rates. FRAs, Interest rate swaps and
caps on Libor rates are the main products on the OTC interest rate derivatives market. A
typical plain vanilla cap on three month Libor will pay every three months the positive part
of the difference between the current three month Libor and a predetermined rate called the
exercise (or strike) rate until the expiration of the cap. Typical cap maturities may vary
from six months to ten years or more. The reference Libor is often a three month Libor,
although other references are not scarce. This means that caps are long term options based
on short term money market rates. The Libor may correspond to USD rates but other active
markets exist in other currencies. Each individual payment of a cap is a separate financial
contract, namely a caplet (see e.g. BRACE, GATAREK and MUSIELA (1997), JAMSHIDIAN
(1997), BRACE (1996), MUSIELA and RUTKOWSKI (1997) for illustrations). Thus a cap is
a collection of caplets. If one is able to price a caplet (the building block of a cap) the
valuation of the cap is straightforward. For the sake of simplifying notations, we will further
consider the valuation of caplets whose valuation is similar to the valuation of discount bond
options (BRIYS, CROUHY and SCHOEBEL (1991)).

Closely related products (and competitors to caplets) are options on Eurodollar type
contracts. These products are traded on exchanges and based on futures contracts written
on Libor rates (ABKEN, MADAN and RAMAMURTIE (1996)). Caplets also have to be dis-

tinguished from options on continuously compounded discount bond yields since the caplet



payoffs are based on money market conventions (LONGSTAFF (1990), LEBLANC and SCAIL-
LET (1998)).

1.1 Libor rates and forward prices

We adopt the usual international conventions in terms of interest rate fixing and delivery
dates for interbank deposits, three-month Libor swaps, and three-month Libor caps and
swaptions. Typically, this time period has three dates, the first date 7y corresponding to
the fixing of the Libor which prevails between the dates 71 and 75 (70 < 73 < 7). The date
Ty 1.e. the payment date of the Libor. In London, date 77 is two trading days after date
To. Time spaces between these dates may vary because of the presence of nontrading days
and generally differ when one shifts to another underlying interest rate reference for the
contracts.

Along the paper, we assume that the discount bonds which mature at dates 75 and 7
are traded assets and that their prices are observed at date 0 and date 7y. Libor rates and
forward prices are defined in Table 1 where B(7y, T») is the price at date 7o of the discount
bond delivering one money unit, say a franc or a Euro, at date 79, 6 = J (74, 72) /360 and

J (11, 72) are the number of years and the number of days between 71 and 7y, respectively.

Table 1 : Libor rates and forward prices

Libor at dat = S 1 B(7o, B(mo,
1bor at date Ty x a;(TO) (7—077-2)
B(0 — B(0

Forward Libor (date 0) z(0) &1 ( 77—1)(077—2)(  T2)
B

Forward price at date 7 | 271 = B(79, 71, T2) (10, 72)
B(10,71)
B(0

Forward price at date 0 B(0,7,7) EO:Z;

The forward Libor z(0) is the Libor which one is able to lock at date 0. The forward
Libor z(0) is thus equivalent to the fixed rate of an FRA (forward rate agreement) on the
Libor with maturity date 79. The forward price at date 7y of a discount bond with maturity
Ty — 71 at date 77 is given by the ratio : B(7y,72)/B(7,71), and we deduce the relation

between the inverse of the forward price z and Libor rate x :

z2=1+0x. (1.1)

In some cases writing numéraires, asset payoffs or risk neutral measures in terms of the

inverse of the forward price will lead to simpler computations.



1.2 Numéraires and asset payoffs

An asset payoff is characterized by an amount paid in a given numéraire at a given date. For
obvious practical purposes, there is often a delay between the time when the asset payoff is
determined (the so-called fixing date) and its payment date. This can be viewed (through a
standard discounting argument) as receiving at the fixing date a given amount of discount
bonds maturing at the payment date. This means that the numéraire can precisely be this
discount bond. In our context the fixing date is 7y, and we consider amounts known at that
time which depend on the Libor rate . These amounts can be expressed in one one of the

three following numéraires useful in interest rate modelling :
e the discount bond maturing at 7y [the first numéraire Uy].
e the discount bond maturing at 7, [the second numéraire Us).

e the “exchange principal asset” : one discount bond maturing at 77 in long (buy) posi-

tion and one discount bond maturing at 7 in short (sell) position [the third numéraire

Us).
We denote by U;(7), the price at time 7, 7 = 0, 7y, of numéraire U :

B(1,m),
Uy(t) = B(1,7),
B(1,m) — B(7,72).

We will denote by U;/;(7) the exchange rate between numéraires U; and U; (the relative

price of U; w.r.t. U;) at date 7 :

, T=0,70,17,7=1,2,3. (1.2)

Ui/j(T) = Uj(T)

From Table 1 we can directly deduce the exchange rates between the numéraires at date

To (see Table 2) as functions of z, the Libor rate at date 7.

Table 2 : Exchange rates between numéraires (Libor)

numéraire 1 numeéraire 2 numeéraire 3
. 1+ 6x
numéraire 1 U1/1(7'0) =1 U1/2(7'0) =1+6x U1/3(TO) = S
T
1 1
sraire 2 | U = U. =1 U. = —
numeéraire 2/1 (7o) 1 _(‘S_ 57 2/2(7'0) 2/3(7'0) .
€T
sraire 3 | U = U. =6 U. =1
numeéraire 3/1 (7o) 1+ 62 3/2 (7o) T 3/3 (70)




We are thus able to express the payoffs of standard financial contracts, such as caplets
and digital caplets, in units of these three numéraires. Note that digital caplets are also
traded on interest rate markets though less frequently than caplets. They are often used
when customizing financial asset payoffs involving an interest rate guarantee. The payoff
expressions are gathered in Table 3 where (z — ¢)* = max(0,z — ¢), Iy(rp)>c = 1 if (70) > ¢

and 0 otherwise, gy, (i = 1,2,3) is a real function, and ¢ is the exercise rate.

Table 3 : Numéraires and asset payoffs (Libor)

numéraire 1 numeéraire 2 numeéraire 3
1+6
Discount bond 7 1 1+ 6x j; z
€T
1
Di t bond 1 —
iscount bond T (1 n 53)176 ( o )
T —c T —c
FRA — —c)é
- G — CRnN
Tr—c T —c
let -~ —c)té
Caple 14+ 6x (z—c) . xz
Digital Caplet 2 Lo, e
leial Laple 14+ éx > bx
1+ oz
General asset | g6,(2) | gu(x) = (14 82)00, () | 00 (0) = * g (o)

These payoffs share the remarkable property that they depend only on the Libor rate .

It is clear that whatever the numéraire, the same amount of cash will be received at date

Ty. Let us also remark that for any given asset, the following numéraire invariance property

holds :

gu, = Uji(70)9u;, Vi,j=1,2,3.

(1.3)

From equation (1.1), we can express the exchange rates between the three numéraires at

date 79 as functions of the inverse of the forward price z (see Table 4).

Table 4 : Exchange rates between numéraires (inverse of forward price)

numéraire 1 | numéraire 2 | numéraire 3
numéraire 1 1 z
z—1
o 1 1
numéraire 2 — 1
Z z—1
L z—1
numéraire 3 2—1 1

Similarly payoffs may be rewritten using the inverse of the forward discount bond price

instead of the Libor. They are shown in Table 5 where :

gu,(2) = gu,((z —1)/6), i=1,2,3. (1.4)



Table 5 : Numéraires and asset payoffs (inverse of forward price)

numéraire 1 numeéraire 2 numeéraire 3
Discount bond 7 1 P
Discount bond 7 - 1
175 il
FRA =45 z— (1+cb) Lﬁc)
2 _
—(14+6c)T —(1 SN
Caplet (2= (L+0c)) (z— (14 cb))* (z = (1 + b))
1 z Iz —1
Digital Caplet —z21tée Lo1is 2> 146c
Z — z—1
General asset g, (Z) Ju, (z) = Z§U1(Z) Ju, (z) — — 1§U1(Z)

Let us remark that for any given asset, the following numéraire invariance property holds :

gu; = U, 5(70)gu;, Vi,j =1,2,3. (1.5)

2 Viable price operators and numéraires

Here we briefly recall results of HARRISSON and KREPS (1979) but taking into account
explicitly the presence of different numéraires. Our framework is static, i.e. does not allow for
dynamic trading. The state space may either be discrete or continuous. In most applications
Libor rates are continuously distributed. Thus we do not emphasize the discrete case based
on discrete time pricing models (see e.g. HO and LEE (1986), TURNBULL and MILNE
(1991), GOURIEROUX and SCAILLET (1997)). The space of attainable claims is made of
linear combinations of traded interest rate derivatives and is thus of finite dimension. The
market is here highly incomplete unlike the standard case where the prices are uniquely
determined and equal to the prices of dynamic self-financing replicating portfolios.

There are both technical, economic and practical advantages to this static approach.
Firstly our approach only relies on measure theory and does not require the sophisticated
apparatus of semimartingale theory. From an economic point of view, there are some ad-
vantages to allow for uncertainty in derivative prices. Indeed, in complete markets, the
deterministic relationships between derivative and underlying asset prices are rejected by
the data leading to the immediate conclusion that pricing models are misspecified. Besides
dynamic portfolios are more sensitive to transaction costs than static ones. Lastly in practice
our approach is very easy to implement and only requires to solve linear equations.

Of course, the major drawback of such a static approach is the narrowness of the space

of attainable claims due to the absence of dynamic hedging. For approaches aiming to



introduce such dynamic aspects we refer to AVELLANEDA et al. (1997) in a diffusion setting
and LEISEN and LAURENT (1998) in a Markov chain setting.

2.1 Price operators and probability measures

The aim of this section is to provide a precise definition of pricing models (through the use
of price operators) within an interest rate setting and to show the close links between pricing
models and probability measures. Moreover we recall conditions for the set of risk neutral

measures to be non empty so that the search of specific ones is meaningful.

2.1.1 Libor rate

Let us introduce a probability measure 1 on B, the borel algebra for the interval [a, b] C R.
[ represents an a priori probability measure on the Libor rate z. This probability measure
can be discrete or continuous without loss of generality. The bounds a and b may be seen
as lower and upper bounds for Libor rates and b may be infinite. The measure g may be
viewed as a technical reference measure as in MADAN and MILNE (1994) and ELLIOTT and
MADAN (1998). It may be taken equal to the Lebesgue measure or a Gaussian measure in
order to ease computations. It may also be chosen in order to reflect any expectations based
on historical observations, and will then be related to the so-called historical measure.

We have defined some exchange rates between the numéraires : 14 z6, x6, 1/(1+x96), ...
For these exchange rates to be well behaved we assume that they are strictly positive, p a.s..
Hence we will not necessarilly consider all numéraires when building pricing models and we
will restrict ourselves in practical applications to a subset of numéraires whose exchange
rates are strictly positive. Furthermore we assume that the numéraires have finite moments
of order p (p > 1) under pu. This guarantees that all caplet and digital caplet payoffs are in
IP(p). If p is the historical measure on Libor rates, the tail index tells us whether Libor rates
exhibit too heavy tails (Levy distributions) to ensure that caplet payoffs are in L#(u). If p
is another reference measure (such as the Gaussian one), it usually involves finite moments
of any order. Besides it is often convenient to restrict oneself to L?(y) in order to exploit
its special properties (projection theorem) due to its Hilbertian nature.

Remember that a price operator is a strictly positive linear functional associating a price
to a given payoff expressed in some account unit (say U;), and belonging to some vector
space (say LP(p), p > 1) (see HARRISON and KREPS (1979), HARRISON and PLISKA (1981)).
We require that a price operator is compatible with the traded prices of numéraires. The

current date is by convention set to zero. If we denote by 7y, such a price operator, the



previous restriction means (see LONGSTAFF (1995)) :
Ty [Uz/l(T())] = UZ(O), 1= 1, 2,3 (21)

Let us remark that 7y, [1] has the interpretation of the price of the riskless asset correspond-
ing to numéraire U; since we get for sure one unit of U; at date 75. As an application, we
can state a simple expression for the price of the floating leg of a FRA contract, i.e. the
asset delivering 6z at date 7. The associated cash-flow is equal to 6z units of numéraire Us,
or equivalently to 6z/(1 + 6x) units of numéraire Uy, thus :

o R —

It means that the price of the floating leg of a FRA contract is equal to the price of the
“exchange principal asset” of the practioners’ terminology.

The continuity of a positive operator on I”(u) (see DUFFIE (1988 p. 63)) and Riesz
Representation Theorem in ILP(u), p € [1, 00|, (see RUDIN (1974), Theorem 6.16) lead to the

following statement which closely relates price operators and probability measures.

Proposition 1 (price operators and probability measures)

Let us take the account unit Uy and the price operalor corresponding to this numéraire my, .
There exists a unique (b a.s.) strictly posilive function fy, of Li(p) (% —I—% = 1) with
J fo,dpp =1 such that :

Ty [9U1] = Ul(o)/gU1fU1d/J“7 vgU1 S Lp(p“) (22)

The equality [ fu,dp = 1 is due to the compatibility of the price operator with the
numéraire price (7, [1] = U1(0)). Moreover fy; > 0 p a.s. since 7wy, > 0, ie. 7y, [gy,] > 0
for g, > 0 (9, > 0 and p(gy, > 0) > 0). Hence f;,dp defines a new equivalent probability
measure. [y, is the density of this probability measure w.r.t. p and has the interpretation
of a risk premium. Uy(0) fu,dp will be further called a state price measure. Note that the
Riesz Representation Theorem states an isometry between the set of price operators and
the set of probability measures equivalent to p, and thus a simple way to elaborate a price
operator is to pick up a suitable density fu,.

For a given payoff gy, corresponding to numéraire U; and belonging to IF(u), the as-

d
sociated payoffs gy, gu, corresponding to numéraires U, and U; belong to L? (7(1 i(a:(é)p)
T

P
and L <<1 f 6) du(a:)). These two spaces contain L”(u) under the standing assumption
x

that x > 0, p a.s. (this assumption implies that Uy (70) and Us/i (7o) are in L>(p)). We

can then define on (at least) 7 (1) the two strictly positive linear operators :
Tu,l9u.] = 70, [Uspa (70)gui], i = 2,3, (2.3)

9



Tu,, © = 1,2,3 may be viewed as different representations (associated to different account
units) of the same pricing model. We can see that 7, and 7y, admit the following repre-

sentation as a direct consequence of their definition :

7-[_Ui[gUi] = UZ(O) /gUifUid/*Lu L= 2737

with :
Uz(o)fUz = Ui/l(TO)Ul(O)fUl, Hoa.s., Vi = 1, 2,3 (24)

Moreover, we can notice that for i = 2,3 : fy, > 0 p as., [ fu,dp = 1 (due to the compat-
ibility with numéraire prices), and if fy, € Li(p), fu, € L% (p) (under the assumption of a
positive Libor rate, Uy /1 (70) and Usy1 (7o) are in L™(p)).

UZ(0>fUz = Ui/j(T())Uj(O)ij? M a.s., VZ,j = 17 2737 (25)

is a state price measure invariance property w.r.t. the choice of numéraire. Such an in-
variance property is also well known in the dynamic case (e.g. DUFFIE (1992), BAJEUX
and PORTAIT (1994), GEMAN, EL KAROUI and ROCHET (1995), GOURIEROUX, LAURENT
and PHAM (1998)). State price measures associated with numéraires Us and U; are known
as forward measures (GEMAN, EL KAROUI and ROCHET (1995)) and state price measure
associated to numéraire Uz is known as the Libor measure (BRACE (1996), JAMSHIDIAN
(1997)).

Finally we denote by Qy, the probability measure on Libor rate whose density w.r.t. p
is equal to fy, :

Qu.(E) :/EfUidu,z'zl,ZS, (2.6)

where F is some p-mesurable set, and by Fp, the cumulative density function on the Libor
rate, defined by :

Fu.(e) = Qui(la,c]) = 1 — /Cb fodp, i =1,2,3, c € [a,b]. (2.7)

2.1.2 Inverse of the forward price

Previous quantities may be expressed as functions of the inverse of the forward discount
bond price. Since 2 = 1 + éx, we can readily derive a probability measure ji on Bi1sa,145)
related to the inverse of the forward discount bond price z.

The payoffs gy, are then in IP(fi). To any probability density fr, (w.r.t ©) on the Libor
rate, we can derive fy, the associated probability density on the inverse of the forward

discount bond price z by :

o, (2) = fo, (= = 1) ), (2.8)

10



and therefore the corresponding state price measure invariance property is :
U;(O)JFUZ = Ui/l(TO)Ul(O)fU17 ﬂ a.s., 1= 2,3, (29)

where U;/1(7o) is now viewed as a function of z.

The probability measure fUid/Z defined on By ysq,1450 Will be denoted by QUZ,. We also
denote by Fy, the cumulative density function on the inverse of the forward price. It is such
that :

1486 _

Fu(1+6¢) = Qu, ([1 + 6a,1 + 6¢]) :1—/ Jodfi = Fu(c), i =1,2,3, ¢ € [a,b]. (2.10)
1+é6e

2.2 Viable price operators

In the framework of HARRISON and KREPS (1979) a wviable price operator is compatible
with the prices of attainable claims. This is of course a highly desirable feature for a price
operator. A subset of attainable claims is usually made of “traded assets”. In the first option
pricing models, the traded assets considered were the “underlying asset” and the “riskless
asset”. These pricing models, like the BLACK-SCHOLES model are indeed compatible with
the prices of these assets (for an empirical investigation see LONGSTAFF (1995)). Let us
notice that in our setting, we have considered pricing models compatible with the traded
prices of numéraires. Currently, a lot of options are liquid traded assets and pricing operators
should be compatible with these option prices. Here, we detail the constraints induced by
the observed prices and we recall that the absence of arbitrage opportunities guarantees the
existence of a viable price operator.

This leads us to introduce a sequence of observed prices, i.e. a finite sequence of pairs :
(9u,.5:Pj), 90,5 € LP(n), P, € R, j € J i =1,23, where P; stands for the observed price
of the asset delivering gy, ; units of U; at date 75, and where the payofts gy, ; are related by
the numéraire invariance property (1.3). The sequence of observed prices may in particular
include observed caplet prices with different exercise rates. We will further assume that the
sequence of observed prices includes two out of the three numéraires (the third one beeing
deduced by linear combination). We denote by Gy, the subspace of IP(y) spanned by
(gu,.5), J € J; it is the (static) investment opportunity set. We further assume (without loss

of generality) that traded assets are not redundant, i.e.

Z )‘ngi,j = 0, L a.s. —> )‘j = 0, VJ

jed
Due to the assumed positivity of exchange rates, this assumption holds simultaneously for
the three numéraires. Under this assumption, (gu, ;), j € J is a basis of Gpy,. We are now
able to state :

11



Definition 1 A pricing measure fy,dp, fu, € Li(p), is said to be risk-neutral if it is com-

patible with the sequence of observed prices, i.e. :
Ui(O)/gUi,jfUidu =P, Vje (2.11)

We insist on the fact that according to HARRISON and KREPS (1979) a probability measure
is said to be risk-neutral if it is compatible with all observed prices. The only compatibility
with traded numéraires (the martingale restriction on the underlying assets) is not sufficient
to get a risk-neutral pricing measure.

We will denote by F7;° the set of equivalent risk-neutral probability densities associated

to numéraire U, i.e.
F = {fu € D). S > 0, 0:0) [ guisfudn = Py, Vi€ T}

Since the numéraires are assumed to be observed, (gy, ; = 1,U;(0)) belongs to the sequence
of observed prices which implies : [ fy.dp = 1.

We will further need to choose among risk neutral measures. Therefore we have to
carefully describe all involved spaces, and introduce .7:&, the set of risk-neutral probability

densities associated to numéraire U; absolutely continuous w.r.t. p :
f((i = {fUz S Lq(lj“)u fUi > 07 UZ(O)/gUquUzd/J“ = Pj7 vj € J}7

and F{7” the set of risk-neutral signed-measure densities associated to numéraire U :

Fo, = {fUi € L), Uz‘(o)/gUi,jfUidﬂ =DP;, Vj € J}-

A price operator 7y, is said to be viable if it is associated to an equivalent risk-neutral
probability measure. A celebrated result in finance states that the absence of arbitrage
opportunities and the existence of an equivalent risk-neutral probability measure (or of a
viable price operator) are equivalent. In our framework, the assumption of the absence of

(static) arbitrage opportunities translates as :
Z )‘ngi,j > 0, Lt oa.s. —> Z )\ij > 0. (212)
jeJ jeJ

We can notice that this assumption is numéraire invariant since exchange rates are strictly

positive p a.s.. We are then able to give the useful property :

Proposition 2 (risk neutral density existence)
Under the assumption of no arbilrage opportunities, there exists a triplet (fu,, fu,, fus) €
Fol x Ff ox Fiy o that  satisfies the stale price invariance properly, i.e.

[]z(o)fUZ = Uz/](TO)U](O)fUJJ ua.s., v%,j = 17273'

12



Proof : see Appendix.

Under the assumption of no arbitrage opportunities, F{7° are non empty convex sets of
Li(p). We can remark that F2° C Ff, C F7” and that the later sets are thus non-empty

closed convex sets of LI(p).

3 Caplet pricing formulas

It is a well known feature that option pricing formulas and risk-neutral probability measures
are closely related (see BREEDEN and LITZENBERGER (1978), DUPIRE (1992)). We review
and extend these relations by taking into account for the multiplicity of numéraires. Since
various caplet pricing formulas are used in practice, we want to disclose hereafter an inte-
grated framework. A benchmark pricing model does not really exist but a series of interest
rate models live side by side. Very little has in fact to be known about the interest rate
dynamics to derive pricing formulas (see examples below). One only needs the (marginal)
probabilities of the exercise region and a repeated use of the change of numéraire technique.

We first present fairly general properties of caplet pricing formulas. Then under weak
distributional assumptions we provide more specific expressions which include as special
cases the widely used market and Gaussian model formulas.

Let us assume that we are given a price system, i.e. risk neutral measures. This allows
to write caplet prices under more familiar forms, i.e. either as an interest rate option pricing
formula (BRACE, GATAREK and MUSIELA (1997), BRACE (1996), JAMSHIDIAN (1997)) or as
a discount bond option pricing formula (EL KAROUI and ROCHET (1989), BrIYs, CROUHY
and SCHOEBEL (1991)).

We call a mapping : ¢ € [a,b] C R — Cap(c) = Uy(0) f2(x — )6 fu, (x)dpu(x), fo, €
Fiy, a caplel pricing formula or a caplet model. The choice of fy, in Ff;; guarantees the
consistency with observed prices. By analogy we denote by Dig(c) the digital caplet pricing
formula. As it will be seen, the latter is closely related to the state price measures.

We begin by considering the caplet pricing formula.

Property 1 (interest rate option pricing formula)

The caplet pricing formula Cap(c) may be written under the three following forms :

(a) (B(0,71) = B(0,72))(1 — Frz(c)) — c6B(0, 12)(1 = Frp (),
(b) Us(0)Qus (B) — c6U2(0)Qu, (E),
() 6B(0,72) (2(0)Qus (F) = cQur(E)) ,

where F = |c,b] is the caplet exercise region and ¢ € [a, ).

13



Proof : see Appendix.

The last form (c) tells us that the caplet pricing formula may be written as § times
the discounted value of the difference between the forward Libor and the exercise rate,
multiplied by the exercise probabilities corresponding to the exchange principal asset (Us)
and the discount bond maturing at the end of the option (Us), respectively. This form has
thus the interpretation of the pricing formula of a call option on an interest rate as in the
market model for caps (see below). Forms (a) and (b) may be interpreted as the pricing
formula of an exchange option between the asset Us and the asset c6Us (this last asset is

often called the “coupon asset” by practitioners).

Property 2 (discount bond option pricing formula)

The caplet pricing formula Cap(c) may be written under the three following forms :

(a) B(0,71)(1 — Fy, (1 + ¢6)) — B(0,72)(1 + ¢6)(1 — Fy, (1 + ¢6)),
o) 01(0)Qe, () — Us(0)(1 +c8)Qus (1),
© (14 e8) B0, 7) (15 Qs (B) = BO.7.m)Qual()).

where F = |c,b] is the caplet exercise region and ¢ € [a, ).

Proof : see Appendix.

The last form (c) is equal to (1 +cd) times the discounted value of the difference between
the strike price (1 + ¢6)~! and the forward price B(0, 7y, 79) multiplied respectively by the
exercise probabilities Qr, (F) and Qu, (F) associated with the two discount bond numéraires.
The form (a) (or (b)) is the pricing formula of an exchange option between discount bonds.
The expression in (b) is similar to EL. KAROUI and ROCHET (1989) general formula for a
put option on a discount bond.

The interesting point from a forecast point of view is to draw a link between the pricing
formula for caplets, i.e. the function Cap(c) and the functions Fy,, i = 1, 2,3 obtained from

the price operator m,. It passes through the digital caplet pricing formula.

Property 3 (digital caplet pricing formula)
The digital caplet pricing formula Dig(c) is equivalently given by the four following forms :

(a) 6U2(0)Qur, (),
(b) —(Cap)y(c),

(¢) 6U3(0)(1 = Fr(c)),
(d) §U(0) f7 fondps,

14



where £ = [c, b] is the caplet exercise region and ¢ €la,b] and (Cap),, stands for the left-hand

derivative.

Proof : see Appendix.

As Qp, completely defines the price operator 7y, (cf. Proposition 1), the equality between
(a) and (b) implies that 7y, is embodied in Cap(c). Property 3 thus states that it is
equivalent to be given the caplet pricing formula, i.e. a function of the exercise rate, or
the price operator. In particular, if 4 admits a density w.r.t Lebesgue measure, we get :
6Us(0) frr (c)z—u(c) = Cap"(c). This result is an adaptation of the result of BANZ and
MILLER (1978) and BREEDEN and LITZENBERGER (1978) to interest rate models. From
Properties 1 and 3, we deduce that a caplet pricing formula associated with a price system

is convex, decreasing and fulfills the boundary properties :

Cap(b) = 0,
Cap(a) = 6U,(0) (z(0) —c),
—(Cap)y(b) = 0,
lim —(Cap)y(c) < 6U(0).

Let us note that the probability of the exercice region Qu,(E) = Qu,(z > ¢) is condi-
tioned by information available at time 0. We now restrict ourselves to models where this
relevant information may be summarized by (Uz(0),Us(0)), i.e. we can write Qu,(E) =
Qu,(x > ¢ | Ux(0),U3(0)). This assumption will allow us to derive an homogeneity property
for the probabilities Qr,, i = 1,2, 3, in the discount bond prices. First, let us suppose that
we are paid in dollars instead of francs and that the exchange rate USD/FRF is equal to
e. If we want to receive francs, discount bond and option prices have to be multiplied by e
from which we deduce the homogeneity of degree one of the option pricing formulas. This

simple homogeneity property will be used in the proof of the next one.

Property 4 (money neutrality)
The probabilities Qu,, i = 1,2,3, are homogeneous of degree zero in (Uy(0), Us(0)) and in
(U5(0), U1(0)), and the caplet pricing formulas may be equivalently written :

U2(0) [Us2(0)Qus (w2 €| Uspa(0)) = 6@, (> ¢ | Usya(0))]

as an interest rate option pricing formula or :
b
1+cd
as a discount bond option pricing formula, with U;;;(0) = U;(0)/Ux(0), i,4" = 1,2, 3.

(14 )1 (0) | Qo (2 ¢ Usa(0)) = Dan(O)Qus (= ¢ | Ura(0)
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Proof : see Appendix.

Let us remark that Us5(0) = 2(0) and U;;2(0) = B '(0,71,7). The caplet pricing
formulas may further be simplified if we assume that the Libor rate = (respectively the inverse
of the forward discount bond price 2 ) can be written as z = Us/2(0)Z (resp. 2z = Uy/2(0)2)
where 7 is some random variable not depending on the conditioning variable Us/5(0) (the
so-called proportionality assumption). A caplet pricing formula satisfying this condition is
homogeneous of degree one in (c,Us/2(0)) (resp. in (1 + ¢6,Uy2(0)) ) (see also MERTON
(1973), GARCIA and RENAULT (1998)).

Property 5 (proportional models)

Under the proportionality assumption, the caplet pricing formula may be written :

Us(0) [U3/2( )QU3< A 2(0)> coQu, < > Ug/z(O)H (3.1)

or .

(14 O0) |55 (72 225) ~Tn 0@ (22 2225) | (2
as an interest rate or discount bond option pricing formula respectively.

Let us remark that the previous pricing formulas rely on the no arbitrage assumption
and on state price invariance property but not on the assumption of completeness. In usual
interest rate modelling, one starts with a specific dynamics of the spot rate (or on forward
rates or on bond prices), then deduces the risk-neutral distributions of Libor rates and
discount bond prices for this dynamics and at last computes caplet prices. Here, we directly
start with an arbitrary risk-neutral distribution of Libor rates and compute caplet prices,
thus avoiding the use of stochastic calculus and some computational burden. We can also
notice that in order to get our pricing formulas, we have relied both on Libor risk-neutral
and forward probability measures.

As an example, we rederive in our framework two famous pricing formulas. The first one
is known as the pricing formula computed under the market model (see e.g. MILTERSEN,
SANDMANN and SONDERMAN (1994, 1997), BRACE (1996), JAMSHIDIAN (1997)). It is a
BLACK-SCHOLES formula on interest rate. The second one is the pricing formula obtained
in the Gaussian model (for a description of this model see e.g. EL KAROUI and ROCHET
(1989), EL KAROUI, MYNENI and VISWANATHAN (1992), EL KAROUI and LACOSTE (1993),
JAMSHIDIAN (1993), BRACE and MUSIELA (1994)).

Example 1 : Market model
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The Libor rate is assumed here to be log-normal both under p and under Qu, = fu,dp

the pricing measure associated with numéraire U,. This leads to :

z = [23(%(;)6 exp (0 Toe— %) : (3.3)

where ¢ is a standard Gaussian variable with respect to QQy,. We can notice that the

homogeneity condition is satisfied and Property 5 can be applied. The computation of
Qu,(z > ¢) is straightforward. For the computation of Qu,(x > ¢), we can notice that
Quy(z > ¢) = 6Us3(0)E9V2[21,5.]. The last expectation can be calculated using Cameron
Martin formula (the discrete time version of Girsanov Theorem see KARATZAS and SHREVE
(1991) p. 190). This leads to the following pricing formula :

Cap(c) = Us(0)gp(d1) — c6Us(0)p(d2),
with :

= o\/To log (U2(0)06> + 2\/T_0’ (3.4)
and :

d2 = dl — O04/70-

The formula (3.4) is parametrized through the volatility ¢ of the forward Libor.

Example 2 : Gaussian model

In that case, we assume that the inverse of the forward price is log-normal under Q)

z = Ul(o) ex O+/Tp € — —52T0
- UQ(O) p 0 2 )

where ¢ is a standard Gaussian variable under Qp,. Qu,(F) with E = {2 : 2z > ¢} is written

and under i :

readily and Qg (F) is computed using again Cameron-Martin formula.

Cap(c) = Up(0)¢ <J1) — (1 +c6)Uy(0)¢ <J2) ;
with :

- g
O/T0o

;1 U1(0) o3

and :

d2: Jl—(? 70-

In this model, the parameter in the caplet pricing formula (3.5) is 7. In the Vasicek model
(VASICEK (1977)), 6%70 specializes to :
2
=2 _ U_ —Xm—70) _ ,—A(T1—70) 2 . ATy —AT 2
0T0—2)\3[<e 2-70) _ o~ AT o) (e 2 ¢ 1)

which involves two parameters ¢ and A, the volatility and the mean reversion coefficient of

, (3-6)

the instantaneous interest rate, respectively.

17



4 Implied pricing models with an L?-distance

4.1 TImplied approaches

It is a well known feature that the standard BLACK-SCHOLES model may not be consistent
with observed option prices of different exercise prices and lead to the presence of volatility
smiles (see e.g. BATES (1996), BAKSHI, CAO and CHEN (1997)). Similar departures occur
between standard caplet pricing models and quoted market prices (see data below). We thus
briefly review the procedure for building viable pricing models from a set of observed prices
and an a priori pricing model (see e.g. DUPIRE (1992), SHIMKO (1993), DERMAN and KANI
(1994), RUBINSTEIN (1994), DuMAS, FLEMING and WHALEY (1995), BUCHEN and KELLY
(1996), JACKWERTH and RUBINSTEIN (1996)).

The basic idea in the implied approach is to find a probability measure as close as pos-
sible to an a priori probability measure among all risk neutral probability measures. The a
priori measure usually comes from a caplet pricing model derived according to some theo-
retical considerations (either in discrete or continuous time, from equilibrium or arbitrage
arguments). This model can also be a model adopted by market practitioners. In other
words the a priori model is a kind of benchmark or structural model such as the widely used
market and Gaussian models. The implied approach relies on modifying the a priori pric-
ing model in order to achieve compatibility with the set of observed prices. The difference
between the a priori and a posteriori models is similar to an error term due to omission of
various effects and variables in the structural initial model.

Various criteria have been proposed in order to measure proximities between probability
measures such as the quadratic, cross-entropy (Kullback-Leibler) or goodness-of-fit criteria.
On economic grounds, we show that the quadratic criterion is related to the standard mean-
variance hedging problem. Indeed the derived option price appears to be equal to the
solution of a static mean-variance portfolio choice. This price is called the approximation
price and is the price of the hedge portfolio which minimizes the residual risk. This economic
interpretation prompts to use a quadratic criterion. Since SOLNIK (1974) it is common
knowledge that the solutions of mean-variance problems are numéraire dependent. Therefore
we study hereafter in detail these effects thanks to the state price invariance property.

On practical grounds, since tractability also matters, the quadratic criterion reveals to
be very attractive. It is by far the most simple and leads to explicit expressions for the
a posteriori pricing measure and for caplet price forecasts thanks to the use of convenient
numéraires. Furthermore the robustness of the predicted option prices w.r.t. to choices
concerning numeéraires, proximity criteria, or a priori models is a very convincing argument

in favor of our implied approach. This appears in several empirical papers (JACKWERTH and
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RUBINSTEIN (1996), JONDEAU and ROCKINGER (1997), FRACHOT, LAURENT and PICHOT
(1998)) and is confirmed here in the empirical section.
For these different reasons we prefer to rely on an L?(u)-approach (the observed payoffs

Gu,.j» J € J,i =1,2,3 are square integrable : p = 2) in the remaining of the paper.

4.2 Definition and existence of variance optimal measure densities

Let us choose a numéraire (say U;) and consider the set .7:[2]’15 of (square integrable) risk-
neutral signed measure densities, the set .7:%1 of (square integrable) risk-neutral densities
absolutely continuous w.r.t to g, and the set .7:,2]’16 of (square integrable) risk-neutral densities
equivalent to p. These different sets have been precisely defined in the first part of the paper.
By taking any element of such sets, we can build a pricing model consistent with observed
prices.

Let us consider an a priori pricing model (say the market model). We denote by 8‘17,
the density of this priori model w.r.t p, associated to numéraire U;. If the a priori model is
not consistent with observed option prices, 8‘17 ¢ ‘7:[2]’16. We examine the two minimisation

problems which differ in their optimisation sets :

min /(f — fz‘}i’)Qdu,

feffj’ls

: O 2
min (f — fUl) dp.
rerd,

Since the two minimisation sets are non-empty, closed and convex subsets of L?(u), there
exist a unique minimisation element (by projection theorem) for each minimisation problem.

The solutions are called the variance optimal signed measure density associated to nu-
méraire Uy and a priori model f}}‘l’ (and denoted by f}]‘f) and variance optimal probability
measure densily associated to numéraire Uy and a priori model f}}‘l’ (and denoted by f}]‘f)
j:,ljlf and f,ljlf mirror some risk premium updated thanks to information provided by observed
prices.

Of course, if the a priori pricing model is already consistent with observed prices (no
volatility smile), then f,lj‘lf = fr.

Let us notice that there does not always exist a minimal distance element between fg‘lf
and .7:[2]’16, since the later set is not closed. However if f,ljlf happens to be in .7:[2]’16, it is
clearly a minimal distance element between f{’ and .7:[2]’16. In a continuous-time framework
and when asset prices are continuous semimartingales, it has been proved by DELBAEN and
SCHACHERMAYER (1996) that the variance optimal signed measure density is always strictly
positive and thus equivalent to u (see also GOURIEROUX, LAURENT and PHAM (1998) for
a discussion, and LAURENT and PHAM (1998) for applications).
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4.3 Characterization of variance optimal measure densities

The solution of these standard convex optimization problems can be written through the

first order conditions as :

o= J e A 90 N (4.1)
[ = (S8 + Sies N yovng)  pas.

where 5\‘{]1 j» A\l ; are real numbers uniquely (because of non redundancy) determined by the
price constraints. These forms are obtained by applying the Lagrange Multiplier Theorem
(see LUTTMER (1996), Proposition 2 and HANSEN and JAGANNATHAN (1997), Proposition
A2).

The variance optimal signed measure of SCHWEIZER (1992) corresponds to the case
where fg‘lf = 1. This variance optimal signed measure also appears in a portfolio context in
HANSEN and RICHARD (1987), HANSEN and JAGANNATHAN (1991) and BANSAL, HSIEH
and VISWANATHAN (1993). The variance optimal measures depend on the a priori density
fg‘lf If the a priori pricing model corresponds to the market model or to the Gaussian model,
the variance optimal measures depend on the volatility parameter o.

The variance optimal measures also depend on the choice of p but only through the
Lagrange multipliers S\UUI »AD, ; as can be seen in equation (4.1). MAGNIEN, PRIGENT and
TRANNOY (1996) use the Lebesgue measure on a finite length interval |a,b]. In section 5,
we will use log-normal measures (i.e.  (resp. z) will be log-normal under p (resp. fi)).

When p is the Lebesgue measure on some finite interval |a,b], MICHELLI, SMITH,
SWETITS and WARD (1985), IRVINE, MARIN and SMITH (1986)!, MAGNIEN, PRIGENT and
TRANNOY (1996) characterize and compute the variance optimal probability measure when
observed prices are call option prices. In that framework, the variance optimal probability
measure is related to B-splines (a common interpolation technique).

We have already noticed that the variance-optimal measures may not be associated to
an equivalent (to p) risk-neutral measure. Therefore, the associated price operator is not

always (strictly) positive. We can however state the following result :

Property 6 (variance optimal measure positivity)
If the variance optimal signed measure and the variance optimal probability measure differ,
then the variance optimal probabilily measure s not equivalent to p and does not lead to a

(strictly) positive price operator.

Proof : see Appendix.

'We are grateful to F. Magnien for providing the two last references.
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4.4 Dependence on the choice of numéraire

In the previous section, we took as a benchmark the numéraire U;. We now show that the
variance optimal measure densities give rise to different pricing models when we change our
reference numéraire from U; to U;. Here the density fIJJZ (resp. f,JJZ) will be the variance
optimal signed (resp. probability) measure densities associated with numéraire U; when the
numéraire U; is used as reference (for notational simplification, we drop here the dependence
on o).

In order to make a comparison, let us consider some other numéraire, U;, i # 1 while
keeping U, as reference numéraire for the moment. By the state price invariance property,

the density associated to numéraire U; can be written as :

Uin
Uiy1(0)

where U;/; is the exchange rate between numeéraires U; and U; at time 79 (and is a p-
measurable function). Let us remark that j:,}z is in L?(u) under the standing assumption
that the Libor rate is strictly positive (which in turn implies that U;y € L>*(u)). The
density fy, of the a priori pricing model, associated to numéraire U; can also be obtained

by state price invariance property :

Uin
Uis1(0)

fu, = fon- (4.3)

From the characterisation of j:,}l in equation (4.1) and from the relations between payoffs

under different numéraires, gu, ; = Ui/19u, 5, we obtain by (4.2) and (4.3) :

. Uin .

fho= 10+ Ay Ui 9o, 5- 4.4

G Ui/l(O)j;] R #4)

On the other hand, we can directly compute the variance optimal signed measure density

associated to numéraire U; while choosing as reference numéraire U;. By adapting the

characterization result (4.1) to numéraire U; instead of U there exist some real numbers
Av,;, 7 € J such that :

fo, = fo, + - Avig9u.- (4.5)
jed
Now, since in the usual cases U;;; is a non constant random variable and the a posteriori
model differs from the a priori model (some of the Lagrange multipliers are different from
zero), we clearly see from (4.4) and (4.5) that :

Tl # T
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which states that the variance optimal measures will differ if we start with numéraire U;
(fsz) instead of U (f,ljz) The reason for this dependence of the a posteriori pricing model

on the chosen numéraire will be a consequence of the property given in the next subsection.

4.5 Variance optimal signed measures and approximation prices

In this section we show that option prices computed under the variance optimal signed
measure correspond to the “approximation price” of the option introduced by SCHWEIZER
(1992).

We first consider the mean-variance hedging problem :

min /(Z Au,.i9uss — 9u;) dp.

Au; jeJ

where gy, is a square integrable payoff (for i = 1,2,3). This problem consists in finding
a (static) portfolio Y ,c; Ay, ;9v,; which minimizes the square of the hedging residual :
> jes Avi,i9us,; — Gus, O equivalently the L*(11) distance to payoff gp,. This problem has been
introduced in a dynamic framework by DUFFIE and RICHARDSON (1991) and further studied
among others by SCHWEIZER (1992) and GOURIEROUX, LAURENT and PHAM (1998).

A direct application of the projection theorem guarantees that under non redundancy
and no arbitrage, there exists a unique A7, to the previous minimization problem.

The mapping : gu, — Fp.lgv.] = Yjes M\, ;5 is a continuous linear functional on
L*(p) consistent with observed prices and > jes Ay, ;b 1s called the approximation price
of gy,. The price of the approximating portfolio 3¢ ; Af;, ;gu,,; is thus equal to a linear
combination of the asset prices. As it is well known in international portfolio management
(SOLNIK (1974)), the approximating portfolio and thus its price are numéraire dependent
(since P [gu,] is obtained by taking as reference numéraire U;). We are now able to state

the following :

Property 7 (approximation price)

The approzimation price I [gu,| of some payoff gu, is equal to the price of this payoff under
the variance optimal signed measure associated to numéraire U;, U;(0) fff]igUidu, where fsz
15 the variance optimal signed measure densily associated to numéraire U; and to f,‘}f =1

(i.e. no risk premia).

Proof : see Appendix.

Now, the dependence of the variance optimal signed measure on the choice of numéraire

is a consequence of the dependence of the approximation price on the choice of numéraire.
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5 Explicit cap pricing formulas under the variance op-

timal measure

In order to shed light on the model building procedure, some of the previous points are now
illustrated in interest rate modelling. It is then easy to derive closed-form caplet pricing
formula consistent with observed prices in the variance optimal measure setting.

Let us consider a sequence of observed prices corresponding to numéraires and caplets,
namely (gu,,0() = 1,U(0)), (guy,;(x) = (x—c¢;)16,P;), c1 =0, j > 1,5 € J. From equation
(4.1), the variance optimal signed measure density associated to the a priori model f,‘}‘; =
(i.e. the no risk premium case) and to numéraire U, can be written as :

@ =1+x+ X N@E-—c)'6 pas, (5.1)
i>1,eJ
which leads to :
Cap(c) = Uy(0) /(a: —c)té (1 +Xo+ Y Az - cj)+6) dp(x). (5.2)
i>1,eJ

Let us introduce the density function f7), defined by :
U4(0) 12, (%)

Us(0) = e 0 Mas,

where Uy(0) = U5(0) [ 2*6%dp(x) and QP the probability associated to measure f7), dj. Since
x is in L?(p) this density is well defined. Straightforward computations give the following
property.

Property 8 (caplet price forecast)

A caplet pricing formula consistent with observed numéraires and caplet prices in the vari-

ance optimal signed measure is given by :

Cap(c) = (14 Xo)Cap’(c) + > NCap’(c), (5.3)

j>15ed
where Cap®(c) is the a priori pricing formula (i.e. UQ(O)EQOUQ [(x — ¢)*é]) and Cap’(c) is
equal to :

Cap’(c) = Us(0)Q0, (Ej) — Us(0) & (¢ + ¢;)Qu, (E;) — U2(0) e c; 6°Q0, (Ey), (5-4)
E; the exercise region being equal to {x > ¢V ¢;} and ¢V ¢; = sup(c,c;). The Lagrange

multipliers A; are determined by the linear equations :

Py o= (1+X)Cap’(c;)+ > NCap'(e;), j=1,j€J,

i>1,4e

U(0) = U(0)(1+X0)+ > NCap’(cy).

i>1,4eJ
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Hence we get an explicit formula which only requires solving linear equations for its

practical inplementation. This explicit formula is particularized in the next two examples.

Example 1 : Modified market model
When z is log-normal under Q¢;, (see equation (3.3)), the caplet formula provided through

equation (5.4) specializes to :

Cap’(c) = U(0) [2*(0)8 exp(0”70)p(d) — w(0)6>(c + c;) () + cc; ¢(d3)] . (5.5)

with :
d'7 = 1 10 13(0) —I— g\/7T
1‘ 0" o g cVey 2 05
di, = d}— o7,

dy = di+ o7
This simple expression is due to the lognormality of the Libor rate under ?JQ, ?Jg and

0,,- Let us remark that Cap(c) is homogeneous of degree one in (U5(0),Us(0)) but is not

homogeneous of degree one in (¢, z(0)) as in the proportional models.

Example 2 : Modified Gaussian model
For the Gaussian model (z is log-normal under Q?JQ), the same kind of explicit formulas
can be derived under the measure that minimizes the L?(p)-distance between fg‘z and the

set of densities for z compatible with observed prices. This measure takes the form :

ﬁg(z)zl‘F;\o—l— Yo Alz— 1 +¢8)t, pas.,

j2ljed

which gives :

Cap(c) = (14 Xo)Cap®(c) + > NCap’(c),

j>1,5ed
with :
Cap’(c) = Uy (0)¢(dy) — eUx(0)¢(da), (5.6)
Cap/(c) = Uz(0) [22(0) exp(a?mo)6(dh) — (0)(c + c)o(d) + 2o, 6(d)],  (5.7)
with :
¢ = 1+4c¢b,
d = Fmle P +5Vm
d2 = d1 — g T0,
(_Zj = 1 —|— cjé,
i = sl + 5V
d% = d{ — 0 T0,
dy = di+3\/T0.
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Let us remark that a convex combination of the two previous caplet formulas also lead
to a viable price operator (due to the convexity of the set of viable price operator) and thus
to another option pricing model.

Finally similar explicit caplet pricing formulas are also available under the variance opti-
mal probability measure. This is due to the fact that the positive part of a piecewise linear
function is still piecewise linear. Thus the densities w.r.t. p (resp. [i) are piecewise linear

functions of = (resp. z) and the computations go along the same lines as in the signed case.

6 Pricing bounds

Let us remark that one may still question our approach and the dependence of the rebuilt
caplet prices on the retained risk-neutral measure. Indeed, if one only relies on arbitrage
arguments in our highly incomplete market (in which lots of risk neutral pricing measures
exist), it is true that any risk-neutral pricing models may be taken. In that case the set of
admissible prices may be quite large as shown for example by MERTON (1973).

One may try to narrow these bounds either by restricting the set of admissible risk-
neutral measures choosing for instance measures close to the log-normal, or by equilibrium
arguments. Our previous approach which aims to choose a special pricing measure relies on
a mean-variance argument. JOUINI (1997), PHAM and TouUzZI (1996) among others show
that the set of admissible prices cannot be narrowed if general preferences are considered.
Assuming decreasing marginal utility w.r.t. the underlying price in a discrete framework,
PERRAKIS and RYAN (1984) RITCHKEN (1985) exhibit bounds significantly more stringent
that the MERTON’s bounds. Now regarding pricing bounds unlike the aforementioned ref-
erences, we have to take into account the existence of traded options and not only traded
numeéraires. This induces extra restrictions on pricing measures thus narrowing the pricing
bounds. The bound we propose appears closely related to a dual portfolio choice problem
introduced in continuous time by EL KAROUI and QUENEZ (1995), known as the super-
replication problem.

The highest price at which the portfolio of assets with payoff gy, can be valuated is
provided by :

sup UZ(O)/gszUzdp“u (68)

fUiE_'F;ZJ’;
where .7:&,6 is the set of equivalent risk-neutral probability density measures. This set is

non empty under the no arbitrage opportunity assumption. A duality approach allows to

characterize this highest price. The previous problem reveals to be the dual problem of the
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so-called primal super-replication problem :

igsze;] AP st jzg;])\ngi’j > gu,, I as..
The solution of this problem is the minimum price of a portfolio based only on observed
assets that dominates the portfolio payoft gy, and is called the super-replication price of the
portfolio. This super-replication price is an obvious upper bound of the accounted value of
the portfolio. We assume hereafter that this problem is consistent i.e. there exists at least
one feasible solution (the set A of A = (\;) satisfying the constraints is non empty). This
problem belongs to a particular class of linear programming problems. It is called the class
of continuous semi-infinite linear programs because the set of constraints is uncountable (see

ANDERSON and NASH (1987)). We are able to state the following duality results.

Property 9 (Weak duality)
Under no arbitrage, we have : ;nlf\Z)\ij > sup U;(0) /gUifUidu.
S e

q,€
fUi EfUi

Proof : see Appendix.

This guarantees that the two optimization problems have finite solutions. Furthermore
the super-replication price can be associated with a super-replicating portfolio since the

greatest lower bound is attained.

Property 10 (existence of a minimum price super-replicating portfolio)

Under non redundancy and no arbitrage, there exists a solution A\* to the primal problem :

m}%nz )‘]P] s.t. Z)\JgUuJ Z gu,, K1 a.s.

jed jed
Proof : see Appendix.
Another interesting property of the super-replication problem is that there is no duality

gap i.e. the super-replication problem and its dual have the same finite value.

Property 11 (absence of a duality gap)

Under no arbilrage, the super-replication price is equal to :

sup Ui(o)/gUifUidﬂu

q,e
fUiEJ:Ui

t.e. the supremum of the expectation of payoff gu, taken w.r.t. the set of all equivalent

risk-neutral measures.
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Proof : see Appendix.

Hence, the functional which associates the super-replication price to a given payoff is sub-
linear (since it is the supremum of linear functionals). We can also characterize the super-

replication problems where strong duality is achieved.

Property 12 (strong duality)
The set of payoffs gu, where strong duality is achieved, i.e. where there exists ff;, marimizing
the expected value of the payoff over all equivalent risk-neutral probability density measures

fu, € F° is the static investment opportunity set.

Proof : see Appendix.

This result corresponds to the characterization of attainable payoffs stated by JACKA (1992)
in the dynamic case. In order to compute the optimal value, extensions of the simplex algo-
rithm for solving either the primal or dual problems are given in Section 4.5 of ANDERSON
and NAsH (1987).

Where observed prices correspond to caplet payoffs and when we consider a caplet payoff
of arbitrary exercice rate, the super-replication price is obtained as the linear interpolation
of observed prices.

Let us take ¢ € [¢;, ¢;41[ . The super-replicating portfolio of (x — ¢)*6 has the form :

Cit1—C C— ¢
§| =S — )t ——
Civ1 — G Civ1 — G

(x—ecy1)"]. (6.9)

Indeed it is easy to show that any portfolio Y~ A;j(x — ¢;)T6 dominating (z — ¢)*§ also
dominates the payoff (6.9). By the positivity of the price operator, we get that the price

asssociated to (6.9) is the super-replication price :

Ciy1 — C C—¢
P+
Civ1 — G Civ1 — G

Py (6.10)

7 Numerical example and empirical application

In this last section, we begin by checking the practical relevance of our approach on a
numerical example. The example is designed to obtain prices similar to those currently

traded on the market. We then proceed further on real caplet data.?

2We thank Paribas Capital Markets for kindly providing the market data. The Gauss programs devel-

opped for this section are available on request.
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For the numerical example, ten caplet prices have been generated with the Gaussian
model (eq. (3.5)). These prices are one year caplet prices on three month Libor (19 = 71 = 1,
Ty = 1.25, 6 = 0.25) with equally spaced exercice rates from 2.5% to 7%. The volatility
parameter of the Gaussian model is set equal to 0.242% (eq. (3.6) : & = 0.242%, 0 = 1%,
A =5%). The yield curve is taken 4% flat (U1(0) = 0.9608, U»(0) = 0.9512, U3(0) = 0.0096,
x(0) = 4.02%). These data are used as input data for a calibration procedure based on the
market model (eq. (3.4), (5.3), (5.5)). Hence we take the market model as our a priori model
in this example. The volatility parameter of the market model corresponds to the implied
volatility of the observed at-the-money caplet price (0 = 24.478%). In Table 6 the price
forecasts are compared with the (unobserved) true prices and the super-replication prices
(eq. (6.10)). The strike rates of the caplet prices to be infered are the intermediate rates
from 2.75% to 6.75%.

Table 6 : True prices, price forecasts and super-replication prices (in percent)

strike true forecast | super-repl.
2.75 | 0.31263 | 0.31234 | 0.3139%4
3.25 | 0.21172 | 0.21181 0.21395
3.75 | 0.12848 | 0.12845 | 0.13131
4.25 | 0.06813 | 0.06814 | 0.07105
4.75 | 0.03085 | 0.03084 | 0.03313
5.25 | 0.01169 | 0.01170 | 0.01307
5.75 | 0.00365 | 0.00365 | 0.00429
6.25 | 0.00093 | 0.00093 | 0.00116
6.75 | 0.00019 | 0.00019 | 0.00025

The results show that our simple procedure is very successful in rebuilding the unobserved
data while matching exactly (by construction) the available market prices. The difference
is not visible to the naked eye if the true prices are plotted on a graph together with their
forecasts for each exercice rate. The absolute errors are of orders 107° to 10~ while the
relative errors are of orders 102 to 10~%. Reversing the role of the Gaussian model and the
market model in such an example leads to similar results.

Let us now apply the calibration approach to real market data. The collected data
are one year caplet prices for the three month DEM Libor. The quotes (Tue. 06/10/1998
around 4 pm) take the form of a lognormal volatility smile which can be translated into
caplet prices. The data (implied volatilities and caplet prices) are presented in Table 7.
The discount bond prices are equal to 0.9665 and 0.9582 for the one year and fifteen month

maturities, respectively.
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Table 7 : Implied volatilities and observed caplet prices (in percent)

strike | volatility | price
2.5 24.841 | 0.23747
3 24.321 | 0.14219
3.5 24.249 | 0.07558
4 24.464 | 0.03695
4.5 24.857 | 0.01739
5 25.331 | 0.00814
5.5 25.799 | 0.00384
6 26.197 | 0.00182
6.5 26.500 | 0.00086
7 26.712 | 0.00040

From these observed data, we get the following price forecasts taking as a priori either the
market model or the Gaussian model (Table 8). The volatility parameters are taken equal
to their respective at-the-money implied volatility (o = 24.464%, 6 = 0.225%). The price
forecasts made by the two models do not differ very much from each other. For the strike
rates : 2.75%, 3.75%, 4.75%, 5.75%, 6.75%, the Gaussian model forecasts are slightly higher
while the reverse holds for the other exercice rates. However we do not see a particular

reason for this special alternate ordering.

Table 8 : Price forecasts with the market model and the Gaussian model (in percent)

strike | market | Gaussian | super-repl.
275 | 0.18671 | 0.18707 0.18983
3.25 | 0.10506 | 0.10496 0.10889
3.75 1 0.05325 | 0.05327 0.05627
4.25 | 0.02541 | 0.02539 0.02717
4.75 | 0.01189 | 0.01189 0.01276
5.25 | 0.00558 | 0.00558 0.00599
5.75 | 0.00264 | 0.00265 0.00283
6.25 | 0.00125 | 0.00122 0.00134
6.75 | 0.00059 | 0.00062 0.00063

8 Concluding remarks

We have presented a general approach for the valuation of a book of interest rate deriva-

tive products, such as caplets. The proposed valuation is slightly different from the usual
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approach based on continuously adjusted self-financing portfolios. In particular, we do not
rely on particular time evolutions of the state variables and institutional assumptions such
as frictionless trading. The usual dynamic approach makes it difficult to take into account
observed prices, and is mainly aimed at providing a structural model that will be modified
according to the information contained in observed prices. The quality of the cross price pre-
diction will depend on the one hand on the number of currently traded assets and observed
prices and on the other hand on the quality of the structural model.

Our main focus was interest rate products such as caplets. This is a rich framework to
introduce different numéraires and provide simple general formulas for interest rate options.
Our framework ought to be extended in order to take into account different exercise dates.
Such an extension has been made in exchange rate option pricing models and for special
dynamics (AVELLANEDA et al. (1997) and LAURENT and LEISEN (1998)). The work is
harder when considering HIM type models since the standard state variable is the forward
curve whose dynamics are complex even for standard models such as the market model.

Another extension would be to include other kinds of asset payoffs such as swaptions.
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Appendix A
Proof of Proposition 2

We define the linear functional 77 : gy, € Gy, — Yje5 AP, with X\; Vi sit. gy, =
e Niguy - (Guy,7fy,) is a price system in the terminology of HARRISON and KREPS
(1979), and 77;, provides the prices of static portfolios.

The absence of arbitrage opportunities is equivalent to the assumption that 7;, is strictly
positive. In the terminology of HARRISON and KREPS (1979), (G, 775, ) is an arbitrage free
price system. Since strictly positive linear functionals on a subspace can be extended as
strictly positive linear functionals on the whole space LF(p) (DUFFIE (1988) p. 72) and
since positive linear functionals on L”(1) are continuous (DUFFIE (1988) p. 63), 77, can be
extended to any payoff in IP(p) : there exists a strictly positive linear functional on LF(u),
Ty, , such that the restriction of my, to Gy, my, |G, is equal to 7f;, .

Once 7y, has been defined on I#(u), we know from Section 2.1.1 that corresponding 7y,
and 7y, can be defined on IP(p).

The converse is straightforward.
Proof of Property 1

Applying successively Proposition 1 and the state price measure invariance property

(equation (2.5)), we get :

Cape) = (BO.m) - BO.m) [ C=L p )it

= (B(0,71) = B(0,72))(1 = Fy(c)) — c6B(0,72)(1 — Frp(c)).
It proves (a) and (b). (c¢) is obtained from the definition of the forward Libor.
Proof of Property 2

From Proposition 1, equation (2.8) and the transfer theorem, we get :

b

Cap(e) = 805(0) [ (x = )" fur(@)dn(x)

= 50,(0) / (z — &)* Ju, (62 + 1)dp(z)

a

= 6000) [ = 0 Tene)ap(e)
= G0 [ 2 )anle)

—~Us(0)(1 + ) (1 — Fiy (1 + ¢6)).
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Since :
-1
fnl) _ (5 )

o) gt GO

we have :

00) [ et = i) [ )

+cé

and the stated result follows immediately.
Proof of Property 3

Form (a) is immediately deduced from Proposition 1 :

Dig(c) = 7, [1g(x)0]
= 6U2(0>QU2 (E)
We get form (b) noting that the payoff 6Ig(x) is the a.s. limit of the sequence of payoffs
S((x —c+1/p)" — (z —¢)")/(1/p) obtained from caplet spread payoffs. These payoffs are

also bounded by ¢ (whose expectation is finite and equal to ¢). The corresponding sequence

of prices is (Cap(c — 1/p) — Cap(c))/(1/p) and from Lebesgue convergence theorem, we can

state that : o ) o
Dig(e) = — lim ap(c —1/p) — Cap(c)
p—+o0 —1/p

Proof of Property 4
From Property 3, the digital caplet price may be written :
Dig(c,Us(0),U3(0)) = c6Us(0)Qu, (z > ¢ | Uy(0), Uz (0)). (8.11)
From the homogeneity property of the option price, we have :
eDig(c,eUy(0),eUs(0)) = c6els(0)Qr, (x > ¢ | eUs(0),eUs(0)). (8.12)

Comparing (8.11) and (8.12), we see that (), is homogeneous of degree zero in (Uy(0), Us(0)).

Starting from the caplet price given in property 1, we similarly get :
Cap(c,Us(0),Us(0)) = Us(0)Qus (2 = ¢ | U(0), Us(0))
—c6U2(0)Qu, (x > ¢ | Uy(0),Us(0)), (8.13)
eCaple, cT,(0),cT3(0)) = el3(0)Qus(x > ¢ | cly(0), ¢T5(0))
—c6elUz(0)Qu, (z > ¢ | eUs(0),eUs(0)).  (8.14)
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Since Qu, is homogeneous of degree zero, it is clear from (8.13) and (8.14) that Qs
is also homogeneous of degree zero in (Uy(0),Us(0)), and hence in (Uy(0),U;(0)) since
Us(0)/Us(0) = U1(0)/Us(0) — 1, and we note with a slight abuse of notation :

Qus(x 2 ¢ | 1,U5(0)/Us(0)) = Quy(x = ¢ [ U(0)/Us(0)).

Using the expression of Property 2, we may prove along the same lines that )y, is homoge-

neous of degree zero in (Uz(0), U1(0)).
Proof of Property 6

+
Let us assume that f,ljlf = (fg‘lf + e XTTthgUhj) >0, p a.s.. Then, fg‘lf—l—zjej Al 901G >
0, pas., and fi7 = f¥ +X,es A, 901,45 Since fie e 7, C ‘7:5’15, f7 satisfies the first
order conditions of the variance optimal signed measure density problem and is equal to N,}‘l’

by unicity.
Proof of Property 7

From Riesz-Fréchet Representation Theorem, there exists a unique function ff, € L*(p)
such that P} [gu,] = U;(0) [ gu, f.dp, Ygu, € L*(p). We also have [ ffdp = 1. Indeed,
the numéraire U is a traded asset and its approximation price is equal to U;(0). Thus, ff,
belongs to the set .7:[2]’1,5 of risk-neutral signed density measures.

Let us now take some gy, orthogonal to the investement opportunity set Gy, = {gu, ;}-

Its approximation price is zero and thus we have the implication :

Vi€ J. [ guguadn=0= [ gu.fidn=o.

Therefrom we deduce that ff; belongs to the investment opportunity set Gy, which means
that ff. has the interpretation of a portfolio. Let us denote Ay;,, the subspace of Gy, spanned
by the zero price portfolios :

Av, =D Ngui | D AP =0}

jeJ jeJ

Since the approximation price of any arbitrage portfolio is equal to zero, we deduce that the
portfolio f7; is orthogonal to Ay,.
We now have to show that fsz = f{,- Since fsz is the unique L?(p)-norm minimum

element of .7:[2]25, we simply have to show that :

JGodn = [z
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or equivalently that :
[ Fedb + fi)dn = [ 5,6+ £)d

fsz + f{7, is the payoft of a portfolio since we know from our previous results that fsz and f7.
are two portfolios. Since the expectations of a given portfolio under any measure consistent

with observed prices are the same, the last equality is true.
Proof of Property 9

From the following implication : VA;, Vfu, € Ff°
> Niguii 2 gu, phas. = / > Aigu.g) foidp > /gU Jodp,
jed jed

Since the probability measure fy,dp is compatible with observed prices :

S AP 2 Ui0) [ gos fudp

jeJ

which ends the proof.
Proof of Property 10

The proof uses standard functional analysis arguments. Let us denote by A C R’ the
set {A € R’ : Yies Ajgui; = Gu, 1 a.s.} assumed to be non empty. This set is closed and

convex. Let us choose a given fy, € f[q]’f. The primal problem is equivalent to :

;g[f\z APy — Uy(0) /gUifUidM = T (0)(3_ Ngusj — 9u:)
jeJ

jedJ

Under non redundancy, it may be easily checked that the mapping :

A — U (0) >~ Mo,

=

|22 (fur, o)

is a norm in IR’. Let us now consider \° € A and the set :

A= (A e A U0) (Y Ngu, — o) < 1U0)(3_ Mg, —

jeJ jeJ

(fu, ) } -

This set is a closed bounded set of R” :

1U:(0) >~ Asgu,.ill e go,am < U 0) (D Asgus,s —

JjeJ jeJ

i(0)gu.

Since the mapping A — ||U;(0)(X;cs Njgui; — 9u,)
minimum point A* in A® and the super replication problem is solvable.

LM (fu,dp) 18 continuous, there exists a
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Proof of Property 11

Let us take P* the super-replication price and assume that :
e=P"— sup U;(0) /gUifUid/L > 0.
fUiefg’;
Let us denote by 77, , the linear functional defined by :
Mgl Aiguig + Agul = D NPy + NP = 2/2),
jeJ JjeJ
where A;, A are arbitrary real numbers. This functional is strictly positive, i.e.
Z)\ngi’j + )\gUi >0= Z)\JPJ + )\(P* — 5/2) > 0.
jeJ JjeJ
When A > 0, the strict positivity of the right-hand side is deduced by taking the expec-
tation of the left-hand side under some arbitrary equivalent risk-neutral probability measure

and using the definitions of P* and ¢ (which imply : P* — /2 > U;(0) [ gu, fu,dp).
When XA < 0, the right-hand side can be written as :
s
> _X]gUi,j — gu;, > 0.
jed
By definition of P*, we get :
Aj . o
> =P > P> Pt —¢/2.
; A
jeJ

Multiplying by —A provides the right-hand side inequality.
Since 77, , is strictly positive, it can be extended on L”(y) and represented by an equiv-

alent risk-neutral probability measure fUidu (say). We then have :

Ui(0>/fUi9Uidﬂ =P"—¢2/2> sup Ui<0)/gUifUid/JJ7

q,€
fUiEJ:Ui

which leads to a contradiction.
Proof of Property 12

Let us first consider an arbitrary payoff 3 A;gy, ; in the static investment opportunity set.
Due to the price compatibility constraints, we get that for any fu, € 772", Ui(0) [ gu, fu,dp is
equal to - A;FP;. Thus the maximum is attained for every equivalent risk-neutral probability

measure.
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Conversely, let us take a payoff gy, that does not belong to the investment opportunity
set and consider the minimum price surreplicating portfolio - Afgy, ;. If we assume the

existence f{; dy maximizing the expected value of the payoff, we get (from the absence of

/ (Z ASGuig — gm) fo.dp = 0.

Noticing that the integrand is non negative and that f7;dy is equivalent to i, we deduce

duality gap) :

that the integrand must be equal to zero p a.s.
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