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1 Introduction

Exchange rate volatility is an issue of great importance for both businesses and policy-
makers alike. Hence businesses use volatility models as tools in their risk management
and as input in derivative pricing, whereas policymakers use them to acquire knowledge
about what and how economic factors impact upon exchange rate volatility for informed
policymaking. Most volatility models are highly non-linear and thus require complex op-
timisation algorithms in empirical application. For models with few parameters and few
explanatory variables this may not pose unsurmountable problems. But as the number of
parameters and explanatory variables increases the resources needed for reliable estimation
and model validation multiply. Indeed, this may even become an obstacle to the applica-
tion of certain econometric modelling strategies, as for example argued by McAleer (2005)
regarding automated general-to-specific (GETS) modelling of financial volatility.1 GETS
modelling is particularly suited for explanatory econometric modelling since it provides a
systematic framework for statistical economic hypothesis-testing, model development and
model (re-)evaluation, and the methodology is relatively popular among large scale econo-
metric model developers and proprietors. However, since the initial model formulation
typically entails many explanatory variables this poses challenges already at the outset for
computationally complex models.

In this study we overcome the computational challenges traditionally associated with
the application of the GETS methodology in the modelling of financial volatility by mod-
elling a measure of observed volatility (squared return) directly within a single equation
exponential model of observable volatility (EMOV) framework with ordinary least squares
(OLS) estimation. This enables us to apply GETS on a general specification with, in our
case, a constant and twenty four regressors, including lags of log of volatility, an asym-
metry term, a skewness term, seasonality variables, and economic covariates. Compared
with models of the autoregressive conditional heteroscedasticity (ARCH) and stochastic
volatility (SV) classes we estimate and simplify our specification effortlessly, and obtain
a parsimonious encompassing specification with uncorrelated homoscedastic residuals and
relatively stable parameters. Moreover, our out-of-sample forecast evaluation suggests that
GETS specifications are especially valuable in conditional forecasting, since the specifica-
tion that employs actual values on the uncertain information performs particularly well.

The rest of the paper is divided into four sections. In the next section we justify the
methodology of our study. Then we present the models in section 3, whereas section 4
contains the results of the out-of-sample forecast exercise. Finally we conclude in section
5.

Potential Programme under contract HPRN-CT-2002-00232, MICFINMA.
This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated

by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility
is assumed by the authors.

1GETS modelling is also sometimes referred to as the ”LSE methodology”, after the institution in
which the methodology to a large extent originated in, and sometimes even ”British econometrics”, see
Gilbert (1989), Mizon (1995) and Hendry (2003).
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2 Explanatory exchange rate volatility modelling

This section justifies the research design of our study and presents the EMOV in more
detail. In the first subsection we give some considerations regarding the measurement of
volatility forecast accuracy in an explanatory context. Then, in the second subsection,
we give a brief overview of the GETS methodology. Finally, in the third subsection we
describe the EMOV and compare it with the more common ARCH and SV families of
models.

2.1 The explanatory perspective

According to the Merriam-Webster Online dictionary the etymological origin of the word
”volatility” is the latin volatilis, which is a derivative of volare, ”to fly”. Although one of the
meanings of volatility still is ”flying” or ”having the power to fly”, the term typically carries
a rather different and specific meaning in financial econometrics, namely the conditional
standard deviation (or variance) of a financial return. Volatility is thus defined as a latent
or unobservable variable, deterministic or stochastic. In this study, however, we find it
useful to make a distinction between observed and unobserved—that is, latent—volatility,
where absolute and squared returns are examples of observable definitions of volatility.

A view that has gained widespread acceptance lately is that volatility forecasts should
be compared with realised volatility, that is, sums of squared intra-period returns, rather
than (say) squared or absolute period returns, see Andersen and Bollerslev (1998), and An-
dersen et al. (1999). Because although ”squared returns constitute an unbiased estimator
for the latent volatility factor, they also embody a large idiosyncratic component that is
unrelated to the actual volatility driving the market over the observation interval” (Ander-
sen and Bollerslev 1999, p. 458). In other words, the ”large unrelated component” tends
to contaminate volatility forecast comparisons leading to possibly erroneous conclusions.
As a remedy they suggest that volatility forecasts are evaluated against realised volatility,
which they define as the sum of squared intra period squared returns, since ”it corresponds
directly to the notion of volatility entertained in diffusion models...” (Andersen et al. 1999,
p. 458).

There are at least three objections to this view from an explanatory perspective. The
first is that one is restricted to work within the continuous time diffusion framework as if it
constituted the ”true” model, something that is particularly inappropriate in explanatory
econometric modelling. Economic events have temporal extension and stand at the end
of chains of economic events, each with temporal extension. In other words, it takes time
for one event to bring about another. So as the time increment goes to zero, so does the
explanatory potential of explanatory modelling. Second, absolute and squared returns are
measures of the total period variation in the exchange rate, whereas realised volatility is an
estimate of a latent variable. As a consequence, restricting one’s focus on latent volatility
means that one disregards how the latent variable transmits to observable volatility, the
magnitude which many decision makers ultimately care about and define their loss function
in terms of. Andersen and Bollerslev (1998, p. 890) have argued that rational ”financial
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decision making hinges on the anticipated future volatility and not the subsequent [ob-
served] squared returns” (p. 890). We agree that expectations play a part, but we do not
agree in the latter part of the sentence, namely that observed volatility does not matter.
Rational financial decision making also depends on the anticipated possible consequences
of the discrepancy between forecasts and actual values, and an important part of rational
financial decision making consists of continuously evaluating to what extent forecasts differ
from actual values and how this difference can be reduced. This is not an argument against
latent volatility approaches as such, only an emphasis of the fact that different questions
call for different definitions of volatility. As a contrast, if our aim were to price a derivative
having decided already at the outset to do it by means of a continuous time diffusion model,
then the latent definition of volatility (quadratic variation) in the diffusion model would be
more appropriate. Third and finally, in explanatory econometric volatility modelling the
error term plays an informative role since it is an objective measure—in the sense that it
does not rely upon any assumptions about what the ”true” model is—of how successful or
unsuccessful the specification is compared with others. Indeed, even in derivative pricing
one way of evaluating the precision of the underlying process that is assumed to generate
the price series is by comparing its forecasts with actual values. For these reasons our
focus is on the discrepancy between forecasts and actual squared returns rather than (say)
realised volatility as defined by Andersen and Bollerslev (1998).

2.2 GETS modelling

A fundamental cornerstone of the GETS methodology is that empirical models are derived,
simplified representations of the complex human interactions that generate the data. So
instead of postulating a uniquely ”true” model or paradigm, the aim is to develop ”congru-
ent” models within the statistical framework of choice. The exact definition of congruency
is given below, but in brief a congruent model is a theory informed specification that
is data-compatible and which constitutes a ”history-repeats-itself” representation (stable
parameters, innovation errors).2

In econometric practice GETS modelling proceeds in cycles of three steps: 1) Formulate
a general unrestricted model (GUM) which is congruent, 2) simplify the model sequentially
in an attempt to derive a parsimonious congruent model while at each step checking that the
model remains congruent, and 3) test the resulting congruent model against the GUM. The
test of the final model against the GUM serves as a parsimonious encompassing test, that
is, a test of whether important information is lost or not in the simplification process. If the
final model is not congruent or if it does not parsimoniously encompass the GUM, then the
cycle starts all over again by re-specifying the GUM. As such the GETS methodology treats
modelling as a process, where the aim is to derive a parsimonious congruent encompassing
model while at the same time acknowledging that ”the currently best available model”
(Hendry and Richard 1990, p. 323) can always be improved.

2The term ”congruent” is borrowed from geometry: By ”analogy with one triangle which matches
another in all respects, the model matches the evidence in all measured respects.” (Hendry 1995, p. 365)
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GETS modelling derives its basis from statistical reduction theory in general and
Hendry’s reduction theory (1995, chapter 9) in particular,3 which is a probabilistic frame-
work for the analysis and classification of the simplification errors associated with empirical
models. The ”theory offers”, in Hendry’s own words, ”an explanation for the origin of all
empirical models” (1997, p. 174) in terms of twelve ”reduction operations conducted im-
plicitly on the DGP. . . ” (1995, p. 344),4 and GETS modelling seeks to mimic reduction
analysis by evaluating at each reduction whether important information is lost or not.
Evaluation of any empirical model can take place against six types of information-sets,
namely 1) past data, 2) present data, 3) future data, 4) theory information, 5) measure-
ment information and 6) rival models, and with each of these types we may delineate an
associated set of properties that a model should exhibit in order to be considered as a
satisfactory, simplified representation of the DGP:5

1. Innovation errors. For a model to be a satisfactory representation of the process
that generated the data, what remains unexplained should vary unsystematically,
that is, the errors should be innovations. In practice this entails checking whether the
residuals are uncorrelated and homoscedastic.

2. Weak exogeneity. This criterion entails that conditioning variables are weakly
exogenous for the parameters of interest.

3. Constant, invariant parameters of interest. Models without stable parameters are
unlikely to be successful forecasting models, so this is a natural criterion if successful
forecasting is desirable.

4. Theory consistent, identifiable structures. To ensure that a model has a basis in
economic reality it should be founded in economic argument.

5. Data admissibility. In the current context, an example of a volatility model that
violates this criterion is one that produces negative volatility forecasts.

6. Encompassing of rival models. A model encompasses another if it accounts for its
results. Within the three-step cycle of GETS modelling sketched above, a parsimonious
encompassing test is undertaken when the final model is tested against the GUM. If
no or sufficiently little information is lost then the final model accounts for the results
of the GUM.

Models characterised by the first five criteria are said to be congruent, whereas models
that also satisfy the sixth are said to be encompassing congruent.

It is important to distinguish between two aspects of the GETS methodology, namely
the properties a model (ideally) should exhibit on the one hand, that is, congruent en-
compassing, and the process of deriving it on the other, that is, general-to-specific search.

3Other expositions of the GETS methodology and its foundations are Hendry and Richard (1990),
Gilbert (1990), Mizon (1995) and Jansen (2002).

4DGP stands for data-generating process.
5See Hendry (1995, pp. 362-367) and Mizon (1995) for further discussion .
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Contrary to what the name of the GETS methodology may suggest it is actually the former
that is of greatest importance. In the words of Hendry, ”the credibility of the model is not
dependent on its mode of discovery but on how well it survives later evaluation of all of its
properties and implications...” (1987, p. 37). However, there is no secret that general-to-
specific search for the ”currently best available” specification is the preferred approach by
the proponents of the GETS methodology. In addition to the fact that it mimics reduction
analysis at least four additional important reasons can be listed:6 The search for the cur-
rently best available specification is ordered since any specification obtained in the search
is nested within the GUM; in statistical frameworks where adding regressors reduces the
residual variance—as for example in the linear model with OLS estimation—the power
in hypothesis testing increases; the GETS methodology provides a systematic approach
to economic hypothesis testing; and finally compared with unsystematic searches GETS
search is resource efficient, see Hendry and Krolzig (2004).

2.3 Models of exchange rate volatility

If st denotes the log of an exchange rate and rt the log-return, that is, rt = ∆st = st−st−1,
then we will refer to r2

t as observed volatility. The EMOV is given by

r2
t = exp(b′xt + ut), (1)

where b is a parameter vector, xt is the vector of conditioning variables and {ut} is a
sequence of mutually uncorrelated and homoscedastic variables each with conditional mean
equal to zero. The exponential specification (1) is motivated by several reasons. The most
straightforward is that it results in simpler estimation, in particular when many explanatory
variables are involved. Under the assumption that {r2

t = 0} is an event with probability
zero, then consistent and asymptotically normal estimates of b can be obtained almost
surely with OLS under standard assumptions, since

log r2
t = b′xt + ut with probability 1. (2)

Another motivation for the exponential specification, which was first pointed to by Geweke
(1986) and Pantula (1986), and which subsequentially led Nelson (1991) to formulate
the exponential general ARCH (EGARCH) model, is that it ensures positivity. This is
particularly useful in empirical analysis because it ensures that fitted values of volatility
are not negative. Finally, another attractive feature of the exponential specification is
that it produces residuals closer to the normal in (2) and thus presumably leads to faster
convergence of the OLS estimator. In other words, the log-transformation is likely to
result in sounder inference regarding b in (2) when an asymptotic approximation is used.
Applying the conditional expectation operator on observed volatility in (1) gives

E(r2
t |It) = exp(b′xt) · E[exp(ut)|It], (3)

6See Campos et al. (2005) for a more complete discussion.
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where It denotes the information set in question. An estimate of conditional observed
volatility is readily obtained if either {ut} is IID or if the {exp(ut)} are uncorrelated, since
the formula 1

T

∑T
t=1 exp(ût) then provides a consistent estimate of the normalising constant

E[exp(ut)|It].
To see the relation between the EMOV and the ARCH and SV families of models, recall

that the latter two decompose log-returns into a conditional mean µt and a remainder et

rt = µt + et, (4)

where et = σtzt and {zt} is a sequence of mutually uncorrelated random variables with
conditional mean equal to zero and conditional variance equal to one. This implies

V ar(rt|It) = E(σ2
t z

2
t |It). (5)

If σ2
t follows a non-stochastic autoregressive process, then (4) belongs to the ARCH family

and the conditional variance in (5) reduces to σ2
t . A common example is the GARCH(1,1)

of Bollerslev (1986) where
σ2

t = ω + αe2
t−1 + βσ2

t−1. (6)

If σ2
t on the other hand follows a stochastic autoregressive process, then (4) belongs to the

SV family of models. In the special case where σt and zt are independent the conditional
variance equals E(σ2

t |It).
The relation between EMOV and the ARCH and SV families can be viewed in at least

three ways. The first is to treat the EMOV as a non-nested alternative to the ARCH
and SV families. At first sight one might object that the EMOV does not account for the
influence of variables in the conditional mean of returns, but this is incorrect. Variables
normally included in the conditional mean equation can appear in xt. For example, rt−1 is
often included as a regressor in the conditional mean equation of ARCH models of exchange
rate returns, and one way to account for its potential influence in the EMOV is by including
log r2

t−1 in xt. A second way of viewing the EMOV is to interpret it as an approximation to
observed volatility in the ARCH and SV families. Recall that expected observed volatility
within the ARCH family7 is

E(r2
t |It) = µ2

t + σ2
t . (7)

In words, the total expected exchange rate variation consists of two components, the
squared conditional mean µ2

t and the conditional variance σ2
t . As Jorion (1995, footnote 4

p. 510) has noted σ2
t typically dwarfs µ2

t with a factor of several hundreds to one,8 so the
”de-meaned” approximation

µ2
t + σ2

t ≈ σ2
t (8)

7No generality is lost by only considering the ARCH family since the same type of argument applies
with respect to the SV family under standard assumptions.

8Jorion noted that, on daily data, the factor is typically 700 to 1. In our case the median of the
fitted values of σ2

t is between 500 and 600 times greater than the median of the fitted values of µ2
t in the

GARCH(1,1) and EGARCH(1,1) specifications of subsection 3.2.
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is often reasonably good in practice. The third way to view the relation between EMOV and
the ARCH and SV families of models requires that errors are interpreted as designed, and
enables us to model EMOV and ARCH/SV specifications jointly. For example, consider
the bivariate system

rt = a′zt + et, log r2
t = b′xt + ut, (9)

where the errors are interpreted as designed, that is,

et = rt − E(rt|zt ∪ xt), ut = log r2
t − E(log r2

t |zt ∪ xt). (10)

The first equation in (9) with rt on the left hand side can be formulated as an ARCH or SV
specification and the second as an EMOV. This gives rise to testable questions like weak
exogeneity (valid conditioning with respect to the parameters of interest), strong exogeneity
(whether lags of log r2

t predicts rt and whether lags of rt predicts log r2
t ), whether there is

a presence or absence of ARCH/SV in the residuals of the first equation, and ultimately
whether (say) the first equation forecast encompasses the second in predicting r2

t . For
example, suppose we obtain a parsimonious version of (9) which exhibits weak and strong
exogeneity, and that a subsequent out-of-sample forecast comparison of r2

t reveals that the
EMOV outperforms the ARCH/SV model. Then we are (statistically) justified in only
focusing on the EMOV in our investigation of r2

t , since the equation of rt is not needed
for valid inference nor for improved prediction. Alternatively, if the out-of-sample forecast
comparison suggests that the ARCH/SV specification is superior in predicting r2

t , then we
would be right in disregarding the EMOV specification.

3 Data and empirical models

This section presents the data of our study and our empirical forecast models, and proceeds
in four steps. The first subsection describes our data in brief (the data appendix provides
more details) and introduces notation, whereas the next three subsections describe our
forecast models. The economic motivation, justification and interpretation of the variables
have been dealt with in greater length elsewhere, see Bauwens et al. (2006), so here we
concentrate on the statistical properties of the models. The second subsection contains
specifications that condition on both ”certain” and ”uncertain” information. With certain
information we mean information that is predictable with a high degree of certainty, for
example past values, holidays, etc. With uncertain information we mean information that
is not predictable with a high degree of certainty. Typical examples would be contempo-
raneous values of economic variables, etc. The motivation behind the distinction between
certain and uncertain information is that it enables us to gauge the potential forecast pre-
cision in the ideal case where the values of the uncertain information are correct. This is
of particular interest since the GETS methodology often is championed for its ability to
develop models appropriate for scenario analysis (counterfactual analysis, policy analysis,
conditional forecasting, etc.), where conditioning on uncertain information plays an im-
portant part. The distinction is also of practical interest, since it enables us to investigate
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whether GETS models with uncertain information improve upon the forecast accuracy of
models without uncertain information, since the uncertain information would have to be
forecasted in a realistic forecast setting. The third subsection contains specifications with
certain information only, whereas the fourth and final subsection contains the benchmark
or ”simple” specifications that serve as a point of comparison. These models are rela-
tively parsimonious and require little development and maintenance effort, thus the label
”simple”, and they have a documented forecasting record. Their motivation is that an im-
portant issue is whether GETS derived specifications improve upon the forecast accuracy
provided by simple models.

3.1 Data and notation

Our weekly data span the period 8 January 1993 to 25 February 2005, a total of 634 obser-
vations, and the details of the data transformations and the data sources are given in the
appendix.9 In order to undertake out-of-sample accuracy evaluation we split the sample in
two. The estimation sample is 8 January 1993 - 26 December 2003 (573 observations), and
the reason we split the sample at this point is that it then corresponds to that of Bauwens
et al. (2006). The remaining 61 observations are used for the out-of-sample analysis. The
exchange rate in question is the closing value of the BID NOK/EUR in the last trading
day of the week and is denoted by St. Note that before 1 January 1999 we use the BID
NOK/DEM exchange rate converted to euro-equivalents with the official conversion rate
1.95583 DEM = 1 EURO. The weekly return is given by rt = log St − log St−1, and the
weekly variance by V w

t = r2
t . We will make extensive use of the log-transformation applied

on volatilities and generally we will follow the convention of denoting such variables in
lower case. For example, the log of squared NOK/EUR returns is denoted vw

t and defined
as vw

t = log V w
t . Graphs of St, rt and vw

t are contained in figure 1.
In addition to lags of volatilites we also include several other regressors in our spec-

ifications, including a low frequency version of weekly realised variance which we denote
V r

t with its log counterpart as vr
t , and a weekly range based volatility measure which we

denote V hl
t with its log counterpart as vhl

t . The weekly realised variance is constructed by
using the opening and closing values of the trading days of the week, whereas the range
based measure is constructed by using the minimum and maximum values over the week.
To account for the possibility of skewness and asymmetries in rt we use the lagged return
rt−1 for the latter, and an impulse dummy iat equal to 1 when returns are positive and
0 otherwise for the former. We also include variables intended to account for the impact
of holidays and seasonal variation. These are denoted hlt with l = 1, 2, . . . , 8, see the
appendix for further details. As a measure of variation in market activity we use the rel-
ative change in the number of quotes. More precisely, if we denote the number of quotes

9Over this period Norway experienced three different types of exchange rate regimes. Loosely, until
1998 the central bank of Norway (Norges Bank) actively sought to stabilise the Norwegian krone against
its main trading partners, then it shifted to partial inflation targeting before it was instructed by the
Ministry of Finance to fully pursue inflation targeting in March 2001. For more details, see Bauwens et al.
(2006).
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in week t by Qt and its log-counterpart by qt, we use ∆qt as our measure of the relative
change in market activity from one week to the next. The variable qt can be interpreted
as the general level of market activity due to (say) the number of traders active or other
institutional characteristics. As a measure of general currency market turbulence we use
EUR/USD-volatility. If mt = log (EUR/USD)t, then ∆mt denotes the weekly return of
EUR/USD, Mw

t stands for weekly volatility and mw
t is its log-counterpart. The petroleum

sector plays a major role in the Norwegian economy, so it makes sense to also include a
measure of oilprice volatility. If the log of the oilprice is denoted ot, then the weekly return
is ∆ot, weekly volatility is Ow

t with ow
t as its log-counterpart. We proceed similarly with

Norwegian and US stock market variables. If xt denotes the log of the main index of the
Oslo stock exchange, then the associated variables are ∆xt, Xw

t and xw
t . In the US case ut

is the log of the New York stock exchange (NYSE) index and the associated variables are
∆ut, Uw

t and uw
t . The foreign interest-rate variables that we include are constructed using

an index made up of the short term market interest-rates of the EMU countries. Specifi-
cally, if IRemu

t denotes this interest-rate index then we include a variable that is denoted
iremu

t and which is defined as (∆IRemu
t )2. The Norwegian interest-rate variables that we

include are constructed using the main policy interest rate variable of the Norwegian cen-
tral bank. Let Ft denote the main policy interest rate in percentages and let ∆Ft denote
the change from the end of one week to the end of the next. Furthermore, let Ia denote
an indicator function equal to 1 in the period 1 January 1999 - Friday 30 March 2001 and
0 otherwise, and let Ib denote an indicator function equal to 1 after 30 March 2001 and 0
before. In the first period the Bank pursued a ”partial” inflation targeting policy, whereas
in the second it pursued a ”full” inflation targeting policy. We then have ∆F a

t = ∆Ft× Ia

and ∆F b
t = ∆Ft× Ib, respectively, and fa

t and f b
t stand for |∆F a

t | and |∆F b
t |, respectively.

Finally, we also include a step dummy sdt equal to 0 before 1997 and 1 after to account
for a structural increase in volatility.

3.2 Models with both certain and uncertain information

This subsection presents our models with both certain and uncertain information. Specif-
ically they are

GUM EMOV1: vw
t = b0 + b1v

w
t−1 + b2v

w
t−2 + b3v

w
t−3 + b4v

w
t−4 + b5qt + b6∆qt + b7m

w
t

+ b8o
w
t + b9x

w
t + b10u

w
t + b11f

a
t + b12f

b
t + b13ir

emu
t

+ b14sdt + b15iat + b16rt−1 +
8∑

l=1

b16+lhlt + et (11)

GETS EMOV1: vw
t = b0 + b2(v

w
t−2 + vw

t−3) + b6∆qt + b9(x
w
t + uw

t )

+ b12f
b
t + b13ir

emu
t + b14sdt + et, (12)

GETS EMOV2: vw
t = b0+b2(v

w
t−2+vw

t−3)+b9(x̄
w+ūw)+b13īr

emu
t +b14sdt+et, (13)
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GETS EMOV3: vw
t = b0+b2(v

w
t−2+vw

t−3)+b9(ẋ
w+u̇w)+b13i̇r

emu

t +b14sdt+et, (14)

where {et} is a sequence of innovation errors. The first specification GUM EMOV1 is a
general and unrestricted model with both known and unknown information, whereas the
second which is labelled GETS EMOV1 is the GETS derived counterpart. Of these two only
the second will be used in our out-of-sample study. The second specification is obtained
by setting the first as the general unrestricted specification, and then testing restrictions
regarding the parameters with Wald-tests before the final specification is tested against the
GUM. It should be noted that we only perform a single specification search where, at each
step, we remove the regressor with highest p-value. Hoover and Perez (1999) have pointed
out that performing only a single simplification search might result in ”path dependence”,
in the sense that a relevant variable being removed early on in the search whereas irrelevant
variables that proxy its role are retained. However, the software PcGets version 1.0 (see
Hendry and Krolzig 2001), which automates GETS multiple-path simplification search,
produces a specification almost identical to (12), the only difference being that vw

t−2 is
not retained. So path-dependence does not appear to be a problem in our case. This is
consistent with White’s (1990) theorem, which implies that the path dependence problem
reduces as the size of the sample increases.10 In the generation of GETS EMOV1 forecasts
two steps ahead and onwards we use forecasted values of vw

t and observed values of the
other covariates. In other words, the forecasts of GETS EMOV1 are generated as if the
unknown conditioning information is known. As such the accuracy of GETS EMOV1
constitutes an indication of its potential for scenario analysis (policy analysis, conditional
forecasting, counterfactual analysis, etc.), since its accuracy will reflect its potential of
yielding accurate forecasts under the assumption that the unknown information is correct.
The third and fourth specifications serve as a contrast to this hypothetical situation and try
to mimic more realistic circumstances by using the parameter estimates of GETS EMOV1,
and by using simple forecasting rules for the uncertain information. In GETS EMOV2
the variables ∆qt and f b

t are set equal to zero, and xw
t , uw

t and iremu
t are set equal to their

sample averages x̄w, ūw and īr
emu
t over the period 1 January 1999 - 26 December 2003.11 In

other words, variables that would have to be forecasted in a realistic setting are either set
to zero or to their presumed, future sample averages. GETS EMOV3 proceeds similarly
with a single difference. Instead of averages the medians of xw

t , uw
t and iremu

t , denoted ẋw,
u̇w and i̇r

emu

t , are used.
Estimation results and recursive parameter stability analysis of the first two specifica-

tions are contained in table 1, and in figures 2 and 3. Both GUM EMOV1 and GETS
EMOV1 exhibit innovation errors in the sense that the nulls of no serial correlation, no
autoregressive conditional heteroscedasticity and no heteroscedasticity are not rejected at
the 10% significance level, and the recursive parameter stability analysis suggests param-
eters are relatively stable. For both GUM EMOV1 and GETS EMOV1 the Chow forecast

10Our sample of 573 observations is considerably larger than those investigated by Lovell (1983), Hoover
and Perez (1999) and Hendry and Krolzig (1999), the sequence of studies that resulted in PcGets. Whereas
Lovell (1983) used only 23 observations, the other two studies employed a maximum of 140 observations.

11This sample was chosen because the volatility of rt looks relatively stable over this period.
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and breakpoint tests do not signify at the 1% level, but the 1-step forecast tests on the
other hand show some signs of instability.12 The number of spikes that exceeds the 1%
critical value in the break-point tests is 11 and 13, respectively. This suggests the presence
of some structural instability since on average we would expect only 5 spikes to exceed the
1% critical value (1% of 473 is just below 5). 13

3.3 Models with certain information

This subsection contains our specifications with known or relatively certain information.
Specifically they are

GUM EMOV4: vw
t = b0 + b1v

w
t−1 + b2v

w
t−2 + b3v

w
t−3 + b4v

w
t−4 + b14sdt

+ b16rt−1 +
8∑

l=1

b16+lhlt + et, (15)

GETS EMOV4: vw
t = b0 + b2(v

w
t−2 + vw

t−3) + b14sdt + b18h2t + et, (16)

Realised EMOV5: vw
t = b0 + b1v

r
t−1 + b14sdt + b18h2t + et, (17)

Range EMOV6: vw
t = b0 + b1v

hl
t−1 + b14sdt + b18h2t + et, (18)

GARCH(1,1)+: rt = b0 + b1rt−1 + et, et = σtzt,

σ2
t = ω + αe2

t−1 + βσ2
t−1 + γ1h2t, (19)

EGARCH(1,1)+: rt = b0 + b1rt−1 + et, et = σtzt,

log σ2
t = ω + α| et−1

σt−1

|+ β log σ2
t−1 + γ0

et−1

σt−1

+ γ1h2t, (20)

where σt is the conditional standard deviation of rt, and {zt} is a sequence of random
variables each with mean equal to zero conditional on the information set in question, and
each with variance equal to one conditional on the same information set. The first specifi-
cation GUM EMOV4 is a general formulation nested within GUM EMOV1 but containing
only ”certain” conditioning information, that is, past and relatively certain contemporane-
ous information (holiday variables). The second specification GETS EMOV4 is obtained

12If t denotes the sample size, k the number of parameters in b and M the observation at which recursive
estimation starts, then for t = M, . . . , T the 1-step, breakpoint and forecast tests are computed in PcGive
as F (1, t− k − 1), F (T − t + 1, t− k − 1) and F (t−M + 1,M − k − 1), respectively.

13The number 473 is due to the fact that the recursive estimation was initialised at observation number
100.
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through GETS-analysis of GUM EMOV4. The third specification Realised EMOV5 uses
a low frequency version of lagged realised weekly volatility vr

t−1 as predictor together with
the structural step dummy sdt and the Good Friday holiday variable h2t, whereas Range
EMOV6 is identical to Realised EMOV5 except that it replaces lagged weekly realised
volatility with lagged weekly range volatility. In the fifth and sixth specifications a con-
stant b0, lagged return rt−1 and h2t are added to ”plain” GARCH(1,1) and EGARCH(1,1)
specifications. In addition to the fact that the conditional variance σ2

t is modelled exponen-
tially, the EGARCH differs from the GARCH by the inclusion of an asymmetry term et−1

σt−1

in the conditional variance specification. A value of γ0 unequal to zero implies asymmetry
and γ0 < 0 in particular implies leverage, that is, that returns are negatively correlated with
last period’s volatility. The higher |β| the higher persistence, and a necessary condition for
covariance stationarity is |β| < 1, see Nelson (1991).

The estimation results of the six specifications are contained in tables 2, 3 and 4,
and recursive parameter stability analysis of GUM EMOV4 and GETS EMOV4 in fig-
ures 4 and 5. The first four specifications all exhibit innovation errors in the sense that
the nulls of no serial correlation, no autoregressive conditional heteroscedasticity and no
heteroscedasticity are not rejected at conventional significance levels, and the recursive
parameter stability analysis for GUM EMOV4 and GETS EMOV4 are similar to those
of GUM EMOV1 and GETS EMOV1 above. Both GARCH(1,1)+ and EGARCH(1,1)+
exhibit uncorrelated standardised residuals and squared standardised residuals according
to the diagnostic tests, and the lagged return rt−1 in the mean equation is negative as
commonly found for exchange rates, but not significant. The estimates of α + β (0.129
+ 0.877 = 1.006) and β (0.983) are very close to 1. This is usually interpreted as an
indication of a strong persistence of shocks on the conditional variance, but in this case it
is due to the structural break around the beginning of 1997, see figure 1. Finally, the value
of γ0 is insignificantly different from zero which suggests that the symmetry imposed by
the GARCH model is not restrictive.

3.4 Simple models

Our benchmark or simple models are all ARCH-specifications, and specifically they are

Historical: rt = et = σtzt, σ2
t = ω (21)

RiskMetrics: rt = et = σtzt, σ2
t = 0.06e2

t−1 + 0.94σ2
t−1 (22)

EWMA: rt = et = σtzt, σ2
t = αe2

t−1 + βσ2
t−1 (23)

GARCH(1,1): rt = et = σtzt, σ2
t = ω + αe2

t−1 + βσ2
t−1 (24)

EGARCH(1,1): rt = et = σtzt, log σ2
t = ω + α| et−1

σt−1
|+ β log σ2

t−1 + γ et−1

σt−1
, (25)
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where {zt} is characterised as above. The first specification labelled Historical is a GARCH(0,0)
estimated on the sample 1/1/1999 - 26/12/2003 (261 observations). In other words, it is the
ARCH-counterpart of the sample variance since it models volatility as non-varying, and the
sample was chosen because volatility appears relatively stable graphically over this period.
Failure to beat the historical variance is detrimental to models of the ARCH-class, since
this essentially undermines their raison d’être. The second specification is an exponen-
tially weighted moving average (EWMA) with parameter values suggested by RiskMetrics
(Hull 2000, p. 372).14 RiskMetrics proposed these values after having compared a range
of combinations on various financial time series. The third specification is an EWMA with
estimated parameters whereas the fourth specification is a plain GARCH(1,1) which nests
the EWMAs within it, since they can be obtained through parameter restrictions. The
fifth and final specification is a plain EGARCH(1,1).

Estimates and residual diagnostics of the simple models are contained in tables 5 and
6. The estimate of the Historical specification yield standardised residuals that are un-
correlated according to the AR1−10 test. Although this is not the case for the AR1−1 test
which is not reported, the failure of the AR1−10 test to reject the null nevertheless suggests
that the historical variance might be difficult to beat out-of-sample. In the RiskMetrics
specification the diagnostic tests suggest the values of α and β are suboptimal, since both
the standardised residuals and the squared standardised residuals are serially correlated.
Indeed, the diagnostic tests of the EWMA supports this picture since there the nulls of
uncorrelated and homoscedastic standardised residuals are not rejected. The α, β esti-
mates and diagnostics of the plain GARCH(1,1) specification are almost identical, and the
estimate of ω is almost zero. In other words, the two specifications will produce almost
identical forecasts. In the EGARCH(1,1) model residuals are also uncorrelated whereas
the estimate of the volatility persistence parameter β is high and almost 1 (it is equal to
0.981). The asymmetry parameter γ is not significant at conventional significance levels,
thus suggesting the symmetry of the GARCH(1,1) is not so restrictive. Finally, compared
with the estimates of ω, α and β in (19) and (20) they are virtually identical here. In other
words, adding a mean specification and h2t does not seem to affect the estimates of the
variance equation noteworthy.

4 Out-of-sample forecast evaluation

This section proceeds in three steps. The first subsection contains our out-of-sample fore-
cast accuracy comparison, whereas the second contains socalled Mincer-Zarnowitz (1969)
regressions of observed volatility on a constant and forecasts. The third and final subsection
sheds additional light on the results by examining some of the 1-step forecast trajectories

14To be more precise, the parameter values are those suggested by the 1995 version of RiskMetrics, which
then was part of the merchant bank J.P. Morgan. RiskMetrics is now an independent company and two ver-
sions of RiskMetrics have superseded the 1995 May edition, see http://www.riskmetrics.com/techdoc.html.
Note also that the parameter values are obtained with a definition of volatility that differs slightly from
the one employed here.
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more closely.

4.1 Out-of-sample forecast accuracy comparison

Consider a sequence of volatilities {Vk} over the forecast periods k = 1, . . . , K and a
corresponding sequence of forecasts {V̂k}. Our out-of-sample forecast accuracy measures
consist of the mean absolute error (MAE) and the mean squared error (MSE), and are
defined as

MAE =
1

K

K∑

k=1

|Vk − V̂k|, (26)

MSE =
1

K

K∑

k=1

(Vk − V̂k)
2, (27)

respectively.15 Both measures are symmetric in that they treat positive and negative errors
alike, and their only difference is that the latter punishes large errors more severely than the
former.16 Error-based measures are ”pure” precision measures in the sense that evaluation
is based solely on the discrepancy between the forecast and the actual value. One can
make a case for the view that precision-based measures are the most appropriate when
evaluating the forecast properties of a certain modelling strategy, since this leaves open
what the ultimate use of the model is. On the other hand, this is also a weakness since
considerations pertaining to the final use of the model do not enter the evaluation.17

The values of the MAE and MSE forecast statistics are contained in tables 7 and 8.
In the forecasting literature models with economic covariates are typically championed
as producers of accurate long-term forecasts, but not necessarily of short-term forecasts
better than those of ”näıve” or simple models without economic covariates. Our results
seem to contradict this for the short term. On short horizons up to six weeks ahead GETS
EMOV1, the specification with actual values on the economic variables of the right hand
side, performs well according to both the MAE and MSE statistics. According to the MAE

15Patton (2005) has recently argued in favour of the MSE and against the MAE in volatility forecast
comparison. It should be noted however that his argument applies (under certain assumptions) when the
problem to be solved is to choose an σ̂2

t such that expected L(σ2
t , σ̂2

t ) is minimised, where L(·) is a loss
function. In explanatory modelling on the other hand, as we argued in subsection 2.1, the problem to
be solved is to choose an σ̂2

t such that expected L(r2
t , σ̂2

t ) is minimised. This is a qualitatively important
difference and it is not clear that Patton’s conclusions hold when the problem is formulated in this way.

16An alternative to the MAE and MSE are their relative counterparts which scale the error Vk − V̂k

by either Vk or V̂k. The disadvantage with the relative counterparts is that they may favour or disfavour
models that either systematically overpredicts or underpredicts, regardless of how well they fare according
to the MAE and MSE criteria.

17Several other approaches to out-of-sample forecast comparison have been proposed. One consists of
adding other ingredients to the evaluation scheme, see for example West et al. (1993) where the expected
utility of a risk averse investor serves as the ranking criterion. Similarly, Engle et al. (1993) provide
a methodology in which the profitability of a certain trading strategy ranks the forecasts. Yet another
approach takes densities as the object of interest, see Diebold et al. (1998), whereas Lopez (2001) has
proposed a framework that provides probability forecasts of the event of interest.
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it comes 1st, 2nd, 3rd and 3rd up to six weeks ahead, whereas according to the MSE it
comes 1st on the same forecast horizons. On longer horizons, however, results are more
mixed. For 12 and 18 weeks ahead the GETS EMOV1 comes 10th and 12th (last) according
to the MAE, and 9th for both the 12 and 18 horizons according to the MSE. One might
suggest that this is due to structural instability, but the results of the other GETS models
indicate it is not that straightforward. Indeed, generally the GETS models (EMOV1-4)
do notably better according to the MSE measure than the MAE measure, which suggests
that the usefulness of GETS modelling increases when larger errors are punished more.
The most extreme case is GETS EMOV4 which 12 and 18 weeks ahead comes 12th (last)
and 11th (second-to-last) according to the MAE measure, and 4th and 4th according to
the MSE measure. This suggests that the poor performance of GETS EMOV3 on longer
horizons is not due to parameter instability.

In a practical forecasting situation the actual values on the right hand side of the
GETS EMOV1 specification would have to be forecasted, and GETS EMOV2 and GETS
EMOV3 try to mimic such a situation. Both models are relatively consistent and perform
comparatively well on shorter horizons, in particular according to the MSE measure, but
as long as no statistical tests are involved it is unclear whether it is significantly superior
or inferior to any particular model. On the first four horizons the GETS EMOV2 comes
3rd, 5th, 5th and 6th according to the MAE, and 4th, 4th, 4th and 5th according to the
MSE. On the same horizons the GETS EMOV3 comes 4th, 6th, 7th and 8th according to
the MAE, and 3rd, 3rd, 3th and 4rd according to the MSE. For 12 and 18 weeks ahead
the GETS EMOV4 and GETS EMOV5 do not fare well according to the MAE, since they
come 7th or worse. According to the MSE on the other hand they come 4th or better.

Although the MAE and MSE measures suggest that the GETS models perform rela-
tively well compared with the other models, it should be stressed that so do some of the
simple models at times. For example, according to the MAE the Historical specification,
that is, the constant model of volatility, comes 2nd at the 1 week horizon, 4rd at the 2
and 3 weeks horizons, and according to the MSE it is distinguishable from the best model
12 and 18 weeks ahead only at the third decimal. Similarly, the Range EMOV6, that is,
the specification that uses lagged range volatility as predictor, comes 1st on the 2, 3 and 6
week horizons according to the MAE. The RiskMetrics, GARCH and EGARCH specifica-
tions do not do particularly well at short horizons, that is, on horizons in which one would
expect them to do well. Not once does any of the five specifications beat Historical 1 to 3
weeks ahead according to both MAE and MSE.

4.2 1-step Mincer-Zarnowitz regressions

A simple statistical way of evaluating forecast models is by regressing the variable to be
forecasted on a constant and on the forecasts, socalled Minzer-Zarnowitz (1969) regressions,
see Andersen and Bollerslev (1998) and Patton (2005) for a discussion of their use in
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volatility forecast evaluation.18 In our case this proceeds by estimating the specification

r2
t = a + bV̂t + et, (28)

where r2
t is observed volatility, V̂t is the 1-step forecast and et is the error term. Ideally,

a should equal zero and b should equal one—since these constitute conditions for ”un-
biasedness”, and the fit should be high. Table 9 contains the regression output.19 One
specification stands out according to the majority of the criteria, namely GETS EMOV1.
Its estimate of a is not significantly different from zero, the estimate of b is positive and
significantly different from zero, the joint restriction a = 0, b = 1 is not rejected at con-
ventional significance levels, and its R2 is 0.26. This is substantially higher than any of
the R2s cited in Andersen and Bollerslev (1998, pp. 890-891) (the typical R2 they cite is
around 0.03 and the highest is 0.11), and must be very close to—if not exceeding—their
population upper bound of R2:

”..with conditional Gaussian errors the R2
(m) from a correctly specified GARCH(1,1)

model is bounded from above by 1
3
, while with conditional fat-tailed errors the

upper bound is even lower. Moreover, with realistic parameter values for α(m)

and β(m), the population value for the R2
(m) statistic is significantly below this

upper bound”—Andersen and Bollerslev (1998, p. 892).

In other words, although the unusually high R2 of GETS EMOV3 might be due to
sample specificity, it nevertheless suggests the poor forecasting performance of r2

t by
ARCH-models can be improved upon substantially. Moreover, apart from the RiskMet-
rics specification Historical beats the other five members of the ARCH-family (EWMA,
GARCH(1,1), EGARCH(1,1), GARCH(1,1)+ and EGARCH(1,1)+), and the four models
GETS EMOV1-4 perform better than Historical according to R2. Also, in none of these
four specifications is neither a significantly different from zero, nor is the joint restriction
a = 0, b = 1 rejected. Apart from Historical and RiskMetrics, the restriction a = 0, b = 1
is rejected at the 5% level in all the ARCH-specifications, and a is significantly different
from zero.

4.3 Explaining the forecast results

An important part of an out-of-sample study consists of explaining the results, and to this
end figure 6 provides a large part of the answer. The figure contains the out-of-sample
trajectories of squared NOK/EUR log-returns in percent r2

t , the 1-step forecasts of GETS
EMOV1 and the 1-step forecasts of Historical, and the figure provides some interesting

18It should be stressed though that their discussion concerns forecasting the latent volatility rather than
observed volatility, as is the case in this study.

19Patton (2005, footnote on p. 6) has noted that the residuals in Mincer-Zarnowitz regressions typically
are serially correlated and that this should be taken into account by using (say) Newey and West (1987)
standard errors. In our case the residuals are not serially correlated according to standard tests, but
admittedly it might be undetectable due to our relatively small sample.
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insights on the forecast accuracy results. First, the series of r2
t seems to be characterised

by some occasional large values but little volatility persistence in the sense that large values
do not tend to follow each other. Indeed, only at two instances is a large value followed
by another, and for a relatively large portion of the sample r2

t stays rather low. This
explains to some extent the forecast accuracy of Historical. It also explains to some extent
the success of Range EMOV6, since its trajectory—which is not contained in the figure—is
very similar to Historical’s. Second, in the 5th and in the 11th weeks of the forecast sample
Norges Bank changed its main policy interest rate. This is reflected in the large values
of r2

t in the 5th and 11th weeks, and explains the forecast accuracy of GETS EMOV1 (it
contains policy interest rate changes as a predictor) and its unusually high R-squared in
the 1-step forecast regressions. Finally, the other explanatory variables included in GETS
EMOV1 are probably the reason why it also follows r2

t relatively well at other instances
when r2

t moves substantially. But it should be noted that the explanatory regressors in
GETS EMOV1 also seem to induce notable forecast error on at least two occasions. In
other words, although the forecast success of GETS EMOV1 is due to the explanatory
variables, there are also signs that they may have the opposite effect, namely increasing
the forecast error. All in all, then, the forecast results suggest the GETS EMOV1 is useful
for conditional forecasting but that it does not improve upon the forecasting by simple
models when the explanatory variables are unchanging or move little.

5 Conclusions

This study has evaluated the out-of-sample forecast accuracy of GETS derived models of
weekly NOK/EUR volatility. The GETS specification that uses actual values of uncertain
information is found to perform particularly well when it is able to explain big movements in
the exchange rate, but not necessarily better than simple models like the constant volatility
model when the exchange rate does not move much or when it is unable to explain the
movement. Models of the GARCH(1,1) and EGARCH(1,1) types do not fare particularly
well and the reason is that large values (in the absolute sense) of returns do not seem to
come in pairs nor in longer sequences at the weekly frequency. Rather, big movements in
the exchange rate seems more to be a ”one off” phenomenon.

Overall, then, our results suggest GETS derived models of observable volatility are not
inferior to the comparison models, and that they are particularly useful in conditional fore-
casting. This suggests several lines for further research. First, the generality of our results
must be established. Is GETS-modelling of financial volatility useful on higher frequencies
than the weekly? On other financial assets? Second, contrary to McAleer’s (2005) asser-
tion, automated GETS-modelling of financial volatility can be readily implemented and
should be investigated more fully.
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Appendix: Data transformations and sources

The data transformations were undertaken in Ox 3.4 and EViews 5.1.

St BID NOK/1EUR closing value of the last trading day of week t. Before 1.1.1999
the BID NOK/1EUR rate is obtained by the formula BID NOK/100DEM ×
0.0195583, where 0.0195583 is the official DEM/1EUR conversion rate 1.95583
DEM = 1 EUR divided by 100. The source of the BID NOK/100DEM series
is Olsen Financial Technologies and the source of the BID NOK/1EUR series
is Reuters.

rt (log St − log St−1)× 100

V w
t {{log[St + I(St = St−1) × 0.0009] − log(St−1)} × 100}2. I(St = St−1) is an

indicator function equal to 1 if St = St−1 and 0 otherwise, and St = St−1

occurs for t = 10/6/1994, t = 19/8/1994 and t = 17/2/2000.

vw
t log V w

t

V r
t

∑
n[log(Sn/Sn−1)×100]2, where n = 1(t), 2(t), ..., N(t) and 1(t)−1 = N(t−1).

S1(t) is the first BID NOK/1EUR opening exchange rate of week t, S2(t) is
the first closing rate, S3(t) is the second opening rate, and so on, with SN(t)

denoting the last closing rate of week t, that is, SN(t) = St.

vr
t log V r

t

V hl
t [log(Sh

t /Sl
t)× 100]2, where Sh

t and Sl
t are the maximum and minimum values

of bid NOK/EUR in week t.

vhl
t log V hl

t

Mt BID USD/EUR closing value of the last trading day of week t. Before
1.1.1999 the BID USD/EUR rate is obtained with the formula 1.95583/(BID
DEM/USD). The source of the BID DEM/USD and BID USD/EUR series is
Reuters.

mt log Mt

Mw
t {{log[Mt + I(Mt = Mt−1)× 0.0009]− log(Mt−1)}× 100}2. I(Mt = Mt−1) is an

indicator function equal to 1 if Mt = Mt−1 and 0 otherwise.

mw
t log Mw

t

Qt Weekly number of NOK/EUR quotes (NOK/100DEM before 1.1.1999). The
underlying data is a daily series from Olsen Financial Technologies, and the
weekly values are obtained by summing the values of the week.

qt log Qt. This series is ”synthetic” in that it has been adjusted for changes in
the underlying quote collection methodology at Olsen Financial Technologies.
More precisely qt has been generated under the assumption that ∆qt is equal
to zero in the weeks containing Friday 17 August 2001 and Friday 5 September
2003, respectively. In the first week the underlying feed was changed from
Reuters to Tenfore, and on the second a feed from Oanda was added.
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∆qt qt− qt−1. The values of this series has been set to zero in the weeks containing
Friday 24 August 2001 and Friday 5 September 2003, respectively.

Ot Closing value of the Brent Blend spot oilprice in USD per barrel in the last
trading day of week t. The untransformed series is Bank of Norway database
series D2001712.

ot log Ot

Ow
t {{log[Ot + I(Ot = Ot−1) × 0.009] − log(Ot−1)} × 100}2. I(Ot = Ot−1) is an

indicator function equal to 1 if Ot = Ot−1 and 0 otherwise, and Ot = Ot−1

occurs three times, for t = 1/7/1994, t = 13/10/1995 and t = 25/7/1997.

ow
t log Ow

t

Xt Closing value of the main index of the Norwegian Stock Exchange (TOTX) in
the last trading day of week t. The source of the daily untransformed series is
EcoWin series ew:nor15565.

xt log Xt

Xw
t {[log(Xt/Xt−1)]× 100}2. Xt = Xt−1 does not occur for this series.

xw
t log Xw

t

Ut Closing value of the composite index of the New York Stock Exchange (the
NYSE index) in the last trading day of week t. The source of the daily un-
transformed series is EcoWin series ew:usa15540.

Uw
t {[log(Ut/Ut−1)]× 100}2. Ut = Ut−1 does not occur for this series.

uw
t log Uw

t

IRemu
t Average of closing values of the 3-month market interest rates of the European

Monetary Union (EMU) countries in the last trading day of week t. The source
of the daily untransformed series is EcoWin series ew:emu36103.

iremu
t (∆IRemu

t )2.

Ft The Norwegian central bank’s main policy interest-rate, the socalled ”folio”,
at the end of the last trading day of week t. The source of the untransformed
daily series is Norges Bank’s webpages.

fa
t |∆Ft|× Ia, where Ia is an indicator function equal to 1 in the period 1 January

1999 - Friday 30 March 2001 and 0 elsewhere

f b
t |∆Ft| × Ib, where Ib is an indicator function equal to 1 after Friday 30 March

2001 and 0 before
idt Russian moratorium impulse dummy, equal to 1 in the week containing Friday

28 August 1998 and 0 elsewhere.

sdt Step dummy, equal to 0 before 1997 and 1 thereafter.

iat Skewness term, equal to 1 when rt > 0 and 0 otherwise.
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hlt l = 1, 2, . . . , 8. Holiday variables with values equal to the number of official
Norwegian holidays that fall on weekdays. For example, if 1 January falls on a
Saturday then h1t is equal to 0, whereas if 1 January falls on a Monday, then
h1t is equal to 1. h2t is associated with Maundy Thursday and Good Friday
and thus always equal to 2, h3t with Easter Monday and thus always equal
to 1, h4t with Labour Day (1 May), h5t with the Norwegian national day (17
May), h6t with Ascension Day, h7t with Whit Monday and h8t with Christmas
(Christmas Day and Boxing Day). Source: Http://www.timeanddate.com.
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Table 1: GUM and GETS regressions of log of
weekly NOK/EUR volatility on both certain
and uncertain information
Parameter (11) (12)

Est. Pval. Est. Pval.
b0 -3.304 0.03 -3.035 0.00
b1 0.013 0.76
b2 0.070 0.07 0.079 0.00
b3 0.093 0.03
b4 -0.001 0.99
b5 0.063 0.76
b6 1.024 0.00 1.066 0.00
b7 0.067 0.13
b8 0.021 0.65
b9 0.125 0.01 0.119 0.00
b10 0.113 0.01
b11 -0.256 0.83
b12 3.775 0.00 3.751 0.00
b13 4.797 0.02 4.819 0.00
b14 1.130 0.00 1.238 0.00
b15 -0.127 0.52
b16 -0.025 0.85
b17 -1.207 0.16
b18 -0.141 0.62
b19 0.330 0.64
b20 -0.710 0.22
b21 0.195 0.71
b22 0.653 0.25
b23 0.019 0.98
b24 -0.036 0.96

R2 0.21 0.20
AR1−10 5.11 0.88 3.07 0.98
ARCH1−10 7.00 0.73 8.71 0.56
Het. 39.72 0.44 11.46 0.41
Hetero. 179.98 0.92 14.60 0.95
Obs. 568 569

Note: See table 2.
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Table 2: GUM and GETS Regressions of log
of weekly NOK/EUR volatility on certain in-
formation only

Parameter (15) (16)
Est. Pval. Est. Pval.

b0 -2.918 0.00 -2.946 0.00
b1 0.030 0.48
b2 0.077 0.04 0.088 0.00
b3 0.093 0.03
b4 -0.020 0.64
b13 1.448 0.00 1.428 0.00
b14 -0.009 0.96
b16 -0.024 0.86
b17 -0.820 0.30
b18 -0.500 0.07 -0.478 0.08
b19 0.435 0.59
b20 -0.751 0.17
b21 0.170 0.72
b22 0.346 0.55
b23 -0.446 0.56
b24 -0.625 0.37

R2 0.14 0.13
AR1−10 9.14 0.52 4.22 0.94
ARCH1−10 8.59 0.57 9.25 0.51
Het. 26.96 0.17 6.39 0.17
Hetero. 90.65 0.66 7.43 0.39
Obs. 568 569

Note: Computations are in EViews 5.1 with OLS
estimation. All specifications use heteroscedastic-
ity consistent standard errors of the White (1980)
type, Pval stands for p-value and corresponds to a
two-sided test with zero as null, AR1−10 is the χ2

version of the Lagrange-multiplier test for serially
correlated residuals up to lag 10, ARCH1−10 is
the χ2 version of the Lagrange-multiplier test
for serially correlated squared residuals up to lag
10, and Het. and Hetero. are the χ2 versions of
White’s (1980) heteroscedasticity tests without
and with cross products, respectively.
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Table 3: Regressions of log of weekly volatility
on log of lagged realised volatility and on log
of lagged range volatility

Parameter (17) (18)
Est. Pval. Est. Pval.

b0 -2.774 0.00 -3.018 0.00
b1 0.304 0.00 0.348 0.00
b14 1.158 0.00 1.057 0.00
b18 -0.510 0.07 -0.527 0.06

R2 0.13 0.13
AR1−10 9.35 0.50 10.06 0.44
ARCH1−10 11.20 0.34 10.46 0.40
Het. 5.91 0.21 3.21 0.52
Hetero. 7.64 0.37 4.51 0.72
Obs. 571 572

Note: See table 2.
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Table 4: ARCH models of rt with certain infor-
mation.
Parameter (19) (20)

Est. Pval. Est. Pval.
b0 -0.017 0.42 -0.007 0.77
b1 -0.055 0.33 -0.067 0.21

ω 0.009 0.07 -0.209 0.00
α 0.129 0.01 0.285 0.00
β 0.877 0.00 0.983 0.00
γ0 0.012 0.86
γ1 -0.043 0.08 -0.171 0.35

LogL. -658.74 -571.98
AR1−10 9.64 0.47 14.62 0.15
ARCH1−10 4.80 0.90 5.75 0.84
JB 664.93 0.00 417.11 0.00
Obs. 571 571

Note: Computations are in EViews 5.1 with
robust standard errors of the Bollerslev and
Wooldridge (1992) type. Pval stands for p-value
and corresponds to a two-sided test with zero
as null, LogL stands for log-likelihood, AR1−10

is the Ljung and Box (1979) test for serial cor-
relation in the standardised residuals up to lag
10, ARCH1−10 is the Ljung and Box (1979) test
for serial correlation in the squared standardised
residuals up to lag 10, and JB is the Jarque
and Bera (1980) test for non-normality in the
standardised residuals.
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Table 5: Historical, RiskMetrics and EWMA models of rt.

Parameter (21) (22) (23)
Est. Pval. Est. Pval. Est. Pval.

ω 0.681 0.00
α 0.060 0.159 0.01
β 0.940 0.877 0.00

LogL. -320.29 -583.63
AR1−10 8.94 0.54 31.49 0.00 12.88 0.23
ARCH1−10 9.49 0.49 46.38 0.00 5.32 0.72
JB 87.85 0.00 145K 0.00 565.09 0.00
Obs. 261 572 572

Note: Computations are in G@RCH 4.0 and EViews 5.1 with
robust standard errors of the Bollerslev and Wooldridge (1992)
type. Otherwise see table 4.

Table 6: Plain ARCH models of rt.

Parameter (24) (25)
Est. Pval. Est. Pval.

ω 0.006 0.14 -0.223 0.00
α 0.146 0.01 0.292 0.00
β 0.867 0.00 0.981 0.00
γ 0.017 0.79

LogL. -580.96 -576.75
AR1−10 11.43 0.32 12.27 0.27
ARCH1−10 4.97 0.89 6.45 0.78
JB 635.55 0.00 377.88 0.00
Obs. 572 572

Note: See table 4.
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Table 7: MAE forecast statistics
1-step 2-step 3-step 6-step 12-step 18-step

GETS EMOV1 0.74 0.75 0.65 0.62 0.66 0.74
GETS EMOV2 0.83 0.83 0.72 0.67 0.64 0.66
GETS EMOV3 0.85 0.85 0.73 0.70 0.66 0.68

GETS EMOV4 0.90 0.90 0.77 0.74 0.70 0.73
Realised EMOV5 0.90 0.78 0.63 0.62 0.58 0.61
Range EMOV6 0.96 0.74 0.60 0.60 0.56 0.59
GARCH(1,1)+ 0.98 0.91 0.72 0.65 0.56 0.62
EGARCH(1,1)+ 1.02 1.96 1.48 0.85 0.55 0.65

Historical 0.81 0.82 0.70 0.69 0.65 0.67
RiskMetrics 0.92 1.00 0.79 0.77 0.64 0.58
EWMA 1.06 1.24 0.97 0.83 0.63 0.61
GARCH(1,1) 0.99 1.16 0.89 0.78 0.61 0.61
EGARCH(1,1) 1.00 0.88 0.75 0.66 0.59 0.67

Note: Bold value indicates minimum in its column.

Table 8: MSE forecast statistics
1-step 2-step 3-step 6-step 12-step 18-step

GETS EMOV1 1.61 1.64 1.07 1.07 1.25 1.40
GETS EMOV2 2.07 2.10 1.21 1.20 1.02 1.12
GETS EMOV3 2.06 2.09 1.21 1.19 1.02 1.12

GETS EMOV4 2.04 2.06 1.22 1.19 1.03 1.12
Realised EMOV5 2.14 2.23 1.24 1.25 1.06 1.17
Range EMOV6 2.25 2.37 1.39 1.41 1.21 1.34
GARCH(1,1)+ 2.31 2.23 1.25 1.24 1.20 1.42
EGARCH(1,1)+ 2.29 4.82 2.81 1.35 1.20 1.50

Historical 2.13 2.16 1.20 1.19 1.02 1.12
RiskMetrics 2.18 2.66 1.37 1.47 1.17 1.21
EWMA 2.44 4.76 2.54 2.05 1.31 1.39
GARCH(1,1) 2.33 4.25 2.18 1.85 1.28 1.39
EGARCH(1,1) 2.29 2.19 1.48 1.43 1.33 1.56

Note: Bold value indicates minimum in its column.
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Table 9: Mincer-Zarnowitz regressions of r2
t on a

constant and 1-step out-of-sample forecasts (K =
61)

a b R2 Pval.
GETS EMOV1 -0.17 1.36 0.26 0.79

[0.63] [0.02]

GETS EMOV2 -0.32 1.65 0.03 0.76
[0.78] [0.36]

GETS EMOV3 -0.32 1.54 0.03 0.90
[0.78] [0.36]

GETS EMOV4 -0.20 1.20 0.03 0.91
[0.82] [0.31]

Realised EMOV5 0.75 0.10 0.00 0.64
[0.37] [0.91]

Range EMOV6 1.42 -0.66 0.01 0.00
[0.03] [0.26]

GARCH(1,1)+ 0.92 -0.08 0.00 0.00
[0.01] [0.80]

EGARCH(1,1)+ 0.93 -0.09 0.00 0.02
[0.02] [0.83]

Historical - 1.24 0.00 0.39
[0.00]

RiskMetrics 0.93 -0.10 0.00 0.13
[0.08] [0.86]

EWMA 0.95 -0.10 0.00 0.00
[0.01] [0.70]

GARCH(1,1) 0.96 -0.12 0.00 0.00
[0.01] [0.69]

EGARCH(1,1) 0.98 -0.14 0.00 0.01
[0.01] [0.71]

Note: Numbers in square brackets denote the p-values
of a two-sided coefficient hypothesis test with zero as
the null hypothesis, and the last column denotes the
p-value of a χ2(2) Wald test of the joint restriction
a = 0, b = 1. Otherwise see table 2.
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Figure 1: Bid NOK/EUR at 21:50 GMT in the last trading day of the week (denoted St in
the text) in the upper graph, log-return rt in the middle graph and log of r2

t in the bottom
graph from 8 January 1993 to 25 February 2005.
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Figure 2: Recursive analysis of GUM EMOV1. Computations are in PcGive 10.4 with
OLS and initialisation at observation number 100.
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Figure 3: Recursive analysis of GETS EMOV1. Computations are in PcGive 10.4 with
OLS and initialisation at observation number 100.
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Figure 4: Recursive analysis of GUM EMOV4. Computations are in PcGive 10.4 with
OLS and initialisation at observation number 100.
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Figure 5: Recursive analysis of GETS EMOV4. Computations are in PcGive 10.4 with
OLS and initialisation at observation number 100.
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Figure 6: Out-of-sample trajectories of r2
t , GETS EMOV1 and Historical. Vertical lines

indicate weeks in which Norges Bank changed their main policy interest rate.
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