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Estimating DSGE models with long memory

dynamics

Gianluca Moretti and Giulio Nicoletti∗

Abstract

Recent literature claims that key variables such as aggregate productiv-

ity and inflation display long memory dynamics. We study the implications

of this high degree of persistence on the estimation of Dynamic Stochastic

General Equilibrium (DSGE) models. We show that long memory data pro-

duce substantial bias in the deep parameter estimates when a standard Kalman

Filter-MLE procedure is used. We propose a modification of the Kalman Filter

procedure, we mainly augment the state space, which deals with this problem.

By the means of the augmented state space we can consistently estimate the

model parameters as well as produce more accurate out-of-sample forecasts

compared to the standard Kalman filter.

1 Introduction1

There is a widespread consensus that key macroeconomic variables such as aggre-

gate productivity and inflation are characterized by very persistent dynamics. Recent
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empirical literature argues that the dynamics of most macroeconomic data can be

better represented by long memory processes, specifically fractionally integrated,

rather than standard autoregressive moving average (ARMA). Diebold and Rude-

busch (1989) pioneered the introduction of long memory processes to describe U.S.

GDP. The same result was recently confirmed by Mayoral (2005) using an updated

version of their dataset. Recent studies by Gadea and Mayoral (2005) and Altissimo

et al. (2005) show evidence of long memory in the inflation of the OECD countries

and the euro area; while Abadir et. al. (2006) documents analogous behavior for the

Nelson and Plosser database.

In this paper we analyze the implications of a high degree of persistence in the

data on the estimation of Dynamic Stochastic General Equilibrium (DSGE) models.

First we show that long memory can give rise to substantial bias in the estimates

of the deep parameters of the model. Second we propose an approach to effectively

tackle this problem.

Over the last few years, DSGE models have become the workhorse of modern

macroeconomic modelling, moreover both academics and practitioners use them to

produce macroeconomic forecasts. The reduced form of these models (i.e. what is

obtained once they are solved for expectations) describe the data as a (dynamic)

linear combination of fundamental shocks and endogenous states. The reduced form

of the model can be cast into a state space form. It has been shown that under

some general conditions this implies a finite VARMA representation for the data.

The order of the MA component depends in general upon the number of endogenous

states (such as capital) which are treated as non-observed variables.2

According to the theoretical literature, long memory arises from the aggregation

of heterogeneous ARMA processes (see Granger (1980) and Chambers (1998)): this

procedure generates an aggregate process which is much more persistent than its

underlying components. Moreover, as Granger and Joyeaux (1980) showed, the ag-

2The order of the VARMA depends upon the type of model at hand. In particular the order of
the AR component depends upon the order of the AR in the exogenous states while the MA might
depend upon the presence of endogenous states which are treated as non observed variables, see
Ravenna (2007) for more details.
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gregate dynamics can not be adequately captured by finite order ARMA processes3.

This implies that the finite order VARMA representation of DSGE models could be

misspecified when faced to long memory data; in particular, as we show below, it

can lead to biased parameter estimation as well as less accurate forecasts. A likely

way to deal with the problem would be is to introduce a large number of unobserved

endogenous states in the model to increase the order of the VARMA representation.

Although this approach might improve the fit of the model, it does not really tackle

the issue of possible long memory in the data.

A direct attempt to introduce long memory dynamics in a DSGE model has been

recently proposed by Abadir and Talmain (2002). Within a monopolistic compe-

tition framework, they show that heterogeneity in the firms’ technology generates

aggregate dynamics for the output that are consistent with the shape of the autocor-

relation function for the U.S. GDP. Despite the novelty of the result, their approach

is computationally very demanding and cannot be easily extended to models more

complex than the one considered in their paper. This highlights a key problem:

complex dynamics and better approximation of persistent data comes at the cost

of an increased complexity and high computational burden. Our aim is to propose

an approach that reconciles the dynamic properties of the observed data with the

stylized representation of DSGE model.

The contribution of this paper is twofold. First, we show that a strong degree

of persistence in the data can substantially bias the structural parameters estimates

of a DSGE model. Following the thread of Mcgrattan (2007) and Ruge-Murcia

(2007) we simulate artificial data samples from a Real Business Cycle (RBC) model

where technology shocks are generated from an ARFIMA process consistently with

the evidence of Diebold and Rudebusch (1980) and Sowel (1992). We evaluate the

ability of the Maximum Likelihood (ML) methods to estimate the DSGE structural

3A similar result is discussed recently by Carvalho (2007) where he shows that there is no simple
link between a new keynesian model with heterogeneity in the Calvo pricing frequency and one
with a single representative frequency of Calvo adjustment. While Carvalho focuses on impulse
responses and one specific calibrated example of aggregation, here we propose a general method to
bring ‘representative’ models to long memory data, sidestepping the specific aggregation problem
at hand.
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parameters for different degrees of the persistence. We find a relevant amount of bias

in the estimates: the stronger the persistence of the data the larger the bias.

Second, we propose an approach that copes with the strong persistence in the

data within a stylized DSGE model. Specifically we develop an ‘augmented’ state

space4 which is consistent with the hypothesis of long memory in the exogenous

state processes; we show through simulation that our method is able to consistently

estimate the real parameters of the model over all the possible degrees of persistence

in the data generating process.5

We then take our augmented Kalman filter procedure to the real data, and fol-

lowing Ireland (2004), we estimate a standard RBC model on U.S. data. We report

significantly different and more plausible parameter estimates compared to the stan-

dard maximum likelihood approach. Moreover, in order to asses the ability of the

augmented Kalman filter to better capture the dynamics of the data, we also evaluate

its out of sample forecast accuracy against the standard one. The prediction of the

augmented filter outperform significantly (by the means of a Diebold-Mariano test)

those of the standard filter: we report an average reduction in the forecast error of

about 30%. This result is consistent with the findings of Granger and Joyeux (1980)

that even if autoregressive models can fit long memory dynamics in finite samples,

they produce quite inaccurate out of sample forecasts.

The plan of the work is as follows. In section 2 we describe the modified Kalman

filter and the maximum likelihood estimation of its parameters when the degree of

memory of the data is unknown. In section 3 we run some simulation to evaluate

the bias in the estimation of a RBC model for different degrees of persistence in

the underlying data. We then repeat the same exercise for the estimation approach

proposed in section 2. In section 4 we estimate a RBC model using real data for the

U.S. economy. Furthermore, we evaluate the forecast accuracy of the two approaches.

Section 5 concludes.

4In the text we refer to our procedure as ’augmented Kalman filter (procedure)’ or to ’augmented
state space’.

5When we refer to strong or high degree of persistence we exclude the case of unit root. By
definition, unit root implies infinite memory and therefore it can not fall into the case considered
here.
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2 Methodology

In this section we develop the augmented state space and describe how to implement

it to estimate the parameters of a DSGE model. In section 2.1 we present the

equations of the augmented filter assuming that the unknown exogenous process is

a long memory process and that the autocorrelation structure of the data is known.

In section 2.2, we remove this latter hypothesis and describe our estimation strategy.

2.1 Augmented State Space

As we see in the next section, the solution of many DSGE models is usually repre-

sented in a state-space form, i.e.

θt+1 = Φθt + εt+1 (1)

yt = Hθt + vt (2)

E
(
εtε

′
t+k

)
=

{
Q k = 0

0 otherwise
(3)

E
(
vtv

′
t+k

)
=

{
R k = 0

0 otherwise
(4)

where θt is the vector of the state and exogenous variables which evolve as an autore-

gressive process (AR) with innovation vector εt; yt is the vector of observed variables

and vt is the vector of measurement errors. The evolution path of the state variables

is usually unknown, but under the assumption that it has an AR representation

as in eq.1, it can be estimated using the Kalman Filter. Specifically, if we define

respectively with

θt|t−1 = E (θt|=t−1)

Pt|t−1 = E
[(

θt − θt|t−1

) (
θt − θt|t−1

)′]
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the optimal estimator of the state θt based on all the information up to t− 1 and its

dispersion matrix, then the Kalman filter is represented by the following equations,

θt|t−1 = Φθt−1 (5)

Pt|t−1 = ΦPt−1Φ
′ + Q (6)

Ft = E
[(

yt −Hθt|t−1

) (
yt −Hθt|t−1

)′]
= HPt|t−1H

′
+ R (7)

θt = θt|t−1 + Kt

(
yt −Hθt|t−1

)
(8)

Kt = Pt|t−1H
′
t

(
HPt|t−1H

′
+ R

)−1

(9)

Pt = (I −KtH) Pt|t−1 (10)

A detailed exposition on the derivation of the Kalman filter goes beyond the

purpose of this paper and it can be found in Hamilton (1994). However, it is worth

recalling that eq.5 and eq.6 are respectively the state prediction6 and its variance,

given the information set at t−1. Equation 7 is the dispersion matrix of the prediction

error of yt, given the information available at time t − 1. The matrix Kt is the so-

called Kalman gain and it is a weighting matrix that minimizes the variance of the

state forecast error. In other words, it solves the following problem:

min
K

E
[(

θt − θt|t−1 −Kt

(
yt −Hθt|t−1

)) (
θt − θt|t−1 −Kt

(
yt −Hθt|t−1

))′]
The Kalman gain is the relative weight given to the observed variable in forming

the prediction of the state variable θt at time t. This weight is negatively related to

the variance of the measurement error R: the larger is R, the smaller is the Kalman

Gain Kt and the less importance is given to the measurement error when making

the forecast of the state at time t, namely θt, given the information set at time t− 1.

Finally, Pt is the variance covariance matrix of the state conditional on information

at time t.

6To ease the notation we denote with θt the prediction of the state θt at time t given the
information set at time t, i.e. θt|t.
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Equations 5 and 10 represent a system whose parameter can be estimated by

maximum likelihood. In fact, if we assume that the innovations {et} and {vt} are

multivariate Gaussian, then the conditional distribution of yt, given the state θt and

the information at time t− 1, is given by

fyt|θt,=t−1 (yt|θt,=t−1) = (2π)−
1
2

∣∣∣HPt|t−1H
′
+ R

∣∣∣− 1
2

(11)

exp

{
−1

2

(
yt − Cθt|t−1

) (
HPt|t−1H

′
+ R

)−1 (
yt − Cθt|t−1

)′}
(12)

which can be maximized with respect to the unknown parameters.

The Kalman filter representation above is based on a number of assumptions

about the data generating process (DGP). It assumes that the unobserved state

variables evolve as autoregressive processes; the variance-covariance structure of the

innovations εt and vt is known; the relations between the state and the observed

variables are linear. The last two technical assumptions can be somehow relaxed,7

but, since the true DGP is unknown, the first is rather arbitrary and can affect the

estimation results. In other words, a correct parameter estimation would require a

correct specification of the dynamics of the unobserved variables: if data are charac-

terized by strong persistence, then choosing too few lags in the AR representation of

the state could leave a substantial amount of autocorrelation in the residuals: this

leads to uncorrect prediction of the state dynamics which in turn leads to bias in

the estimated parameters. An intuition on the problem of state prediction can be

provided in the following way. The Kalman Filter is based on two steps: a projection

step (as in equation 5), where states are projected ahead using the transition equa-

tion, and an information updating step (see equation 8) when the state estimates

are revised due to new data arrival: with long memory both stages are affected by

the misspecification. The former one is directly influenced since the one- step-ahead

prediction directly depends on the specified transition equations. On top on that

the information updating step is a simple sum of previous state estimate plus the

innovation weighted by the Kalman gain, i.e.:

7See Durbin and Koopmans (2001)
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θt|t = θt|t−1 + Kνt ; νt ≡ yt −Hθt|t−1,

for this to be optimal the innovations νt generated by the Kalman Filter at time t, are

assumed to be orthogonal to the estimated state based on information at t−1, θt|t−1.

This need not be true when there are too few lags in the AR representation of the

exogenous states, leaving a substantial amount of autocorrelation in the residuals.

In the next few paragraphs, we describe our approach to estimating DSGE models

under the assumption that their dynamics are driven by this kind of process. To make

the procedure more comprehensible we focus on the case where the state vector is

composed by only one exogenous process. Specifically, if we recall the state-space

defined in eq.-5 - 10,

θt+1 = Φθt + εt+1

yt = Hθt + vt

E
(
vtv

′
t+k

)
=

{
R k = 0

0 otherwise

we consider the case when the innovation {εt} is a fractional noise, i.e.

(1− L)d εt = et (13)

This implies that the exogenous variable θt belongs to the class of fractional

autoregressive processes, i.e. (1− ΦL) (1− L)d θt+1 = εt+1. This kind of process has

been extensively studied in time series analysis and a good review of their properties

can be found in Robinson (1994). In the next paragraphs we recall a few properties

which are related to the degree of persistence of this kind of process. First, if d = 0,

then εt is a standard white noise process, while if d = 1 then εt is a random walk.

If 0 < d < 0.5 the process is stationary but is said to have long memory in the

sense of hyperbolic rather than exponential decay of the autocorrelation function.

Finally, if 0.5 < d < 1 the process is non stationary, but differently from unit root
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processes, still mean reverting. A relevant feature of this process is that for d < 0.5

the autocorrelation function ρε (k) of εt decays at the rate

ρε (k) ' Ak2d−1

which is somewhat slower than the exponential decay of the autocorrelation of AR

processes. Furthermore, since

(1− L)d =
∞∑

j=0

Γ (j − d) (−1)k

Γ (j + 1) Γ (−d)
Lk '

∞∑
j=0

j−(j+1) (−L)j

Γ (−d)

where Γ (·) is the Gamma function, then the innovation εt has an infinite order

autoregressive representation AR(∞) given by

(1− L)d εt '
∞∑

j=0

j−(j+1) (−L)j

Γ (−d)
εt =

∞∑
j=0

Πjεt−j + et

This implies that if the data is generated by eq.13, choosing the right number of lags

in the representation of the state 1 is crucial to get consistent estimates of the model

parameters: too few lags could in fact bias the parameters estimates due to possible

autocorrelation left over in the residuals. In the next paragraph we describe how to

construct a filter (unfeasible filter) which is consistent with an observed component as

defined in eq.13. For this purpose, we start by assuming that the correlation matrix of

εt is known. We will relax this assumption in the next section where we describe how

to estimate the model parameters from the data. The filter we propose accounts for

dynamic miss-specification in the state process and follows the idea brought forward

by Abadir and Talmain (2006) and further developed in Moretti (2007). The ratio

behind this approach relates to a Generalized Least Square (GLS) type correction to

clean any left over autocorrelation in the estimation procedure. We start by defining
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the variance-covariance matrix of εt up to lag m, namely E
(
εtε

′
t−k

)
= Ωm, as

Ωm = σ2


1 ρε (1) · · · ρε (m)

ρε (1) 1 · · · ρε (m− 1)
...

...
. . .

...

ρε (m) ρε (m− 1) · · · 1


where ρε (k) is the k − th autocorrelation and σ2 is variance of εt. We consider the

Cholesky decomposition of Ωm, namely

Ωm = σ2ΓΓ′

where Γ is lower triangular with elements {γi,j}m+1
i,j=1. The ratio behind a GLS pro-

cedure is based on the construction of a vector of transformed variables zt defined

as

zt =


zt−m

...

zt−1

zt

 =


l0,1 0 · · · 0

l1,1 1 · · · ...
...

...
. . . 0

lm,1 lm,2 · · · 1




θt−m

...

θt−1

θt

 ≡ Lθt (14)

where L ≡ Γ−1, in order to remove any autocorrelation in the regression residuals

in eq.1. This implies that, by the definition in eq. 1, the transformed variable zt =

θt +
∑m−1

j=0 lm,m−jθt−j−1 is an AR(1) process, i.e.

zt+1 = Φzt + et+1 (15)

The coefficient lj can be thought of as optimal weights such that E (et |zt ) = 0

is satisfied when regressing zt on its lagged value. This is the implicit moment

condition that we will impose in the next section when estimating the parameters

of the model. It can be immediately seen that if the εt are uncorrelated, then the

coefficient {lm,m−j}m−1
j=0 are all equal to zero8 and θt is equal to zt which leads us

8since ΓΓ′ = I
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back to the standard case. We are now able to define what we call henceforth the

Augmented State Space model.

Definition 1 Lets consider the variables defined in the state space model in eq.1 -2,

with εt being a fractional noise as defined in eq.13 and vt white noise with variance

σ2, then the augmented state-space model is defined as
zt−m+1

...

zt+1

 =

[
0(m) I(m)

0
′

(m) Φ

] 
zt−m

...

zt

 +

 0(m)

et+1

 (16)

or

zt+1 = Ψzt + et+1

θt = zt +
m−1∑
j=0

γm,m−jzt−j−1 =
[

0m−1 1
]′

Γzt = D
′

mΓzt (17)

yt = Hθt + vt (18)

E (ete
′
t) =

{
σ2DmD

′

m = Q̃ (19)

E (vtv
′
t) = {R (20)

where 0(m) is a zero vector of m-elements and γm,m−j correspond to the m,m-j ele-

ments of the matrix Γ.

The difference with the standard state-space models is given by eq. 17 which

can be considered as a “bridge variable” that embodies all the information on the

autocorrelation function of εt. Once again, if the εt are uncorrelated (i.e. d = 0),

then the Augmented state space model reduces to the standard state space model.9

The Kalman filter equations for the state-space model defined in eq.16-20 are given

9The filter by construction requires that we drop the first m observation in order to avoid any
effect of the initial condition at the beginning of the sample.
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by

zt|t−1 = Ψzt−1 (21)

P z
t|t−1 = ΨP z

t−1Ψ
′
+ Q̃ (22)

θt|t−1 = zt|t−1 +
m−1∑
j=0

γm,m−jzt−j−1|t−1 = D
′

mΓzt|t−1 (23)

θt − θt|t−1 =
(
zt − zt|t−1

)
+

m−1∑
j=0

γm,m−j

(
zt−j − zt−j|t−1

)
= D

′

mΓ
(
zt − zt|t−1

)
(24)

P θ
t|t−1 = P z

t|t−1 +
m−1∑
j=0

γ2
m,m−jP

z
t−j−1|t−1 = DmΓ

′
P z

t|t−1ΓD′
m (25)

Ft = E
[(

yt −Hθt|t−1

) (
yt −Hθt|t−1

)′]
= HP θ

t|t−1H
′
+ R

= HDmΓ
′
P z

t|t−1ΓD′
mH

′
+ R (26)

zt = zt|t−1 + Kt

(
yt −D

′

mΓzt|t−1

)
(27)

Kt = P z
t|t−1H

′
tD

′

mΓ
(
HDmΓ

′
P z

t|t−1ΓD′
mH

′
+ R

)−1

(28)

P z
t = (I −KtH) P z

t|t−1 (29)

The augmented filter differs from the standard Kalman filter in the following

ways. First, the block of equations 23 - 25 links the transformed exogenous state to

the observed variables through the weighting matrix Γ. If the εt are uncorrelated

then Γ = I and θt| = zt; we are back to the standard Kalman filter. The variance

of the state prediction error P θ
t|t−1 in eq.27 depends on matrix Γ and it is generally

larger than the matrix Pt|t−1 defined in the standard Kalman filter (6). This implies

that also the Kalman gain Kt defined in 28 will be larger than its equivalent in

the standard Kalman filter. This is because the augmented filter embodies all the

information contained in the autocorrelation function of the state zt and consequently

gives more weight (compared to the standard filter) to the observed variable when

estimating the state variable at time t given the information at time t − 1. On the

other hand, the standard Kalman filter, by imposing a specified AR formulation to

12



the state dynamics, would discard all the residual persistence and regard it as a noise

component of the observed variable. As we show below in the simulation exercise this

results in a smaller Kalman gain and a more “prominent role” of the past prediction

of the states zt|t−1 in forming the new estimate of the state zt.

2.2 Estimation

In this section, we consider the case when the autocorrelation matrix Ωm is unknown

and describe how to estimate it together with the model’s parameters. The ratio-

nale behind our approach can be thought of as a generalized method of moments

estimation with a “GLS type” correction to clean for eventual autocorrelation in the

estimation residuals.

In the previous paragraphs we assumed that the elements of Ωm were known.

Generally, they are not known and apart from very few special cases it is not possible

to estimate Ωm since we would have to estimate a very large number of parameters.

A solution to this problem has been proposed by Abadir and Talmain (2007) who

suggested to fit the ACF of εt using the functional form

ρε (k) ' 1

(1 + a1ka2)a3

where a1, a2 and a3 are parameters to be estimated. This functional form10 was

derived in Abadir and Talmain (2002) and corresponds to the decay rate of the ACF

of a long memory process which includes as a special case the fractional integrated

processes11.

10This functional form has been used in a number of papers. Abadir et. al. showed that it can
capture very closely (and better than ARMA processes) the dynamic properties of many economic
variables; Abadir and Talmain (2006) used it to construct a GLS approach, similar to the one
proposed here, and to solve the uncovered interest rate puzzle; Moretti (2007) used it to develop a
test for long memory co-movements between two macroeconomic time series.

11A different way of proceeding would be to impose a specific long memory functional form,
estimate the d parameter and use that information in the estimation. While this approach might
fall back into a misspecification problem, we would not gain any further information from doing
that since our objective is to clean residuals from the autocorrelation. The d, which we do not see
as a structural parameter, could be anyway recovered from the formula above.
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Therefore, if we assume that the innovations et+1 and vt are normally distributed,

then we can estimate the parameters of the augmented filter by maximizing the

following likelihood function

fyt|θt,=t−1 (yt|θt,=t−1) = (2π)−
1
2

∣∣∣HP θ
t|t−1H

′
+ R

∣∣∣− 1
2

(30)

exp

{
−1

2

(
yt −Hθt|t−1

) (
HP θ

t|t−1H
′
+ R

)−1 (
yt −Hθt|t−1

)′}
(31)

= (2π)−
1
2

∣∣∣HDΓP z
t|t−1Γ

′
D′H

′
+ R

∣∣∣− 1
2

(32)

exp

{
−1

2

(
yt −HD

′
Γ
′
zt|t−1

) (
HDΓP z

t|t−1Γ
′
D′H

′
+ R

)−1 (
yt −HD

′
Γ
′
zt|t−1

)′}
(33)

where

ΓΓ′ = σ2Ωm;

Ωm = {ωi,j : ωi,j = ρε (k) , k = |i− j| , i, j = 1, ...,m}

ρε (k) =
1

(1 + a1ka2)a3

with respect to the parameters of the filter matrices and the parameters of the

functional form.

This procedures is equivalent to minimizing the quantity

Q (yt|θt,=t−1) =
(
yt −D

′
Γ
′
zt|t−1

) (
HDΓP z

t|t−1Γ
′
D′H

′
+ R

)−1 (
yt −D

′
Γ
′
zt|t−1

)′

which implicitly requires the moment condition E (et |zt ) = 0 to be satisfied.

Therefore, our approach can be seen as a generalized method of moments estimation

with a “GLS type” correction where Γ′ is an optimal weighting matrix such that et

and zt are uncorrelated. In the next section, we show through simulation the ability

of our approach to estimate consistently the structural parameters of a simple DSGE

model under the hypothesis that the DGP of the state is a fractional AR process.

14



3 The artificial economy

In this section we asses through simulation the effects of long memory on the estima-

tion of a DSGE model. For this purpose, we simulate an aggregate RBC economy

with a single exogenous shock where we assume that the representative agent knows

the signal, i.e. the technology process, but the aggregation process makes the obser-

vations corrupted to the econometrician. Specifically we generate data from a small

linearized DSGE model where decision rules are obtained under the assumption of

AR(1) technology processes, but we simulate the time series with a fractional noise

in the technology shock. This formulation implies a fractional AR(1) representation

for the output which is in line with the results in Diebold and Rudebusch (1989) and

Sowell (1992). Since the first order condition on labour choice is static and we want

to isolate the effects of long memory on the estimation of the endogenous and exoge-

nous states we employ a simple Ramsey model, featuring capital (kt), consumption

(ct), output (yt), productivity (at) and the real interest rate (rt).

The model can be described as a standard market problem as follows. Households

choose consumption and investments such as to maximize an objective function:

U0 = E0

∞∑
t=0

βt {log (ct)} , (34)

subject to a budget constraint :

ct + it ≤ wt + rtkt−1, (35)

where wt is the real wage rate; since household face no leisure choice, we normalize

labour to one.

Capital is set by the households with the standard law of motion

kt = (1− δ)kt−1 + it,

where no growth trend in productivity is assumed. Using eq.35, capital accumulation
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can then be rewritten as:

kt = (1− δ)kt−1 − ct + wt + rtkt−1, (36)

The first necessary order condition associated with the maximization of the objective

34 subject to 36 is given by the standard Euler equation:

c−1
t = Et

[
β(1 + rt+1 − δ)c−1

t+1

]
(37)

Firms use capital according to the production function:

yt = atk
α
t−1,

where technology evolves as:

log(at) = ρ log(at−1) + εt,

where εt is considered as i.i.d. by the households with a constant variance var(εt) =

σ2
ε .

Firms rent capital kt by paying a rental price rt and maximize their profits by

choosing capital such that the real interest rate equals the marginal productivity of

capital minus the depreciation rate δ:

rt + δ = αatk
α−1
t−1

Finally we have the goods market clearing condition

yt = ct + it.

The competitive equilibrium for the economy is the sequence of prices {rt, wt}∞0
and quantities {yt, kt, ct}∞0 such that firms maximize profits, agents maximize utility

and all markets clear. Parameters are set in a way which is consistent with the

literature. The capital share α is set equal to 0.33; the preference term β is equal to
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0.99 which corresponds to a real interest rate of 0.04 on annual basis; the depreciation

rate δ is set equal to 0.025; the autoregressive term is set to 0.9. To gain on clarity σ2
ε

is set equal to 1.12 The model is log-linearized around its steady state 13 and solved

under the assumption that the innovations εt are i.i.d. The reduced form solution

of the model is written in the state space representation described in the previous

section, namely

θt+1 = Φθt + εt+1

yt = Hθt + vt

where the vectors of state and observable variables as deviations from their steady

state values are respectively given by

θt = [ln(at/a
ss) ln(kt/k

ss)]

yt = [ln(ct/c
ss) , ln(yt/y

ss) , ln(rt/r
ss)]

where εt+1 = [εt+1, 0] .

In order to remove any singularity in the system of equations we add in vt two i.i.d.

measurement errors with zero mean and standard deviation equal to 0.01. Finally,

we simulate the state space model to generate artificial data for consumption, output

and the real interest rate, and generate long memory in the data by assuming that

the productivity shock εt is a fractional noise,

(1− L)d εt+1 = et+1

where et is a white noise. For any degree of fractional order d ranging from zero to one

we generate 1000 samples of 170 observations respectively for output, consumption

and the real interest rates. Then, using the Kalman filtering algorithm described in

eq.21-29, for each sample we estimate through Maximum Likelihood the structural

12We checked that results are unchanged by setting lower values.
13The steady state values of the variables are denoted with ss
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parameters and the implied dynamics for the state variables. Table one reports the

simulation results and shows the true model parameters together with the mean

of each estimated parameter for different degree of persistence. The last two rows

report the Root Mean Square Error of the state variables (θt|t and Kt|t) predicted by

the Kalman filter.14

Fractional Integration Parameter d

Parameters True 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α 0.330 0.3478 0.3556 0.3645 0.3704 0.3702 0.3768 0.4109 0.4605 0.5483

δ 0.025 0.0266 0.0272 0.0279 0.0279 0.028 0.0285 0.0309 0.0343 0.0407

β 0.99 0.9875 0.988 0.9881 0.991 0.9901 0.9903 0.9902 0.9923 0.9954

φ 0.9 0.8903 0.8967 0.9004 0.9066 0.9067 0.9078 0.9126 0.9226 0.9388

σe 1 1.0404 1.0404 1.1358 1.2554 1.4744 1.703 1.8521 1.9403 1.9852

σv1 0.01 0.1122 0.1384 0.0898 0.0698 0.0344 0.0258 0.0211 0.0211 0.0218

σv2 0.01 0.1064 0.1314 0.1228 0.1289 0.1237 0.1359 0.2217 0.3609 0.6956

RMSE θt|t 1.0439 1.0967 1.1964 1.3862 1.7154 2.4849 5.6623 11.1167 19.6298

RMSE Kt|t 0.3827 0.4714 0.5357 0.6491 0.8617 1.5441 5.3139 10.8163 19.0695

Table 1: Parameter estimation for different degrees of fractional integration d

The bias tends to increase for all the model parameters as the persistence becomes

stronger. For d bigger than 0.5, (Diebold and Rudebusch again) the bias becomes

quite large especially for the capital share α, the capital depreciation δ and the

variance of the productivity innovation σe: the estimated parameters are almost

twice as large as the true parameters. This is fairly consistent with what we find by

comparing the estimates of the augmented and the standard filter on US data in the

next section. In fact, although the “true” parameters used in the simulation can be

considered to be close to the ones adopted in the calibration literature, the estimation

with U.S. data produces values which are significantly higher and consistent with a

parameter d larger than 0.5.

14For each simulation sample we estimate the structural parameters of the models
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Finally the RMSE of the state prediction for both capital and productivity (last

two rows of Table one) are very large. This is consistent with the large estimates

of variances of the measurement errors σv1 and σv2 . In fact, with a positive bias on

the variances of the measurement errors, the estimated Kalman gain K is lower than

the true Kalman gain, producing consequently a prediction of the state which is too

smooth and insensitive to innovations compared to the real state. This reflects the

inability of the model to capture the true persistence of the data which is discharged

as a noise component.

In Table 2 we report the results of the same exercise for the augmented filter.15

Fractional Integration Parameter d

Parameters True 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α 0.330 0.3302 0.3301 0.3301 0.3299 0.3299 0.3299 0.3309 0.3342 0.3411

δ 0.025 0.025 0.025 0.025 0.0249 0.025 0.02499 0.0251 0.0253 0.0258

β 0.99 0.99 0.99 0.99 0.99 0.99 0.9900 0.99 0.9901 0.9903

φ 0.9 0.90 0.90 0.90 0.90 0.9 0.899 0.9002 0.9007 0.902

σe 1 0.9964 1.0017 1.0106 1.01 1.0295 1.0437 1.0598 1.0836 1.1301

σv1 0.01 0.0099 0.0099 0.0099 0.01 0.0099 0.0099 0.0099 0.0099 0.0099

σv2 0.01 0.0099 0.0099 0.0099 0.01 0.0099 0.0100 0.0119 0.0249 0.0524

RMSE θt|t 1.0154 1.0172 1.0342 1.0654 1.1241 1.2155 1.3512 2.6863 5.3401

RMSE Kt|t 0.2073 0.2542 0.3135 0.4014 0.5165 0.6899 0.9249 2.5774 5.1981

Table 2:

As it can be readily seen, the filter is able to estimate consistently the true

parameters of the model. This is true for all the degree of fractional integration,

even when the state variables become non-stationary (d > 0.5). Not surprisingly,

the augmented filter provides much more accurate prediction of the underlying state

variables compared to the standard filter. In fact, the RMSE errors of the state

15We choose a value of m, number of lags in productivity, equal to 30. This seems to be a
reasonable compromise; while implementing a rather effective correction it does not exclude too
many observations.
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prediction are up to 4 times smaller than those obtained with the standard filter.

This result is quite important and shows the ability of the modified filter to capture

the dynamic properties of the data. As we show in the last section, this accuracy

in predicting the data dynamics also holds when using the modified filter to forecast

out-of-sample the observed variables.

4 Real data estimation

4.1 Model

In this section we take our model to the real data and repeat the Maximum Likelihood

estimation of an RBC model as in Ireland (2004); the same type of model is also

used by Ruge-Murcia (2007), in order to compare different estimation techniques.

Households choose consumption and labour/leisure and save by investing in stocks

of capital. Furthermore, they maximize the following utility function:

U0 = E0

∞∑
t=0

βt {log(ct) + γ(1− nt)} , (38)

subject to the budget constraint:

ct + it ≤ wtnt + rtkt−1,

there is no population growth and the total amount of labour is normalized to

one and leisure is given by 1 − nt. Capital accumulates with the standard law of

motion

ηkt = (1− δ)kt−1 + it, (39)

expressed in efficiency units in order to take into account a log-linear trend in

technology η. This gives rise to the (standard) first order conditions:

c−1
t = Et [β(η + rt+1 − δ)] c−1

t+1, (40)
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wt = γct (41)

The production function is given by the Cobb-Douglas:

yt = at(η
tnt)

1−αkα
t−1, (42)

where technology evolves as:

log(at) = (1− ρ) log(ass) + ρ log(at−1) + εt. (43)

In equilibrium the real interest rate equals the marginal productivity of capital

minus the depreciation rate δ:

rt + δ = αatn
1−α
t kα−1

t−1 ,

and the real wage rate equals the marginal productivity of labour:

wt = (1− α)atn
α
t kα

t−1.

The model is closed by the market clearing condition:

yt = ct + it. (44)

The competitive equilibrium for the economy is the sequence of prices {rt, wt}∞0
and quantities {yt, kt, ct, nt, it}∞0 such that firms maximize profits, agents maximize

utility and all markets clear. The model is linearized by using the Taylor expansion

of the system of equations (42), (40) (44),(43),(39),(41) around the steady state of

the model. Then we solve the model following Klein (2000) and rewrite the reduced

form solution into the (augmented) state space representation described in section

2. As before, we define with yt the vector of endogenous observable variables of the

model and with θt the vector of unobservable exogenous processes. Following Ireland

(2004), we introduce in the state space model, three independent autocorrelated
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measurement errors, ηt =
[
ηy

t , ηc
t , η

h
t

]′
that are assumed to evolve as AR(1) processes ηy

t

ηc
t

ηh
t

 =

 ρηy 0 0

0 ρηc 0

0 0 ρηh


 ηy

t−1

ηc
t−1

ηh
t−1

 +

 ζy
t

ζc
t

ζh
t



with

E
[
ζ
′

tζt

]
=

 σ2
ζy 0 0

0 σ2
ζc 0

0 0 σ2
ζh

 .

Therefore we have yt = [yt, ct, ht] and θt = [kt, at, it, η
y
t , η

c
t , η

h
t ].

The following state space representation is then used to estimate the model:

θt+1 = Φθt + εt+1

yt = Hθt + vt

where

Φ =

[
pkk qka

0 z

]
; z =


ρ 0 0 0

0 ρηy 0 0

0 0 ρηc 0

0 0 0 ρηh


H =

 mck nca

myk nya

mrk nra


where the elements of the matrices Φ and H are obtained from the solution of

the model, i.e. for example:

kt = pkkkt−1 + qkaat,
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ct = mckkt−1 + ncaat.

In the presentation we focus only on one special treatment of measurement er-

rors: three autocorrelated but mutually uncorrelated measurement errors. This is

consistent with Ireland (2004) where he shows that such specification, compared with

one having correlated measurement errors, have the best out-of sample forecasting

properties in spite of less plausible values of the deep parameters. One of our claim

is that this kind of trade off between forecasting and parameter estimation tend to

vanish when long memory is taken into account.

Measurements are hours worked, consumption and GDP, which are taken re-

spectively from BLS data (Current Employment Statistics) and US NIPA national

accounting: data run from 1948:1 to 2002:2.16 We estimate the following set of

structural parameters: α, η, γ, δ, ρ, ρηy , ρηc , ρηh , σε, σζy , σζc , σζh plus the

level of technology ass which enters the steady state expressions of the variables.

The estimated parameters are the capital share, the log-linear trend of technology,

the parameter which pins down the amount of hours worked in steady state, the

depreciation rate of capital, the persistence parameter of the technology and the

measurement errors together with their standard deviations, and the discount pref-

erence term β. Differently from Ireland, we estimate the depreciation term δ in order

to show that long-memory correction can help in the identification of parameters that

are sometimes found to be difficult to identify in the literature, and therefore they

are calibrated.

4.2 Parameter estimates

In this section we discuss the parameter estimates for two different models, AKF

refers to the augmented state space model, while KF to the standard Kalman filter.

16we use the same dataset as in Ireland which is based on the 1996 chained data
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Par. α δ ρa η γ ρηy
t

ρηc
t

ρηh
t

σε σζy σζc σζh

AKF 0.2917 0.0246 .969 .0055 .0041 .998 -.804 .9995 .0048 0.0039 4e-4 .0062

KF 0.5189 0.0031 .999 .0057 .0036 .999 .999 .9990 .0092 .0036 1e-4 .0060

Table 3: Parameter estimates

The estimation results differ substantially between the two filters17. Our finding

suggests that there is a substantial amount of autocorrelation left over in the residuals

εt, which the standard Kalman filter does not account for, and consequently leads to

biased parameter estimates. From Table 3 we see that the share of capital estimated

with the standard filter almost doubles the one given by the modified filter. There is

a substantial difference in the values of both the persistence and variance parameters

of the technology shock.

Overall, it seems that the augmented filter produces estimates which are in line

with estimates produced by models with less restrictions on the variance-covariance

matrices, such as the one with correlated shocks in Ireland (2004); moreover they

are also closer to the values used in standard calibration exercises. Moreover there

is a simple intuition explaining the large difference in estimated depreciation rates

and capital shares. A large capital share and a low depreciation rate both make

the policy function of capital more persistent. This happens both mechanically (less

depreciation) and economically, since agents have more incentive, higher returns, to

investing in capital goods. As a result the law of motion of capital in the reduced

form of the model will have a stronger autoregressive term, i.e. it will be more

persistent. Once data are cleaned from long memory, unexplained persistence does

not bias estimates any longer.

17The same kind of result applies even when the δ is calibrated
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5 Forecasting

In order to asses the ability of our approach to capture the dynamic properties of the

data we compare the out of sample forecast of the modified filter with those of the

standard Kalman filter. The ratio behind this exercise follows the results in Granger

and Joyeux (1980) who showed that although it is always possible to find an AR

representation that can adequately fit long memory dynamics, the forecast produced

by such AR models will not be very accurate.

The exercise is implemented as follows. We estimate the RBC model described

in the previous section with both the standard and our approach for a subsample

of data, precisely from 1948:1 until 1987:4. We generate out-of-sample forecasts one

through four quarters ahead for each variable and compare the root-mean-squared

forecast errors from the modified model to those from the standard Kalman filter. We

then extend the subsample by one period and repeat the estimation and forecasting.

We continue this way until all the sample is covered in 2002.

Table 4 reports the RMSE together for the forecasts generated by the standard

Kalman filter (KF) and those generated by the augmented filter (AKF). In order

to asses whether any difference of the two RMSE is significant we also report the

statistic proposed by Diebold and Mariano (1995).18

18The critical values for the Diebold and Mariano test have been obtained using a bootstrap
procedure.
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Steps ahead 1 2 3 4

Output

RMSE: AKF 0.6492 1.2294 1.8137 2.3585

RMSE: KF 0.984 1.8935 2.881 3.7871

D-M test -6.8582∗∗∗ -5.9845∗∗∗ -4.8295∗∗∗ -3.7659∗∗∗

Consumption

RMSE: AKF 0.4588 0.7022 1.0155 1.3689

RMSE: KF 0.5443 0.961 1.4172 1.9213

D-M test -3.6916∗∗∗ -3.7701∗∗∗ -3.0075∗∗∗ -2.1948**

Hours

RMSE: AKF 0.6352 1.1373 1.6295 2.0847

RMSE: KF 0.8135 1.4583 2.0558 2.6461

D-M test -4.8812∗∗∗ -3.4673∗∗∗ -2.2781∗∗ -1.8388∗

Table 4:

The results indicate that forecasts from the modified filter significantly outper-

form those from the standard Kalman filter. In particular, for output, the RMSE of

the augmented filter are up to 60% smaller than those of the standard filter. This

shows the better performance of the modified filter with respect to the normal one19.

On one hand, the forecast from the augmented filter are more accurate than those

from standard filter for all the steps ahead; on the other, the forecast accuracy of

the modified filter improves, relatively to the standard filter, as the forecast horizon

arises. This result indicates the presence of very persistent dynamics in the data that

can not be fully captured by the autoregressive structure of the standard filter. On

the other hand, it also shows that by accounting for such persistence it is possible to

considerably improve the dynamic properties of the model.

19Similar, albeit less striking, results hold for the case when we calibrate the δ.
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6 Conclusion

In this paper we have shown a simple method to bring general equilibrium dynamic

models to persistent data. This can be done by introducing one (or more) common

factor long memory component as the driving forces of the data generating process.

Existing techniques already allow researchers to estimate DSGE models under the

assumption that data are either I(1) or I(0) with deterministic trend. In particular

when data are I(1) it is possible to use a Diffuse Kalman filter under the assumption

that the driving force of the economy such as technology is integrated of order one.

This provides Maximum likelihood estimates of the deep parameters of the model

under the assumption that there is a stochastic common trend.

A careful inspection of the data as well as relevant contributions to the economet-

ric literature indicates that long memory is a relevant feature of real world economies.

Long memory can be introduced in a general equilibrium framework by the aggre-

gation of heterogeneous stochastic processes ,as in Abadir and Talmain (2002), at

the price of having a very large and hard-to-handle framework. In this paper we

take the shortcut of following the RBC thread by assuming that technology is it-

self responsible for the long memory dynamic nature of the data. We believe to

have good reasons for doing that since it is well documented by independent and

methodologically different studies that productivity can have an I(d) nature.

We have shown that when unobservable states such as technology exhibit long

range dependence, the standard Kalman filter approach to DSGE estimation is not

well suited to tackle the estimation problem. In fact, the KF procedure can be

summarized in two components: a state updating part and a signal extraction part

(information set updating). Due to dynamic miss-specification, the direct updating

of the states is incorrect; this generates a bias in the updating for the conditional

variance of the unobservables. Due to the same miss-specification problem the or-

thogonality condition between projected states and the innovations constructed by

the filter fails to hold. This affects the signal extraction part and breaks down the op-

timality of the recursive signal extraction method. We have found that the estimated

deep parameters suffer of a bias; the estimation process and the filter incorrectly in-
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troduces measurement error even when there is an almost zero measurement error

in the data generating process.

We have proposed a method to take long memory into account. We view our

procedure as a shortcut of the following assumption, that agents know the underlying

dynamics of the economy and therefore their decision rules are correctly formed,

still the econometrician cannot see individual shocks and its vision is corrupted by

long memory and persistent autocorrelation. This informational assumption may

be viewed as quite radical but we leave it to be relaxed in further research. Our

work can also be viewed as a generalization of the methodology adopted in order to

deal with trends: we filter the technology shocks in order to clean the state vector

from long memory; this ensures that shocks are AR(1) with no more information left

over in the residuals. The filtering technique we use is of a GLS type: we estimate

the variance covariance matrix of the state vector, we factor its inverse by Cholesky

decomposition and we use that to clean the state vector and to report it to an AR(1)

with white noise.

Not only are the full sample estimates of our modified filter more in line with the

calibration experience; we also show that in an out of sample forecasting exercise

we outperform the conventional filter over all forecast horizons. This is due to the

fact that we correctly take into account the autocorrelation of the data. Due to the

flexible approach of Abadir and Talmain (2005) we evaluate the dynamic correlation

of the state vector in such a way to be adequate even in the presence of a nonlinear

autocorrelogram, while being able to approximate the (linear) fractional integration

framework.

While we have applied our method to a simple RBC framework in principle there

is no reason to be confined to such a unidimensional shock case. Several shocks can be

accommodated in our framework. Nevertheless, as already said in the introduction,

there is a widespread consensus about the I(d) nature of inflation; this would be a

call for monetary and New Keynesian Models. Since these are mostly estimated by

Bayesian Techniques we leave it to further research to extend our framework to that

case.
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