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1 Introduction

There is a large literature on cost sharing based on solutions defined for co-
operative games with transferable utility.1 The allocation of a fixed cost is
however not explicitly addressed. Fairness suggests that a fixed cost should be
uniformly allocated among the players it affects. That is actually what does
the most popular sharing rule which is derived from the Shapley value.

The nucleolus2 induces another sharing rule proposed in the literature and
used in actual cost sharing problems.3 Examples show however that it does not
necessarily allocate a fixed cost uniformly. Actually, the Shapley sharing rule is
the only sharing rule which does so. This offers an alternative axiomatization
which does not include additivity.

2 Cost games

Given a set N = {1...n} of players, a cost sharing game is defined by a cost
function C which associates to each coalition S ⊂ N a cost C(S) ∈ IR. By
convention, C(∅) = 0. The set of cost functions defined on the set of players N
is denoted by G(N). Any linear combination of cost functions on a common
set of players N is a cost function. As a consequence, G(N) is a linear space
of dimension 2n − 1.

Notation. The letters n, s, t, ... will denote the size of the sets N , S, T, ...
For any vector x, x(S) will denote the sum over S of its coordinates. Coalitions
will be identified as ijk... instead of {i, j, k, ...}.

A cost function C is subadditive if S∩T = ∅ implies C(S)+C(T ) ≥ C(S∪T ).
A cost function C is symmetric if the cost associated to a coalition depends
only on its size: C(S) = g(s) for some function g satisfying g(0) = 0.

A cost sharing rule is a mapping R which associates to any cost function
C ∈ G(N) an allocation y = R(C) ∈ IRn such that y(N) = C(N).

1 See for instance Moulin (1988) or Young (1985).
2 See Schmeidler (1969).
3 The relations between the Shapley value, the core and the nucleolus in concave cost

games is studied in Dehez and Vanden Eynde (2006).
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3 Fixed costs

Basically a fixed cost f ∈ IR is a cost which affects all players and coalitions
equally:

Cf (S) = C(S) + f for all S ⊂ N,S 
= ∅ (1)

with Cf (∅) = 0.4 Adding a fixed cost is not a simple translation: f is a
cost which enters in the computation of the costs associated to all nonempty
coalitions. If only a subset T ⊂ N of players are concerned, f qualifies as a
fixed cost if it also affects all coalitions including players in T :

Cf (S) = C(S) + f for all S ⊂ N such that S ∩ T 
= ∅
= C(S) for all S ⊂ N\T (2)

Clearly (1) is a particular case of (2) for T = N . In all cases the amount to
be allocated is equal to C(N) + f .

How should a fixed cost be allocated ? Fairness requires that only the players
who are concerned contribute and that they contribute equally:

Fairness For any cost function C ∈ G(N), fixed cost f ∈ IR and subset
T ⊂ N ,

Ri(Cf ) = Ri(C) + 1
t f for all i ∈ T

= Ri(C) for all i ∈ N\T

where Cf is given by (2).

4 The Shapley value

Applied to a cost function C ∈ G(N), the Shapley value induces a sharing
rule ϕ which allocates to each player i a weighted sum of his or her marginal
costs:

ϕi(C) =
∑

S⊂N
α(s)[C(S)− C(S\i)] (3)

where the weights α(s) are given by

α(s) =
(s− 1)!(n− s)!

n!
.

4 Costs as well as fixed cost can be negative. Fixed costs can alternatively be interpreted
as taxes when positive and as subsidies when negative.
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The following axioms define uniquely Shapley’s sharing rule5:

Efficiency For all C ∈ G(N),
∑

iRi(C) = C(N).

Anonymity For all C ∈ G(N) and all permutations π of N ,
Rj(πC) = Ri(C) for all i ∈ N , where j = π(i) and πC
is defined by πC(πS) = C(S).

Dummy For all C ∈ G(N), C(S) = C(S\i) for all S ⊂ N implies
Ri(C) = 0.

Additivity For all C1, C2 in G(N), R(C1 + C2) = R(C1) +R(C2).

Shapley shares are individually rational for subadditive cost functions: ϕi(C) ≤
C(i) for all i. However there may be cross-subsidization because either the
core is empty or because the allocation does not belong to the core.6

Lemma The Shapley sharing rule satisfies the fairness axiom.

Proof. This is a direct consequence of Shapley’ axioms. Let T be the set
of players affected by a fixed cost f and consider the game Cof defined by
(2) with C(S) = 0 for all S ⊂ N . The cost function Cof defines a game
where players in T are symmetric and players outside T are dummies. The
anonymity and dummy axioms imply that

ϕi(N, Cof ) = 1
t f for all i ∈ T

= 0 for all i ∈ N\T

Fairness then follows from additivity.

The following examples show that the sharing rule derived from the nucleolus
does not necessarily allocate a fixed cost uniformly.

Example 1. Consider the 3-player cost game defined by C(1) = 6, C(2) = 7,
C(3) = 10, C(12) = 9, C(13) = 13, C(23) = 15 and C(123) = 16. The
cost allocations derived from the Shapley value and the nucleolus are given by
(3.17, 4.67, 8.17) and (2.75, 4.75, 8.50) respectively. Consider a fixed cost f = 3
affecting all players and coalitions. As expected, the Shapley value imposes to
each player an additional contribution equal to 1 while the nucleolus imposes
additional contributions given by (0.92, 0.92, 1.17).

Example 2. Consider the cost game defined by C(1) = 7, C(2) = 9, C(3) =
13, C(4) = 15, C(12) = 15, C(13) = 19, C(14) = 21, C(23) = 20, C(24) =
22, C(34) = 25, C(123) = 27, C(124) = 26, C(134) = 24, C(234) = 26

5 See Shapley (1953, 1971).
6 The core is the set of allocations y such that y(N) = C(N) and y(S) ≤ C(S) or,

equivalently, y(S) ≥ C(N)− C(N\S) for all S ⊂ N . See Faulhaber (1975).
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and C(1234) = 30. The cost allocations derived from the Shapley value and
the nucleolus are given by (5.08, 6.75, 8.58, 9.58) and (5.50, 7.50, 8.25, 8.75)
respectively. For a fixed cost f = 2 affecting players 1 and 2, ie T = {1, 2},
the contributions of player 1 and 2 increase by 1 in the Shapley allocation —
as expected — while the nucleolus imposes additional contributions to all four
players given by (0.83, 0.83, 0.25, 0.08).

Proposition The Shapley sharing rule is the unique sharing rule satisfying
the dummy and fairness axioms.

Proof. Consider a sharing rule R satisfying the dummy and fairness axioms.
For any given T ⊂ N , T 
= ∅, define the elementary game eT by7

eT (S) = 1 if S ∩ T 
= ∅
eT (S) = 0 if S ⊂ N\T

These p = 2n − 1 games are linearly independent:
∑

T∩S �=∅
αT = 0 for all S ⊂ N implies αT = 0 for all T ⊂ N,T 
= ∅

Hence they form a basis8 of the p-dimensional linear space G(N) : for every
cost function C ∈ G(N) there exists a unique vector α ∈ Rp such that

C(S) =
∑

T �=∅
αT eT (S) ≡

∑

T �=∅
e′T (S)

where the games e′T are defined by

e′T (S) = αT if S ∩ T 
= ∅
= 0 if S ⊂ N\T

Players outside T are dummies. Applying the dummy and fairness axioms we
get:

Ri(e′T ) = 1
tαT for all i ∈ T

= 0 for all i ∈ N\T

The fairness axiom then ensures that R can be extended to the all space G(N)
in a unique way:

Ri(C) = ΣT �=∅Ri(e
′
T ).

It must therefore coincide with the Shapley sharing rule.
7 These are simple games describing a decision problem where a coalition is winning if

and only if it contains at least one member of T .
8The basis used by Shapley is different. He uses simple games where the players in T are

veto players: a coalition is winning if and only if it contains all members of T . This gives
rise to a p× p matrix whose determinant is equal to 1, instead of -1 in our formulation.

4



Actually the dummy axiom can be replaced by an axiom fixing the origin:9

Zero cost C(S) = 0 for all S ⊂ N implies R(C) = 0.

Efficiency is not formally mentioned because it is part of the definition of a
sharing rule. Anonymity is not needed explicitly: it is included in the fairness
axiom. The only limitation of our axiomatic is that the result does not hold
when restricted to the cone of subadditive cost games.
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