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Abstract

Modern game theory was born in 1928, when John von Neumann pub-
lished his Minimax Theorem. This theorem ascribes to all two-person
zero-sum games a value—what rational players may expect—and optimal
strategies—how they should play to achieve that expectation. Seventy-
seven years later, strategic game theory has not gotten beyond that initial
point, insofar as the basic questions of value and optimal strategies are
concerned. Equilibrium theories do not tell players how to play and what
to expect; even when there is a unique Nash equilibrium, it it is not at all
clear that the players “should” play this equilibrium, nor that they should
expect its payoff. Here, we return to square one: abandon all ideas of equi-
librium and simply ask, how should rational players play, and what should
they expect. We provide answers to both questions, for all n-person games
in strategic form.
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1. Introduction

Modern game theory was born in 1928, when John von Neumann published his
Minimax Theorem. This theorem ascribes to all two-person zero-sum games
a value—what rational players may expect—and optimal strategies—how they
should play to achieve that expectation.

Seventy-seven years later, strategic game theory has not gotten beyond that
initial point, insofar as the basic questions of value and optimal strategies are
concerned. To be sure, we do have equilibrium theories: the initial concept of
Nash [1951], its various refinements1 and coarsenings2, and the selection theory
of Harsanyi and Selten [1987]. But when the game is not two-person zero-sum,
none of these theories actually tell the players what to expect and how to play3.
Even when there is just one Nash equilibrium, it is not at all clear that the players
“should” play this equilibrium, nor that they should expect its payoff4.

Here, we return to square one: abandon all ideas of equilibrium and simply
ask, how should rational players play, and what should they expect. We provide
answers to both questions, for all n-person games in strategic5 form. The answers
do turn out related to the idea of equilibrium; specifically, correlated equilibrium.
But the relationship is not straightforward.

A good starting point is Kadane and Larkey [1982], who wrote that each player
in an n-person game should use ordinary one-person Bayesian decision theory to
choose her strategy. Specifically, she should ascribe a (subjective) probability to
each (n− 1)-tuple of (pure) strategies of the other players. For this, they wrote,

1Selten [1975], Kreps and Wilson [1982], Kalai and Samet [1984], Kohlberg and Mertens
[1986], and many others. For comprehensive surveys, see Hillas and Kohlberg [2002] and van
Damme [1987, 2002].

2Correlated equilibrium and subjective equilibrium [Aumann 1974] and rationalizability
[Bernheim 1984, Pearce 1984].

3The Harsanyi-Selten selection theory does choose a unique equilibrium, composed of a well-
defined strategy for each player and having a well-defined expected outcome. But nobody—least
of all Harsanyi and Selten themselves—would actually recommend using these strategies. This
is for many reasons, including the complexity of the theory, its sophistication, and the more or
less arbitrary choices that the theory makes at various points.

4As in the repeated prisoner’s dilemma, the centipede game [Rosenthal 1982], unprofitable
games [Harsanyi 1966, 1977, Morgan and Sefton 2002] (Example 7.1), Shapley’s [1964] game
(Example 5.3), and many others.

5A game in strategic (or “normal”) form is one described by strategies and payoffs only,
without reference to the sequence of moves and the information of the players when they make
those moves.
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classical game theory is of little or no use; rather, one should apply disciplines
such as psychology. Once the subjective probabilities are determined, the player
should choose her own strategy to maximize her subjective expected payoff.

On its face, the Kadane-Larkey viewpoint seems straightforward and reason-
able. But it ignores a fundamental insight of game theory: that a rational player
should take into account that all the players are rational, and reason about each
other. Let’s call this “interactive rationality.” To be sure, the implications of
interactive rationality are not, on their face, clear; but it does seem clear that
it has logical—not only psychological—implications, which substantively restrict
the possible outcomes. Identifying those restrictions is the object of the current
work.

Thus, we answer our title questions—“how should you play and what should
you expect?”—exactly as Kadane and Larkey do: Play to maximize your expected
payoff given your subjective probabilities about the other players’ choices, and
expect the resulting expectation. But, unlike Kadane and Larkey, we note that
the demands of interactive rationality severely restrict the expectations, and go
on to characterize precisely what expectations can arise under this restriction.

To start with, one must formulate precisely the notion of interactive rationality—
itself a nontrivial task. We do so by means of the notions of common knowledge
of rationality (CKR) and common priors (CP). We then characterize the strate-
gies and expectations that are possible under CKR and CP (Theorem A). In the
special case of two-person zero-sum games, it turns out (Theorem B) that these
expectations coincide with the minmax value of the game; thus, our results really
do extend von Neumann’s.

The plan of the paper is as follows: After summarizing our results informally
in Section 2, and presenting them formally in Section 3, we devote Section 4
to a careful conceptual discussion of Theorem A. An alternative formulation of
Theorem A is provided in Section 7. Section 6 is devoted to “determined” games—
those with a unique rational expectation—including in particular two-person zero
games, which are carefully discussed in 6.1. Numerical examples are adduced in
Sections 5 and 6.2 - 6.6; proofs, in Section 8. Section 9 discusses the historical
background and the literature. Section 10 is devoted to general discussion, and
Section 11 to listing some open questions and directions for research.
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2. Results

In this section we state our results informally, for simplicity confining attention
to two-person games. The formal treatment in the ensuing sections covers also
the general n-person case.

Let G be a two-person game in strategic (normal) form, represented by a
bimatrix with r rows and k columns. It is convenient to analyze the game from
the viewpoint of one player, called the protagonist, whom w.l.o.g. we take to be
the row player. Specifically, we ask, what are her6 rational expectations in G—
the amounts that she could expect when common knowledge of rationality and
common priors are assumed7?

Recall that a correlated equilibrium of G [Aumann 1974, 1987] is a probability
distribution ρ on pure strategy pairs, such that if a pure strategy pair is chosen
in accordance with ρ, and each player is informed only of his component of the
chosen pair, then it is optimal for him to play that component, assuming that the
other is playing his component. The protagonist’s conditional expected payoff,
given her information (the chosen row), is called a conditional payoff to ρ; there
may be as many as r different such payoffs, depending on which row was chosen.
A conditional correlated equilibrium payoff8 in G is a conditional payoff to some
correlated equilibrium ρ of G. Correlated equilibria are described by a limited
number9 of explicit linear inequalities; so they, and the corresponding conditional
payoffs, are explicitly describable in terms of G.

The doubled game 2G is a game with 2r rows and k columns, each row of G
appearing twice. Doubling a game affects its correlated equilibria in a non-trivial
way; they are not necessarily just doubled versions of the correlated equilibria of
the original game.

6The protagonist is female. The other player is—or players are, in the n-person case—of
indeterminate gender; to distinguish them from the protagonist, we use masculine pronouns for
them. Similarly, we use masculine pronouns for players in general, who may or may not include
the protagonist.

7See Section 3 for precise definitions.
8We emphasize again that unless otherwise specified, all payoffs, expectations, and so on

are to the protagonist. Thus a “rational expectation” is a rational expectation of hers; the
“expectation range” is the range of her rational expectations; a “conditional payoff” is a con-
ditional payoff to her; a “conditional correlated equilibrium payoff” is a conditional correlated
equilibrium payoff to her; and so on.

9There are r2 − r + k2 − k inequalities in rk variables, plus the rk + 1 inequalities that say
that the probabilities are non-negative and sum to 1.
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THEOREM A. Rational expectations in the game G coincide with conditional
correlated equilibrium payoffs in the doubled game 2G.

More precisely, α is a rational expectation in G if and only if in the doubled
game 2G, there are a correlated equilibrium ρ, and a row such that α is the
conditional payoff to ρ given that row. Note that the correlated equilibria in 2G
are determined by fewer than (2r+k)2 inequalities in 2rk variables. For examples,
see Section 5 below.

Next, we turn to two-person zero-sum games.

THEOREM B. Every two-person zero-sum game has a unique rational expecta-
tion, namely the value of the game.

Thus the notion of rational expectation indeed provides a generalization, to
arbitrary games, of the classical minimax value in two-person zero-sum games.
Further discussion of this point is provided in Section 6.1, where we argue that
characterizing the minimax value via rational expectations—common knowledge
of rationality and common priors—is more compelling than any of the arguments
hitherto advanced, including the original arguments of von Neumann and Mor-
genstern [1944].

Theorems A and B are our main results. The following propositions contain
some “practical” remarks, helpful in calculating rational expectations.

PROPOSITION C.
(i) Every conditional correlated equilibrium payoff—in particular, every Nash
equilibrium payoff—is a rational expectation.
(ii) The rational expectations are unchanged by iterated deletion of strongly dom-
inated strategies.
(iii) Every rational expectation is at least the protagonist’s minimax payoff10.
(iv) The rational expectations are covariant under multiplication of a player’s
payoffs by a positive constant, under addition of a constant to the row player’s
payoffs in a column, and under addition of a constant to the column player’s
payoffs in a row.

Item (i) says that the notion of rational expectation is weaker than that of
Nash or even correlated equilibrium. Nevertheless, it is strong enough to yield
the value in two-person zero-sum games (Theorem B). Proposition C follows from

10In mixed strategies.
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Theorem A; for item (iv), we note that these transformations do not change the
correlated equilibria.

To state the next proposition, recall that Myerson [1997] called a game ele-
mentary if it has a correlated equilibrium that assigns positive probability to each
strategy of each player, and all the inequalities associated with this equilibrium
are strict11. We then have:

PROPOSITION D. Every elementary game has a maximum rational expecta-
tion, namely the (protagonist’s) highest payoff at any strategy pair.

Finally, we have:

PROPOSITION E. If all correlated equilibrium payoffs are the protagonist’s
minimax payoff v, then v is the only rational expectation.

3. Formal Treatment

This section describes our framework both more generally and more formally than
Section 2. More generally, in that it refers to n players rather than just two; and
more formally, in that it defines precisely what is meant by outcomes that can
occur “under” CKR and CP.

As stated in the previous section, the viewpoint taken here is that of a single
player, the protagonist. She is the “you” of our title; it is her whom we advise
how to play and what to expect. As noted above, she must take into account that
there are other players, each analyzing the situation from his viewpoint. But the
bottom line is her decision and her expectation. We designate her Player 1.

Formally, a (strategic) n-person game G consists of n abstract sets S1, S2, ..., Sn
(the strategy sets of the players) and n functions h1, h2, ..., hn from S = S1×S2×
...× Sn to R (the payoff functions). To define CKR and CP, we need the idea of
a player’s belief hierarchy, which specifies his belief about what the others play,
about what they believe he—and the others—play, about what they believe about
that, and so on ad infinitum. Formally, such a hierarchy is most easily represented
by means of a belief system12 B for G, consisting of:

11I.e., if a player is informed that the chosen strategy pair calls for him to play a certain
strategy, then it is strictly better for him to choose that strategy than any other strategy.
Myerson showed that in a certain sense, all games may be “reduced” to elementary games.

12Originated by Harsanyi (1967-8) and subsequently developed, in various versions and under
various names, by many workers.
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(i) for each player i, a finite13 set Ti whose members ti are called types14 of i; and
(ii) for each type ti of each player i,

(a) a strategy15 of i in G, denoted si(ti), and
(b) a probability distribution on (n − 1)-tuples of types of the other players,

called ti’s theory.

It may be seen that a player’s type uniquely determines the whole hierarchy of
his beliefs.

A common prior is a probability distribution π on T1 × ... × Tn that assigns
positive probability to each type of each player, and such that the theory of each
type of each player is the conditional of π given that that player is of that type16.
Less formally, such that each player’s probability for an event is its probability
under the common prior, conditioned on his information—i.e., on his being the
type he is17. A type of a player is rational if the strategy it prescribes maximizes
his expected payoff given its theory. Rationality is commonly known if this is so
for all types of all players18; note that both the existence of a common prior (CP)
and common knowledge of rationality (CKR) are properties of the belief system
as a whole. A rational expectation in G is an expected payoff of some type of the
protagonist in some belief system for G in which CKR and CP obtain. We wish
to characterize the set of rational expectations.

A correlated equilibrium of G is a probability distribution ρ on the set S of
strategy profiles, with the following property: if a strategy profile s is chosen in
accordance with ρ, and each player i is informed only of his component si of s,
then it is optimal for him to play that component, assuming that the others are
playing their components. The protagonist’s expected payoff if she plays s1 is
called the conditional payoff to ρ given s1.

The doubled game 2G is the n-person game in which 1’s strategy set is S1 ×
{1, 2}, the strategy sets of all other players remain as in G, and for all players i,
the payoff hi(s1, ..., sn) is assigned to both the strategy profiles ((s1, 1), s2, ..., sn)
and ((s1, 2), s2, ..., sn). In words, there are two copies of each of the protagonist’s
strategies, and the payoff does not depend on which copy is used.

13Finiteness is assumed here for convenience. For a general treatment, see, say, Aumann and
Heifetz (2002).

14Or information sets.
15Member of Si.
16In symbols, πi(t−i; ti) = π(t)/π(ti) for each i and each t in T1 × ... × Tn, where πi(·; ti) is

ti’s theory and t−i is the (n− 1)-tuple of types assigned by t to players other than i.
17Examples are provided in the next section.
18This definition is equivalent to the more familiar definition, in terms of iterated knowledge.
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With these definitions, the results stated in Section 2 remain correct as they
stand19.

4. Conceptual Discussion

4.1. Game Situations

The work described here began with the following question: Game Theory tells
us what to expect in a two-person zero-sum game—the maxmin value. But how
about games G that are not two-person zero-sum? What should we expect there,
given just the formal description of G?

As stated, the question has no answer; the problem is underspecified. Formally,
a game is defined by its strategy sets and payoff functions. But in real life, many
other parameters are relevant; there is a lot more going on. Situations that
substantively are vastly different may nevertheless correspond to precisely the
same strategic game. For example, in a parliamentary democracy with three
parties, the winning coalitions are the same whether the parties hold a third of
the seats in parliament each, or, say, 49%, 39%, and 12% respectively. But the
political situations are quite different. The difference lies in the attitudes of the
players, in their expectations about each other, in custom, and in history, though
the rules of the game do not distinguish between the two situations. Another
example revolves around the ultimatum game [Güth, Schmittberger, and Schwarze
1982], which when played in different cultures, leads to systematically different
outcomes [Roth, Prasnikar, Okuno-Fujiwara, and Zamir 1991].

Thus if one is given only the abstract formulation of a game, one cannot
reasonably hope for an expectation and optimal strategies. Somehow, the real-life
context in which the game is played must be taken into account.

The essential element in the notion of “context” is the mutual expectations of
the players about the actions and expectations of the other players. As we saw in
the previous section, such mutual expectations may be represented by a “belief
system.” So we define a game situation Γ to consist of a strategic game G as
defined by its strategy sets and payoff functions, together with a belief system B
for that game, and a particular type t1 of the protagonist in that belief system.

19Mutatis mutandi. Specifically, “strategy pair” must be replaced by “strategy profile;” in
Proposition C(iii), the protagonist’s minimax strategy must take into account that the other
players may correlate among each other; and in Proposition C(iv), the results are covariant
when to a player’s payoff function one adds a function that does not depend on that player’s
choice.
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Of course, with this definition the question in the title becomes trivial, as the
expectations are implicit in t1. What we do is turn the question around: Given
only G, what can we say about expectations in game situations Γ that are “based20

on” G? That is the question addressed here.
Unlike a game, a game situation is a setting with “differential” (or “incom-

plete”) information. Not about objective, exogenous factors like payoffs or utili-
ties, but simply about the actions (or intentions) of the players. Each player has
a probability distribution over—i.e., beliefs about—the actions of the others, but
knows neither their actions nor their beliefs. The game is commonly known, but
the game situation is not.

This state of affairs is inherent in the idea of “game situation.” The 39% party
may believe that the 49% party prefers a coalition with the 12% party; but it isn’t
sure, and is even less sure of the other parties’ beliefs about its beliefs.

4.2. Ex Ante and Interim Viewpoints

Economists distinguish three stages in differential information environments. Ex
ante, no one has any information; in the interim, each agent has his private
information only; ex post, all information is revealed to all. In our context, ex
ante the protagonist knows only the belief system B—which is commonly known
by all players; in the interim, each player knows his type, but not those of the
others; ex post, each player knows the types of all players.

Some readers may be curious about the relationship of the current work to Au-
mann [1987], which appears to make the same assumptions—Common Knowledge
of Rationality and Common Priors—but reaches distinctly different conclusions21.
Namely, the 87 paper arrives at unconditional expectations of correlated equilibria
(CE’s) of the given game G; here, we arrive at conditional expectations of CE’s
of the doubled game 2G.

The puzzle is solved by noting that the current work concerns the interim stage,
while the 87 paper concerns the ex ante stage. The expectations here are those
of a protagonist who knows her type, as is indeed natural in a game situation.
In contrast, in the 87 paper, the expectations—and the distribution of strategy
profiles—are taken over the entire belief system B. Specifically, the protagonist

20I.e., that consist of G together with some belief system B for G and some type t1 of the
protagonist in B.

21Indeed, many who have been present at preliminary presentations of this material have
expressed puzzlement on this matter.
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does not know her own type, and in particular does not know the strategy she will
play once she is informed of her type. The correlated equilibrium that emerges
in the 87 paper is the protagonist’s22 prior distribution—when she knows only
B—of the strategy profiles that will be played once the players are informed of
their types. It can also be viewed as the distribution of strategy profiles of an
outside observer who does not know the players’ types.

5. Examples

In the two-person games below, the row and column players are Rowena and Colin
respectively. Rowena is the protagonist.

5.1. Rational Expectations may be Mutually Inconsistent

L R
T 6, 6 2, 7
B 7, 2 0, 0

Figure 1a
The game G

L R
T 1/2 1/2
B 7/8 1/8

Figure 1b
Rowena’s beliefs

L R
T 1/2 7/8
B 1/2 1/8

Figure 1c
Colin’s beliefs

L R
T 7/22 7/22
B 7/22 1/22

Figure 1d
The common prior

The game G in Figure 1a (“Chicken”) has three Nash equilibria: two pure,
yielding (2, 7) and (7, 2), and one mixed, yielding (42

3
, 42

3
). Consider now a belief

system with four states, TL, TR,BL, and BR, with each player’s probabilities
for each state in each state as depicted in Figures 1b and 1c. For example, in
BL as well as in BR, Rowena’s probabilities for BL and BR are 7/8 and 1/8
respectively, while for TL and TR they are 0. Rowena has the two types T and
B, Colin the two types L and R.

The expectation of Rowena’s type B is 61
8
. She attributes probability 1/8 to

Colin’s type being R, in which case his expectation, too, will be 61
8
. So in that

case, the players will each expect 61
8
. These expectations are mutually inconsistent;

(61
8
, 61

8
) is infeasible—it is outside the convex hull of the possible payoff vectors.

And this in spite of common knowledge of rationality, which the reader may verify,
and the existence of a common prior, depicted in Figure 1d.

22Also that of any other player, which by the common prior assumption, is the same as the
protagonist’s.
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BR is the conflict outcome in Chicken. We see here that conflict may occur
even when the players reason perfectly rationally and attribute rationality to
each other; both players know about the inconsistency, and indeed it is commonly
known that it may occur. Contrary to common wisdom (or rather, foolishness),
the conflict is not due to any irrationality, but simply to differing assessments,
which may well ensue when players are provided with different information.

To be sure, the mixed Nash equilibrium may also lead to conflict. But in
that case, the players’ assessments of the situation are not inconsistent. It is the
inconsistency of the assessments that is noteworthy here.

The distribution in Figure 1d is a correlated equilibrium of G, and 61
8

is its
conditional payoff given B.

L R
T 1/2 1/2
B 1 0

Figure 1e
Rowena’s beliefs

L R
T 1/2 1
B 1/2 0

Figure 1f
Colin’s beliefs

L R
T 1/3 1/3
B 1/3 0

Figure 1g
The common prior

Another belief system for G is depicted in Figures 1e - 1g. Here it is common
knowledge that the conflict outcome BR is impossible. In particular, a type B
Rowena expects 7 and knows that Colin is of type L, so expects 4. The payoff
pair (7, 4) is, however, infeasible. Thus here again, the expectations of the players
are mutually inconsistent, in spite of there being no element of irrationality in the
system.

5.2. Different Conditional Correlated Equilibrium Payoffs in 2G and G

L C R
T 0, 0 4, 5 5, 4
M 5, 4 0, 0 4, 5
B 4, 5 5, 4 0, 0

Figure 2a
The game G

The game G of Figure 2a [Shapley 1964] has a single Nash equilibrium, namely,
((1/3, 1/3, 1/3), (1/3, 1/3, 1/3)), yielding the payoff (3, 3). Consider now a belief
system with seven states, T1R, T2C, T2R,ML,MR,BL and BC, with each player’s
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probabilities set forth in Figures 2b and 2c (as in Example 5.1); Rowena’s strategy
in rows T1 and T2 is T. If Rowena’s type is T1, the game situation has expectation
5. She knows that Colin’s type is R, so that his expectation is 41

2
. Thus Rowena

knows that the players’ expectations are the infeasible23 pair (5, 41
2
)—in spite of

common knowledge of rationality and a common prior (depicted in Figure 2d).
Here, unlike in the previous example, 5 is not a conditional payoff to a correlated
equilibrium of G, given any strategy of Rowena24.

L C R
T1 0 0 1
T2 0 2/3 1/3
M 1/2 0 1/2
B 1/2 1/2 0

Figure 2b
Rowena’s beliefs

L C R
T1 0 0 1/4
T2 0 1/2 1/4
M 1/2 0 1/2
B 1/2 1/2 0

Figure 2c
Colin’s beliefs

L C R
T1 0 0 1/12
T2 0 1/6 1/12
M 1/6 0 1/6
B 1/6 1/6 0

Figure 2d
The common prior

But it is a conditional payoff to a correlated equilibrium of the doubled game
2G, depicted in Figure 2e; the correlated equilibrium in question is depicted in
Figure 2f. Note that if we eliminate the rows in which all the probabilities vanish,
Figure 2f becomes Figure 2d. A similar relationship obtained in our first example,
but with G instead of 2G.

0, 0 4, 5 5, 4
0, 0 4, 5 5, 4
5, 4 0, 0 4, 5
5, 4 0, 0 4, 5
4, 5 5, 4 0, 0
4, 5 5, 4 0, 0

Figure 2e
The doubled game 2G

0 0 1/12
0 1/6 1/12

1/6 0 1/6
0 0 0

1/6 1/6 0
0 0 0

Figure 2f
A correlated equilibrium in 2G

Alternatively, a correlated equilibrium of this game may be obtained by as-
signing probability 1/6 to the entries with payoffs (4, 5) or (5, 4). The associated

23The payoffs sum to 9 1
2 , whereas the maximum sum in the matrix is 9.

24By G’s symmetry, we may suppose that Rowena’s component of the strategy pair is T. The
correlated equilibrium cannot then assign positive probability to TC, as Rowena’s conditional
payoff would then be < 5. So everything is eliminated by a sequence of strict dominations: C
by L, then B by M, then L by R, then M by T, and finally R by C, leaving nothing. In fact,
the highest conditional payoff to a correlated equilibrium of G, given a strategy of Rowena, is
5− (1/3126) ≈ 4.99968.
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inequalities are all strict, so the game is elementary. So by Proposition D, the
maximum rational expectation is 5.

5.3. The Set of Rational Expectations Need not be Convex

L R
T 1, 1 0, 0
B 0, 0 0, 0

Figure 3
The game G

In all the examples adduced up to now, the set of rational expectations is an
interval. In the game G of Figure 3, this is not so; here, there are precisely two
rational expectations: 1 and 0.

6. Determined Games

Call a game determined if it has only one rational expectation. That is, the
context doesn’t matter after all; the expectation is independent of the context.
Theorem B says that all two-person zero-sum games are determined. So in a sense,
we are back to our starting point: in two-person zero-sum games, game theory
provides unequivocal answers. But in fact, we have come further. As we shall
see, there are games that are neither two-person zero-sum, nor easily reducible to
such games, but are nevertheless determined.

6.1. Two-Person Zero-Sum Games

Von Neumann and Morgenstern [1944] advance two kinds of argument to support
the minmax value of two-person zero-sum games—equilibrium arguments and
guaranteed value arguments. The equilibrium argument says that if game theory
is going to recommend something, then that recommendation must be a Nash
equilibrium, and all Nash equilibria of two-person zero-sum games yield the value.
The guaranteed value argument says that the row player can guarantee getting
the value v, and the column player can guarantee not paying more than v, “so”
rational players must reach precisely the value.

The equilibrium argument is of a formal, mathematical nature; one proves that
there can be only one equilibrium payoff. But the guaranteed value argument is
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more tenuous. We purposely put the word “so” in quotation marks, because there
is a bit of a non-sequitor there. Fully to justify this kind of argument, one needs
a formal framework. In fact, though this “argument” appears to depend only on
the rationality of the players, it is not true that players who are merely rational
must necessarily reach the value; one needs common knowledge of rationality25,
and one also needs common priors26.

One may think of Theorem B as reflecting the guaranteed value argument,
but in a rather subtle way. The players do not actually guarantee the value.
In many two-person zero-sum games27, it is in fact impossible to do so in pure
strategies; and here, we think of the players as using pure strategies only. Rather,
the protagonist expects the value. Guarantees enter the argument in showing
that what she expects cannot be less than the value, because she could—by using
mixed strategies—attain at least the value in expectation. One needs further
arguments, revolving around the common knowledge, the common prior, and the
zero-sumness to show that she also cannot expect more than the value.

Indeed, the current perspective shows exactly where the “classical” argument
breaks down. It is true that Players 1 and 2 can guarantee v and −v respectively;
so, since the sum of payoffs is 0, the only feasible “individually rational28” payoff
pair is (v,−v). It is also true that any rational expectation (of either player) must
be individually rational; that is Proposition C(iii). What is not in general true is
that the players’ expectations must constitute a feasible pair, i.e., be “consistent.”
Indeed, we saw in Section 5 that inconsistent expectations are the rule rather than
the exception; in particular, we saw that it is possible for Rowena to know that
Colin expects a payoff that is inconsistent with the payoff she knows she is getting,
even though rationality is commonly known and there is a common prior. On the
face of it, there is no reason to suppose that a similar situation could not arise
also in two-person zero-sum games.

But in fact, it cannot. Theorem B says that there is something special about
two-person zero-sum games that makes it impossible. So this theorem goes con-
siderably beyond the classical “guaranteed value” argument for the value in such
games.

As for the “equilibrium argument,” this is certainly entirely precise; but it is
less compelling, because Nash equilibrium is a much stronger assumption than

25See Example 6.6.
26See Example 6.5.
27Specifically, unless the game has a pure strategy saddle point.
28This means that each player gets at least what he can guarantee to himself.
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rational expectation. Indeed, we have seen (Proposition C(i)) that every Nash
equilibrium payoff is a rational expectation, but the converse is certainly not
true. So saying that every rational expectation is the value is saying a good deal
more than that every Nash equilibrium payoff is the value.

Moreover, when subjected to close substantive examination, also the equilib-
rium argument falls apart. It assumes that the putative “recommendation of game
theory” must be for each player to play some specified (mixed or pure) strategy,
known to all players. Game theory need not make that kind of recommendation;
its recommendation could be—indeed, should be—“respond optimally to your
private information.” As pointed out in Section 4.1 above, the players are faced
with a game situation, not just a game. Even though the game is commonly
known, the game situation is not. It is, indeed, replete with private information,
which there is no reason for the players to ignore.

6.2. Some Determined Two-Person Non-Zero-Sum Games

By Proposition C(ii), the prisoner’s dilemma is determined. The game G of
Figure 4a also is. Indeed, the unique correlated equilibrium ρ of G is depicted in
Figure 4b. The conditional expected payoff to ρ given either T or B is 1/2, and
the maxmin is also 1/2. So by Proposition C(iii), every rational expectation is
≥ 1/2. If in 2G there were a correlated equilibrium and a row with a conditional
expectation that is > 1/2, then there would also have to be a row with conditional
expectation < 1/2, contradicting our conclusion that every rational expectation
is ≥ 1/2.

L R
T 1, 0 0, 1
B 0, 2 1, 0

Figure 4a
The game G

L R
T 1/3 1/3
B 1/6 1/6

Figure 4b
The correlated equilibrium ρ

Note that ρ is equivalent to the Nash Equilibrium (2
3
T + 1

3
B, 1

2
L+ 1

2
R), which

yields 1/2, but does not guarantee it. To guarantee 1/2, Rowena would have to
play 1

2
T + 1

2
B; but this is not part of any Nash equilibrium. Such games—in which

no Nash equilibrium yields either player more than his maxmin payoff—are called
unprofitable [Harsanyi 1966, 1977, Morgan and Sefton 2002].

Our point of view is in any case somewhat different. Rather than guaranteeing
something, the players maximize, given their beliefs; and they use pure strategies,
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which cannot guarantee anything here.
That G is determined also follows from Theorem B and Proposition C, since

G can be transformed into a zero-sum game by “C(iv)” transformations.
The repeated prisoner’s dilemma and Rosenthal’s [1982] centipede are also

determined, but this does not appear to follow easily from the general results in
Section 2.

6.3. Some Determined Three-Person Games

6.3.1. Suppose G has three players, and each pair plays “matching pennies.” So
each player plays in two matches, and so has four strategies; his payoff in G is
the sum of his payoffs in his two matches. The inequalities defining correlated
equilibria imply that all correlated equilibria of 2G yield conditional expected
payoffs of 0 for each strategy. Intuitively, each player can guarantee 0 to himself
in each of his two matches, so also in the overall game; but as we saw in 5.1, this
in itself is not enough—one must go through the actual calculations.

6.3.2. Another game of this kind is where each player displays stone, scissors, or
paper, the payoff for any pair is determined as usual, and as before, each player’s
payoff is the sum of his payoffs in his two matches. Here each player has just three
strategies.

6.4. A Non-determined Game with a Unique Correlated Equilibrium

L R
1, 1,−1 −1,−1, 1

W

L R
−1,−1, 1 1, 1,−1

E
Figure 5a

The game G

L R
1/4 1/4

W

L R
1/4 1/4

E
Figure 5b

The correlated equilibrium ρ

The game G depicted in Figure 5a has three players. Rowena chooses the only
row there is; Colin chooses a column, L or R; and Matt chooses a matrix, W or
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E. As between Colin and Matt, this is matching pennies. So there is a unique
correlated equilibrium ρ, depicted in Figure 5b; it yields Rowena 0. But the game
2G, depicted in Figure 5c, has many correlated equilibria. For example, the
correlated equilibrium ρ′, depicted in Figure 5d; the conditional expected payoff
given T is 1, whereas given B it is −1. Thus the set of rational expectations in G
is [−1, 1].

L R
T 1, 1,−1 −1,−1, 1
B 1, 1,−1 −1,−1, 1

W

L R
T −1,−1, 1 1, 1,−1
B −1,−1, 1 1, 1,−1

E
Figure 5c

The game 2G

L R
T 1/4 0
B 0 1/4

W

L R
T 0 1/4
B 1/4 0

E
Figure 5d

The correlated equilibrium ρ′

6.5. Failure of Theorem B without Common Priors

L R
T 1,−1 −1, 1
B −1, 1 1,−1

Figure 6a
The game G

L R
T .9 .1
B .1 .9

Figure 6b
Rowena’s beliefs

L R
T .1 .9
B .9 .1

Figure 6c
Colin’s beliefs

The game G is “matching pennies.” With the depicted belief system—which
has no common prior—it is common knowledge that it is optimal for each player
to play that strategy with which his type is designated. In particular, Rowena’s
type T plays T and expects .8, whereas the value of the game is 0.

Careful consideration of the example leads to some discomfort. It is commonly
known that Rowena believes that29 Colin believes that Rowena does the opposite

29Short for “ascribes probability .9 to”.
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of what she really does—and vice versa30; i.e., that each player ascribes grave
errors to the other. This is typical of situations without common priors. Common
knowledge of rationality does obtain in this example.

6.6. Failure of Theorem B without CKR

L1 L2 R1 R2 L3

T1 .1 .1 0 0 0
B1 .1 0 .1 0 0
B2 0 .1 0 .1 0
T2 0 0 .1 0 .1
T3 0 0 0 .1 .1

Figure 7
The common prior

Figure 7 depicts a common prior for a belief system in the game “matching
pennies” (see Figure 6a). Type L3 of Colin is irrational, but all other types of
both players are rational. It follows that type T1 of Rowena is rational, knows
that Colin is rational, knows that he knows that she is rational, knows that he
knows that she knows that he is rational, and knows that he knows that she knows
that he knows that she is rational; moreover, T1’s expectation is 1, whereas the
value of the game is 0. The example can be extended to an arbitrarily high level
of iterated mutual knowledge of rationality; but by Theorem B, not to common
knowledge.

7. An Alternative Formulation of Theorem A

Theorem A is stated in terms of the doubled game 2G. It can also be stated in
terms of a set of “augmented” games, in each of which a single strategy of the
protagonist is “doubled.” Formally, given a strategy r1 of the protagonist in G,
define the augmented game G2r1 as the n-person game in which

1’s strategy set is (S1\{r1}) ∪ ({r1} × {1, 2});
the strategy sets of all other players remain as in G;

for all players i, the payoff hi(r1, s2, ..., sn) is assigned to both the strategy
profiles ((r1, 1), s2, ..., sn) and ((r1, 2), s2, ..., sn); and

30That is, with Rowena and Colin interchanged.
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the payoff is as in G for all other strategy profiles.

In words, r1 is replaced by two copies, and the payoff does not depend on which
copy is used.

THEOREM A′. Rational expectations in the game G coincide with conditional
correlated equilibrium payoffs in the augmented games G2s1 , where s1 ranges over
the protagonist’s strategies.

More precisely, α is a rational expectation in G if and only if there is a strategy
s1 of the protagonist such that in the augmented game G2s1 , there are a correlated
equilibrium ρ and a strategy such that α is the conditional payoff to ρ given that
strategy.

8. Proofs

PROOF OF THEOREM A′. Let B be a belief system for G with CKR and
a common prior π. Let t1i and t2i be two types of player i who play the same
strategy. Let B′ be the belief system obtained from B by amalgamating t1i and
t2i into a single type u0

i . Specifically, in B′, the type space of each player j other
than i is Tj; the type space Ui of i is obtained from Ti by removing t1i and t2i and
replacing them by u0

i , where

(1) si(u
0
i ) := si(t

1
i ) = si(t

2
i );

and the common prior π′ in B′ is defined by

(2) π′(ui, t
−i) := π(ui, t

−i) if ui �= u0
i , and

(3) π′(u0
i , t
−i) := π(t1i , t

−i) + π(t2i , t
−i).

Lemma 4. CKR obtains in B′.

Proof. We must show that in B′, the strategy of each type maximizes that
type’s expectation. For types of players j other than i, this is immediate, since
their (conditional) expectations are the same in B′ as in B, whether or not they
play the strategies prescribed by their types. The same holds for types ui of i
other than u0

i . For i’s type u0
i , one must show that i’s conditional expectation

∑
t−i∈T−i π

′(u0
i , t
−i)hi(si(u

0
i ), t

−i)/
∑

t−i∈T−i π
′(u0

i , t
−i)

if he plays the strategy si(u
0
i ) prescribed by u0

i is at least as great as his conditional
expectation

19



∑
t−i∈T−i π

′(u0
i , t
−i)hi(ri, t

−i)/
∑

t−i∈T−i π
′(u0

i , t
−i)

if he plays some other strategy ri; i.e., since the denominators are the same in the
two expressions, that

(5)
∑

t−i∈T−i π
′(u0

i , t
−i)hi(si(u

0
i ), t

−i) =
∑

t−i∈T−i π
′(u0

i , t
−i)hi(ri, t

−i).

But by the same token, the optimality (in B) of si(t
1
i ) for t1i and of si(t

2
i ) for t2i

yield

(6)
∑

t−i∈T−i π(t1i , t
−i)hi(si(t

1
i ), t

−i) =
∑

t−i∈T−i π(t1i , t
−i)hi(ri, t

−i), and

(7)
∑

t−i∈T−i π(t2i , t
−i)hi(si(t

2
i ), t

−i) =
∑

t−i∈T−i π(t2i , t
−i)hi(ri, t

−i);

and, by (1) and (3), adding (6) and (7) yields (5). This establishes Lemma 4.

Corollary. Amalgamation does not affect the expectation of any type of any
player, except for the types that have been amalgamated.

Let α be a rational expectation in G; we must prove that it is a conditional
correlated equilibrium payoff in one of the augmented games. By definition of
“rational expectation,” there is for G a belief system B with CKR, a common
prior π, and a type u1 of the protagonist whose expectation is α. Let r1 := s1(u1)
be the strategy played by type u1. W.l.o.g., there is another type—different from
u1—who plays r1. For if not, we may split u1 into two identical types, with the
same strategy and theory as u1. The new common prior (after the split) is then
obtained from the original one by halving the probabilities of all states affected
by the split.

By repeatedly amalgamating types and using Lemma 4 and its corollary, we
may arrive at a belief system B′′ with CKR and a common prior π′′, such that
(i) for each strategy of each player—other than r1—at most one type plays that
strategy; (ii) the protagonist has a type u1

1 that is “like” u1, in that it plays the
same strategy r1, and has the same expectation α; and (iii) the protagonist has
exactly one other type, u2

1, that plays31 r1.
The game G2r1 is exactly like G, except that the strategy r1 is “doubled:” call

the duplicates r1
1 and32 r2

1. Each type in B′′ corresponds to a strategy in G2r1 ;
specifically, u1

1 and u2
1 correspond to r1

1 and r2
1. Hence π′′ induces a probability

distribution ρ on the strategy profiles in G2r1 , it being understood that strategy
profiles without a counterpart in B′′ are assigned probability 0.

Claim 8. ρ is a correlated equilibrium in G2r1 .

31Obtained by amalgamating all the types of the protagonist who play r1, other than u1
1.

32Rather than the more cumbersome (r1, 1) and (r1, 2).
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Proof. CKR in B′′ tells us that the expectation of any type is at least as great
if it plays the strategy prescribed for that type, as if it plays some other strategy.
Rephrasing, any strategy in G2r1 with positive ρ-probability yields to its player a
conditional expected payoff under ρ at least as great as any other strategy.

From Claim 8 and the Corollary to Lemma 4, it follows that α is a conditional
correlated equilibrium payoff in G2r1 . This completes the proof of Theorem A′ in
one direction.

For the other direction, let β be a conditional correlated equilibrium payoff
in an augmented game G2r1 ; specifically, the conditional payoff to the correlated
equilibrium ρ, given some strategy s1 in the augmented game. Define a belief
system B for G as follows: the types of i in B are in one-one correspondence with
those of his strategies in G2r1 to which ρ assigns positive probability; the theory
of a type is the conditional of ρ given the strategy corresponding to that type.
Then ρ is a common prior for B, and that CKR holds in B is the same as saying
that ρ is a correlated equilibrium is CKR. This completes the proof of Theorem
A′.

PROOF OF THEOREM A. If α is a rational expectation in G, then by Theorem
A′, it is a conditional payoff to a correlated equilibrium ρ′ in some augmented game
G2r1 , given a strategy x′ of the protagonist in that game The strategy profiles in
G2r1are in one-one correspondence with those strategy profiles in 2G whose first
component is (r1, 1), (r1, 2), or (s1, 1) for an s1 other than r1. Assigning to any
such profile the ρ′-probability of the corresponding profile in G2r1 , and 0 to all
other profiles (those of the form ((s1, 2), s2, ..., sn) for s1 �= r1), yields a correlated
equilibrium ρ in 2G. The strategy x′ in G2r1 corresponds to some strategy x in
2G, and then α is the conditional payoff to ρ in 2G given x. This completes the
proof of Theorem A in one direction.

In the other direction, let β be a conditional payoff to a correlated equilibrium
ρ in 2G, given a strategy x of the protagonist; w.l.o.g., x has the form (r1, 1).
“Amalgamating” (s1, 1) and (s1, 2) for all s1 other than r1 yields a correlated
equilibrium ρ′ in G2r1 , and turns (r1, 1) into a strategy in G2r1 . Then β is a
conditional payoff to ρ′ in G2r1 , given (r1, 1). So by Theorem A′, β is a rational
expectation in G. This completes the proof of Theorem A.

PROOF OF PROPOSITION C.
(i) The first part follows from Theorem A, as every correlated equilibrium in G

can also be viewed as a correlated equilibrium in 2G, since one can simply assign
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probability 0 to one of the two duplicates of each of the protagonist’s strategies.
The part about Nash equilibrium follows from the fact that at a Nash equilibrium
ν, all “active” strategies of the protagonist (indeed, of any player)—i.e., those
with positive probability at ν—must get the same payoff, so that the conditional
expected payoffs coincide with the total expected payoff.

(ii) Follows from the fact that a strictly dominated strategy can never appear
with positive probability in a correlated equilibrium, as it is always worthwhile to
switch to the dominating strategy.

(iii) Let α be a rational expectation, t∗1 a type of the protagonist with expecta-
tion α in a belief system with CKR and a common prior, s∗1 := s∗1(t

∗
1) the strategy

played by type t∗1, and p the probability distribution over S−1 := S2× ...×Sn that
t∗1’s theory induces. Thus α =

∑
s−1∈S−1

ps−1h1(s
∗
1, s−1). By CKR, s∗1 maximizes

t∗1’s expectation given its theory, so

α = maxs1∈S1

∑
s−1∈S−1

ps−1h1(s1, s−1) ≥ minq maxs1∈S1

∑
s−1∈S−1

qs−1h1(s1, s−1),

where q ranges over all probability distributions over S−1.
(iv) Follows from Theorem A, since correlated equilibria are covariant in the

required manner.

PROOF OF PROPOSITION E. Proposition C(iii) says that every rational ex-
pectation is ≥ v. Suppose α is a rational expectation that is > v. By Theorem
A, α is a conditional payoff of a correlated equilibrium ρ in the doubled game
2G. By Proposition C(iii) and Theorem A, all other conditional payoffs to ρ in
2G are ≥ v. Since the unconditional payoff to ρ is the expectation of the con-
ditional payoffs, and α appears in this expectation with positive probability, it
follows that the unconditional payoff to ρ is > v. But an unconditional payoff to
the correlated equilibrium ρ in 2G is also an unconditional payoff to a correlated
equilibrium in G, obtained by amalgamating duplicated strategies. So we get a
correlated equilibrium payoff in G that is > v, contrary to hypothesis.

PROOF OF THEOREM B. Follows from Proposition E, since in two-person zero-
sum games, the (unconditional) expected payoff to every correlated equilibrium
is the value33.

PROOF OF PROPOSITION D. By definition, the given game G has a correlated
equilibrium µ that assigns positive probability to each strategy of each player,
and in which the associated inequalities are strict. Let S be the set of strategy

33Aumann [1974], last paragraph of Section 2.
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profiles in G. If ι assigns equal probabilities to all strategy profiles, and ε > 0
is sufficiently small, then λ := (1 − ε)µ + ει assigns positive probability to each
strategy profile, and the associated inequalities are still strict. Let w be a strategy
profile in G that yields the protagonist her highest payoff in G. For each strategy
profile s in G, let s1 and s2 be the two copies34 of s in 2G. Let 0 < δ < λw.
Define a probability distribution ρ on the set 2S of strategy profiles in 2G by
ρs1 := λs, ρs2 := 0 for s �= w, and ρw1 := λw − δ, ρw2 := δ. We will show that ρ is
a correlated equilibrium of 2G when δ is sufficiently small.

Indeed, the inequalities associated with ρ in 2G are the same as those associ-
ated with λ in G, except for those that correspond to w1

1 and w2
1 in 2G. Since δ is

small, and the inequalities corresponding to w1 in G are strict, those correspond-
ing to w1

1 in 2G still hold. As for w2
1: If the protagonist is informed of w2

1, she
knows for sure that she will get the highest possible payoff in the whole game if
she indeed plays w2

1, so it certainly is not worthwhile for her to switch. Therefore
ρ is indeed a correlated equilibrium of 2G.

It then follows from Theorem A that the conditional payoff corresponding to
w2

1 is a rational expectation. This conditional payoff is the protagonist’s payoff in
G at w, which is her highest payoff at any strategy pair.

9. Background and Literature

While the theory of interactive rationality presented here is new, to a large ex-
tent it flows naturally from previous developments in game theory. First was von
Neumann’s (1928) minimax for two-person zero-sum games; this led to Nash’s
(1951) strategic equilibrium; this, in turn, to correlated equilibrium (Aumann
1974, 1987); and this, to interactive rationality. The really new, crucial, element
here is looking at game situations rather than games—viewing games from “in-
side,” without common knowledge of the situation—and it is Harsanyi’s (1967-8)
theory of types that enables us to define this precisely.

Theories of games may be roughly classified by “strength:” the fewer outcomes
allowed by the theory, the “stronger”—more specific—it is. In a sense, interactive
rationality is strongest, because in a game situation Γ, it tells you exactly what to
do: choose the strategy that maximizes your expected payoff given your informa-
tion. But one may also ask—as we do here—about all the rational expectations
that can arise from a given game G, which is, of course, a much larger set.

34In the notation of Section 3, sm = ((s1,m), s2, ..., sn) for m = 1, 2.
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Viewed thus, the Harsanyi-Selten (1987) selection theory, which specifies a
single outcome for each game, is the strongest. Next come refinements of Nash
equilibrium, like Kohlberg-Mertens (1986); next, Nash equilibrium itself; next,
correlated equilibrium; and then, interactive rationality. Weaker is rationalizabil-
ity (Bernheim 1984, Pearce 1984), and weaker still, the Kadane-Larkey (1982)
“theory,”35 which excludes only strongly dominated strategies.

Two-person zero-sum games constitute an important watershed in this classi-
fication; indeed, this research began with the idea of generalizing the value from
two-person zero-sum to general games. Up to and including rational expectations,
all the above theories yield precisely the value—no more and no less—in two-
person zero-sum games. Beyond that, they do not; two-person zero-sum games
may have rationalizable outcomes—and a fortiori, undominated strategies—that
do not yield the value.

We end this section by briefly discusssing Mariotti (1995). Kadane and Larkey
attack game theory because it does not depend exclusively on Bayesian decision
theory. Mariotti takes the precisely opposite stand: that there is a “fundamental
incompatibility between Bayesian decision theory and game theory” (p.1108, iv).

T G′

B 2, 2

Figure 8a
The game G

L′ R′

T ′ 1, 7 0, 0
B′ 0, 0 3, 3

Figure 8b
The game G′

L′ R′

TT ′ 1, 7 0, 0
TB′ 0, 0 3, 3
B 2, 2 2, 2

Figure 8c
The game GG′

Figure 8a represents an extensive game: if Rowena chooses T, then G′ is
played; otherwise, both players get 2. Mariotti argues36 that in G, a prudent
Rowena might well play B, which assures her 2, whereas if she plays T, she might
get only 1—her payoff at a reasonable outcome of G′ (the Pareto undominated
strict Nash equilibrium (T ′, L′)). Then she would also play B in GG′, which is
simply the strategic form of G. But in GG′, we may first eliminate TT ′, by strong
domination; then L′, by weak domination;37 and then B, as 3 > 2.

The perspective of game situations resolves the difficulty. In the abstract,
(T ′, L′) indeed cannot be ruled out in G′. But if Rowena chose T in G, it’s unlikely

35The quotation marks are because Kadane-Larkey do not really propose a theory; rather,
they attack the existing equilibrium theories.

36This is a simplified and more transparent version of the example in Mariotti’s Figure 2.
37Mariotti uses a slightly different argument for this, but it comes to the same thing.
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that she would choose T ′ in G′. The G′ in Figure 8a is a game situation, not a
game; unlike the abstract G′ in Figure 8b, it has a context. When Rowena plays
T in G, she is not merely deciding to play G′; she is deciding to play G′ in a
situation where she could have gotten 2 for sure. That’s an altogether different
kettle of fish.

10. Discussion

10.1. Kadane-Larkey, Nash, and Interactive Rationality

Basically, our viewpoint is that of Kadane and Larkey (1982): A rational player
should do the best she can, given how she thinks the others will play. In technical
terminology, she should maximize her utility, given her subjective probabilities
for the other players’ choices.

When one thinks about it, it seems hard to disagree with this38. The difficulty
is not in the position itself, but in what Kadane and Larkey do—and don’t do—
with it. What they do is to conclude that formal game theory—in particular,
Nash equilibrium—is irrelevant in the practical analysis of games; that it should
be replaced by disciplines like cognitive psychology, which might help players in
estimating probabilities for other players’ strategy choices. What they don’t do
is to bear in mind that in estimating how the others will play, a rational player
must take into account that the others are—or should be—estimating how she
will play. The interactive element is of crucial importance in games; by ignoring
it, Kadane and Larkey miss the whole point of game theory.

On its face, the apparently circular nature of interactive reasoning, in which
each player thinks about how the others think, leads to Nash equilibrium. It is
precisely this that motivated von Neumann and Morgenstern to formulate the
minimax (or equilibrium) solution of two-person zero-sum games, which led to
Nash’s concept of equilibrium in general strategic games.

Nash equilibrium is indeed “circular:” In a two-person game, Rowena plays a
because it is optimal against b, and Colin plays b because it is optimal39 against a.
But interactive reasoning is not circular. Rowena has beliefs about Colin’s actions,

38Though in fact, many do disagree; for example, Mariotti (1995).
39In the interpretation of Aumann and Brandenburger (1995) (henceforth A-B), a mixed

strategy of Rowena represents Colin’s beliefs about her action, and vice-versa. So in a mixed
equilibrium (α, β), Rowena believes β about Colin’s actions, and Colin believes α about Rowena’s
actions, where the actions in β’s support are optimal against α, and those in α’s support are
optimal against β.
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about his beliefs about her actions, about his beliefs about her beliefs about his
actions, and so on; and similarly, Colin has beliefs about Rowena’s actions, about
her beliefs about his actions, about her beliefs about his beliefs about her actions,
and so on. That’s interactive, but it ain’t circular. It’s more like an infinite double
helix: The strands wind around each other, but never come together. If one wants
interactive rationality—not just interactive reasoning—then one must add CKR
and CP, which are the substance holding the strands of the double helix together.

Thus, Nash equilibrium demands a good deal more than interactive rationality.
To make sense of Nash equilibrium, one needs more than “global” assumptions40

like CKR and CP; one needs also some mutual41 or common knowledge of the
players’ actions or beliefs42. For Rowena to play optimally against b, she must
know what b is. From where does this knowledge come?

The answer, as indicated by Nash himelf [1951], is that Nash equilibrium de-
fines a norm of behavior. If in a certain kind of situation, people usually take
certain actions, then the actions are known; so under appropriate rationality as-
sumptions, they should constitute a Nash equilibrium.

To conclude: Interactive rationality, and so rational expectations, apply in
arbitrary game situations. Nash equilibrium applies to norms, or other situations
in which there is some mutual or common knowledge of the actions or beliefs of
the players.43

Please see also the first and last paragraphs of Section 6.1.

10.2. Common Knowledge of Rationality and Common Priors

We have defined “interactive rationality” as comprising common knowledge of
rationality (CKR) and common priors (CP). While these assumptions are un-
doubtedly strong44, they sound appropriate—“ring true,” so to speak.

Any reasonably intelligent child knows that tic-tac-toe “is” a draw—that that
is the “right” outcome of the game. That is not to say that she would always

40Assumptions not depending on a specific game or the actions taken in that game.
41Mutual knowledge of p means that all players know p.
42A-B describe precisely what is needed.
43Specifically, under the assumptions of A-B, an n-tuple of rational expectations is a Nash

equilibrium payoff.
44Possible weakenings are discussed in 10.5. We will not rehash here the conceptual discussion

of these assumptions, particularly of CP; interested readers are referred to Aumann (1987,
Section 5), to the controversy between Gul (1998) and Aumann (1998), to the characterizations
of CP due to Morris (1994), Samet (1998a,1998b), and Feinberg (2000), and to the review by
Aumann and Heifetz (2002, Section 9).
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necessarily play for a draw; she might play for a win, and lose, even while knowing
that the game “is” a draw. In arbitrary two-person zero-sum games, the value
captures the idea of “right” outcome; and in arbitrary games, it is captured by
the notion of rational expectation.

CKR alone—without CP—calls only for the iterated deletion of strictly dom-
inated strategies.45 Even in two-person zero-sum games, the remaining expected
payoffs include far more than the value.

10.3. Conan Doyle, Morgenstern, and Interactive Rationality

In one of the Sherlock Holmes stories (Conan Doyle 1893), Watson and Holmes,
pursued by the archcriminal Moriarty, arrive at Victoria station and jump on a
train to Dover. As it pulls out, they see Moriarty, who has just missed the train.
Watson is delighted, as they have eluded their pursuer. But Holmes says,

“My dear Watson, you evidently did not realize my meaning when I said that
this man may be taken as being quite on the same intellectual plane as myself
(our emphasis). You do not imagine that if I were the pursuer I should allow
myself to be baffled by so slight an obstacle. Why, then, should you think so
meanly of him?”

“What will he do?”
“What I should do.”
“What would you do, then?”
“Engage a special.”
The story continues with Holmes and Watson alighting at Canterbury, an in-

termediate station. Holmes’s anticipation turns out correct—Moriarty did indeed
enagage a special, and they watch with satisfaction from behind a pile of luggage
as it thunders through Canterbury.

Discussing this episode in the dawn of Game Theory, Oskar Morgenstern
(1935) wrote, “Holmes recognizes that Moriarty is very clever. But what if Mori-
arity had been still more clever, had estimated Holmes’ mental abilities better and
had foreseen his actions accordingly? Then, obviously, he would have travelled
to Canterbury. Holmes again would have had to calculate that, and he himself
would have decided to go on to Dover. Whereupon, Moriarity would again have
‘reacted’ differently.”

Morgenstern is of course right that Conan Doyle failed to follow through on
his own reasoning. But Morgenstern himself also missed an important point: Mo-

45This is closely related to the notion of rationalizability [Bernheim 1984, Pearce 1984].
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riarty is not merely “very clever,” he is on the same intellectual plane as Holmes.
Since Holmes knows that he and Moriarty are on the same intellectual plane, so
does Moriarty.46 So if Holmes gets out at Canterbury, so should Moriarty; he
need not be “still more clever.” The rest of Morgenstern’s reasoning also follows.

A beautifully succinct informal characterization of interactive rationality in a
game G is that it is what Holmes would do if he were playing G opposite Moriarty.
To be “on the same intellectual plane” may be taken to involve not only CKR—
which is Morgenstern’s point—but also that the players proceed from the same
basic assumptions about the world: i.e., the common prior assumption.

11. Some Open Questions and Research Projects

1. Characterize the set of all rational expectations in a game G, in terms of G’s
payoff matrix.

2. Other than two-person zero-sum games and their close relatives, it does not
seem easy to find determined games. Are they exceptional, in the sense that the
complement is generic (open dense) in the set of all games of a given size and
number of players? Note that two-person zero-sum games are exceptional.

For two-person 2× 2 games, the answer is “no,” because all such games that
do not possess a pure strategy Nash equilibrium are equivalent to zero-sum games
under the transformations described in Proposition C(iv) (Section 2). But the
question does apply to larger games, say 3× 3 or larger.

3. Calculate the rational expectations in games appearing in various applications,
such as auctions.

4. Extend the notion of interactive rationality to extensive games and to games
of incomplete information.

5. We noted in 9.2 that CKR and CP are rather strong assumptions. To what
extent—if at all—can they be weakened, while still getting results in the spirit of
those presented here?

46Strictly speaking, Holmes’s knowing that he and Moriarty are on the same intellectual
plane does not necessarily imply that Moriarty knows it—because of possible differences in
information. But it is in the spirit of the story that Moriarty respected Holmes as much as
Holmes respected him.
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In the case of CKR, the most natural weakening to explore would appear to
be the common p-beliefs of Monderer and Samet (1989), about which a good deal
is already known. In the case of CP, a possible approach might be to stipulate
that all the priors have mutual Radon-Nikodym derivatives that differ from 1 by
less than ε; in the finite case, this is like saying that the ratios of the priors for all
atoms differ from 1 by less than ε. But unlike the common p-beliefs, this notion
has not been previously explored at all, in any context.
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