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Abstract

In this paper we take into account a very general setting with: (i)
a set of stochastic investment opportunities, (ii) a set of risky assets,
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inflation risk, (v) stochastic labor income, and (vi) HARA preferences. We
compute a quasi-explicit solution for both the optimal consumption and
asset allocation. This solution is based on two changes in the probability
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1 Introduction
This paper deals with the problem of finding the optimal consumption and

asset allocation for an investor having a fixed financial horizon and HARA
(Hyperbolic Absolute Risk Aversion) preferences. The market structure we
study is very general since we do not specify any functional form for the drift
and diffusion coefficients of the stochastic variables that enter the model. In
particular, we take into account: (i) a set of stochastic investment opportunities,
(ii) a set of risky assets, (iii) a riskless asset paying a stochastic interest rate.
Furthermore, the investor must face an inflation risk and he is endowed with a
stochastic labour income (or expenses). We will refer to this kind fo risk outside
the financial market also as back ground risk.
A huge literature about asset allocation has been developed in different

frameworks. The main characteristics of some papers that present a closed form
(or quasi-explicit) solution are summarized in Table 1. These papers are classi-
fied by taking into account their preference specification (Utility), the number
of state variables (S. V.) in the framework and whether or not they deal with
consumption (Cons.), background risk (B. R.), market incompletness (Inc.), and
inflation (Inf.).

Table 1: Papers presenting a closed form solution
Authors Utility S.V. Cons. B.R. Inc. Inf.
Bodie et al. (1992) CRRA 1 no yes no no
Kim and Omberg (1996) HARA 1 no no yes no
Wachter (1998) CRRA 1 yes no no no
Chacko and Viceira (1999) CRRA 1 yes no yes no
Deelstra et al. (2000) CRRA 1 no yes no no
Boulier et al. (2001) CRRA 1 no yes no no
Lioui and Poncet (2001) CRRA s no yes no no
Brennan and Xia (2002) CRRA 2 yes no yes yes
Menoncin (2002) CARA s no yes no yes
This paper HARA s yes yes no yes

After the seminal paper of Cox et al. (1985), the interest towards the in-
flation risk has risen only in recent period (see Brennan and Xia, 2002, and
Menoncin, 2002). Nevertheless, when a long (and even medium) period of time
is considered, the inflation risk and its hedging cannot be neglected. In partic-
ular, Brennan and Xia (2002) use the same framework as in Cox et al. (1985),
while Menoncin (2002) does not specify any particular functional form for the
drift and diffusion term of the consumption price process. Here, we use the same
framework after Menoncin (2002) but we generalize to the case of consumption
and HARA preferences.
Another brench of the literature has developped some existence and unique-

ness result for optimal consumption and investment, without supplying any
closed form sultion. In a very general setting, El Karoui and Jeanblanc-Picqué
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(1998) analyse the case of a constrained investor who cannot borrow against
the future and whose wealth cannot therefore be negative. They show that the
optimal constrained solution consists in investing a part of the wealth in the
unconstrained strategy and spending the remainder for financing an American
Put written on the free wealth. This option provides an insurance against the
constraint. Their analysis is carried out with a wider class of utility function
than the HARA class.
Also Cuoco (1997) offers an existence result for the optimal portfolio for a

constrained investor who is endowed with a stochastic labour income flow. The
type of constraint he analyzes is sufficiently general for describing the case: (i)
of nontradeable assets (i.e. incomplete markets), (ii) of short-sale constraints,
(iii) of buying constraints, (iv) of portfolio-mix constraints, and (v) of minimal
capital requirements. The last three constraints are relevant for banks and other
financial institutions whose portfolios are affected by regulation of an authority
(like a central bank).
Nevertheless, the general frameworks cited above are not able to supply the

reader with an easy rule to implement for creating an optimal portfolio. In fact,
a closed form solution is computed only in very particular cases. In this work,
instead, we present a quasi-explicit solution for a quite general setting. Thus,
we bridge the gap between the very theoretical framework where existence and
uniqueness results are obtained and the very particular cases where an exact
asset allocation is derived.
In this work we deal with an unconstrained problem (i.e., we do not check

for the positivity of investor’s consumption and wealth) because (as stated in
Merton, 1990, Chapter 6.1) the positivity of optimal consumption is guaranteed
by the use of a (strictly) HARA utility function. In fact, a HARA function
with strictly positive parameters and with a subsistence level of consumption
(wealth), exhibits a marginal utility tending to infinity for a given positive
amount of consumption (wealth). This means that the optimal consumption
(wealth) can never reach this value and will always stay above the subsistance
level. If this was not the case, the investor would have an infinite increase in his
utility by marginally increasing the consumption (wealth) level.
Bodie et al. (1992) offer an interesting analysis of the asset allocation prob-

lem when a labour income is present (but consumption is not). Nevertheless,
they deal with a nominal market, where there is no more than one asset following
a geometric Brownian motion. Their main result states that the investor who
has a labour income behaves as if he could rely, at each instant, on the expected
present value of all his future income flows. In this work we confirm this kind of
result with the suitable modifications due to the presence of the inflation risk.
In particular, we show that the consumer behaves as if he owned not only his
present wealth but also the present expected value of what we will call “forward
real labour income” (which is a measure of the real labour income).
A similar analysis to those presented in this paper is carried out by Lioui

and Poncet (2001) but in the pure investing case. They take into account the
problem of an investor who is endowed with a portfolio of discount bonds that
he chooses (is obliged) not to trade until a deterministic time horizon. In our

3



work, instead, the investor is supposed to be endowed with a non-financial in-
come flow. We will present what this difference implies with respect to the
optimal asset allocation, and we will also show that the qualitative solution
after Lioui and Poncet is maintained. In fact, the two models are very similar
since they are both interested in characterizing a very general solution where
the involved random variables follow general stochastic processes. We main-
tain the completeness hypothesis made by Lioui and Poncet, but we generalize
to consumption. Furthermore, the investor’s preferences belong to the HARA
family while these authors restrict the analysis to the CRRA case.
In this work we are able to find a quasi-explicit solution for both the optimal

consumption and asset allocation. Furthermore, we show that the computation
of the optimal solutions can be done through two suitable changes in probability.
Thus, the usual result according to which the optimal portfolio can be reached
simply thanks to the use of the risk neutral probability does not apply. For
HARA investors, in fact, two new probability measures must be used. One
“real ” risk neutral probability making the asset prices behave as martingales
when discounted by the consumption price process, and a subjective probability
depending on investor’s preferences.
The paper is organised as follows. Section 2 shows the structure of the prob-

lem we are dealing with. In particular we present: (i) the market structure, (ii)
the stochastic labour income, (iii) the consumption price process, (iv) a first
change in the probability measure, (v) the behaviour of the investor’s wealth
under the self-financing condition, (vi) the definition of the “real forward la-
bor income”, and (vii) the investor’s preferences. In Section 3 the solution for
the optimal consumption and asset allocation is computed. Furthermore, we
analyse: (i) the role of the labor income, (ii) the portfolio hedging component
based on the so-called elasticity approach by presenting a second change in
the probability measure, (iii) the behaviour of the log-consumer, and (iv) the
difference between the portfolio maximizing the utility of terminal real wealth
and the portfolio maximizing the utility of both consumption and terminal real
wealth. Section 4 concludes while some technical computations about probabil-
ity changes are left to the appendix.

2 The economy
In this paper we take into account a very general framework where the asset

prices depend on a set of s stochastic investment opportunities following the
differential equation

dX
s×1

= f (X, t)
s×1

dt+ g (X, t)
0

s×k
dW
k×1

, X (t0) = X0, (1)

where dW is the differential of a k−dimensional Wiener process. The drift and
diffusion terms f (X, t) and g (X, t) are supposed to satisfy the usual Lipschitzian
conditions guaranteeing that Equation (1) has a unique strong solution (see
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Karatzas and Shreve, 1991). Furthermore, f and g are Ft measurable, where
Ft is the σ−algebra through which the Wiener processes are measured on the
complete probability space (Θ,F ,P). All the processes that will be introduced
in what follows will be supposed to satisfy the same properties as those here
stated for Equation (1). Hereafter, the prime denotes transposition. The values
of all the state variables are known in t0 and so X0 is a deterministic vector of
real variables.
On the financial market there are n risky assets and one riskless asset whose

prices follow the differential equations

dS
n×1

= µ (S,X, t)
n×1

dt+Σ (S,X, t)
0

n×k
dW
k×1

, S (t0) = S0, (2)

dG = Gr (X, t) dt, G (t0) = G0, (3)

where r (X, t) is the instantaneous riskless interest rate. The values of S and G
in t0 are supposed to be deterministic (positive) variables. The set of risk sources
for the risky assets is the same we have used for the state variables (dW ). This
assumption is not restrictive because of potential handling of various situations
via the matrices g and Σ.
The set of risky assets S may contain stocks, bonds, and also derivatives.

Thus, our model is able to describe the more particular structure generally taken
into account in the literature and containing one stock and one bond.
We recall the main result concerning completeness and arbitrage in this kind

of market (for the proof of the following theorem see Øksendal, 2000).

Theorem 1 A financial market as in (2) and (3) is arbitrage free (complete)
if and only if there exists a (unique) k−dimensional vector ξ (t,X) such that

Σ (t,X)
0
ξ (t,X) = µ (t,X)− r (t,X)S (t,X) ,

and such that
E
h
e
1
2

R H
t0
kξ(t,X)k2dti

<∞.

If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work we assume
that n ≤ k and that the rank of matrix Σ is maximum (i.e. it equals n). We
underline that if the market is arbitrage free and n > k, then n− k assets must
be redundant (i.e. linearly dependent). Accordingly, in an arbitrage free market
where the redundant assets have been eliminated, only the case n ≤ k can arise.

2.1 The stochastic labour income

The investor is endowed with a set of non-financial money flows he cannot
buy nor sell in the financial market. These flows can be positive (corresponding
to stochastic labour incomes) or negative (corresponding to stochastic expenses).
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The cumulated non-financial flows (L) follow the stochastic differential equa-
tion

dL
l×1

= µL (L,X, t)
l×1

dt+ Λ (L,X, t)
0

l×k
dW
k×1

, L (t0) = L0, (4)

where we have taken into account a set of l possible income flows for the sake
of generality.

Remark 1 We stress that we indicate with L the cumulated income process.
This means that L (t) is the sum of all non-financial flows received (or paid)
until time t. Accordingly, the investor’s revenue between time t1 and time t2
(t2 > t1) can be represented as L (t2) − L (t1) =

R t2
t1
dL (t). Analogously, the

instantaneous revenue between time t and time t+ dt is given by dL (t).

The risk sources for L are represented by dW which is the same set of
risk we have for both asset prices and state variables. This hypothesis is not
restrictive because we can model a lot of different cases by choosing the suitable
elements for the matrices Λ, Σ, and g. Nevertheless, we underline that, in this
framework, the notion of completeness for the financial market must be clarified.
In particular, we want to widen it in order to include also the labour income
risk.
Since we consider the same risk set (dW ) for both the financial market and

the labour income, in order to check the completeness of the market we should
disentangle the two sets of risk sources. In particular, Equations (2) and (4)
should be written in the following way:

dS
n×1

= µdt
n×1

+ Σ0S
n×kS

dWS
kS×1

,

dL
l×1

= µLdt
l×1

+ Λ0S
l×kS

dWS
kS×1

+ Λ0L
l×(k−kS)

dWL
(k−kS)×1

,
(5)

provided that the background variables can be affected by a risk set (dWL)
which does not affect the asset prices. In this case, when matrix ΣS is invertible
we have a complete market (as stated in Theorem 1), but we also have a set of
risks (dWL) which cannot be hedged through a suitable combination of assets.
Blake et al. (2000) consider a market having the same structure as in System
(5). Thus, they define the risk contained in vector dWL as a “non-hedgeable”
risk.
When we want to write System (5) with the same risk sources for both

processes:
dW
k×1

=
£
dWS dWL

¤0
,

as in Equations (2) and (4), then we must create two new matrices:

Σ0
n×k

=
h
Σ0S
n×kS

0
n×(k−kS)

i
, Λ0

l×k
=

·
Λ0S
l×kS

Λ0L
l×(k−kS)

¸
,
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where 0 is a matrix of zeros. We underline that even if ΣS is invertible, the
new matrix Σ cannot be (unless ΛL = 0). This means that even if the financial
market is complete, this “property” may not hold if we include in the “market”
notion also the labour income.
Accordingly, in our analysis, we will use the usual definition of completeness

(∃Σ−1) and we will consider a wider concept of “market” for including also the
labour income risk. Thus, what Blake et al. (2000) define as a “non-hedgeable”
risk in a complete market, for us is just an incomplete market, where the “non-
hedgeable” component is not disentangled.
Nevertheless, we outline that our analysis does not loose generality because

it is always possible to write the matrices g, Σ, and Λ as block-matrices in
order to disentangle the hedgeable and the non-hedgeable risks. Finally, as
an example, the reader is referred to Battocchio and Menoncin (2002) where
an incomplete “wide” market is considered, even if the financial market stricto
sensu is complete.
We underline that in our framework the stochastic labour income plays the

same role as the non-tradeable position in a discount bond does for the investor
considered by Lioui and Poncet (2001). So, while in Lioui and Poncet the
investor is interested in hedging (by the mean of a future contract) this non-
tradeable position, in our model he is interested in hedging the risk linked with
his labour income.

2.2 The inflation and the real market

The consumer-investor can also freely buy and sold any quantity of a repre-
sentative consumption good whose price P behaves according to the following
stochastic differential equation:

dP = Pµπ (P,X, t) dt+ Pσπ (P,X, t)
0

1×k
dW
k×1

, P (t0) = 1, (6)

where P can also be interpreted as the consumption price process. The initial
value of P is conventionally put equal to 1 without loss of generality because
prices can always be normalized. For the sake of generality we do not specify
any particular form for the drift and the diffusion coefficients of this process.
We recall that Cox et al. (1985) propose the following stochastic equation

for the price level
dP = Pπdt+ PσP

√
πdWP ,

where σP is a constant and π is the inflation rate which is supposed to behave
according to one of the two following differential equations:

dπ = k1π (θ1 − π) dt+ σ1π
3
2 dWπ,

dπ = k2 (θ2 − π) dt+ σ2
√
πdWπ,

where ki, θi, and σi, i ∈ {1, 2} are all positive constant.
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Brennan and Xia (2002) use a simpler framework where

dP = Pπdt+ PσPdWP ,

dπ = k (θ − π) dt+ σπdWπ.

In all these models WP and Wπ are correlated. Nevertheless, we recall that
a set of correlated Wiener processes can always be transformed into a set of
uncorrelated Wiener precesses by means of the Cholesky matrix. Accordingly,
we always deal with uncorrelated risks, without loss of generality.
Our general model is able to account for all these particular specifications.

In fact, the drift of the price level is assumed to depend on a set of state variables
that may contain also the inflation rate.
In our framework the inflation risk plays the same role as the interest risk

in the model after Lioui and Poncet (2001). In fact, it is the only risk which is
explicitly disentangled from the process of the state variables X.
Here, the consumption price process is exogenous. This means that we do

not care about the price determination process. This would be the subject of
an extension of our approach to the case of the general equilibrium, like in Cox
et al. (1985) where prices are endogenously determined.
We introduce, now, a variable upcoming in the following work: the inverse of

the consumption price level. This variable (m ≡ P−1) is known as “deflator” and
it represents the purchasing power of a nominal monetary unit. Furthermore, if
we identify the value of a monetary unit with the number of goods that can be
purchased against it, then m can also be interpreted as the “value of money”.
By Itô’s lemma, the variable m follows the stochastic differential equation

dm = −m (µπ − σ0πσπ) dt−mσ0πdW, m (t0) = 1. (7)

Accordingly, the real asset values can be computed from Equations (2) and
(3) by applying Itô’s differential as follows

d (mS) = dm · S +m · dS + dm · dS
= m (µ− Σ0σπ − S (µπ − σ0πσπ)) dt+m (Σ

0 − Sσ0π) dW,
d (mG) = dm ·G+m · dG

= m (Gr −G (µπ − σ0πσπ)) dt−mGσ0πdW.
Thus, after defining Ŝ ≡ £ mS0 mG

¤0
, we can write the real market struc-

ture as
dŜ

(n+1)×1
= M
(n+1)×1

dt+ Γ0
(n+1)×k

dW
k×1

, (8)

where

M ≡ m
·
µ− Sµπ + Sσ0πσπ − Σ0σπ
Gr −Gµπ +Gσ0πσπ

¸
, Γ0 ≡ m

·
Σ0 − Sσ0π
−Gσ0π

¸
.

As widely explained in Menoncin (2002), whose framework is identical to
this one, we underline that in the real market the riskless asset looses its char-
acteristic for becoming like a risky asset. In fact, the ex-riskless asset acquires
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a diffusion coefficient corresponding to the opposite of the price diffusion term,
and the diffusion matrix of the “real market” (Γ) has one more column with
respect to the nominal one (Σ). Thus, when the inflation has a positive shock
the real value of the riskless asset has a negative shock, and vice versa. While
in Brennan and Xia (2002) there is no real riskless asset in the market, in our
framework the role of the riskless assset is plaid by the consumption good.
Finally, we outline that the matrix M containing the risk premium does

not measure the difference between the asset returns and the riskless interest
rate as in the usual “nominal” analysis. Instead, in our framework, it contains
the difference between the nominal asset return and the inflation drift term.
Furthermore, this difference is adjusted for the diffusion terms of assets and
inflation.

2.3 A new probability measure

When a nominal financial market is taken into account, one of the most
known result is that under the so-called risk neutral probability measure the
discounted1 asset prices are martingales. It is easy to show that this property
does not hold for the real financial market we have defined in (8). In fact, the
introduction of the inflation risk makes it necessary to use another change in
probability measure (and another numéraire) in order to secure the discounted
asset prices to be martingales. In the real market the consumption price process
P is the suitable numéraire since all asset prices are divided by it. This means
that the discount factor we are implicitly taking into account is the money value
m. Accordingly, we must find the corresponding change in probability which
guarantees that the discounted asset values (mS and mG) are martingales. In
algebraic terms we must find a probability measure Q such that

EQt0
h
Ŝ (t)

i
= Ŝ (t0) ,

or, equivalently, we want to check for the existence of Q such that2

dŜ = Γ0dWQ.

The Girsanov Theorem3 states that this probability exists if there exists a
vector ξ satisfying the equality4

Γ0ξ =M.
1The discount factor is G−1. This means that the riskless asset is taken as the numéraire

of the economy.
2We recall that a diffusion process having zero drift is a stochastic integral and thus, a

martingale.
3For a complete exposition of the Girsanov Theorem the reader is referred to Duffie (1996),

Björk (1998), and Øksendal (2000).
4Actually, it is also necessary that the following condition holds:

E
·
e
1
2

R H
t0

ξ0ξdt
¸
<∞.
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It is evident that, in a market where all the redundant assets have been
eliminated, the new probability measure exists and it is unique if and only if the
matrix Γ is invertible. We underline that this property implies the completeness
of the real financial market, as stated in Theorem 1. Thus, in what follows we
will always suppose the following assumption holds.

Assumption 1 The market is complete for n+ 1 risky assets (i.e. ∃Γ−1).

Furthermore, the vector ξ has a suitable economic interpretation. Actually,
it is given by the ratio between the real risk premium5 and the volatility of the
real asset values. Accordingly, it measures the real market price of risk.

Definition 1 Given the real market structure in Equation (8), the “real market
price of risk” is

ξ = Γ0−1M.

Now, by applying the Girsanov Theorem, we can define the new probability
measure as follows.

Definition 2 Given the market structure (9) and the historical probability P, a
“real risk neutral probability” Q satisfies

dQ = exp

Ã
−
Z H

t0

M 0Γ−1dWt − 1
2

Z H

t0

°°Γ0−1M°°2 dt! dP,
if

E
·
e
1
2

R H
t0
kΓ0−1Mk2dt

¸
<∞.

Then
dWQ = Γ0−1Mdt+ dW,

is a Wiener process with respect to Q.

The new probability Q transforms the dynamic equations of nominal asset
values and money value according to the following proposition.

5We have already argued above that the drift term M can be interpreted as the real risk
premium since it contains the difference between the asset nominal returns and the inflation
rate.
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Proposition 1 Given the nominal asset prices in (2) and the money value in
(7), under the “real risk neutral probability” Q (as in Definition 2), the nominal
asset values follow the stochastic process

dS = (Sr +Σ0σπ) dt+Σ0dWQ,

and the money value follows the stochastic process

dm = −mrdt−mσ0πdW
Q.

Proof. See Appendix A.

Thus, under the real risk neutral probability, the money value (m) turns
out to be just a stochastic discount factor. In fact, its drift coincides with the
(opposite of the) riskless interest rate.

2.4 The investor’s wealth

After what we have presented in the previous subsections, the market struc-
ture can be summarized as follows:

dX
s×1

= f (X, t)
s×1

dt+ g (X, t)
0

s×k
dW
k×1

,

dS
n×1

= µ (S,X, t)
n×1

dt+Σ (S,X, t)0
n×k

dW
k×1

,

dG = r (X, t)Gdt,
dP = Pµπ (P,X, t) dt+ Pσπ (P,X, t)

0
1×k

dW
k×1

,

dL
l×1

= µL (L,X, t)
l×1

dt+ Λ (L,X, t)
0

l×k
dW
k×1

,

(9)

where we stress that the variables contained in L are potentially different for
each investor while the variables contained in X, S, and the value of G are
common for all economic agents.
If we indicate with θ (t) ∈ Rn×1 and θG (t) ∈ R the number of risky assets

held and the quantity of riskless asset held respectively, then the nominal wealth
RN , at each time t, can be written as

RN (t) = θ (t)
0
S + θG (t)G+ θP (t)P, (10)

where θP is the quantity of the representative consumption good held in the
portfolio (see, for the same approach, Damgaard et al., 2003).
The Itô differential of (10) is6

dRN = θ0dS + θGdG+ dθ
0 (S + dS) + dθG ·G+ dθP (P + dP ) .

6We recall that θ, θG, and S are stochastic variables, while G is a deterministic function.
Accordingly, the term dθG · dG disappears.
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Now, in order to have a self-financing portfolio, the changes in the portfolio
composition (dθ, dθG, and dθP ) must finance the nominal consumption (C) dur-
ing the period dt and must be financed by the instantaneous stochastic revenue
(dL). Accordingly, the self-financing condition can be written as

dθ0 (S + dS) + dθG ·G+ dθP (P + dP ) = u0dL− Cdt,
where u ∈ Rl×1 is a parameter vector indicating in which proportion the ele-
ments of vector L affect the wealth level. For instance, we could suppose that
an investor must cope with both a labour income L1 and a flow of uncertain ex-
penses L2. Then, in this case, u is a two dimensional vector whose elements are
1 and −1 because the income increases the nominal wealth while the expenses
decrease it.
Finally, the evolution of the investor’s nominal wealth is

dRN = θ0dS + θGdG+ θPP + u
0dL− Cdt,

and after substituting the differentials from System (9), we can write the dy-
namic budget constraint as

dRN =
¡
θ0µ+ θGGr + θPPµπ + u

0µL − C
¢
dt+

¡
θ0Σ0 + θPPσ

0
π + u

0Λ0
¢
dW.

Now, the investor’s goal is supposed to be the maximization of the expected
utility of his real consumption and real wealth. The real wealth R (real con-
sumption c) is defined as the ratio between the nominal wealth RN (nominal
consumption C) and the price level (or, alternatively, the product between the
nominal wealth or consumption and the money value). Accordingly, in order to
find the dynamic behaviour of the investor’s real wealth, we have to differentiate
the following formula:

R =
RN
P

= m ·RN .
By applying Itô differentiation we obtain

dR = dm ·RN +m · dRN + dm · dRN
= m

¡
θ0µ+ θGGr + θPPµπ + u

0µL − C −RN (µπ − σ0πσπ)
¢
dt

−m ¡θ0Σ0σπ + θPPσ
0
πσπ + u

0Λ0σπ
¢
dt

+m
¡−RNσ0π + θ0Σ0 + θPPσ

0
π + u

0Λ0
¢
dW

and, after substituting for the value of θP given in Equation (10):

dR = (w0M + k − c) dt+ (w0Γ0 +K0) dW, (11)

where M and Γ are defined as in (8) while

w
(n+1)×1

≡ £ θ0 θG
¤0
, k ≡ mu0 (µL − Λ0σπ) , K

k×1
≡ mΛu,

and c is the real consumption rate given by C/P .
The solution to the optimisation problem for the consumer-investor will show

the optimal value of vector w while the optimal quantity of the consumption
good held (θP ) will be determined through the budget constraint (10).
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2.5 The forward real labor income

We underline that the diffusion process kdt+K0dW appearing in (11) does
not correspond to d (mL). In order to have this correspondence, the self-
financing condition should have been defined on the real market. Nevertheless,
this would not be correct. In fact, only the nominal wealth can be actually
invested since the real wealth is just a fictitious measure. Accordingly, it seems
useful to better describe the role of matrix K and scalar k. The differential of
the cumulated real income is given by

d (m · u0L) = dm · u0L+m · u0dL+ dm · u0dL,
which is

d (m · u0L) = mu0 (µL − Λ0σπ) dt+mu0Λ0dW
−mu0L (µπ − σ0πσπ) dt−mu0Lσ0πdW.

By using the notation K and k this differential can be written as

d (m · u0L) = kdt+K0dW + u0L · dm,
and finally, we can observe that the process kdt + K0dW in the real wealth
corresponds to7

kdt+K0dW = d (m · u0L)− u0L · dm,
which is the real revenue received between t and t+dt diminished by the change
in the money value on the total cumulated revenue.
This is consistent with what we have argued above. Actually, since the self-

financing condition can be valid only for the nominal market, then we must
take into account the changes in the real revenues d (m · u0L) corrected by the
changes in the money value. In fact, these last changes must not be taken into
account when computing the self-financing condition.
Furthermore, since the equality

d (m · u0L)− u0L · dm = u0dL (m+ dm) ,

holds and u0dL is the instantaneous labour income while m+dm is the forward
money value,8 then we are able to define the “forward real labour income” (Y )
which will be useful in the following sections.

7Of course, we recall that also

kdt+K0dW = u0dL (m+ dm) ,

is valid. Nevertheless, we prefer to use the other notation for avoiding the product of two
differentials (dL · dm) in what follows.

8We recall that the Itô differential is expressed as a forward difference. Thus, the term
∆m (finite difference) can be written as

∆m = m (t+∆t)−m (t) ,
and accordingly, the term m+∆m is

m+∆m = m (t+∆t) ,

which is the forward money value.
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Definition 3 Given the stochastic labour income (4) and the money value (7),
the “forward real labour income” (Y ) satisfies

dY = mu0 (µL − Λ0σπ) dt+mu0Λ0dW (12)

= d (m · u0L)− u0L · dm
= kdt+K0dW.

When the money value m has a deterministic behaviour, the differential of
the real cumulated labour is

d (m · u0L) = u0L · dm+m · u0dL,
and consequently, from (12) we can write

dY = m · u0dL,
which is just the real value of the differential of L (since there is no risk inside
the money value process).

2.6 The consumer’s preferences

The most widely used utility function belongs to the CRRA family (see, for
instance the papers listed in Table 1). In Menoncin (2002) a set of results is
derived for an investor whose preferences are described by a CARA (Constant
Absolute Risk Aversion) utility function. Instead, in this work, even if we
maintain the same market structure as in Menoncin (2002), we generalize his
results by taking into account a HARA (Hyperbolic Absolute Risk Aversion)
utility function. In particular, we suppose that the real consumption c gives a
consumer the following utility

U (c, t) = δ (t) (γc− α)1−
β
γ ,

where δ (t) is a discount factor and whose Arrow-Pratt absolute risk aversion
index (R) is an hyperbolic function of c:

R ≡ −∂
2U

∂c2

µ
∂U

∂c

¶−1
=

β

γc− α
. (13)

Furthermore, for having a well defined maximization problem, we need the
utility function to be increasing and concave in its argument. These conditions
imply the following restrictions on the preference parameters:

∂U

∂c
> 0 =⇒ δ (t) (γ − β) > 0,

∂2U

∂c2
< 0 =⇒ −βδ (t) (γ − β) < 0,
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from which we can immediately obtain

β > 0, δ (t) (γ − β) > 0. (14)

The parameter α plays a crucial role for what concerns the relevance of the
non-negativity constraint on consumption. In fact, if α is non negative then it
can be interpreted as a measure of the subsistence consumption level (as exposed
in Karatzas and Shreve, 1998). This result can be easily shown after computing
the marginal utility of consumption

∂U

∂c
= δ (t) (γ − β) (γc− α)−

β
γ .

When β/γ > 0 there exists a level of consumption (equal to α/γ) giving an
infinite marginal utility. Consequently, if the consumption reached the value
α/γ the consumer would have an infinite increase in his utility by increasing
his consumption (even by a very little amount). This means that the optimal
consumption will never reach the value α/γ which can be interpreted as the
subsistence consumption level. Accordingly, during our work we will neglect
the non-negativity constraint on consumption since we suppose α/γ ≥ 0.
The HARA utility function can be thought of as the “mother” of all the

utility functions commonly used in the economic literature. In fact, we can
distinguish the following sub-cases:

1. when α = 0 and γ = 1 we have the CRRA (Constant Relative Risk
Aversion) utility function in the form U (R) = δ (t) c1−β; in this case the
subsistence consumption level equals zero;

2. when α = −1 and γ tends to zero we have the CARA (Constant Absolute
Risk Aversion) utility function in the form U (R) = δ (t) e−βc;9 in this case
there does not exist any finite and non-negative level of consumption giving
an infinite marginal utility; thus, in the case of CARA preferences the non-
negativity constraint on consumption should be explicitly imposed;

3. when α = 0, γ = 1, δ = (1− β)
−1 and β tends to 1 we have the same

results as for the log utility function;10

4. when 1− β
γ = 2 we have the quadratic utility function.

9 In this case, according to Conditions (14), the function δ (t) must be negative for all t.
10The result of the optimization problem does not change if we add to the objective function

another function independent of the control variables. In our case (with α = 0, γ = 1,
δ (t) ≡ δ1 (t) (1− β)−1) we add −δ1 (t) (1− β)−1 and the objective function becomes

U (c, t) = δ1 (t)
1

1− β
c1−β − δ1 (t)

1

1− β
.

The limit of this utility, for β tending to 1, is the log utility:

lim
β→1

δ1 (t)
c1−β − 1
1− β

= δ1 (t) ln c.
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Accordingly, any result stated in the case of a HARA utility function remains
valid for a wide range of preferences. We underline that very few works deal
with the general HARA family for the investor’s preferences and are also able
to find a closed form solution for the optimal asset allocation. At least to our
knowledge Kim and Omberg (1996) are the only authors who do this.

3 The optimal portfolio and consumption
After defining the model structure in the previous section, here we compute

the optimal portfolio and we check whether the results presented in Bodie et
al. (1992) for a particular case of our model, are valid also in our more general
framework. We recall that these authors show that an investor behaves as if his
wealth were augmented by the present value of his future income flows.
The maximization problem can be written as
maxw,c Et0

hRH
t0

χδ (t) (γc (t)− α)1−
β
γ dt+ δ (H) (γR (H)− α)1−

β
γ

i·
dz
dR

¸
=

·
µz

w0M + k − χc

¸
dt+

·
Ω0

w0Γ0 +K0

¸
dW,

R (t0) = R0, z (t0) = z0, ∀t0 < t < H
(15)

assuming Conditions (14) hold. H is the time horizon of the investor and

z
(s+n+1+l)×1

≡ £
X 0 S0 G L0

¤0
,

µz
(s+n+1+l)×1

≡ £
f 0 µ0 Gr µ0L

¤0
,

Ω
k×(s+n+1+l)

≡ £
g Σ 0 Λ

¤
.

The variable χ takes value in {0, 1} and it is zero when the consumption
problem is not taken into account. The Hamiltonian of Problem (15) is

H = χδ (t) (γc (t)− α)
1−β

γ (16)

+µ0zJz + JR (w
0M + k − χc) +

1

2
tr (Ω0ΩJzz)

+ (w0Γ0 +K0)ΩJzR +
1

2
JRR (w

0Γ0 +K0) (Γw +K) ,

where J (R, z, t) is the value function solving the Hamilton-Jacobi-Bellman par-
tial differential equation and the subscripts on J indicate the partial derivatives.
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The first order condition on c is11

∂H
∂c

= δ (t) (γ − β) (γc (t)− α)−
β
γ − JR = 0

⇒ c∗ =
1

γ

µ
1

δ (t) (γ − β)
JR

¶− γ
β

+
α

γ
, (17)

while the first order condition on w is

∂H
∂w

= JRM + Γ0ΩJzR + JRRΓ0Γw + JRRΓ0K = 0

⇒ w∗ = −Γ−1K − JR
JRR

(Γ0Γ)−1M − 1

JRR
Γ−1ΩJzR. (18)

After substituting w∗ and c∗ into the Hamiltonian we can write the Hamilton-
Jacobi-Bellman (hereafter HJB) partial differential equation as

0 = Jt + χδ
γ
β
β

γ
(γ − β)

γ
β−1 J

1− γ
β

R

+µ0zJz + JR

µ
k −K0Γ0−1M − χ

α

γ

¶
− 1
2

J2R
JRR

M 0 (Γ0Γ)−1M

− JR
JRR

M 0Γ−1ΩJzR +
1

2
tr (Ω0ΩJzz)− 1

2

1

JRR
J 0zRΩ

0ΩJzR.

Now, since the value function often inherits its functional form from the
objective function, we try the following guess-function:

J (z,R, t) = F (z, t) (V (t, z) + γR)1−
β
γ , (19)

where F (z, t) and V (z, t) are two functions that must be determined. The
boundary conditions on F and V are

F (z,H) = δ (H) ,

V (z,H) = −α.
When the guess-function is substituted into the HJB equation, it is easy to

check that there exist only two kinds of terms containing the wealth level R:

(V + γR)
1−β

γ and (V + γR)
−β
γ . Accordingly, since the HJB must equate zero

for each value of R, it can be split into two partial differential equations (one
for each kind of term containing R). Thus, the functions F (z, t) and V (z, t)
must solve

0 = Vt +
¡
µ0z −M 0Γ−1Ω

¢
Vz +

¡
γk − γM 0Γ−1K − χα

¢
+ 1

2 tr (Ω
0ΩVzz) ,

0 = Ft +
³
µ0z +

γ−β
β M 0Γ−1Ω

´
Fz +

1
2
γ−β
β FM 0 (Γ0Γ)−1M + 1

2 tr (Ω
0ΩFzz)

+χδ
γ
β β
γF

1− γ
β + 1

2
γ−β
β

1
F F

0
zΩ

0ΩFz.
(20)

11The derivative of H with respect to c has been divided by χ since it has value 1 when
consumption is taken into account. In fact, when χ = 0 the consumption problem does not
arise at all.
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The solution to the first partial differential equation in System (20) gives
the functional form of V (z, t) while the solution to the second equation gives
the functional form of F (z, t). Once these two functions have been found, we
can plug the guess function (19) into Equations (17) and (18) for writing

c∗ =
1

γ
δ (t)

γ
β F (z, t)

− γ
β (V (z, t) + γR)− α

γ
, (21)

w∗ = −Γ−1K +
1

β
(V (z, t) + γR) (Γ0Γ)−1M − 1

γ
Γ−1Ω

∂V (z, t)

∂z
(22)

+
1

β
(V (z, t) + γR)Γ−1Ω

1

F (z, t)

∂F (z, t)

∂z
.

This solution confirms the so called “elasticity approach” for the optimal
asset allocation. In fact, the term 1

F
∂F
∂z is just the elasticity of function F with

respect to the state variables z. In the following subsections we expose the
computations leading to the quasi-explicit solutions for the equations in System
(20) and we will be more precise about the optimal consumption and asset
allocation.

3.1 The role of the forward real labor income

The first equation in System (20) can be solved through the Feynman-Kač
representation theorem.12 This quasi-explicit solution has the following form:

V (z, t) = EZVt

"Z H

t

¡
γk − γM 0Γ−1K − χα

¢
ds− α

#
,

where the variables ZV follow the modified stochastic equation13

dZV =
¡
µz − Ω0Γ0−1M

¢
ds+Ω0dW, ZV (t) = z.

We can immediately check that the stochastic variables ZV coincide with
the stochastic variables z once one switches from the historical to the real risk
neutral probability measure. In fact, after recalling what we have presented in
Definition 2, we can write

dz = µzds+Ω
0dW,

= µzds+Ω
0 ¡dWQ − Γ0−1Mds¢ ,

=
¡
µz − Ω0Γ0−1M

¢
ds+Ω0dWQ.

Consequently, the function V (z, t) can alternatively be written as

V (z, t) = EQt

"Z H

t

¡
γk − γM 0Γ−1K − χα

¢
ds− α

#
,

12For a complete exposition of the Feynman-Kač Theorem the reader is referred to Duffie
(1996), Björk (1998) and Øksendal (2000).
13We recall that matrices k, K, M , and Γ depend on the state variables z. Nevertheless, all

the dependences have been omitted in order to make the presentation less heavy.
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without specifying any new stochastic variable. Furthermore, since χ, α, and γ
are deterministic parameters, another simplification can be done

V (z, t) = γEQt

"Z H

t

¡
k −M 0Γ−1K

¢
ds

#
− χα (H − t)− α.

Now, we recall what we have presented in Definition 3 as the forward real
labour income. Under the new probability Q, the forward real labour income Y
follows the process

dY =
¡
k −K0Γ0−1M

¢
dt+K0dWQ.

Thus, we see that the argument of the expected value in V coincides with
the drift term of Y under Q. This means that we can carry out the following
simplifications on V :

V (z, t) = γEQt

"Z H

t

dY

#
− χα (H − t)− α (23)

= γ
³
EQt [Y (H)]− Y (t)

´
− χα (H − t)− α.

We recall that Y is the cumulated flow of forward labour incomes (as in
Definition 3). Thus the difference Y (H)−Y (t) measures all the forward labour
incomes received between t and H. This revenue flow must be added to the
investor’s wealth. More precisely, we can define another measure of wealth as
Bodie et al. (1992) argue. In fact, the investor behaves as if he could borrow
against his future income that can be accordingly viewed as an asset. Like any
other financial asset it must be priced. For this purpose, it must be discounted
with a suitable numéraire (in this framework the consumption price process)
and evaluated under a risk neutral probability (in this framework the real risk
neutral probability Q).
Accordingly, we can define the potential investor’s wealth (RY ) as

RY ≡ R+ EQt [Y (H)− Y (t)] . (24)

3.2 The elasticity component of optimal portfolio

The second equation in System (20) can be solved through the following
transformation

F (z, t) = h (z, t)
β
γ ,

shown in Zariphopoulou (2001). The suitable boundary condition becomes

h (z,H) = δ (H)
γ
β .
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Thanks to this transformation the non linear partial differential equation for
F becomes a parabolic equation in h as follows:

0 = ht +

µ
µ0z +

γ − β

β
M 0Γ−1Ω

¶
hz +

1

2
tr (Ω0Ωhzz)

+χδ
γ
β +

1

2

γ

β

γ − β

β
M 0 (Γ0Γ)−1Mh.

The solution of this equation can be represented through the Feynman-Kač
theorem in the following way:

h (z, t) = EZFt

"Z H

t

χδ (s)
γ
β e

1
2
γ
β
γ−β
β

R s
t
M 0(Γ0Γ)

−1
Mdτds

+δ (H)
γ
β e

1
2
γ
β
γ−β
β

R H
t
M 0(Γ0Γ)−1Mdτ

i
,

where the modified stochastic variables ZF follow the diffusion process

dZF =

µ
µz +

γ − β

β
Ω0Γ0−1M

¶
ds+Ω0dW, ZF (t) = z.

Also in this case, as shown in the previous subsection, the variables ZF
can be led back to the original variables z by means of a suitable change in
the probability measure. Nevertheless, this time, the new probability measure
will depend on the preference parameters γ and β. This means that the new
probability measure we are going to present is not the same for all the investors
(like Q). For this reason we will call it “subjective probability”. After applying
Girsanov Theorem as in Definition 2, we can refer to a new probability measure
as in the following definition.

Definition 4 Given the market structure (9) and the historical probability P, a
“subjective probability” Qγ satisfies

dQγ = exp

Ã
−β − γ

β

Z H

t0

M 0Γ−1dWt − 1
2

µ
β − γ

β

¶2 Z H

t0

°°Γ0−1M°°2 dt! dP,
if

E
·
e
1
2(

β−γ
β )

2 R H
t0
kΓ0−1Mk2dt

¸
<∞.

Then

dWQγ =
β − γ

β
Γ0−1Mdt+ dW,

is a Wiener process with respect to Qγ.

The new probability Qγ transforms the dynamic equation of asset values
according to the following proposition.
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Proposition 2 Given the market structure (9), under the “subjective probabil-
ity” Qγ, the asset values follow the stochastic process

dS =

µ
(Sr +Σ0σπ) +

γ

β
(µ− Sr − Σ0σπ)

¶
dt+Σ0dWQγ .

Proof. The proof is analogous to those presented in Appendix A, where the
matrix Γ must be substituted by the matrix (β − γ)β−1Γ.

The risk aversion index computed in (13) can be written asR =
³
γ
βR− α

β

´−1
and, in this way, it is easy to check that the ratio γ/β measures how strong the
reaction of R is with respect to changes in the real wealth. In particular, for
the case of a CARA utility function (when α = −1 and γ tends to zero), the
index R does not depend at all on R. So, we can conclude what follows.

Proposition 3 When the utility function belongs to the CARA family (i.e.
α = −1 and γ → 0), the “subjective probability” Qγ and the “real risk neu-
tral probability” Q coincide.

This proposition explains why Menoncin (2002) meeds only one change in
probability even if he considers a set of stochastic labour incomes.
We underline that the “subjective probability” cannot be considered as a

“risk neutral probability” since, under it, the asset returns do not coincide with
the riskless interest rate (nor with the riskless interest rate corrected by the
inflation risk).
Finally, the function h (z, t) can be written as

h (z, t) = EQγt

"Z H

t

χδ (s)
γ
β e

1
2
γ
β
γ−β
β

R s
t
M 0(Γ0Γ)

−1
Mdτds (25)

+δ (H)
γ
β e

1
2
γ
β
γ−β
β

R H
t
M 0(Γ0Γ)

−1
Mdτ

i
.

3.3 A new (subjective) riskless asset

Now, in order to understand better the role of the function h (z, t) we can
define a new asset on the financial market. It is a particular kind of riskless
asset whose price depends on investor’s preference parameters. Let us call the
price of this new asset Gγ (z, s) and suppose that its instantaneous revenue is
given by

1

2

γ

β

γ − β

β
M 0 (Γ0Γ)−1M,

then we can define this new asset as follows.
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Definition 5 The value of a subjective riskless asset (Gγ) follows the differen-
tial equation

dGγ (z, s)

Gγ (z, s)
=
1

2

γ

β

γ − β

β
M 0 (Γ0Γ)−1Mds, Gγ (z, t) = 1. (26)

The return on this particular asset is given by the square of the real market
price of risk (or real Sharpe ratio), weighted by a combination of preference
parameters. This is a new riskless asset because its value follows a deterministic
differential equation even if its revenue is allowed to be stochastic. In fact, we
recall that both matrices M and Γ do depend on the stochastic variables z.
The boundary condition in (26) comes from the need to equate the value of

Gγ to the value of the exponential that can be found in h (z, t) in 25. Further-
more, it means that Gγ can be thought of as the numéraire of the economy.
After defining Gγ the function h (z, t) can be written as

h (z, t) =

Z H

t

χδ (s)
γ
β EQγt [Gγ (z, s)] ds+ δ (H)

γ
β EQγt [Gγ (z,H)] ,

and its value can be interpreted as the present value of a coupon bond paying
Gγ (z, s) at each instant and Gγ (z,H) at its expiration date. The discount
factor is given by δ (s)

γ/β . It also has a “subjective” component given by a
ratio between two preference parameters γ/β.
When the investor’s preferences belong to the CARA family (i.e. γ tends to

zero) then the subjective riskless asset has a constant value (equal to 1) and the
function h (z, t) has the simplified form

h (z, t) = χ (H − t) + 1.

In fact, the subjective discount rate is 1 and the corresponding coupon bond
pays 1 monetary unit each period from t to H and 1 monetary unit at the
expiration date.

3.4 A quasi-explicit solution

After substituting the values of V and F into Equations (17) and (18) the
optimal consumption and portfolio can be written as in the following proposi-
tion.14

14 In the optimal value of consumption the value of χ has been set to 1. In fact, χ is needed
for distinguish between the portfolio compositions.
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Proposition 4 Under market structure (9) and Assumption 1, the optimal con-
sumption and portfolio solving Problem (15) are

c∗ =
δ (t)

γ
β

h (z, t)

µ
RY − α

γ
− α

γ
(H − t)

¶
+

α

γ
, (27)

w∗ = −Γ−1K +
γ

β

µ
RY − α

γ
− χ

α

γ
(H − t)

¶
(Γ0Γ)−1M (28)

−Γ−1Ω ∂

∂z

³
EQt [Y (H)]− Y (t)

´
+

µ
RY − α

γ
− χ

α

γ
(H − t)

¶
Γ−1Ω

1

h (z, t)

∂h (z, t)

∂z
.

where RY , h, Y , and Q are described in (24), (25), and Definitions 3 and 2,
respectively.

The result presented in Proposition 4 allows us to argue that the optimal
portfolio is formed by four components.

1. w∗(1) ≡ −Γ−1K. This component (as shown in Menoncin, 2002) minimizes
the instantaneous variance of the investor’s real wealth. Furthermore, it
does not depend on any preference parameter and so it is suitable for every
kind of investor-consumer.

2. w∗(2) ≡ γ
β

³
RY − α

γ − χα
γ (H − t)

´
(Γ0Γ)−1M . This is the typical Merton’s

speculative component where the investor’s wealth (R) is increased by
the discounted amount of his future incomes as in Bodie et al. (1992).
Nevertheless, the suitable measure for the future incomes is given by the
forward real income as shown in Definition 3. We recall here a very simple,
naïve, and practical rule used by some practitioners for prescribing the
“optimal” percentage of wealth that must be invested in risky assets. It
would be sufficient to compute 70− t, where t is the age of the consumer,
for having this “optimal” percentage. Such a rule suggests that young
people should have riskier portfolios than old ones. Our model, instead,
prescribes the opposite rule. We have already defined H as the consumer
financial horizon. So, it can also be interpreted as the consumer expected
life (for instance H = 70). In our framework, the younger the consumer
the less risky his portfolio must be. In fact, young consumers still have
to finance a long consumption path, while old people can afford to invest
in riskier portfolios. The riskiest portfolio is held during the last period
before H. In fact, in this case, there is no more consumption to finance.

3. w∗(3) ≡ −Γ−1Ω ∂
∂z

³
EQt [Y (H)]− Y (t)

´
. This portfolio component hedges

the investor’s wealth against the fluctuations in his labor income due to
the changes in the state variables. This component obviously disappears
when no labor income enters the investor’s wealth. Furthermore, it does
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not depend on any preference parameter. From this point of view w∗(3) is
similar to w∗(1). While the first component hedges the consumer portfolio
against the risk of his labour income (measured by K), this third com-
ponent hedges against the reactions of the labour drift to changes in the
state variables.

4. w∗(4) ≡
³
RY − α

γ − χα
γ (H − t)

´
Γ−1Ω 1

h(z,t)
∂
∂zh (z, t). This last part be-

longs to the so-called hedging-portfolio (like the previous one) and it con-
tains the elasticity of the function h (z, t) with respect to changes in the
state variables z. In the previous subsection, we have already presented
h (z, t) as the value of a bond paying coupons that are proportional to the
square of the Sharpe index. Thus, the portfolio component w∗(4) hedges
against the changes in this bond value due to the changes in the state vari-
ables. When we consider the usual nominal setting, the only state variable
is the riskless interest rate and there are some bonds, then the the elastic-
ity of function h with respect to the interest rate r for the optimal bond
allocation coincides with the duration.

Both the third and the fourth optimal portfolio components contain the
matrix product Γ−1Ω that represents the “weight” of the state variable risk
(measured by matrix Ω) with respect to the asset risk (measured by matrix Γ).
We underline that when the forward real labour income exactly coincides

with the subsistence consumption level (α/γ), i.e.

dY =
α

γ
dt, Y (0) = 0,

the total expected real labour income cumulated from t to H is

EQt [Y (H)]− Y (t) =
α

γ
(H − t) ,

and the portfolio component w∗(1) becomes

w∗(2) =
1

β
(γR− α) (Γ0Γ)−1M,

which is the classical Merton speculative component. Accordingly, if the forward
real labour income is supposed to finance at least the subsistence consumption
level, then what exceeds this level contributes to increase the portfolio riskiness.
Now, we turn back to the optimal consumption. From Proposition 4 it is

evident that c∗ is composed by two parts: (i) a constant part equal to the
minimum consumption (α/γ), in fact we have already argued that the optimal
consumption cannot be lower than α/γ, and (ii) a part proportional to the ratio
between the real wealth augmented by the future labour incomes and the value
of the bond payng Gγ .
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3.5 The log-investor: he is not myopic, he is introvert

The optimal real consumption and portfolio allocation for a log-investor can
easily be obtained from the result stated in Proposition 4 by putting α = 0,
γ = 1, and β = 1. After this substitution we obtain what follows.

Corollary 1 Under market structure (9) and Assumption 1, the optimal port-
folio and consumption solving Problem (15) for a log-utility function (i.e. α = 0,
γ = 1, and β = 1) are15

c∗ln =
δ (t)RH

t
δ (s) ds+ δ (H)

RY ,

w∗ln = −Γ−1K +RY (Γ
0Γ)−1M − Γ−1Ω ∂

∂z

³
EQt [Y (H)]− Y (t)

´
.

This corollary is consistent with the usual result according to which the log-
investor does not care about the changes in the market price of risk with respect
to the state variables. In fact, the term that contained the derivative of h (z, t)
with respect to z (the whole set of the state variables) has disappeared. Accord-
ingly, we can say that the log-investor is myopic because the future values of
the Sharpe ratio (contained in the integral between t and H inside h (z, t)) does
not affect his optimal portfolio. Nevertheless, his myopia is selective because
he does care about his future incomes. When these money flows are not taken
into account (i.e., k = 0 and K = 0) then we go back to the usual result of an
optimal portfolio given just by the term R (Γ0Γ)−1M .
From this point of view we can argue that the log-investor is not at all myopic

because he does consider all his future income flows. Nevertheless, he can be
said to be “introvert” since he just care about the income of his own, and not
about the future behaviour of the “outside” market price of risk. In particular,
he seems to be interested in what happens to his revenue when z changes, but
not in what happens to the Sharpe index.

Remark 2 When a (not necessarily) stochastic labour income is considered,
the classical result of a log-optimal portfolio independent of the financial horizon
does not apply.

In the optimal asset allocation w∗ln the variable χ does not play any role.
This means that we can conclude what follows.

15We underline that in this case the value of the function h (z, t) is

h (z, t) =

Z H

t
δ (s) ds+ δ (H) .
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Proposition 5 The optimal portfolio maximizing the intertemporal expected
utility of consumption is equal to the optimal portfolio maximizing the expected
utility of termnal wealth when consumers have log utility functions.

When the investment horizon tends to infinity, the optimal portfolio is still
well defined only if

lim
H→∞

EQt [Y (H)] <∞, ∀t ≥ t0.

If this condition holds, and the discount factor δ (t) has the form

δ (t) = e−ρ(t−t0),

then the optimal consumption of the log-investor is given by

lim
H→∞

c∗ln = ρ
³
R− Y (t) + lim

H→∞
EQt [Y (H)]

´
,

that is the economic agent consumes, in each period, the discounted value of all
his future income flows.

3.6 How to finance consumption

If we compute the difference between the optimal asset allocation with χ = 1
and with χ = 0 we obtain the investment strategy financing the consumption
flow. Let us call w∗1 the asset allocation when consumption is taken into account
and w∗0 the asset allocation maximizing the utility of investor’s final wealth. It
is easy to check that the difference between these two vectors has the form

w∗0 − w∗1 =
α

β
(H − t) (Γ0Γ)−1M

+
α

γ
(H − t)Γ−1Ω 1

h1 (z, t)

∂h1 (z, t)

∂z

+
1

γ
(γRY − α)Γ−1Ω

µ
1

h0 (z, t)

∂h0 (z, t)

∂z
− 1

h1 (z, t)

∂h1 (z, t)

∂z

¶
,

where
h0 (z, t) ≡ h (z, t)|χ=0 , h1 (z, t) ≡ h (z, t)|χ=1 .

We can see that the portfolio financing the optimal consumption path heavily
depends on the different behaviour of bond value h (z, t) with respect to the state
variables. Furthermore, this particular portfolio is formed by three components.

1. A component proportional to the time to horizon. We have already pre-
sented a comment for this kind of term in the previous subsection.

2. A component proportional to both the time to horizon and the elasticity
of the bond h (z, t) with respect to z when consumption is present.
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3. A component proportional to both the real wealth (augmented by the
future labour income) and the difference between the elasticities of bond
h (z, t) with respect to z without and with consumption.

An important simplification can be obtained when the real market price of
risk Γ0−1M does not depend on the state variables z. In this case, in fact, the
derivative of h with respect to z equals zero (in both cases χ = 1 and χ = 0) and
the difference w∗0−w∗1 shrinks to the formula shown in the following proposition.

Proposition 6 If the market price of risk does not depend on the values of the
state variables (i.e. ∂

∂zΓ
0−1M = 0) then the portfolio financing the consumption

flow for a HARA investor is given by

w∗0 − w∗1 =
α

β
(H − t) (Γ0Γ)−1M.

An easy corollary follows.

Corollary 2 If the market price of risk does not depend on the values of the
state variables (i.e. ∂

∂zΓ
0−1M = 0) then, for a CRRA investor (i.e. α = 0) the

portfolio maximizing the expected utility of intertemporal consumption is equal
to the portfolio maximizing the utility of investor’s final wealth.

The result stated in Proposition 6 shows that in order to finance the con-
sumption flow, it is necessary to undertake an investment strategy which is less
risky than those maximizing the expected utility of final wealth (except for a
CRRA investor as shown in Corollary 2). In particular, the less amount of risky
assets due to the need of consumption is proportional to both the growth op-
timal (or log-optimal) portfolio (i.e. (Γ0Γ)−1M) and the time to the financial
horizon (H − t). This means that the farther the financial horizon, the lower
the amount that must be invested in the risky assets in order to finance the
consumption during all the optimization period.

4 Conclusion
In this paper we have studied the problem of an investor maximizing the

expected utility of his consumption and final wealth. The model takes into ac-
count a very general setting where: (i) there exists a set of stochastic investment
opportunities, (ii) there exists a set of risky assets, (iii) there exists a riskless
asset paying a stochastic interest rate, (iv) a stochastic inflation risk is explicitly
considered, (v) investor is supposed to be endowed with a set of stochastic labour
incomes (or expenses), and (vi) the behaviour of the investor is described by a
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HARA utility function. All the drift and diffusion coefficients of the stochastic
differential equations here considered does not have any particular functional
form. Thus, the result we are able to find is very general and applies to any of
the more specific financial market structures generally analysed in the literature
where a closed form solution is found.
We obtain a quasi-explicit solution for both the optimal consumption and

asset allocation. This result is no more based on a single change in probability as
it is usual in the financial literature. Actually, we use two changes in probability.
One is based on a “real” risk neutral probability making the asset prices behave
as martingale when discounted by the consumption price process. The other is
based on a subjective probability depending on investor’s preferences.
We confirm the result according to which the investor endowed with a non-

tradeable income behaves as if he could rely on the present value of his future
incomes. Nevertheless, these incomes must be evaluated under the “real” risk
neutral probability.
A comparison between the optimal asset allocation when consumption is

present and when it isn’t, show that the need to finance all the consumption
path implies a less risky portfolio with respect to the pure financial model where
only the expected utility of the final wealth is maximized. Consequently, a less
risky investment strategy is prescribed for young people who still have to finance
a long consumption path. Instead, older people can afford to invest in riskier
portfolios.

A Appendix
Proof of Proposition 1. The stochastic differential equations (2) and (6)

can be rewritten under the real risk neutral probability Q as:

dS = (µ− Σ0ξ) dt+ Σ0dWQ, (29)

dP = P (µπ − σ0πξ) dt+ Pσ
0
πdW

Q,

where
ξ ≡ Γ0−1M,

is the real market price of risk. Application of Itô’s lemma on m ≡ P−1 gives

dm = −m (µπ − σ0πξ − σ0πσπ) dt−mσ0πdW
Q. (30)

Now, it is necessary to compute the form of vector ξ. For making the com-
putations easier we can write the matrices Σ and σπ as block-matrices in the
following way:

Σ0
n×(n+1)

=
h
Σ0n
n×n

σ
n×1

i
, σ0π

1×(n+1)
=
h
σ0πn
1×n

σπ1
i
.
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Accordingly, we can the real market price of risk as

ξ =

·
Σ0n − Sσ0πn σ − Sσπ1
−Gσ0πn −Gσπ1

¸−1
×
·
µ− S ¡µπ − σ0πnσπn − σ2π1

¢− Σ0nσπn − σσπ1
Gr −G ¡µπ − σ0πnσπn − σ2π1

¢ ¸
.

The inverse matrix necessary for this computation has the following form:·
Σ0n − Sσ0πn σ − Sσπ1
−Gσ0πn −Gσπ1

¸−1
=

=

·
Φ Φ (σ − Sσπ1) 1

Gσπ1− 1
σπ1

σ0πnΦ − 1
Gσπ1

− 1
σπ1

σ0πnΦ (σ − Sσπ1) 1
Gσπ1

¸
,

where

Φ ≡
µ
Σ0n −

1

σπ1
σσ0πn

¶−1
,

and so

ξ =

"
Φ (µ− Sr) +Φσ 1

σπ1
(r − µπ)− σπn

− 1
σπ1

σ0πnΦ (µ− rS)−
³

1
σπ1

σ0πnΦσ + 1
´

1
σπ1

(r − µπ)− σπ1

#
.

Now, we just need to compute the matrix products Σ0ξ and σ0πξ:

Σ0ξ =
£
Σ0n σ

¤
×
"

Φ (µ− Sr) +Φσ 1
σπ1

(r − µπ)− σπn

− 1
σπ1

σ0πnΦ (µ− rS)−
³

1
σπ1

σ0πnΦσ + 1
´

1
σπ1

(r − µπ)− σπ1

#
= µ− Sr − Σ0nσπn − σσπ1 = µ− Sr − Σ0σπ,

σ0πξ =
£
σ0πn σπ1

¤
×
"

Φ (µ− Sr) +Φσ 1
σπ1

(r − µπ)− σπn

− 1
σπ1

σ0πnΦ (µ− rS)−
³

1
σπ1

σ0πnΦσ + 1
´

1
σπ1

(r − µπ)− σπ1

#
= µπ − r − σ0πσπ.

After substituting these values into Equations (29) and (30) we have

dS = (Sr +Σ0σπ) dt+ Σ0dWQ,

dm = −mrdt−mσ0πdW
Q.

QED.
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