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Abstract 
The paper examines the Porter and induced-innovation hypotheses in a firm model where: (i) the firm 
has a vintage capital technology with two complementary factors, energy and capital ; (ii) scrapping 
is endogenous; (iii) technological progress is energy-saving and endogenous through purposive R&D 
investment; (iv) the innovation rate increases with R&D investment and decreases with complexity ; 
(v) the firm is subject to emission quotas which put an upper bound on its energy consumption at any 
date; (vi) energy and capital prices are exogenous. Balanced growth paths are first characterized, and a 
comparative static analysis is performed to study a kind of long-term Porter and induced-innovation 
hypotheses. In particular, it is shown that tighter emission quotas do not prevent firms to grow in the 
long-run, thanks to endogenous innovation, but they have an inverse effect on the growth rate of 
profits. Some short-term dynamics are also produced, particularly, to analyze the role of initial 
conditions and energy prices in optimal firm behavior subject to environmental regulation. Among 
numerous results, we show that (i) firms which are historically “small” polluters find it optimal to 
massively pollute in the short run: during the transition, new and clean machines will co-exist with old 
and dirty machines in the productive sectors, implying an unambiguously dirty transition; (ii) higher 
energy prices induce a shorter lifetime for capital goods but they depress investment in both new 
capital and R&D, featuring a kind of reverse Hicksian mechanism.  
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1. Introduction 
The arguments for environmental regulation are usually based on what has come to be 

known as the Porter hypothesis. Porter (1991) and Porter and van der Linde (1995) 

argued that at least in some sectors, a carefully designed environmental regulation as a 

key feature of industrial policy can increase firm competitiveness by encouraging 

innovation in environmental technologies. So far, this hypothesis has been the target of 

numerous studies in several disciplines, including economics, with highly diverging 

conclusions. In particular, many case studies have been performed, reaching different 

conclusions depending on firms, industries, countries. An excellent compilation of such 

case studies can be found in Parto and Herbert-Copley (2007). 

A similar hypothesis, popularized by Hicks (1932) and widely applied to environmental 

economics, especially in its energy part (see Newell, Jaffee and Stavins, 1999, for a 

seminal contribution), is the so-called induced-innovation hypothesis. According to 

Hicks, the change of relative prices of production inputs stimulates innovation, an 

innovation of a particular type, directed to save the production factor that becomes 

relatively expensive. In the context of the energy consumption debate, this hypothesis 

simply stipulates that in periods of rapidly rising energy prices (relative to other inputs), 

economic agents will find it more profitable to develop alternative technologies, that is, 

energy-saving technologies. Just like the Porter hypothesis, the induced-innovation 

hypothesis in its energy-saving version has been intensively studied in recent years, with 

again highly diverging outcomes, depending mainly on the aggregation levels considered 

in the studies. In their well-known work, Newell, Jaffee and Stavins (1999) concluded 

that a large portion of efficiency improvements in US manufacturing seems to be 

autonomous, and therefore not driven by the Hicksian mechanism outlined above.  

 

Be it stimulated by tightening environmental regulation, caused by the gradual exhaustion 

of fossil resources, dictated by international agreements like the Kyoto Protocol or by 

rapidly increasing energy-prices, the role of innovation at the firm level is the key in the 

two hypotheses described above. It explains why these hypotheses are actually shaping a 
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substantial part of the environmental literature in economics. If the firms do effectively 

respond to the latter constraints and circumstances by doing more R&D, then the 

“environmental problem”, understood as the burden involved by environmental 

constraints on economic development, can be partially solved. This refers to the so-called 

“Win-Win” outcome mentioned by Porter: innovative firms would not suffer any 

productivity slump while contributing decisively to a clean environmental and sustainable 

development. 

 

This paper is devoted to understanding how and under which conditions, if any, firms 

would engage in R&D investments under environmental constraints and/or rising energy 

prices. In contrast to numerous papers written in this area (notably in the macroeconomic 

literature), which typical consider the R&D conducted outside the firms by specialized 

entities (see, for example, Hart, 2004), we start with the key assumption that firms, 

confronted with environmental constraints, may decide to individually engage in R&D 

activities. We do consider such an extension as essential to get through the puzzle, and 

there are several reasons for this approach to be preferred: 

i) First of all, the role of “production” firms in the development of clean 

technologies cannot be under-scored because most environmental problems are 

firm or industry specific and cannot be simply solved by importing technologies. 

We shall develop this idea in the next section when describing the concrete case 

of the chlor-alkali industry in Japan (Yarime, 2007). 

ii) Second, it has been repeatedly established that at least in the case of large 

corporations (see Carraro and Siniscalco, 1994), firms tend to respond to 

environmental policy measures through innovations, not by switching inputs or 

reducing output. 

iii) Last but not least, as mentioned by several authors (among them, Carraro and 

Siniscalco, quoted just above), very high taxes are needed to bring down CO2 

emissions in the absence of innovations. This justifies the approach taken in this 

paper: understanding how the firms (for example, subject to pollution quotas) 

engage individually in R&D is indeed a key task. 
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Throughout this paper, we shall consider vintage capital technologies. Capital goods 

produced at different dates embody different technologies, the youngest vintages are the 

most energy-saving, and, therefore, the least polluting. Beside realism, working with 

vintage capital production functions allows to capture some key elements of the problem 

under consideration, which would be lost under the typical assumption of homogenous 

capital. For instance, facing an emission tax, firms are tempted to downsize. However, in 

a typical framework where the firm also chooses the optimal age structure of capital, 

which is the main additional control variable in vintage capital models, downsizing 

entails modernization: the older and, thus, the dirtier machines and technologies are then 

removed. For productivity analysts, this is good news: contrary to the typical framework 

with homogenous capital, we have a clear productivity-enhancing effect of emission 

taxes in such a framework, thus giving a chance to the Porter ``Win-Win´´ outcome to 

arise, even in the absence of firms’ innovative activities.  

 

Indeed, whether such an indirect modernization effect can compensate the so-called 

profit-emission effect according to which profits decline under emission taxes sounds as a 

highly intriguing question. Very few papers have tried to deal with this issue so far, 

manly due to the sophisticated mathematical structure of vintage capital models. Two 

valuable exceptions should be mentioned here. Xepapadeas and de Zeeuw (1999) 

provided the first inspection into this problem. They concluded that the costs of 

environmental regulation were mitigated if firms responded to emission taxes by 

scrapping the older and dirtier technologies. Therefore, the indirect modernization effect 

offsets a substantial part of the negative profit-emission negative effect, but not totally. 

Feichtinger, Hartl, Kort and Veliov (2005) introduced a better specification of embodied 

technological progress underlying the considered vintage capital structure. They 

concluded that if learning costs are incorporated into the analysis (that’s running new 

machines at their full productivity potential takes time), then the magnitude of the 

modernization effect is strongly reduced, and environmental regulation has a markedly 

negative effect on industry profits. 

 

Our paper extends the two previous papers, where the pace of technological progress is 

kept exogenous, and endogenizes R&D decisions. We have already justified largely why 
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this endogenization is necessary for a proper appraisal of the ``environmental problem” 

as defined above. We shall refine our arguments in this respect in the next factual section.  

 

We characterize optimal firm behavior both asymptotically and in the long-run, and we 

extract several new results, thanks to the endogenous nature of technological progress. In 

particular, we outline here three crucial results: 

i) In the long-run, tighter emission quotas coupled with liquidity constraints do not 

prevent firms from growing in the long-run, thanks to endogenous innovation, and 

this is good news. However, these constraints have an inverse effect on the 

growth rate of profits. In other terms, while R&D is crucial for firms to keep on 

growing despite environmental and financial constraints, we get the natural 

outcome (at least, at the firm level) that no Porter-hypothesis is expected to arise 

in the long-run, namely, strengthening environmental regulation does not improve 

the situation of the firms in the long-run, under the conditions of the model (price-

taking liquidity-constrained firms).  

ii) In the short-run, the results are even clearer. For example, we establish that firms 

which are historically “small” polluters find it optimal to massively pollute in the 

short run: during the transition, new and clean machines will co-exist with old and 

dirty machines in the productive sectors, implying an unambiguously dirty 

transition. Therefore, the model provides micro-foundations for an essential part 

of the so-called Environmental Kuznets Curve. 

iii) Last but not least, we show that under some specific but reasonable 

circumstances, higher energy prices induce shorter lifetime for capital goods but 

they depress investment in both new capital and R&D, featuring a kind of reverse 

Hicksian mechanism. 

 

The paper is organized as follows. Section 2 is devoted to describing some salient 

characteristics of the ”environmental regulation” taken at the concrete firm level, 

borrowing from the writing of some technologists. Section 3 formally describes our firm 

optimization problem and outlines some of its peculiarities. Section 4 derives the 

optimality conditions and interprets them. Section 5 is concerned with the long-term 
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optimal behavior of firms and Section 6 presents some implications for optimal short-

term dynamics. Section 7 concludes. 

 

2. Insight from technologists 

We start with a short description of the case of the chlor-alkali Japanese industry, which 

is in our view an excellent illustration of firm’s behavior under environmental regulation 

in an energy-saving context. We then switch to other salient features of the problem, as 

depicted by several technologists. 

 

2.1. An illustration: the chlor-alkali industry in Japan 

This sub-section is entirely based on Yarime (2007). The chlor-alkali industry  produces 

chlorine and caustic soda through electrolysis. Because it involves electrolysis, it is one 

of the major energy consumers in the Japanese industry.5 In this context, a major concern 

of the firms operating in this industry is to develop innovative techniques in order to 

reduce energy consumption. Of course, the R&D activities conducted to this end were not 

all dictated by environmental constraints or rising energy prices. This was certainly not 

the case in the 60s for example. On the other hand, the technological context of such an 

industry is highly interesting for the study of energy-saving innovation processes. 

 

To this context, one has to add a sensitive environmental issue, linked to the electrolysis 

technique used, which has motivated an increasingly severe environmental regulation 

from the late 60s. Indeed, at that time, the electrolytic process employed was a mercury 

process, thus based on a highly toxic substance. It was relatively quickly established that 

the mercury released by the chlor-alkali industry to the neighboring seas was the cause of 

the so-called Minimata disease, which caused about 700 victims in that time.6 The 

Japanese authorities started ruling against chlor-alkali industry from the mid-60s, 

stipulating among others quantitative limits to control the levels of mercury released to 

                                                 
5 Yarime (2007) reports that about 3% of total industry electricity consumption in Japan can be attributed to 
the chlor-alkali industry in 1996, which also accounts for about one-fifth of total chemical industry in this 
year.  
6 Minimata disease refers to Minimata Bay in the Southern part of Japan, where the first cases of mercury 
poisoning were discovered. 
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environment. In 1974, the Japanese authorities took a step further against the industry and 

require the conversion of as many mercury plants as possible to the unique alternative at 

that time, the made-in-USA diaphragm electrolytic process, by the end of 1975.7  

 

Now, comes the most interesting part of the story. Because the alternative diaphragm 

process was clearly disadvantageous in terms of energy consumption compared to the 

mercury process, and given the period of rapidly increasing energy prices (recall the anti-

mercury process regulation was taken during the first oil crisis), it quickly appeared to 

both producers and authorities that there was an urgent need to develop an alternative 

electrolytic process, less energy-consuming than the diaphragm process and less polluting 

than the mercury process.8 This motivated a massive R&D effort in developing a third 

electrolytic process, the ion exchange membrane process, and the suspension by May 

1977 of the conversion program (to the diaphragm process technology). As mentioned by 

Yarime (2007), although the idea of using ion exchange membranes had been known by 

many years at that time, a significant R&D effort was needed to develop ion exchange 

membranes adapted to the chlor-alkali industry, and the number of patent applications by 

Japanese firms increased markedly after the mid-70s and until the early 80s in this field. 

In 1998, about 90% of the Japanese chlor-alkali plants used the ion exchange membrane 

process.  

 

2.2. Other features 

Several other insights can be gained from the technology literature concerning the 

innovative processes in the industry subject to environmental constraints. We shall 

mention two of them, which will be explicitly considered in our theoretical set-up. 

i) The role of financial constraints: This type of constraints is, of course, crucial 

as long as one is concerned with technological renovation, especially when it is 

imposed by law. If the firms do not face any type of financial constraints, then 

they could finance R&D expenditures with no limit, which is certainly unrealistic. 

                                                 
7 Interestingly, as mentioned by Yarime (2007), the final decision to rule out the mercury process was taken 
when the process was accounting for 95% of total capacity, which of course created heavy tensions 
between the producers and the Japanese authorities. See more in Yarime’s contribution. 
8 Yarime also mentioned some problems related to the poor quality of the caustic soda produced by the 
diaphragm technique. This point goes beyond our framework but it is certainly highly intriguing.  
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In the case of the Japanese chlor-alkali industry described above, financial 

constraints are even more crucial since the whole industry was required to switch 

technology in a limited amount of time (see the very interesting description of the 

debate between the chlor-alkali industry and the Japanese authorities on the 

financing of the required R&D programs in Yarime’s paper). 

ii) The role of technological complexity: It is very well known that the success of 

R&D programs depends, among others, on the complexity and sophistication of 

the technologies to be up-graded. Complexity is therefore a fundamental 

ingredient of early technology adoption theories à la Nelson and Phelps (1964) 

and of more recent standard growth theory (see for example, Barro and Sala-i-

Martin, 1995, chapter 7, or Segerstrom, 2000). Needless to say, the problem of 

technological sophistication is also a sensitive barrier to technological progress 

because of limited amount of available skills and hi-tech capital (see Chudnowsky 

and Lopez, 2007, pp 88-121, for the Argentinian case).  

We shall take these aspects into account in the firm generic problem addressed hereafter. 

 

3. The firm problem 
We shall consider the problem of a firm seeking to maximize the net profit that takes into 

account the energy consumption E(t), the investment R(t) to R&D, and the investment 

μ(t) into new capital:  

                                    (1) 
,a,R

rt dtttktRtEtptQeI
μ

μ max)]()()()()()([
0

⎯→⎯−−−= ∫
∞

−

where k(t) is the given unit capital price (per capacity unit), p(t) is the given energy price, 

e-rt is the discounting factor.  Here Q(t) is the total product output at t,    

                                                                                                       (2) ,)()(
)(

ττμ dtQ
t

ta
∫=

                 c(t) = Q(t) − p(t)E(t) − R(t) − k(t)μ(t)                                                          (3) 

is the net profit or cash flow. We therefore postulate a Leontief vintage capital production 

function as in Boucekkine, Germain and Licandro (1997, 1999) or Hritonenko and 

Yatsenko (1996, 2005). In equation (2), a(t) measures the vintage index of the oldest 

machine still in use at time t, or in other words, t-a(t) measures the scrapping time at date 
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t. The whole complexity of the optimization problem considered in this paper comes from 

the fact that a is a control variable, which is quite unusual in economic theory. We shall 

come back to this point in detail later. For now, let us notice that we do not assume any 

output-augmenting (embodied or disembodied) technological progress: whatever the 

vintage τ  is, all machines produce one unit of output. In our framework, the 

technological progress is exclusively energy-saving, which is the key component of the 

debate around technological progress and environmental sustainability.  

In contrast to the related literature (notably to Feichtinger et al., 2005, 2006 and 2007), 

we assume that firms invest in R&D. It reflects the fact that the environmental problems 

(here linked to energy consumption and subsequent CO2 emissions) are firm-specific, so, 

the firms cannot simply import preexisting cleaner technologies. And even if a relevant 

technology could be imported (like the diaphragm technique in our Japanese industry 

case), a costly adoption work is needed. Let us call β(τ) the level of the energy-saving 

technological progress at date t. We postulate that this level evolves endogenously 

according to:  

                            ,0       ,
)(
))((

)(
)(

>= dRf'
d τβ

τ
τβ
τβ                                                             (4) 

where f is increasing and concave: df/dR>0, d2f/dR2<0. Equation (4) deserves a few 

comments. It basically stipulates that the rate of energy-saving technical progress is an 

increasing (and concave) function of the R&D effort and a decreasing function of its 

level. The latter specification is designed to reflect the negative impact of technological 

complexity on R&D success. The parameter d measures the extent to which complexity 

impacts the rate of technological progress (just like in Segerstrom, 2000, for example). It 

will play an important role hereafter, which is consistent with the available evidence, 

mentioned in Section 2, on the role of technological complexity in the adoption of (clean) 

technologies. 

We also assume that the energy-saving technological progress is fully embodied in new 

capital goods, which implies, keeping the Leontief structure outlined above, that total 

energy consumption is given by  

                .
)(
)()(

)(

τ
τβ
τμ dtE

t

ta
∫=                                                                           (5)                   
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We now introduce the environmental constraint to the firm, through a simple emission 

quota constraint:  

                E(t) ≤ Emax(t),                                                                                          (6)                        

where the regulation function Emax(t) is given. Implicit in our setting, the consumption of 

of energy is the sole source of pollution through CO2 emissions. Restricting energy 

consumption is therefore a direct way to limit pollution.  The firms are also subject to a 

second type of constraint, financial constraint, which we also model in a straightforward 

way by imposing the positivity of cash-flows, c(t), at any date t, as we will see later. 

 

Let us now summarize the optimal control problem to tackle.    

The unknown functions are: 

♦ the investment μ(t), μ(t)≥0, into new capital (measured in the capacity units) 

♦ the R&D investment R(t), R(t)≥0, and the technology β(t),   

♦ the capital scrapping time t-a(t), a′(t) ≥ 0,  a(t) < t, 

♦ the output Q(t), cash-flow c(t),  and energy consumption E(t),  t∈[0,∞). 

 

The constraints are given by the environmental constraint (6), plus the positivity, 

liquidity constraint and other regularity conditions: 

        R(t) ≥ 0,      c(t) ≥ 0,      μ (t) ≥ 0,            a′(t) ≥ 0,     a(t) < t,                      (7)  

The condition a′(t)≥0 is a standard constraint in vintage capital models implying that 

scrapped machines cannot be reused. We shall also specify the initial conditions as 

follows: 

                    a(0) = a0<0,   β(a0)=β0,   μ(τ) ≡ μ 0(τ),  R(τ)≡R0(τ),  τ∈[a0,0].               (8) 

 

The optimal control problem (1)-(8) has several mathematical peculiarities (compared to 

the typical optimal control problem in economics), which makes it quite hard to tackle. 

We come back to the technical part in the next Section 4 where the necessary optimality 

conditions are developed. Before, let us stress the following economic aspects: 

i) Technological progress modelling 1: Our formalization simplifies to a 

manageable mathematical complexity the chlor-alkali industry example described 

in Section 2. In particular, while the incentives to develop alternative technologies 
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were driven by distinct purely ecological motivations (get rid of the mercury-

based electrolytic process) and energy-saving reasons, the two motivations are 

merged in our modelling: the firm aims at developing energy-saving technologies 

to lower its energy expenditures and to cope with environmental regulation. On 

the other hand, while the technological menus seem to be limited to three in the 

chlor-industry case (mercury, diaphragm and ion exchange membrane processes), 

the R&D effort was actually continuous in time, resulting in a non-lumpy 

trajectory of patents as documented in Yarime (2007). Hence, our continuous time 

setting is still adequate. 

ii) Technological progress modelling 2: In our modelling, technological 

improvements affect only the new capital goods. This is crystal clear in equation 

(5) giving total energy consumption. Of course, this need not be the case in 

general. A part of energy-saving innovations is probably disembodied, and a more 

general formulation of the problem taking into account this aspect would, in 

particular, replace the ODE on β(t), by a PDE on β(τ,t). This extension is out of 

the scope of this paper. As one can guess, our optimal control problem (1)-(8) is 

already extremely tricky. Moving to PDEs specifications of technological 

progress would oblige us to resort massively to numerical simulation (as in 

Feichtinger et al., 2006), which we want precisely to avoid. On the other hand, 

part of technological innovations in the workplace are of course imported, but 

nevertheless hardly at zero cost. Therefore, they can be ``imported’’ in the 

technological variable R(t) without any decisive loss of generality. 

iii) Technological progress modelling 3: As in Hart (2004), we can extend the 

model by distinguishing between R&D devoted to increase output, and R&D 

environmental-friendly. This might probably change some of the results of the 

paper. Given the induced algebraic cost, we have decided to restrict our attention 

to energy-saving technological progress, which also happens to be the 

environmental-friendly innovations in our set-up. 

iv) Environmental regulation: In this paper, we focus on emission quotas, as this 

seems to be one of the salient characteristics of environmental regulation both at 

the national and transnational levels. Other policy instruments could have been 



 11

 

4. Extremum conditions 

We now move the derivation of the optimality conditions. For mathematical convenience, 

we change the unknown (decision) variable μ(t) to 

                                                      m(t) = μ(t)/β(t),                                                   (9) 

which is also the investment into new capital (but measured in the energy consumption 

units rather than in capacity units). In the variables R and m, the optimization problem 

(1)-(8) becomes  

                         (10)      max)]()()()()()()([
,

0
m,aR

rt dttmttktRtEtptQeI ⎯→⎯−−−= ∫
∞

− β

                          c(t) = Q(t) − p(t)E(t) − R(t) − k(t)β(t)m(t),                                     (11) 

                                                                                    (12)         ,)()()(
)(

τττβ dmtQ
t

ta
∫=

              E(t) ≤ Emax(t),                                         (13)                        ,)()(
)(

ττ dmtE
t

ta
∫=

              R(t)≥0,    m(t)≥0,     c(t) ≥ 0,      a′(t) ≥ 0,     a(t) < t,                        (14) 

              a(0) = a0<0,   β(a0)=β0,   m(τ) ≡ m0(τ),  R(τ)≡R0(τ),  τ∈[a0, 0].               (15) 

The substitution (9) removes β(t) from equation (5) and adds it to the last term in the 

functional (10). Equation (4) for the unknown β(t) remains the same. In the case d>0, the 

solution of (4) has the form: 

                                                       (16)         ,))(()(
/1

0

d
dBdvvRfd ⎟

⎠
⎞

⎜
⎝
⎛ +∫=

τ
τβ

where the constant B= is uniquely determined by the 

initial conditions (8) or (15). From now on, we work with the following explicit 

specification for endogenous technological progress:  

d
d

a
dvvRfd

/1

0

0

0
0

))(()0( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∫= ββ

                                     f(R)=bRn,    0<n<1,    b>0.                                                     (17) 
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By (4), this implies that the elasticity of the rate of technological progress with respect to 

R&D expenditures is constant and equal to n. The larger is n, the bigger is the efficiency 

of investing in R&D. 

 

The optimization problem (OP) (10)-(17) includes seven unknown functions R, β, m, a, 

Q, c, and E connected by four equalities (11), (12), (13), and (16). Following Hritonenko 

and Yatsenko (1996), Yatsenko (2004), and Yatsenko and Hritonenko (2005), we will 

choose R, m, and a′ as the independent variables (or controls) of the OP and consider the 

rest of the unknown functions β, m, a, Q, c, and E as the dependent (state) variables.  

The majority of optimization models of mathematical economics are treated using FOC 

(first-order conditions) for interior trajectories only. In contrast, the nature of the OP 

(10)-(17) requires taking into account the inequalities E(t)≤Emax(t), R(t)≥0, m(t)≥0, 

a′(t)≥0, a(t)<t, and c(t)≥0 on unknown variables in the constraints (13) and (14). These 

inequalities have an essential impact on extremum conditions and optimal dynamics and 

are treated differently in the below analysis. The inequalities R≥0 and m≥0 are the 

standard constraints on control variables, which are common in the optimization theory. 

The non-standard constraints a′(t)≥0 and a(t)<t are handled following the technique 

developed by Hritonenko and Yatsenko in several papers already cited. The constraint 

E≤Emax is considered in two cases of Theorem 1 below. Finally, the constraint c≥0 is the 

most inconvenient mathematically and is checked a posteriori (see Remark 2 below).  

 

Let the given functions p, k, and Emax be continuously differentiable, and  m0 and R0 be 

continuous. To keep the OP statement correct, the smoothness of the unknown variables 

should be consistent. We will assume that the decision variables R and m (and a′ when 

necessary) are measurable almost everywhere (a.e.) on [0,∞). Then, the unknown state 

variables a, c, Q, and E in (10)-(15) are a.e. continuous on [0,∞), as established in 

Hritonenko and Yatsenko (2006). We also assume a priori that the improper integral in 

(10) converges (it will be true in all subsequent Theorems 2-4).  

The necessary condition for an extremum (NCE) in the OP (10)-(17) is given by the 

following statement  
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Theorem 1. Let (R*(t), m*(t), a*(t), β*(t), Q*(t), c*(t), E*(t),), t∈[0,∞), be a solution of 

the OP (10)-(17).  

(A) If E*(t)=Emax(t) and c*(t)>0 at t∈Δ⊂[0,∞), and Emax′(t)≤0, then  

                         IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                  (18) 

                         Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,    t∈Δ,                     (19) 

where  

    ,)()()()()('
)(

11
1

rtr
rar

d

t

n
R edke

r
eemtbnRtI −−

−−
−

∞
− −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

−

∫ ττττβ τ
ττ

      (20) 

    ,                                            (21) [ ] )()())(()()('
)(1

tktedatetI rt
ta

t

r
m βττββτ −− −−= ∫

−

the state variable a(t) is determined from (13), a−1(t) is the inverse function of a(t), and       

            
ddn BdRdb
1

0
)()( ⎟

⎠
⎞

⎜
⎝
⎛ +∫=

τ
ξξτβ .                                                      (22) 

(B) If E*(t)<Emax(t) and c*(t)>0 at t∈Δ, then  

                  IR'(t)≤0 at  R*(t)=0,         IR'(t)=0  at  R*(t)>0,                                          

                  Im'(t)≤0 at  m*(t)=0,         Im'(t)=0  at  m*(t)>0,                                    (23) 

                 Ia’'(t)≤0  at  da*(t)/dt=0,      Ia’'(t)=0  at  da*(t)/dt>0,    t∈Δ,                  

where  

     ,                                           (24) [ ] )()()()()('
)(1

tktedptetI rtr
ta

t
m βττβτ −− −−= ∫

−

     ,                     (25) τττβττ damapetI r

t
a ))((]))(()([ )(' ' −= −

∞

∫

IR'(t) is as in (20), and β(t) is as in (22).   

 

The proof is very long and technical and we report all the details in the Appendix. The 

expressions (20), (21), (24), and (25) are the Freshet derivatives of the functional I in 

variables R, m, and a’. The derivative Im’(t) has different forms (21) and (24) depending 
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on whether the restriction (13) is active or inactive. Before giving the economic 

interpretation of the optimality conditions, some technical comments are in order.  

 

Remark 1. If (13) is active (Case A), then the state variable a is determined from 

m(a(t))a′(t)=m(t)− Emax′(t) and the state restriction a′≥0 on the variable a in (14) is satisfied if 

Emax′(t)≤0, t∈[0,∞). If the condition Emax′(t)≤0 fails for some t∈Δ⊂[0,∞), then Theorem 1 is still 

valid in Case A if we replace the differential constraint a’(t)≥0 in (14) with the stricter constraint  

m(t) ≥ max{0, Emax′(t)} on the control m (see Hritonenko and Yatsenko, 2006, for a proof).                   

 

Remark 2. To keep mathematical complexity reasonable, we do not include the constraint c(t)≥0 

into the NCE. To be complete, Theorem 1 has to include two more cases: E*>Emax, c*=0, and 

E*=Emax, c*=0. The problem (10)-(17) in these cases should be treated as an OP with state 

constraints, which leads to significant mathematical challenges (see Hartl, Sethi and Vickson, 

1995, for an insight into this issue). As we shall see, the regime c*(t)=0 does not usually appear in 

the long-term dynamics (Section 5) and may have an impact only on the transition dynamics as 

one of possible scenarios (Section 6).  

 

Remark 3. Sufficient conditions for an extremum for such OPs are complicated and involve the 

second Freshet derivatives of the functional I. The authors derived and analyzed such condition in 

the form 0
)()(
)()(

<
′′′′
′′′′

=
tItI
tItI

J
mmmR

RmRR at R=R*, m=m* for the Case (A) with active restriction (13). It 

is not included into this paper.    

 

Remark 4. The vintage models with endogenous TC are multi-extremal under natural conditions, 

see Chapter 6 in Hritonenko and Yatsenko (1996). We can show that the OP (10)-(17) may also 

possess two local extrema: 

(1) the trivial solution R0(t)≡0, m0(t)≡0, a0≤a0(t)≤0, t∈[0,∞). The solution is verified by its 

substitution into (20),(24),(25), then IR′(t)<0, Im′(t)<0, and Ia′′(t)<0, i.e., the NCE (23) holds. This 

local solution describes economic dynamics with no investment to technological renovation when 

the entire profit goes to the consumption goods. The trivial solution is not stable in the sense that 

some (small) positive investments in new capital and R&D can force the economic system to 

jump to the next solution.  



 15

(2) the non-trivial solution, where R*(t),  m*(t), a*(t) are positive, at least, on some parts of the 

planning horizon [0,∞). It describes the case where the economic system installs new equipment 

and invests into science and technology. 

The paper focuses on the structure of the non-trivial solution (R*,  m*, a*). 

 

Let us move now to some economic interpretations of the obtained first-order optimality 

conditions. In order to compare more easily with the existing literature, we start with the 

case (A), that is, when the environmental constraint is binding. Indeed, in such a case, the 

binding environmental constraint can be broadly viewed as an “equilibrium” condition in 

the energy market, where the quota plays the role of supply. Let us interpret the 

optimality conditions with respect to investment and R&D, the case of scrapping being 

trivially fixed by Remark 1 above. Using equations (19) and (21), the (interior) optimal 

investment rule may be rewritten as: 

    )(
)(
))((1

)(1

tked
t

ae rt
ta

t

r −− =⎥
⎦

⎤
⎢
⎣

⎡
−∫

−

τ
β

τβτ  

   The interpretation of such a rule is quite natural having in mind the early vintage capital 

literature (notably Solow et al., 1966, and Malcomson, 1975) as exploited in Boucekkine, 

Germain and Licandro (1997). In our model, one unit of capital at date t costs k(t) or 

 in present value. This is the right-hand side of the optimal rule above. The left-

hand side should therefore give us the marginal benefit from investing. Effectively, it is 

the integral of discounted gains from investing over the lifetime of a machine bought at t 

(since a-1(t) is by construction the lifetime of such a machine). At any date comprised 

between t and a-1(t), a machine bought at t will provide one unit of output but the firm has 

to pay the corresponding energy expenditures 

)(tke rt−

)(
))((

t
a

β
τβ

. Given our Leontief 

specifications, 
)(

1
tβ

 is the energy requirement of any machine bought at date t. ))(( τβ a  

plays therefore the role of the effective price of the input paid by the firm. How could this 

be rationalized? Simply by noticing that under a binding environmental constraint, the 

latter mimics a clearing market condition as in the early vintage macroeconomic literature 
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(see for example, Solow et al., 1966).9 In such a framework, the marginal productivities 

of energy should be equalized across vintages, implying a tight connection between the  

effective price of energy and the energy requirement of the oldest machine still operated. 

More precisely, the latter price, which happens to be the Lagrange multiplier associated 

to the binding environmental constraint, is equal to the inverse of the energy requirement 

of the oldest machine still in use, which is equal to ))(( τβ a  at any date τ comprised 

between t and a-1(t). Notice that in such a case, the effective price of energy ))(( τβ a  is 

not generally equal to p(t). The latter does not play any role since energy expenditures 

become predetermined equal to p(t)Emax(t) in the constrained regime. Things are 

completely different in the case where the environmental constraint is not binding (case B 

of Theorem 1). In such a case, the optimal investment rule becomes (following equation 

(24)): 

        )(
)(
)(1

)(1

tked
t
tpe rt

ta

t

r −− =⎥
⎦

⎤
⎢
⎣

⎡
−∫

−

τ
β

τ , 

and ))(( τβ a = p(t) as in the firm problem studied by Malcomson (1975) (with again labor 

playing the role of energy), making a clear difference with respect to the constraint case 

A. Our framework thus extends significantly the benchmark theory to allow for situations 

in which input markets do not necessarily clear due to institutional constraints. 

 

Let us interpret now the R&D optimal rule, which is also new in the literature. Using  

(20), it is given by 

        rtr
rar

d

t

n edk
⎥
⎥
⎦

⎤
τττ )(e

r
eemtbnR −−

−−
−

∞
− =

⎢
⎢
⎣

⎡
−

−
−

∫ ττβ
ττ

)()()(
)(

11
1

                                                

 

The right-hand side is simply the present value of marginal investment in R&D. The 

marginal benefit is given by the left-hand side. Contrary to the optimal investment rule, 

the gains from doing R&D last forever: the R&D investment induces a knowledge 

accumulation process, which is not subjected to obsolescence in our case, in contrast to 

capital goods. The integrand can be understood if one has in mind the maximized 

function (10) in the form  

 
9 In Solow et al., the role of energy is played by labor. 
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           dttmttktRdmtpdmeI
t

ta

t

ta

rt )]()()()()()()()([
)()(0

βτττττβ −−−= ∫∫∫
∞

−

and the given endogenous law (16),(17) of motion of technological progress.  It should be 

noticed that rewriting the problem in terms of m(t), rather than in terms of investment in 

physical units μ(t), does not mean rewriting a problem with input-saving technical 

progress as a problem with output-augmenting technical progress. As one can see, at 

fixed m(t), an increase of R(t) (and, therefore, β(t)) increases not only the output Q(t) but 

also the investment expenditures through the term )()()( tmttk β . The left-hand side of the 

optimal R&D rule takes precisely into account this trade-off. On one hand, the marginal 

increase in β(τ), τ≥t, following the marginal rise in R(t), that is 
)(

)(1

τβ d

n tbnR −

, impacts 

positively output by improving the efficiency of all vintages after date t. Notice that since 

machines have a finite lifetime, this effect should be computed between τ and a-1(τ) for 

each vintage τ, which explains the factor 
r
ee ra )(1 τ−−

∫
−

−
)(1 τ

τ

a

e
rτ− −

=  in the integrand. On 

the other hand, the rising β(t) increases investment expenditures (for a fixed m(t)), which 

explains the negative term, , in the integrand. 

rsds

)(ττ ke r−

 

We now move to the study of the system of the optimality conditions extracted above. 

We first start by seeking for exponential solutions (for naturally growing variables like 

R(t)), the so-called balanced growth paths (Section 5), which can feature a kind of long-

term dynamics, then we move to short-term dynamics (Section 6). 

5. Analysis of optimal long–term dynamics.    
 

The optimal long–term dynamics of the OP can involve interior regimes such that IR'≡0 

and Im'≡0. Let us assume that the environmental constraint (13) is active in the long run: 

E(t)=Emax(t) at t∈[tl, ∞), tl≥0 (we will study the alternative case later). The corresponding 

long-term interior regime (RΛ, mΛ, aΛ) is determined by the system of three nonlinear 

integral equations  

                                 IR'(t)=0,         Im'(t)=0,      
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                         ,     t∈[tl , ∞).                                                      (26) )()( max
)(

tEdm
t

ta

=∫ ττ

where IR'(t) and Im'(t) are determined by (20) and (21). The equations IR'(t)=0 and Im'(t)=0 

lead to  

  rt

t

r
rard

dnn edke
r
eemBdRbdtbnR −

∞
−

−−−
− =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
⎥⎦
⎤

⎢⎣
⎡ +∫∫

−

τττξξ τ
τττ

)()()()(
)(1/1

0

1
1

,   (27) 

       (28) rtr
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t

d
d

t
n

d
d

a
n etkdeBdRbdBdRbd −− =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ +∫⎥⎦

⎤
⎢⎣
⎡ +∫−∫

−

)()(/)(1
)( /1

0

/1)(

0

1

τξξξξ τ
τ

at t∈[tl, ∞).   

We will explore the possibility of exponential solutions for R(t), while m(t) and t-a(t) are 

constant, to the system (26)-(28) separately in the cases n=d, n>d and n<d. First of all, 

we start with the following preliminary result: If R(t) is exponential, then β(t) is almost 

exponential and practically undistinguishable from an exponent at large t in the sense of 

the following lemma: 

 

Lemma 1. If R(t)=R0eCt for some C>0, then10  

                                          β(t) ≈ dCnt
d

dn e
Cn
bdR /

/1
/

0 ⎟
⎠
⎞

⎜
⎝
⎛

                    (29) 

at large t. In particular, β(t)= ( ) dCntddn eCnbdR //1/
0 /  if  bdR0

n = CnBd.             

Proof. At R(t)=R0eCt, 
d

d
n

Cnt
nd

d
t

Cnvn B
Cn

bdRe
Cn

bdRBdvebRdt
/1

00
/1

0
0)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=⎟

⎠
⎞

⎜
⎝
⎛ +∫=β .  

Dividing β(t) by dCnt
d

dn e
Cn
bdRt /

/1
/

0)(~
⎟
⎠
⎞

⎜
⎝
⎛=β , we obtain 

d
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bdR
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β  

                                                 
10 For brevity, we will omit the expression “at large t” when using the notation f(t) ≈ g(t) 
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Expanding the function (1+x)c into the series, we obtain  )(1
)(~
)( t

t
t ε

β
β

+= , where the small 

parameter ...111
2
111)( 2

2

00

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− Cnt

n

d
Cnt

n

d

e
bdR
CnB

dd
e

bdR
CnB

d
tε  decreases as 

e−Cnt. The lemma is proven.                    � 

 

We now define the concept of balanced growth paths considered. 

Definition 1. The Balanced Growth Path (BGP) is a solution (R, m, a) to (26), (27) and 

(28), where R is exponential and m(t) and t-a(t) are positive constants.  

 

If the environmental constraint (13) is not binding, then the system to be solved is  

                                IR'(t)=0,       Im'(t)=0,      Ia''(t)=0,   t∈[tl ,∞),                             (30) 

where IR'(t), Im'(t) and Ia''(t) are determined by (20), (24), and (25). As shown below, the 

optimal long-term growth with inactive regulation, E<Emax, is possible only at n>d (see 

Section 5.2.1). 

Remark 5. In the case of the inactive environmental constraint (13), it is convenient to introduce 

the Freshet derivative 

         ))((]))(()()[( )(' tamtatpttI a βρ −= ,                     (31) 

of I in a instead of the Freshet derivative (25) in a’ and use it during BGP analysis. Indeed, it is 

easy to see that if  Ia’'(t)≡0 at  t∈[ tl ,∞) for some tl≥0,  then Ia'(t)≡0 at  t∈[ tl ,∞).   

 

5.1.  Balanced growth in case n=d. 
In this case, the parameter of “R&D efficiency” n, 0<n<1, is equal to the parameter of 

“R&D complexity” d, 0<d<1. In this case, the optimal long-term growth involves the 

active environmental regulation at natural conditions. Namely, 

Lemma 2. At n=d, any interior solution (R, m, a) of the OP (10)-(17) with an 

exponentially growing R(t) involves the active environmental regulation: E(t)=Emax(t) 

starting at some tf≥0, if the following conditions hold:  

(a) the environmental constraint Emax(t) is bounded on [0,∞),  
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(b) the given energy price p(t) does not increase or increases slower than the optimal 

R(t): 0)( . /)(lim =
∞→

tRtp
t

Proof. Let us consider R(t)=R0eCt, then β(t) ≈ ( ) Ctd eCbR /1
0 /  by Lemma 1. 

We assume that E(t)<Emax(t) at [tl,∞), tl≥0. Then, by Theorem 1, an OP interior regime (R, 

m, a) has to satisfy the nonlinear system (30). Substituting the above R and β into the 

expressions (20) and (31) for IR'(t) and Ia'(t), we obtain from (30) that  

                 ,                                                      (32) ( ) )(/ )(/1
0 tpeCbR tCad =

   rt

t

r
rar

dCtdCd edmke
r

e
r

eeeCbbd −
∞

−
−−

−−− ≈
⎥
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⎤

⎢
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⎡
−−∫

−

ττττ
ττ

τ )()()/(
)(

)1()1(1
1

, t∈[tl,∞).  (33) 

Equation (32) determines a, which is such that t-a(t)→∞ at t→∞ because of the condition 

(b). Equation (33) determines m at a given a. After introducing the function f(t) = 

and differentiating (33), we have  )(/]1[ ])([ 1

tkre ttar −− −− −

            . )(//)/)](1([)( 1 tfbdbCdCrtm d−−−=

Since f(t)<1/r for any possible k and a, then m(t)>const= /r >0. 

Therefore, by (13), E(t) increases indefinitely at t→∞. At the condition (a), our 

assumption is wrong and E(t)=Emax(t) at some t1 > tl. Depending on the dynamics of the 

given Emax(t), it can become E(t)<Emax(t) at  some t2 >t1, but E(t)=Emax(t) at  t→∞. The 

lemma is proven.    � 

bdbCdCrr d /)/)](1([ 1−−−

Though it makes use of a control variable (that is R(t)), the restriction (b) on the price of 

energy is actually quite natural . It will be refined along the way whence the optimal 

control R(t) better characterized. Indeed, as reflected in Section 6.1 below, when the 

energy price is too high (in the spirit of Lemma 2), the firm goes into a complete collapse 

with zero (optimal) investment in both equipment and R&D. Henceforth, energy 

consumption will itself go to zero, and the emission quota constraint will not be binding 

asymptotically. In this sense, energy prices play a role in the determination: too high 

prices will discourage any type of investment, leading the firm into a collapse in the long-

run. This means that such a situation rather uncovers a case where the Hicksian 

mechanism does not work, which is hardly surprising: extreme input prices can never 

turn into investment incentives.  
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Condition (b) is sufficient. In Section 5.1.2, we will see a more specific a posteriori 

restriction (45) on the energy price increase, under which a balanced growth with the 

active environmental regulation takes place. 

 

5.1.1. Growth under non-constant environment  
The purpose of this section is to produce some natural “non-existence” results. In effect, 

one would expect that “too” stringent environmental regulation can by no means imply 

any counter-balancing Porter or induced-innovation mechanism. Our results confirm this 

intuition. On the other hand, as clearly highlighted in the 1975 Malcomson’s work on the 

so-called Terborgh-Smith property related to the constancy of optimal scrapping time, for 

the model to generate regular exponential solutions with constant exponents, some strong 

conditions are needed on the forcing functions of the problem. Another insight gained by 

the analysis below is the role played by the price of capital equipment as reflected in the 

following theorem. 

 

Theorem 2. If n=d and the conditions of Lemma 2 hold, then no exponential BGP with 

positive growth exists if the environmental constraint Emax(t) monotonically decreases or 

increases OR the capital price k(t) monotonically decreases or increases.  

Proof. By Lemma 2, E(t)=Emax(t) at [tl,∞), tl≥0. Then, by Theorem 1, an OP interior 

regime (R, m, a) has to satisfy the nonlinear system (26)-(28).  

Case 1: Emax(t) decreases (increases). Then m(t)=m(a(t))+dEmax(t)/dt by (26), hence, m(t) 

decreases (increases) from cycle to cycle and m(t)=const is not possible. 

Case 2: k(t) decreases (increases). Let us substitute R(t)=R0eCt  into the FOC (27) and (28) 

for the active environment regulation case and estimate the obtained expressions at t→∞. 

Applying Lemma 1, we find that β(t) ≈ ( ) Ctd eCbR /1
0 / , then (27) leads to equation (33) 

and (28) leads to 

              .                                            (34) [ ] rtr
ta

t

taC etkdee −−− ≈−∫
−

)(1
)(

))((

1

τττ

The equality (34) determines a(t) at the given k(t). Its analysis shows that t-a(t)=const at 

t∈[tl,∞), is possible only if k(t)=const, t∈[tl,∞). If k(t) decreases (increases), then t-a(t) 

decreases (increases) and t-a(t)≠const.  The theorem is proven.    � 
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 It is interesting to compare the impact of the environmental constraint and capital price 

on long-term dynamics. By Theorem 2, if Emax(t) decreases and/or k(t) increases over 

time, which cover the two unfavorable cases of increasingly stringent regulation and 

increasingly expensive capital goods respectively, then the BGP (in the sense of 

Definition 1) does not exist. In general, equation (33) demonstrates that the constraint  

                                                            k(t) < 1/r,                                                     (35) 

is necessary for the existence of any interior regime. However, as follows from the proof 

of Theorem 2, the negative tendency (more stringent regulation) can be compensated (at a 

certain extent) with cheaper capital goods and, then, a long-term regime with an 

exponential R(t) (and decreasing t-a(t)) is possible. Namely, the following refinement is 

interesting to report: 

Corollary 1. Let n=d and the environmental constraint (13) be active. Then: 

(a) If k(t) growths up to the value 1/r, then no interior regime with exponential growing 

R(t) is possible.  

 (b) If Emax(t)→0 at t→∞, then no such interior regime is possible. 

(c) If both Emax(t) and k(t) decrease at t→∞, then, interior regimes with exponential 

growing R(t) are possible in some ranges of Emax and k change. In particular, if k(t) 

monotonically decreases to 0 at t→∞, then Emax(t) remains larger than a positive 

constant.  

Proof continues Case 2 of the previous proof. Let us assume that the long-term 

R(t)=R0eCt, C>0, and m(t) is continuous. Substituting R(t) into (26)-(28), we obtain (33) 

and (34). The statement (a) immediately follows from the positiveness of the left-hand 

part of (33).  

Let k(t)→0 at t→∞. Then, it follows from (34) that the unknown t-a(t) decreases and t-

a(t)→0 at t→∞. By the mean value theorem, Emax(t)=[t-a(t)]m(ξ), where a(t)<ξ<t, and 

Emax(t)≈[t-a(t)]m(a(t)). 

 Next, one can see that (33) can hold only if  

                                    )()(1 ])([ 1
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≈ CE =const>0,                            (36) 



 23

where CE=[r−C(1-d)](C/b)1-d/bd is found from (33). Since a-1(t)−t→0 at t→∞, the 

function f(t) = →a-1(t)−t−k(t) at t→∞.  Therefore, (36) leads to  

[a-1(t)−t−k(t)]m(t)≈CE or [t−a(t)−k(a(t))]m(a(t))≈CE. Hence, Emax(t) ≈CE+k(a(t))m(a(t)) 

>CE>0  and Emax(t) can not decrease to 0 (the statement (c)). If we assume Emax(t)→0, 

then (36) can not be hold. It proves our statement (b).    � 

)(/]1[ ])([ 1

tkre ttar −− −− −

 

 Corollary 1 demonstrates that the impact of the environmental constraint on the long-

term optimal dynamics is more sensitive than the capital price. More specifically, an 

essential decrease in the environmental regulation Emax(t) cannot be compensated with the 

availability of cheaper capital goods (even if k(t)→0). No exponential growth is possible 

if  Emax(t)→0. However, exponentially decreasing capital prices are still compatible with 

exponentially rising R&D investment and decreasing finite nonzero quota emissions. 

 

We now move to the case of constant economic and institutional environment, which is 

the case where balanced growth paths typically arise (see Malcomson, 1975). 

 

5.1.2. Balanced growth under constant environment 
The following theorem establishes the existence of balanced growth paths in the sense of 

Definition 1 when the economic and institutional environment is held constant.  
 

Theorem 3 (about balanced growth).  If  

              n=d,           Emax(t)= E0=const,          k(t) = k =const,                                  (37) 

then the interior optimal regime – BGP (RΛ, mΛ, aΛ) exists,  

     RΛ(t)≈R0eCt,   QΛ(t),βΛ(t),cΛ(t) ~ eCt,     mΛ(t)=M0 =const,   aΛ(t)=t– E0 /M0,        (38) 

where the constants C and M0  are determined by the nonlinear system 
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that has a positive solution, at least, at small r. Namely, if r <<1 and 

                                              ]21[/1
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then C, 0<C<r, is a solution of the nonlinear equation  
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and )(2/00 rokCEM += . The uniqueness of the solution is guaranteed if  
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Proof. By Lemma 1, ( )  /)(
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and, after integration, to  
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that can be rewritten as (39). Substituting (37), (38), and βΛ  to (28) gives  
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which becomes (40) after integration. 

Equations (39) and (40) may have a positive solution C and M0 at natural assumptions. In 

particular, let r <<1. Then, presenting the exponents in (40) as the Taylor series, we 

obtain   
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which has the solution  )(2/00 rokCEM += .  

Now, expressing the exponent in (39) as the Taylor series, we obtain  
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Substituting the obtained M0  into (44) leads to one equation (42) for C. To analyze this 

equation, we use the new variable Cx = and rewrite (42) as  

                                              F1(x) = F2(x),                           

where    F1(x)= , ))1(( 22/2 −+− dxrx d
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These functions are shown in Figure 1 and are such that F1(0)=0, F1’(x)>0 at 0<x< r , 

F1’(x)=0 at x= r , and F2’(x)>0 at 0<x< r , F2’(x)=0 at x= r . Also, F2(x)<0<F1(x) at 

small 0<x<<1. Therefore, to have a solution 0 < x < r  to the latter equation, it is 

necessary and sufficient that F2( r )>F1( r ), which leads to the inequality (41). The 

sufficient condition for the uniqueness of x is F1’(x)<F2’(x) at 0<x< r , which leads to 

(43).  

Finally, let us prove that cΛ(t)>0 at large t. By (12), Ct
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Therefore,  
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Expressing the exponent as the Taylor series and using (44), we obtain  
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If , then cΛ(t)>0 at large enough t for any positive value  RΛ . 0)(lim =−
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Ct

t
etp

The theorem is proven.                                                             � 
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The uniqueness condition (43) is sufficient. An analysis shows that the solution is usually 

unique without this condition. The only possible case of non-uniqueness (when we need 

this condition) is when the optimal C is very close to r.  An additional analysis will be 

provided later to explore this issue. We now state some quite interesting comparative 

statics results highlighting how the balanced growth paths react to changes in the 

environmental regulation or price parameters. 

 

Corollary 3. At (37) and r<<1, a decrease of E0 leads to the decrease of both optimal 

parameters C and M0, and leave the long-term lifetime of capital goods unaltered since 

M0~E0. A decrease of k decreases the optimal C, increases the optimal M0 and diminishes 

the long-term lifetime of capital goods as M0~k−1/2. 

 

More stringent environmental regulation through a decrease in E0 is bad for the growth 

rate of firms’ output and profit. Though firms respond to environmental regulation by 

exponential R&D investment efforts, the pace of such efforts is unambiguously 

negatively affected by increasingly stringent emission quotas. Strictly speaking, our long-

term analysis rules out the occurrence of a kind of Porter hypothesis since a more 

stringent environmental regulation does reduce the growth rate of firms’ output and 

profits. This extends the results of Xepapades and de Zeeuw (1999) and Feichtinger et al. 

(2005) in the missing direction. Even though the firms can respond to tighter emission 

quotas by more innovation, such an instrument does not allow to completely circumvent 

the impact of more severe regulation. In contrast, our result seems to go at odds with 

Hart’s predictions (2004) according to which an emission tax may even boost the growth 

rate of production in the economy. However, the latter paper is based on a 

macroeconomic framework where the producers, and thus the polluters, are not entitled to 

spend on innovation. This might explain the difference, among other possible reasons. 

  

Lower capital prices are good for investment (in energy consumptions units) but prove 

bad for the growth rate of firms’ output and profit. This might sound as surprising. 

Nonetheless, one should keep in mind that lower capital prices may lead to declining 

R&D investment precisely because they tend to stimulate investment in physical capital, 
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featuring a kind of substitution between investment in physical capital and investment in 

R&D. That is, the firm prefers to take profit from the exogenously decreasing capital 

prices rather than increasing its costly R&D expenditures. Since investment in R&D is 

the unique source of growth in this firm’s problem, the growth rate may be penalized by 

decreasing capital price patterns. This is exactly what our model predicts in the long –run.  

A further interesting result concerns the optimal long-term lifetime of capital goods. 

Since aΛ(t)=t– E0 /M0 , and M0~E0, it follows that a tighter environmental regulation 

leaves the optimal lifetime of capital goods unaltered. While a lower E0 does reduce the 

optimal lifetime of machines, the fact that such a tighter regulation does also push 

investment downward pushes the maximizing firm to use the fewer machines longer. The 

two effects exactly offset each other in our framework. Under decreasing prices for 

capital goods, the firm invests more and uses the machines for a shorter time. This is 

somehow consistent with the recent literature on embodied technological progress 

observing that a more rapid investment-specific technological progress (like the one 

conveyed by the information and communication technologies) reduces the relative price 

of capital goods and decreases their lifetime due to rising obsolescence costs (see for 

example Krusell, 1998). 

Finally, it should be noted that the energy price p is not involved in the BGP (38). This is 

far from surprising since we have considered binding environmental constraints so far.11  

Indeed, under the active environmental constraint, the energy price p is not presented in 

the NCE formulas (18)-(22) and the optimal long term dynamics (RΛ, mΛ, aΛ) will be the 

same for any p up to a certain level (that depends on the chosen indeterminacy parameter 

R0). By Theorem 3, if the given energy price p(t) increases slower than the optimal RΛ(t) 

(see also condition (b) of Lemma 2), then cΛ(t)≥0 asymptotically.  

The energy price p also has an indirect effect on the optimal controls R*, a*, m*, since 

p(t) impacts the endogenous c*(t): higher p(t) means a lower level of cash c*(t), less 

money in the pocket. However, while the cash flow c*(t) is positive, the long-term firm 

optimal policy (BGP) is to invest the same in machines and in R&D. 

We shall see in Section 6 that the energy price impacts the transition dynamics in our 

model, and it may be in such a way that we will never reach the BGP (see Section 6 

below). The role of this price in the long-run dynamics is a valid question when n>d (then 
                                                 
11 In such a case, the term p(t)E(t) of the objective function becomes  p(t)Emax(t), an exogenous term. 
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the environmental regulation is not binding) and will be considered in Section 5.2 

hereafter.  

Remark 6. In Theorem 3, the BGP scale parameter R0 appears to be undetermined. We have the 

indeterminacy of the long-term dynamics under the BGP because technical progress is 

endogenous. It happens for similar problems in the endogenous growth theory. A typical example 

is the Lucas-Uzawa model (see the book of Barro and Sala-i-Martin, Economic Growth, Chapter 

5, and Boucekkine, Ruiz-Tamarit, 2008).  

 

Remark 7. If equation (42) has a solution 0 < C < r, then, in the general case, it has another 

solution C2, r<C2<r/(1-d). However, the larger solution C2 has no sense, since at C>r the value of 

(1) is infinite and c*(t)<0 by (45). 

 

Numerical Example 1. Let r=0.05, d=0.5, b=0.01, E0=10.5, and k=0.12. Then, the solution of the 

nonlinear system (38)-(39) is C=0.01 and mΛ(t)=M0 =2.1, which can be verified by its direct 

substitution into (38)-(39).  

 

5.2.  Cases n<d and n>d. 
In these cases, no BGP in the sense of Definition 1 exists. However, a long-term regime 

with exponentially growing R and decreasing m appears to be possible at a special 

combination of given parameters.  

 

Theorem 4. Let Emax(t)= E0=const and k(t)= k=const. Then: 

(a) If n<d, then no interior optimal regime with an exponentially growing R exists.  

(b) If n>d, then an interior optimal regime (RΛ, mΛ, aΛ) such that RΛ grows exponentially, 

mΛ(t)→0 at t→∞, and E(t)<Emax(t), is possible ONLY if p(t)∼exp(Cnt/d) where C is the 

endogenous rate of RΛ(t).  

Proof. Let us substitute  

                           R(t) = R0eCt             and      m(t) = M0eDt                                           

into (27) and (28) and estimate the growth order of the obtained expressions at t→∞. 

Applying Lemma 1 and Theorem 1, we find that β(t) dCnt
d

dn e
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If E(t)=Emax(t), then  
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and the state variable a(t) is found from (28) as 
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Case n<d: To keep IR'(t)=0 by (46), we need an exponentially growing m(t) with 

D=C(1−n/d)>0.  Then a(t)→t by (48) and Im'(t)<0 by (47), hence the optimal m≡0. There 

is no interior regime with C>0 possible.  

Case n>d: By (46), the restriction  

                                                       k<1/r                                                                     (49)   

is necessary for IR'(t)≥0. If (49) is valid, then, to keep IR'(t)=0 by (46), we need an 

increasing R(t)~eCt and a decreasing m(t)~eDt with D=C(1-n/d)<0. The endogenous rate 

C>0 is to be determined. 

Since m(t) decreases exponentially, we have the case E(t)<Emax(t) with the inactive 

environmental regulation for any increasing a(t). Then, by (24) and (31),   
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The equation (51) has no solution a(t) if p≡const. Let p(t)=p0est, s>0. Then (51) has the 
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Equation (52) has a unique solution a such that a(t)→(sd/Cn)t. So, we have to assume 

sd≤Cn for keeping the constraint a(t)<t. 

Let sd<Cn. Then a(t)−t→∞  by (52). Substituting p(t)=p0est  into (50) , we obtain  
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for any C>0 because of (49). Therefore, no exponentially growing interior regime is 

possible in this case.  

Finally, let sd=Cn. Then, by (52), a(t)=t−L, where L=const>0 at p0<B.  Substituting a(t) 

and p(t)=p0e(Cn/d)t into (46) and (50), we obtain a system of two nonlinear equations with 

respect to C and M0. The system is similar to the equations (39)-(40) in Theorem 3. Its 

analysis shows the possibility of positive solutions C and M0 at some restrictions on p0 

and other parameters. The theorem is proven.    � 

 

When n>d, the efficiency of the R&D investment appears to be higher as compared with 

the investment into the new capital. Theorem 4 concludes that, in the optimal long-time 

regime, almost all the output goes to R&D investment and the part of capital investments 

(exponentially) decreases in the total distribution of the output. Also, the environment 

constraint is not binding and we can keep a larger amount of older assets (since we buy 

an increasingly smaller amount of new capital).  

By (49), the restriction k(t)<1/r on the given capital price is necessary for the existence of 

any positive optimal regime. The energy price p(t) plays an important role in the case 

n>d, in particular, an interior regime with an exponential RΛ  optimal path is impossible if 

the energy price p(t) does not increase. Only if p(t) increases with a certain rate, then an 

interior regime with exponentially increasing RΛ and decreasing mΛ is possible. The 

increase of p(t) raises aΛ(t), that is, decreases the lifetime of capital goods. In other 

words, a kind of induced-innovation mechanism seems to be active in the case n>d, that 

is, when the R&D activity is highly efficient, so efficient that the investment devoted to 

equipment goes to zero. In such a case, the firm is in perpetually sharp modernization, 

and is not suffering at all from environmental regulation. We have to notice that this 

interior regime is not a BGP in the sense of Definition 1 because mΛ(t) asymptotically 

tends to zero. We shall disregard such a configuration in the short-term dynamics section 

below.  
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6. Transition dynamics        

From now on, we set n=d. Since we have to deal with short-term dynamics in this 

section, some comments on the initial conditions are in order. The OP solution (R*, m*, 

a*) satisfies the initial conditions (15). An essential initial condition is a(0)=a0 because 

the unknown a(t) is continuous. If a0≠aΛ(0), then the dynamics of (R*, m*, a*) involves a 

transition from the initial state a(0)=a0 to the long term interior trajectory aΛ(t) (if it 

exists). 

By (14), c(0) = Q(0)-p(0)E(0)-R(0)-k(0)β(0)m0(0) ≥ 0 at the initial state t=0, or  
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(otherwise, the economic system is not possible at t=0 because of too high energy and 

capital prices p(0), k(0)). Condition (59) implies two simpler constraints: 

                            p(0) < B0      and         k(0)m0(0) < E(0).                                           (54)          

Even if (53) holds, the optimal dynamics may be such that the economic system will 

never reach the environmental restriction E(t)=E0(t) because of too high energy and/or 

capital prices. Let us demonstrate the corresponding scenarios. 

 

6.1.  The collapse cases.  

 Let E(0)<Emax(0) at the initial time .        

Scenario 1: The case of too high energy price. Let us assume that the external market 

energy price p(t) increases faster than the optimal β(t) (e.g., if β is an exponent with the 

rate larger than C in the case d=n). Then, by (25), Ia''(t)>0 for all t and the optimal 

strategy is to keep the lifetime of the capital t−a*(t) as short as possible because of the 

high energy cost p(t).  In this case, the optimal a*(t) soon becomes a*(t)=t and the 

optimal new investment m*(t)=0 is determined by the sign Im'(t)<0 in (24). By (20), 

IR'(t)<0 and the optimal R*(t)=0. So, the optimal dynamics is a situation of an economic 

collapse (no capital renovation and complete scrapping of existing capital) because of too 

high price of the resource. By (13), the variable E(t) strives to 0 and is always less than 
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Emax(t). If p(t) increases with exactly the same rate as the optimal β(t), then the economy 

may grow but never reach the environmental constraint E(t)=Emax(t).  

 

 Scenario 2: The case of too high capital cost. Let the market price k(t) of new capital 

increases (not even indefinitely) and becomes k(t)≥1/r at t≥tcr for some tcr>0. Then, by 

(24), Im'(t)<0 and the optimal new investment m*(t)=0 at t≥tcr. So, the optimal strategy is 

to buy no new capital. By (20), IR'(t)<0 and the optimal R*(t)=0. By (25), Ia''(t)<0 and, 

hence, a*(t)=a0. The optimal dynamics is the economic decline (no R&D investment, no 

capital renovation and no capital scrapping) because of too high price k(t) of the new 

capital. The variable E(t)≤E(0)<Emax(0)=Emax(t), i.e., the environmental constraint is 

never reached.  

 

The above scenarios do not reflect the nature of technological capital replacement. In 

Section 6.2 below, we consider cases when the optimal system dynamics involves capital 

renovation.  

The OP produces qualitatively different optimal regimes R*(t),  m*(t),  a*(t),  t∈[0,∞), 

depending on whether the environmental balance restriction (13) is active, E(t)=Emax(t), 

or inactive, E(t)<Emax(t). In our model, the firms-polluters are the firms for which the 

restriction is active. We will consider the cases of firms-polluters and firms-non-polluters 

separately. At n=d, the long-term BGP dynamics involves the active environmental 

restriction (13) (see Theorem 3). As shown below, the transition dynamics reaches the 

restriction (13).     

    

6.2.  Optimal intensive growth (the case of a dirty firm).  

Let us assume that E(tk)=Emax(tk) starting with the instant tk, tk≥0. Also k(0)<1/r, 

otherwise no growth is possible (see Scenario 2 above). 

 

Scenario 3: The intensive growth at active environment regulation. Let tk=0. The 

optimal dynamics at t≥tk follows Case A of Theorem 1 (with the active E(t)=Emax(t) 

restriction). This regime is a growth with intensive capital renovation induced by 

technical progress. In order to make a new capital investment m(t) at t≥tk, the firm needs 
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to scrap some obsolete capital m(a(t))a’(t), following equality (13) under the given 

E(t)=Emax(t). In the long-term dynamics considered in Section 3.2, the optimal R&D 

innovation R*(t) is the interior trajectory RΛ(t). The optimal R*(t) reaches the trajectory 

RΛ(t) immediately after tk. The OP has the interior turnpike trajectory aΛ for the capital 

lifetime, determined from Im'(t)=0. If aΛ(0)=a0, then the optimal a*≡aΛ. If aΛ(0)≠a0, then 

we can show that the optimal a*(t) will reach aΛ(t) after some time at tl≥tk. If aΛ(0)<a0, 

then the optimal investment m*(t)=0 is minimal at 0<t≤tl. Later, at t>tl, the optimal m*(t) 

has cycles (the replacement echoes as in Boucekkine, Germain and Licandro, 1997) 

determined by the prehistory of m(t) on [a0, tk]. A formal proof of this optimal m*, a* 

dynamics can be done similarly to Hritonenko and Yatsenko (2005). 

Under Scenario 3, the energy price p(t) is not presented in the NCE formulas (18)-(22) 

and, therefore, it does not impact the optimal transition a*(t) and m*(t) (similarly to the 

long term dynamics) while restrictions (45) and (53) hold. Of course, an increase of the 

energy price p(t) reduces the corresponding optimal Q*(t) and c*(t). 

Figure 2 and the following simulation example illustrate this scenario.  

 

Example 2. Let  

             r=0.05,   d=n=0.5,   b=0.01,   Emax(t)= E0=10.5,    k(t)=0.12,    p(t)=0.5,  

              a0 = −2,   β0=1,   R0(τ)=0,   m0(τ)=5.25,    τ∈[−2,0].                                                  (55) 

Then, B=β(0)=1 by (16). There is the BGP, calculated in Example 1 above, 

                    RΛ(t)=R0eCt,  C=0.01,   mΛ(t)=M0 =2.1,     aΛ(t)=t–5   ,  t∈[0,∞),                         (56)    

indicated by the grey lines in Figure 2. In this case, E(0)=m0a0=5.25*2=10.5 is equal to Emax(0), 

hence, the environmental balance (13) is active starting t=0. Since aΛ(0)=−5 < a0=−2, then the 

optimal a*(t)= −2 and m*(t)=0 at 0<t≤tl=3. After tl, the optimal a*(t) coincides with the BGP 

aΛ(t) and m*(t)=m*(t-5) exhibits replacement echoes. 

 

6.3.  Optimal extensive growth (the case of a firm-non-polluter).  

This case means that the energy pollution balance E(t) at the initial state t=0 is lower than 

the limit Emax(0). Let us assume that E(t)<Emax(t) at 0≤t<tk, where the moment tk will be 

determined. Mathematically, this case is more complicated and involves the regime 
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c*(t)=0, not covered by the NCE of Theorem 1. So, we restrict ourselves with a numeric 

example and its economic interpretation and do not provide any formal proofs.   

 

Scenario 4: Extensive growth. If p(t) does not increase, then by (25), (31), and (54) 

Ia''(t)<0 and Ia'(t)<0 at a(t)≡a0. Hence, a*(t)≡a0 is optimal while E(t)<Emax(t) (see 

Example 3 below). At the same time, if β*(t) increases (and the given k(t) does not 

increase), then Im'(t)>0 by (24), hence, the optimal investment m* is maximal. So, one 

can buy a new capital and there is no need to remove the old one, i.e., we have an 

extensive growth. On the other side, by (20), IR'(t)>0 at small R*(t), hence, the optimal 

R*(t) is positive (therefore, β*(t) increases indeed). In this case, the constraint c*(t)≥0 in 

(14) limits both controls R* and m*:  

                          Q*(t) − R*(t) − k(t)β*(t)m*(t) − p(t)E*(t) ≥ 0.                                 (57) 

Then, the transition optimal dynamics on some initial period [0, tk] is determined by the 

restriction c*(t)=0 or  

                 R*(t) + k(t)β*(t)m*(t) = Q*(t) − p(t)E*(t)                                                 (58) 

until E(tk)=Emax(tk). Since the optimal m* increases, the energy regulation limit 

E(t)=Emax(t) will be reached soon and the optimal renovation dynamics will switch to 

Scenario 3 with the active constraint (13). The end tk of the initial transition period [0, tk] 

is determined from condition E(tk)= Emax(tk). 

 If the given p(t) increases indefinitely, then a*(t) is determined by (35), Ia''(t)=0, Ia'(t)=0, 

β(a*(t))=p(t), hence, a*(t) increases. If the p(t) increase is slower than the optimal 

productivity, then  the optimal capital lifetime t−a*(t) also increases while E(t)<Emax(t).  

 

Example 3. Let all given parameters be as (55) in Example 2 but  

                                         m0(τ) = 2,  τ∈[−2,0].                                                           (59) 

Then the BGP (56) is the same as in Example 2 but the transition dynamics is different.  

In this case, E(0)=m0a0=2*2=4 is less than Emax(0)=10.5, hence, the environmental balance (13) is 

inactive on an initial interval [0, tk] at the beginning of the planning horizon. The dynamics of the 

optimal m*(t) and R*(t) on [0, tk] follows the restriction c*(t)=0 and is shown in  Figure 3. The 

determination of m* and R* involves additional theoretical considerations based on varying the 
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equality (58). It appears that m*(t)=17.8, R*(t)=0.003 at 0≤t≤tk.  Then, the corresponding E*(t) 

increases fast and reaches the limit value Emax=10.5 at tk≈0.36. The later optimal dynamics on 

[tk,∞) is described by Case A of Theorem 1 and is similar to Scenario 3. Namely, since 

aΛ(0.36)<a0=−2, then a*(t)= −2 and the optimal m*(t)=0 is minimal during the second part of 

transition dynamics, 0.36 < t ≤ tl=3. Later, at t>3, a*(t)=aΛ(t) and the optimal m*(t)=m*(t-5) has 

replacement echoes determined by the previous dynamics on [-2, 3]. 

 

Remark 8. If the positiveness of c(t) is not assumed, then the optimal m*(t) jumps to infinity 

immediately after t=0 (because of the possibility of borrowing), so the balance E(t)=Emax(t) will 

be reached immediately after t=0. Mathematically, m*(t) involves the delta-function at t=0. Then 

the length of the transition period [0, tk] is zero. 

 

The optimal dynamics highlighted in this scenario are quite new in the related economic 

literature (see for example, Boucekkine, Germain and Licandro, 1997). They deserve 

some comments: 

i) At first, note that the modernization policy chosen by the firm consists in 

increasing investment in new equipment and R&D without scrapping the older 

and more polluting machines. In Hritonenko and Yatsenko (1996) and 

Boucekkine et al. (1997), the modernization policy also encompasses scrapping 

part of the older capital goods in a way similar to the intensive growth scenario 

described in Section 6.2. The reason behind this difference is quite elementary: 

while in Section 6.2, investing in new machines (for fixed level of technological 

progress) is not possible without scrapping some obsolete older machines because 

of market clearing conditions or binding environmental constraints respectively, a 

firm with low enough initial capital stock (and so with low enough initial 

pollution stock) has no incentive to scrap its old machines as long as its emission 

quota constraint is not binding. 

ii) Note that in our case firms which are historically “small” polluters are precisely 

those which are historically “small” producers. Extended to a country level, our 

exercise predicts that historically poor countries will find it optimal to massively 

invest and therefore to massively pollute during their development process. 

During such a transition, new and clean machines will co-exist with old and dirty 
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machines in the productive sectors, implying an unambiguously dirty transition. 

In this sense, our model provides new micro-foundations to an essential part of 

the environmental Kuznets curve (see among others, Chimeli and Braden, 2005). 

 

The next section establishes that during this transition, the unique brake on pollution 

is the energy price, which suggests a fiscal treatment of the environmental problem 

during the transition. Nonetheless, the trade-off is clear: if energy taxes are raised to 

cut energy consumption, then it will affect the pace of technological progress and 

investment negatively, featuring a kind of reverse Hicks mechanisms, as proved in the 

next section. 

 

6.4. The impact of energy price on extensive growth. 

In the case of extensive growth (Scenario 4), the transition dynamics is directly impacted 

by the behavior of the energy price p(t) because of (25).    

Let p(t) monotonically increase. Then a*(t) increases and is uniquely determined from 

Ia'(t)=0 and (25) at a known R*, while E*(t)< Emax(t). The long term interior trajectory 

aΛ(t) defined in Section 5.1.2 satisfies the equation Im'(aΛ; t)=0. We assume that p(t) is 

not too high, so that Im'(a*; t)>0 in (21) and m*(t) is maximal during transition dynamics 

(the alternative case is Scenario 1 in Section 6.1). Then, the transition dynamics is regime 

c*(t)=0 and m*(t) and R*(t) satisfy (58) while E*(t)<Emax(t) on an initial interval [0, tk].  

We will compare the transition dynamics under two different (increasing) energy prices 

p1(t) and p2(t), p1(t) < p2(t), and indicate corresponding optimal a*(t), m*(t), and R*(t) 

with the subscripts 1 and 2. By (25), the structure of the equation Ia'(t)=0 is such that 

a1*(t)<a2*(t) while E*(t)<Emax(t). The endogenous Q*, β*, and E* are more inertial than 

m* and R*. On the other hand, the “extensive growth” part [0, tk] of transition dynamics 

is usually very short (see Example 3). Then, by (58),  

                              R1*(t) + k(t)β*(t)m1*(t) > R2*(t) + k(t)β*(t)m2*(t)                           (60)  

at [0, tk]. Involving additional reasoning based on varying the equality (58), we can prove 

that R1*(t)>R2*(t) and m1*(t)>m2*(t). Therefore, both R*(t) and m*(t) are smaller at a 

higher energy price p(t). This result can be summarized as the following property: 

 



 37

During the transition dynamics with inactive environmental constraint, an increase of the 

energy price p(t) forces more intensive capital renovation with a shorter capital lifetime 

t-a*(t) but decreases both capital and R&D investments  R*(t) and m*(t). 

 

Let us highlight the extreme case of the prices p1(t) and p2(t) such that Q(0)−p1(0)E(0)>0 

but Q(0)−p2(0)E(0)=0. Then, by (58), R*1(0) and (or) m*1(0) are positive, but 

R*2(0)=m*2(0)=0 since all given output Q(0) is spent at t=0 to buy energy because of too 

high energy price. Under natural assumptions, the production will never become 

profitable at the price p2(t). 

As outlined above, we get here a case for an inverse induced-innovation mechanism 

(under inactive environmental constraint). Higher energy prices induce shorter lifetime 

for capital goods but they depress investment in both new capital and R&D.  

 

7. Concluding remarks 
In this paper, we have studied in depth the optimal behavior of firms subject to emission 

quotas and liquidity-constrained. We have spent a substantial part of the first sections of 

the paper to justify why such a problem under endogenous technical progress (that is, 

when firms spend on R&D) is crucially important to tackle. In addition, the vintage 

structure adds realism to the problem under study and considerably enriches the 

discussion. We have extracted numerous new results, either in the investigation of short-

term dynamics or in the analysis of long-run growth regimes. In most cases analyzed, the 

Porter and induced-innovation hypotheses are ruled out. 

 

A few remarks are in order. Of course, our results are based on price-taking firms and our 

modeling of liquidity-constraints is probably too simple. Adding market power is no 

problem if we follow the strategy of Feichtinger et al. (2006), although it is not likely that 

our results would be dramatically altered. Modelling and treating liquidity constraints 

more accurately is a much more complicated task both mathematically and conceptually. 

We believe that allowing the firms to incur into debt to fasten its modernization and 

compliance to environmental standards is a quite decisive issue that should be considered 

in more comprehensive frameworks in the terms of economic policy. In this spirit, central 

planner models seem more adequate, since they would allow a much more precise 
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discussion of welfare implications of different environmental and economic policies. This 

is our next step. 

 

8. Appendix 

Proof of Theorem 1: The proof uses perturbation techniques of the optimization theory 

developed for the class of models under study in Hritonenko and Yatsenko (1996), 

Yatsenko (2004), and Yatsenko and Hritonenko (2005). Let us consider Case (B) first.  

 

Case (B). If the restriction (13) is inactive, E*(t)<Emax(t) at t∈Δ, then we choose R, m, 

and v=a' as the independent unknown variables of the OP. Then, the differential 

restriction a'(t)≥0 in (14) has the standard form v(t)≥0.  We assume that R, m, and v are 

measurable and R(t)e-rt, m(t)e-rt, v(t)e-rt are bounded a.e. on [0,∞). Substituting (17) to 

(16), we obtain expression (22) for β(t).    

We refer to measurable functions δR, δm, and δv as the admissible variations, if R, m, v, 

R+δR, m+δm, and v+δv, satisfy constraints (14)-(15). 

Let us give small admissible variations δR(t), δm(t), and δv(t), t∈[0,∞), to a, m, and R and 

find the corresponding variation ),,(),,( vmRIvvmmRRII −+++= δδδδ  of the objective 

functional I. Using (10)-(13), we obtain that  
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where . To prove the Theorem, we shall transform the expression (A1) 

to the form  

∫=
t

dvta
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where the norm is |)(|sup
),0[

tfeessf rt−

∞
= . It will involve several steps. First, using the 

Taylor expansion f(x+δx)=f(x)+f’(x)δx+o(δx) twice, we have that  
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Next, using (A3) and the elementary property 
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where max{a(t),0} emphasizes that the variations δR(t), δm(t) are non-zero only on the 

interval [0,∞). 

Next, we interchange the limits of integration in the second term of (A4) as 
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and in the fifth term similarly. To transform the third term, we use the Taylor expansion 

. Collecting coefficients of δR, δm, and δa, we 

rewrite (A4) as: 
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Finally, recalling , we convert the last expression to ∫=
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Formula (A5) in notations (21), (24), (25) provides the required expression (A2). The 

domain (14) of admissible controls R, m, v has the simple standard form R≥0, m≥0, v≥0.  

So, the NCE (23) follows from the obvious necessary condition that the variation δΙ of 

functional Ι  can not be positive for any admissible variations δR(t), δm(t), δv(t), t∈[0,∞).   

Case (A). If the restriction of (13) is active: E(t) = Emax(t) at t∈Δ⊂[0,∞), then we choose 

R and m as the independent unknowns of the OP. The dependent (state) variable a is 

uniquely determined from the initial problem  

           m(a(t))a′(t) = m(t) − Emax′(t),     a(0)= a0, 
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obtained after differentiating (13). As shown in Hritonenko and Yatsenko (2006), if 

Emax′(t)≤0, then for any measurable m(t)≥0, a unique a.e. continuous function a(t)<t 

exists and a.e. has a'(t)≥0 (see Remark 1 about the possible case Emax′(t)>0). Therefore, 

the state restrictions a'(t)≥0 and a(t)<t in (14) are satisfied automatically, so we can 

exclude a from the extremum condition.  

Similarly to the previous case, let us give small admissible variations δR(t) and δm(t), 

t∈[0,∞), to R and m and find the corresponding variation ),(),( mRImmRRII −++= δδδ  

of the functional I. In this case, the variation δa is determined by δm. To find their 

connection, let us present (13) as    
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We will use the above formula (A4) for the variation δI as a function of δR, δm, and δa 

and eliminate δa from (A4) using (A6). To do that, we rewrite the third term of (D4) as 
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in (A7) has the order o(δa) because β(τ) is continuous.  
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Substituting (A7) into (A4) and collecting the coefficients of δm and δR, we obtain the 

expression  
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in the notations (20) and (21). The rest of the proof is identical to Case B. 

 The Theorem is proven.    � 
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Figure 2. Transition and long-term dynamics under active environment regulation from Example 

2 (at specific initial conditions a0 and m0). The dotted lines indicate the BGP regime. The dashed 

line shows the inverse function a-1. 
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Figure 3. Transition and long-term dynamics under inactive environment regulation from 

Example 3. The optimal dynamics at active regulation (Example 2) is shown in grey color. 
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