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Abstract

Tradable emission permits share many characteristics with financial
assets. As on financial markets, speculators are likely to be active on
large markets for emission permits such as those developing under the
Kyoto Protocol. We show how the presence of speculators on a market
for emission permits affects the price of these permits when firms face
risk aversion. The agency in charge of the optimal environmental policy
should account for the presence of speculators when determining the
total amount of permits to issue.
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Introduction

The interest in markets for emission permits has increased worldwide after
the signature of the Kyoto Protocol in December 1997. Although emission
constraints will only be binding from 2008 onwards, the embedded so-called
"flexible mechanisms" for reducing greenhouse gas emissions are already giv-
ing rise to the largest markets for emission permits. The European market
for carbon dioxide emission permits —launched in January 2005— as well as
other national or regional initiatives, are paving the way towards a global
market. Moreover, the implementation of emission permits markets is cur-
rently under development or consideration for the control of other air pollu-
tants (such as SO2, NOx, VOC, etc.) in numerous countries (see e.g. Stavins
(2003)). The design of most of these schemes is inspired by the American
experiences with such markets, especially the Acid Rain Program.

Emission permits share many characteristics with financial assets. An
emission permit (also often called ‘allowance’) allows a regulated agent to
emit a specified amount of a certain pollutant during a given period of
time (e.g. 1 ton of sulfur dioxide or carbon dioxide in the year 2005). The
permits are virtual assets: an agent holds a permit if this permit is registered
on the account of that agent by the environmental agency. Hence, emission
permits are perfect substitutes and their trade entails neither transportation
nor inventory costs. Such characteristics are favorable to the entry on the
market of other agents than regulated polluters, typically speculators.

Analyses of the US Acid Rain Program (see e.g. Schmalensee et al.
(1998)) or of the emerging European market for carbon dioxide emission
permits (see e.g. Convery and Ruthmond (2005)) reveal the presence of
such agents on these markets. In fact, numerous financial institutions are
active on the European market and hedge funds are expected to enter soon.
At present, the number of market participants is already very large and ex-
pected to sharply increase when all permits accounts become operational in
the Eastern European countries. Moreover, although permits are currently
traded at different places, market analysts forecast that trades will soon
be performed on an unique centralized exchange. This would increase the
transparency of the market and ease the access to it. Since, in addition, it is
particularly simple to open a permits account by the environmental agency1,
the number of players other than regulated firms is likely to be very large.

Nevertheless, to our knowledge, the literature on the tradable emission
permits instrument has so far ignored the possible presence of these agents.
Although they focus on the microstructure on markets for emission permits,
the contributions by Germain et al. (2004a,b) analyze only the role of inter-
mediaries and show how a price-driven market may lead to a strictly positive
spread. They leave aside the issue of speculation.

1Agents can manage their accounts via the internet, just like for internet banking.
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Analyzing speculation on markets for emission permits is particularly rel-
evant because speculators may have an impact on the equilibrium permits
price and, consequently, on firms’ investment/production choices. Specula-
tors stand ready to accommodate the excess demand of permits stemming
from firms. As such speculators serve as market makers for pollution per-
mits, and the equilibrium price therefore includes a premium for holding
inventories firms are willing to unload.2 Such a change in the price signal
would in turn affect firms investment and production decisions. When the
environmental agency balances the environmental quality with the cost for
the firms of reducing pollution, it should account for the impact of specula-
tors.

In terms of methodology, we introduce risk averse polluting firms which
have to decide on the amount of capital (or abatement) under uncertainty.
This is similar to the approach followed by Baldursson and von der Fehr
(2003) who analyze the consequences of price volatility on permits mar-
kets.3 We make the additional assumption of constant absolute risk aversion
in order to get closed form solutions and enrich the framework in three di-
rections: we account for repeated permits trading rounds, we introduce risk
averse speculators and we compute the optimal amount of emission permits
to be issued by the environmental agency.

The main results of our paper are related to these aspects as follows.
The uncertainty firms face when choosing their level of capital makes them
willing to sell (part of) their emission permits during the first trading round.
Once uncertainty is resolved and capital has been allocated, firms purchase
back the permits at the second round. Speculators hold positive inventories
of permits between the two dates and earn positive expected returns as
compensation for their risk bearing activity. The analysis reveals that social
welfare changes with the risk bearing capacity of the market, which in turn
depends on the market participants’ risk attitude.

The paper is organized as follows. In Section 1, we present firms and
speculators characteristics and we outline the sequence of decisions. The
permits market equilibrium is then analyzed. Section 2 is devoted to the
policy pursued by the environmental agency. Its role is to determine the
optimal amount of emission permits to be issued. We also analyze the impact
of changes in the risk bearing capacity of the market on expected social
welfare. Key results of the analysis, as well as short-selling constraints and
the introduction of derivatives, are further discussed in Section 3. Finally,

2 In a different context, Bernardo and Welch (2004) consider the interaction between
a pool of investors facing potential liquidity shocks and a sector of speculators absorbing
unwanted inventories.

3Baldursson and von der Fehr (2003) address the issue of how the introduction of risk
aversion by firms affects the performance of the tradable permits instrument w.r.t. the
tax instrument. Among other things, they show that accounting for risk aversion tends
to increase the relative performance of taxes.
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in Section 4 we summarize our results and present possible extensions to the
current analysis.

1 The model

1.1 Preliminaries: the agents

We shall consider three types of agents: firms, speculators and an envi-
ronmental agency. The agency is in charge of defining a total amount of
emission permits and of (freely) allocating them to firms. We assume for
the time being that the agency has already defined a total amount of permits
denoted by S0. The behavior of the agency, leading to the definition of the
optimal amount of permits by taking into account the damage costs due to
emissions of pollutants, is analyzed in section 2. Let us now describe firms
and speculators, assuming that there is a continuum of each of them, with
λ ∈ (0, 1) (resp. 1− λ) being the share of speculators (resp. firms).

1.1.1 Firms

Each firm, indexed by i, produces the good y whose price is normalized to 1.
All firms have the same Cobb-Douglas constant returns to scale production
function:

yi = θkαi e
1−α
i with 0 < α < 1

where ki denotes the level of capital employed by firm i and ei is the amount
of emissions used by the same firm. The parameter θ represents a shock on
the production function of the firms.4 This shock affects all firms in the
same way and is normally distributed with mean µ > 0 and variance σ2.5

Firms purchase capital at the exogenous price r > 0. Moreover, when a
firm emits pollutants, it must hold an amount of permits which is not lower
than the level of emissions. Each firm freely receives from the environmental
agency6 an amount of emission permits si0 and may sell some of them to —or
purchase some additional ones from— other agents. Such trades may take
place at any moment after permits have been allocated. For simplicity, we
assume that the market for permits opens at two different trading periods

4This shock is modelled as a change in the productivity of the firms. However, its
interpretation is broader than that. For instance, since the output price is given (and
normalized to 1), yi can be interpreted as firm i sales revenues. In this case, a change in
θ could represent a change in such revenues due to a change in the output price, resulting
itself from a change in the demand for that output.

5Under this normality assumption, the technology parameter -and consequently rev-
enues from product sales- might take negative values. However -as noted by Vives (1984)-
one can make the probability of negative prices (or output) arbitrarily small by choosing
high values for µ and low values for σ2.

6The way permits are shared among firms is irrelevant and it does not play any role in
the model solution, as will become clear in the remainder.
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indexed by t (t = 1, 2). The unit price of permits on the market is then
denoted by pt.

Given this notation, the profit of firm i reads as follows:

πFi = πF (ki, si1, ei; θ) = θkαi e
1−α
i − rki − p1 (si1 − si0)− p2 (si2 − si1) (1)

where si0 is the amount of emission permits freely allocated to firm i and
sit (t = 1, 2) is the amount of permits held by firm i at the end of trading
period t, i.e. firm i’s inventory of permits at period t. Therefore firm i
purchases (resp. sells) permits at the trading round t if sit−sit−1 > 0 (resp.
sit − sit−1 < 0).

Each firm’s total profit is composed of the revenues from the sales of
the product, yi, the cost of capital and the cost (resp. benefits) of the
net permits purchases (resp. sales). As long as permits prices are strictly
positive7, the requirement that each firm must hold an amount of permits
greater or equal to its emissions level (si2 ≥ ei) will hold with equality, and
we set si2 = ei in eq. (1).

Firms are risk-averse as captured by a constant-absolute risk-aversion
(CARA) function defined over their profits, and we let γF > 0 denote the
risk-aversion parameter supposed to be identical for all firms.

1.1.2 Speculators

Besides firms, speculators are active on the market for emission permits. We
consider a continuum of identical speculators indexed by j and of measure λ.
Unlike firms, speculators do not produce or pollute and their profits result
from their trading activity only. We assume that speculators have no initial
endowments of permits (i.e., all permits issued by the agency are allocated
to firms). Therefore speculators profit from the price difference between the
two trading periods, i.e., by purchasing (or short-selling) permits in the
first trading period and unwinding their position during the second trading
round. Hence their profit function is given by

πSj = πS (xjt; θ) = −p2xj2 − p1xj1 (2)

where xjt is the purchase (xjt > 0) or sale (xjt < 0) of permits in trading
period t, subject to xj1 + xj2 ≥ 0, i.e. speculators should hold non-negative
inventories in the last period. As long as permits prices are strictly positive,
speculators will set xj2 = −xj1.

We assume that speculators are also risk-averse with CARA utility func-
tion defined over final profits πSj and denote by γS > 0 their degree of risk
aversion.

7Which will be the case hereafter (see footnote 8 hereafter).
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1.1.3 Timing

The sequence of decisions is as follows. In period 0, the agency issues and
allocates to firms the total amount of permits S0 =

R 1−λ
0 si0di. All agents

face uncertainty on the technology parameter θ. In period 1, firms choose
their amount of capital, ki, and set their emission permits inventory level,
si1. At the same time, speculators may also trade permits, xj1. Then, the
value of θ is revealed to all agents. In period 2, firms decide on their amount
of emissions, ei, and trade permits, ei − si1. Speculators unwind their time
1 position trading −xj1. This sequence of decisions is illustrated in Figure
1.

Period 0 Period 1 Period 2 

Uncertainty is 
revealed (θ) 

Agency : S0 Firms : si1, ki  
 
Speculators : xj1 

Firms : si2, ei  
 
Speculators : xj2 

Figure 1: Sequence of decisions

Let us now move to the solution of the model, starting with the second
trading round.

1.2 The market for emission permits at time 2

At time t = 2 there is no uncertainty on the technology parameter θ, and
each firm maximizes profits with respect to the level of emissions given its
first period choices, i.e.:

max
ei

πF (ki, si1, ei; θ)

given ki, si1, with πF (·) as in eq. (1). The first order condition gives the
demand schedule for permits chosen by the firm:

ei (p2) =

∙
(1− α) θ

p2

¸ 1
α

ki. (3)

Firm i net demand for permits is then given by ei−si1. At time 2, speculators
unwind their date 1 position in the permits, ending up with null inventories
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at the second trading round, i.e. xj2 = −xj1, where xj1 is chosen in period
1.

Accordingly, the permits market clearing condition in period 2 reads as
follows: Z 1−λ

0
(ei(p2)− si1)di+

Z λ

0
−xj1dj = 0. (4)

or equivalently
R 1−λ
0 ei(p2)di =

R 1−λ
0 si1di +

R λ
0 xj1dj, i.e. firms’ emissions

are equal to the stock of permits held by firms and speculators after the
first trading round. As is clear, this stock must be equal to the amount of
permits the agency distributes to firms at time 0, such that eq. (4) reduces
to
R 1−λ
0 ei(p2)di = S0. Using the latter condition and (3), we obtain the

second period permits price:

p2 =
1− α

∆α
θ (5)

where ∆ ≡ S0
K and K denotes the aggregate level of capital, i.e. K =R 1−λ

0 kidi.8 Therefore in equilibrium, firms emissions are given by

ei = ∆ki. (6)

1.3 The market for emission permits at time 1

1.3.1 Firms

At time t = 1, all agents face uncertainty about the productivity level pre-
vailing at date 2 in the economy. Each firm solves maxki,si1 E (uF (πFi))
subject to (5) and (6), where uF (·) denotes firm i’s utility function. Sub-
stituting the equilibrium values for ei and p2 into the expression for πFi as
given by (1) yields:

πFi = πF (ki, si1; θ) =
θ

∆α
(α∆ki + (1− α) si1)− rki − p1 (si1 − si0) . (7)

Recall that the technology parameter θ is assumed to be normally distrib-
uted with mean µ and variance σ2, implying that profits are also normally
distributed. As is known (see for example Lintner (1969)), optimization of
a CARA utility function defined over a normal random variable allows to
write firm i maximization problem as

max
ki,si1

E (uF (πFi)) = max
ki,si1

µF (ki, si1)−
γF
2
σ2F (ki, si1)

where µF (·) and σ2F (·) denote respectively the mean and the variance of firm
i’s profits. Although firms are price taker and face constant returns to scale,

8Given that θ is normally distributed, p2 could in principle be negative. However, as
mentioned earlier in the paper, we assume that µ (resp. σ2) is sufficiently high (resp. low)
so that the probability of such a situation can be neglected.
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one must note that this problem has an interior solution since uncertainty
and risk aversion make the expected utility of firms a concave function in
its arguments (on this topic, see Sandmo (1971)).

The first order conditions of the problem lead to:

ki =
αp1

(1− α) r

S0
1− λ

(8)

si1 =
∆2α

γFσ
2 (1− α)2

µ
(1− α)

∆α
µ− p1

¶
− rki

p1
. (9)

where

∆ =
(1− α) r

αp1
. (10)

The demand of capital and permits are identical for all firms since they have
the same technology and risk aversion. These conditions can be interpreted
as follows. Relation (8) means that the optimal amount of capital chosen by
the firms is an increasing function of the total amount of permits allocated
(S0), a decreasing function of its price (r) and an increasing function of the
price of the other input (p1). Relation (9) shows that the amount of permits
held by firm i in period 1 is a decreasing function of its level of capital. We
will come back to its interpretation in the following section.

At the aggregate level, since there is a continuum of firms of measure
1− λ, the total amount of capital is

K = (1− λ)ki =
αp1

(1− α) r
S0. (11)

1.3.2 Speculators

The speculators’ problem is defined along the same lines as for firms. Each
speculator solves maxxj1 E (uS (πSj)), where uS (·) denotes speculator j’s
utility function. Since all speculators are identical, xj1 = x1 for all j ∈ [0, λ]
and we drop the subscript j in the remainder. Given the equilibrium price
p2 (see eq. (5)), profits πS as defined by relation (2) are normal with first
two moments µS (·) and σ2S (·). The maximization problem becomes

max
x1

µS (x1)−
γS
2
σ2S (x1)

and the optimal demand (or inventory) of each speculator is then

x1 =
∆2α

γSσ
2 (1− α)2

µ
(1− α)

∆α
µ− p1

¶
. (12)

It follows that first period firms’ inventories in (9) can be rewritten as

si1 = γx1 −
rK

p1 (1− λ)
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where γ = γS/γF denotes the ratio between risk-aversion coefficients. The
first RHS term relates to their trading activity, i.e., buying (selling) permits
in period 1 in order to gain by selling (purchasing) them at a higher (lower)
price in period 2. The second RHS term corresponds to the amount of
permits the firm decides to hold in order to be allowed to emit pollution.
This term is negatively related to the amount of capital it holds.

1.3.3 Market equilibrium

The first period market clearing condition is:Z 1−λ

0
(si1(p1)− si0)di+

Z λ

0
xj1(p1)dj = 0. (13)

Using relations (9-12), and letting A = (1−α)r
α and B = σ2

³
1−λ
γF

+ λ
γS

´−1
the first period permits price solves the following implicit function:

A2αp1−α1 + (1− α)BS0p
α
1 − (1− α)Aαµ = 0. (14)

Equation (14) does not allow to explicitly compute the equilibrium price
p∗1 = p1 (α, µ,A,B, S0) . However, the existence and uniqueness of such an
equilibrium price on the positive half-line are addressed in the following
Proposition.

Proposition 1 There exists a unique equilibrium price p∗1 ∈ R++.

Proof. Denote the left-hand side of equation (14) by G(p1). We have
limp1→0+ G(p1) = − (1− α)µAα < 0 and limp1→+∞G(p1) = +∞. More-
over, G(p1) is continuous and monotonically increasing (G0(p1) > 0). There-
fore, there exists a unique p∗1 ∈ (0,+∞) such that G(p∗1) = 0.

Let us now establish some properties of this equilibrium price.

Proposition 2 The equilibrium price p∗1
i) increases (resp. decreases) with λ if and only if γF > γS (resp. γF < γS);
ii) decreases with both γF and γS;
iii) (a) increases with µ and (b) decreases with σ2;
iv) decreases with S0.

Proof. The proof makes use of the implicit function theorem. It is detailed
in the appendix.

In order to understand the intuition behind these results, let us first
define the concept of risk bearing capacity of the market which we denote
by ρ:

ρ =
1− λ

γF
+

λ

γS
.
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The risk bearing capacity of the market is a decreasing function of both
agents’ degree of risk aversion. It is an increasing (resp. decreasing) function
of the share of speculators if and only if their degree of risk aversion is lower
(resp. higher) than the one of firms, γS < γF (resp. γS > γF ).

Proposition 2 i) and ii). Any change in the parameters γF , γS or λ which
induces a decrease of ρ leads the firms to increase their level of output. This
translates into a higher demand for emission permits. S0 being fixed, this
rises their equilibrium price.

Proposition 2 iii). An increase in the expected value of the productivity
parameter µ leads to a larger expected production and to a higher equilib-
rium price through the rising demand for permits. ρ being given, an increase
in the level of uncertainty σ2 means that production becomes more risky for
the firms. This decreases their demand for permits, which drives down the
equilibrium price.

Proposition 2 iv). Permits price is decreasing with the total amount of
permits issued.

We now focus on studying the behavior of permits prices. Let R = p2/p1
denote the (gross) return earned on permits between the two trading rounds.
The following Proposition characterizes expected returns, E (R), as well as
their volatility, V (R).

Proposition 3 a. In equilibrium expected returns are strictly greater than
unity, i.e. E (R) > 1, and, consequently, x1 > 0.
b. Both expected returns and volatility
i) decrease (resp. increase) with λ if and only if γF > γS (resp. γF < γS);
ii) increase with both γF and γS;
iii) increase with σ2;
iv) increases with S0.
v) a) expected returns decrease (resp. increase) with µ if and only if α < 1/2
(resp. α > 1/2) and v) b) volatility always decreases with µ.

Proof. The proof makes use of the implicit function theorem. It is detailed
in the appendix.

Proposition 3 a. states that expected prices rise through time. In fact,
speculators are ready to bear part of the risk by holding the risky asset
(x1 > 0) provided that they are compensated for that. The compensation
takes place through the (strictly positive) difference between E (p2) and p1,
i.e., through an expected return greater than one.

As far as Proposition 3 b. is concerned, E (R) and V (R) depend on each
of the parameter under consideration (λ, γF , γS , σ

2 and S0) only through
p1 (except for the dependence of V (R) w.r.t. σ2 and E (R) w.r.t. µ). As
E (R) and V (R) are inverse functions of p1, their derivatives w.r.t. each
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parameter have the opposite sign of the derivative of p1 w.r.t. the same
parameter, which is given in Proposition 2.9

Then, the comparative statics results hinge on the same reasoning offered
for Proposition 2. For example, if the risk bearing capacity of the market
decreases (through changes in γF , γS and/or λ, see i) and ii)), or if the
level of uncertainty increases (see iii)), holding permits become more risky
and the compensation for holding them necessarily increases. Moreover, as
uncertainty rises, the variance of p2 increases, and so does the variance of
the return.

The analysis of return volatility is of particular interest, given the overall
attention devoted to price fluctuations in financial markets by a wide range
of agents, including authorities monitoring markets’ behavior. Here, we
identify determinants of volatility in the emission permit market. While the
dependence of volatility on several underlying parameters closely mirrors
the results for other asset markets, our analysis has interesting implications:
an increase of the risk bearing capacity of the market or a decrease in the
level of uncertainty stabilize prices, and vice-versa.

2 The policy of the agency and the impact of spec-
ulators on social welfare

When defining the optimal amount of permits to be issued and allocated
to firms (S0), the agency balances the social gains from reducing the total
amount of emissions with the losses in production due to the constraint on
emissions. The present section is devoted to such an analysis.

The objective of the agency is to maximize expected aggregate produc-
tion of firms, less their consumption of capital and the damage costs due
to pollution. It is assumed, for simplicity, that marginal damage costs are
constant. To be consistent with the preferences of the agents in the econ-
omy, we also allow for risk-aversion (CARA) on the part of the agency as
captured by the absolute risk-aversion coefficient γA. Hence, recalling that
S0 =

R 1−λ
0 eidi (by (6)) and K =

R 1−λ
0 kidi, the agency objective is defined

in terms of the aggregate welfare10

θKαS1−α0 − rK − δS0. (15)

9For the dependence of V (R) w.r.t. σ2 and E (R) w.r.t. µ, one must in addition take
into account the direct effect of, respectively, σ2 and µ.
10One interpretation of (15) is as follows. At a macroeconomic level (in a closed econ-

omy with no public expenditures), when θ is interpreted as a shock on the technology, the
capital used by the firms is produced by them. Therefore, the price of capital equals the
price of output, that is, r = 1 since the output price has been normalized to 1. There-
fore, aggregate production less aggregate capital corresponds to aggregate consumption.
Accordingly, the objective of the agency (15) can be seen as a particular social utility
function depending positively on consumption and negatively on pollution.
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where δS0 is the total damage associated with pollution level S0. Letting
µA (·) and σ2A (·) denote the first two moments of the aggregate welfare, the
problem of the agency can be written -as for the firms and the speculators
(see section 1 above)- as follows:

maxS0 µA (S0)−
γA
2 σ

2
A (S0)

subject to eqs. (8), (11), (14) and S0 ≥ 0
(16)

Let Ŝ0 be a solution to the optimization problem (16), and W
³
Ŝ0

´
be the

corresponding welfare, i.e. W
³
Ŝ0

´
= µA

³
Ŝ0

´
− γA

2 σ
2
A

³
Ŝ0

´
. The remainder

of the analysis concerns the characterization of a non-negative solution to
(16), as well as the properties of the aggregate welfare. The existence and
uniqueness of a solution to problem (16) are addressed by the following
proposition:

Proposition 4 The optimization problem (16) admits a unique positive

maximum Ŝ0 > 0 for which W
³
Ŝ0

´
> 0 if and only if δ < δ̂ =

³
(1−α)µ
Aα

´ 1
1−α
.

Proof. See the appendix.

In words, a necessary and sufficient condition for the maximum to be
positive is that the marginal willingness to pay for the environment is not
too big. Indeed, if the marginal damage costs are large, the agency chooses
to issue and allocate no emission permits at all, such that production —and
therefore pollution— will not take place.

Let us now analyze how an increase in the risk-bearing capacity of the
market affects social welfare.

Proposition 5 If δ < δ̂, then
dW(Ŝ0)

dρ > 0 if and only if γA < 1
ρ .

Proof. See the appendix.

According to Proposition 5 social welfare exhibits a non-monotonic rela-
tionship with the risk-bearing capacity of the market. The intuition behind
the above condition is that one has to compare the average market risk
aversion (given by 1/ρ) with the agency’s risk aversion.

Finally, one can easily check the intuitive result that the higher the
marginal damage (δ), the lower the social welfare, i.e.

Proposition 6 If δ < δ̂, then
dW(Ŝ0)

dδ < 0

Proof. See the appendix.
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3 Discussion

Three important issues deserve additional comments. The first and the
second ones are related to our main results, namely the changes in permits
prices (Proposition 3) and the changes in welfare (Proposition 6). The third
issue concerns short-selling constraints and the introduction of derivatives.

1. A careful look at existing markets such as the US market for SO2 per-
mits or the European market for CO2 permits reveals that permits prices
may significantly fluctuate through time. Of course, numerous elements ex-
plain these fluctuations, such as changes in oil or electricity prices, weather,
political decisions, etc.11 Our results (in particular Proposition 3) suggest
that, besides these exogenous shocks, risk aversion and risk hedging behavior
may explain part of the price movements observed on markets for emission
permits.12

Indeed, we have shown that (expected) permits prices tend to rise through
time. Although it is well known in the finance literature, this result departs
from the existing contributions on transaction costs (see e.g. Stavins (1995))
or intermediation (see e.g. Germain et al. (2004)) in markets for emission
permits, which emphasizes the possible existence of a spread (i.e., a differ-
ence between the price at which permits are sold and the price at which
permits are purchased). Here, we observe an intertemporal spread, i.e., a
situation in which expected permits prices change through time. Moreover,
we have also shown that the volatility of the prices is influenced by the pres-
ence of speculators and, more generally, by the risk bearing capacity of the
market. An increase in the risk bearing capacity tends to stabilize prices,
and vice-versa.

2. Classical analyses of the tradable emission permits instrument do not
account for the participation of speculators on the market. The main policy
implications of our analysis depend on the degree of risk aversion of the
agency w.r.t. the one of firms and speculators. If an increase in the number
of speculators increases the risk bearing capacity of the market,13 then by
Proposition 5 institutional rules should favor the presence of speculators
on markets for emission permits (by contrast with the situation where only
polluting firms are present on the market). However, allowing speculators to
operate on the emission permits market should be granted only to a certain
extent, i.e. only as long as the agency’s risk tolerance remains greater than
the market risk bearing capacity.

3. Another policy-oriented issue is the extent to which short-selling of
emission permits is likely to take place. As shown in Proposition 3, firms

11On this topic, see for instance Albrecht et al. (2004) for the US SO2 market and
Convery and Redmond (2005) for the EU CO2 market.
12Some authors, including Zhao (2003), have dealt with the consequences of a change

in the permits price. Here, we give a possible explanation for such changes.
13This would occur whenever firms are more risk-averse than speculators, see section 1.
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find it optimal to unload some or the whole stock of permits to speculators
during the first trading round. Once uncertainty is resolved, i.e. during
the second trading period, firms buy back permits and use them in the pro-
duction process. The (expected) price differential compensates speculators
for bearing the risk of holding permits during the first period. In some
situations, typically when their degree of risk aversion is low, speculators
might be willing to hold more than the total amount of permits available
in the economy. One may therefore wonder if the total amount of permits
purchased by speculators should not be constrained by the total amount of
permits allocated by the agency (i.e., x1 ≤ S0/λ).

Exactly as on financial markets, such a constraint is not likely to be
relevant. In fact, institutions can be designed in order to allow the agents to
hold (temporarily) a negative amount of emission permits in their account,
i.e., to allow for short selling.14 Otherwise, the introduction of forward
contracts (with cash delivery) may play the same role in ruling out short-
selling constraints. A long (resp. short) forward contract specifies the future
date and the price at which one agent will sell (resp. buy), say, one permit.
The introduction of such contracts in our model is straightforward. The first
period is devoted to the forward trading (instead of being a spot market). x1j
is the number of forwards sold by speculator j (in period 1) and x2j = −x1j
is the delivery of the permits (in period 2). p2 is the price of the permits
on the spot market (in period 2). If contracts allow for cash delivery (as
opposed to physical delivery, i.e., in terms of emission permits), speculators
may purchase an amount of permits that is larger than the amount of permits
available in the economy.

4 Conclusion

We have analyzed the impact of speculators on the emission permits market
when agents are risk-averse. Our main results are the following. First, the
expected permits price increases through time, so that there is some room
for risk hedging by speculators. Second, an increase in the risk bearing
capacity of the market (due for instance to an increase in the number of
speculators or a decrease in the risk aversion of firms or speculators) rises
expected social welfare up to a certain point depending on the agency’s risk
tolerance.

Although the determination of an endogenous number of speculators in
the market is of interest, we do not tackle this issue here and we leave it
for future research. A second extension, which could help to understand
more comprehensively the role of speculators on markets for emission per-
mits, would consist in introducing feedback (noise) traders à la De Long

14For instance, on the recently launched European market for CO2 permits, shortselling
is possible.
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et al. (1990). These authors focus on speculators who make their trading
decision by simply extrapolating past prices. They show that the presence
of such traders may cause the emergence of a bubble. A third interesting
extension would be to allow for informational asymmetries between the dif-
ferent types of agents. For instance, one could consider that, by performing
market analyses, speculators are better informed than firms about possible
macroeconomic shocks.
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Appendix

Proof (Proposition 2). Let Ω be the set of underlying parameters, i.e.
Ω =

¡
λ, γS, γF , µ, σ

2, r, S0
¢
, and ωi be a given parameter in Ω. Moreover

let G (p1,Ω) denote the LHS in equation (14). We are interested in evalu-
ating how the underlying parameters affect the equilibrium price p∗1 = p (Ω)
defined by G (p∗1,Ω) = 0. The implicit function theorem yields

∂p∗1
∂ωi

(Ω) = −∂G (p
∗
1,Ω) /∂ωi

∂G (p∗1,Ω) /∂p1

Recall from the proof of Proposition 1 that ∂G (p∗1,Ω) /∂p1 > 0. Computing
the partial derivatives of G (p1,Ω) with respect to the elements in Ω yields
∂G(p∗1,Ω)

∂γS
> 0,

∂G(p∗1,Ω)
∂γF

> 0,
∂G(p∗1,Ω)

∂µ < 0,
∂G(p∗1,Ω)

∂σ2 > 0 and
∂G(p∗1,Ω)

∂S0
> 0

thus establishing the comparative statics results (ii)-(iv). Taking the partial
derivative of G (p1,Ω) with respect to the fraction of speculators, λ, gives

sgn

µ
∂G (p∗1,Ω)

∂λ

¶
=

⎧⎨⎩
−1
0
+1

if γF > γS
if γF = γS
otherwise

and claim (i) follows.
Proof (Proposition 3). Checking that E (R) > 1 is equivalent to

E (p2)− p1 =
(1− α)µpα1

Aα
− p1 > 0.
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Rearranging this expression for the expected price differential yields

E (p2)− p1 =
³ p1
A2

´α £
(1− α)µAα −A2αp1−α1

¤
In equilibrium (1− α)µAα−A2αp1−α = (1− α)BS0p

α, which gives E (p2)−
p1 > 0. E (p2)− p1 > 0.

Combining (5) and (12) and rearranging terms leads to

x1 =
∆2α

γSσ
2 (1− α)2

[E (p2)− p1]

such that E (R) > 1 yields x1 > 0.
Let Ω and ωi be defined along the same lines as in the proof of Proposition

2. From the expression for p2 in eq. (5) one has

E (R) = E (R (p1,Ω)) =
(1− α)µ

Aαp1−α
and V (R) = V (R (p1,Ω)) =

(1− α)2 σ2

A2αp2(1−α)

Therefore

∂E (R)

∂ωi
= −(1− α)2 µ

Aαp2−α1

∂p1
∂ωi

for ωi =
©
λ, γS , γF , σ

2, S0
ª

and
∂V (R)

∂ωi
= −2(1− α)3 σ2

A2αp3−2α
∂p1
∂ωi

for ωi = {λ, γS , γF , µ, S0}

Making use of these expressions together with the comparative statics analy-
sis in Proposition 2 yields results i, ii and iv and the claims that expected
returns increase with σ2 (see part iii) while volatility decreases with µ.
Moreover returns volatility increases with σ2 since

∂V (R)

∂σ2
=

µ
1− α

Aα

¶2µ
−2(1− α)σ2

p3−2α
∂p1
∂σ2

+
1

p2(1−α)

¶
and ∂p1

∂σ2
< 0 from Proposition 2 - part iii-b. Finally in order to complete

the Proof consider

∂E (R)

∂µ
=
1− α

Aα

µ
−(1− α)µ

p2−α1

∂p1
∂µ

+
1

p1−α

¶
Substituting for ∂p1

∂µ in the latter and considering the market equilibrium
condition (14) gives

∂E (R)

∂µ
= − (1− α) (1− 2α)BS0

Aαp
2(1−α)
1

¡
A2αp−α1 + αBS0p

α−1
1

¢
such that sgn

³
∂E(R)
∂µ

´
= sgn (2α− 1).
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Proof (Proposition 4). The proof consists of three steps. We first re-
duce the constrained optimization defined in (16) to an equivalent problem
keeping into account the equilibrium constraints (11), (14) and S0 ≥ 0. In
the second step we determine the necessary and sufficient conditions under
which the welfare function is strictly positive. This way, we are able to give
conditions for which the problem of the agency admits at least one positive
maximum -yielding a strictly positive optimal value of the aggregate welfare.
Finally, we show that the maximum is unique.

Step 1: alternative formulation for the maximization problem

Let W (S0, ρ) = µA −
γA
2 σ

2
A be the objective function in (16) to be

optimized with respect to S0. Rearranging eq. (14) gives

S0 =
ρ

σ2

µ
A

p

¶αµ
µ− Aαp1−α

1− α

¶
(17)

The non-negativity constraint for the initial amount of permits, S0 ≥ 0, is
therefore equivalent to require that

µ− Aαp1−α

1− α
≥ 0 (18)

Using eq. (17) together with eq. (11) yields the following expression for the
aggregate capital

K =
ρ

σ2

³ p
A

´1−αµ
µ− Aαp1−α

1− α

¶
(19)

Note that eqs. (17-19) imply that KαS1−α0 = ρ
σ2

³
µ− Aαp1−α

1−α

´
such that

the maximization problem (16) reduces to the following

maxp>0W (p, ρ) = ρ
σ2

³
µ− Aαp1−α

1−α

´³
µ (1− C (ρ)) + (C(ρ)−α)Aαp1−α

1−α − Aαδ
pα

´
s.t. µ− Aαp1−α

1−α ≥ 0
(20)

where we set C (ρ) = γAρ
2 . We finally rewrite the problem (20) operating a

change in variables by defining

x = µ− Aαp1−α

1− α
(21)

Therefore the second term in brackets in the objective function in (20) be-
comes

G (x, ρ) = µ (1− α) + (α− C (ρ))x− D

(µ− x)
α

1−α
(22)
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where we set

D = δ

µ
A

1− α

¶ α
1−α

Finally note that p > 0 is equivalent to x < µ such that the optimization
(23) can be rewritten in the following way

max
x∈[0,µ)

W (x, ρ) =
ρ

σ2
xG (x, ρ) (23)

where x and G (·) are defined in (21) and (22).

Step 2: positiveness of W

We are interested in determining conditions for which the objective func-
tion in (23) takes strictly positive values. In fact the agency can always
choose x = 0 and getW (0, ρ) = 0. So we are interested in the problem with
strict inequality, i.e. x > 0 (which corresponds to S0 > 0). By taking the
appropriate limits, note that the function G (x, ρ) evaluated at x = 0 does
not depend on ρ

G (0) = (1− α)µ− D

µ
α

1−α

and diverges to −∞ as x approaches the upper limit µ. Taking the first and
second derivative with respect to x yields:

Gx (x, ρ) = α− C (ρ)− α

1− α

D

(µ− x)
1

1−α
(24)

Gxx (x, ρ) = − α

(1− α)2
D

(µ− x)
2−α
1−α

Note that according to the latter derivative the function G (x, ρ) is strictly
concave over (0, µ). One can easily check that G (0) > 0 if and only if

δ < δ̂ =

∙
(1− α)µ

Aα

¸ 1
1−α

. (25)

On the other hand, δ ≥ δ̂ is sufficient for Gx (0, ρ) < 0. In such a case,
given the global concavity of G, it is then impossible that W has a positive
maximum somewhere in (0, µ). Thus it is necessary that δ < δ̂. Condition
(25) is also sufficient. Indeed, δ < δ̂ implies that Wx (0, ρ) =

ρ
σ2G (0) > 0.

As W (0, ρ) = 0, welfare W is strictly positive on a subset of (0, µ).

Step 3: existence of a global maximum
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The first two derivatives of the welfare function W (x, ρ) are

Wx (x, ρ) =
ρ

σ2
[G (x, ρ) + xGx (x, ρ)] (26)

Wx,x (x, ρ) =
ρ

σ2
[2Gx (x, ρ) + xGxx (x, ρ)]

From Step 2 above, we know that there exists an admissible interval over
which the welfare function is strictly positive if and only if δ < δ̂. Assuming
that the latter condition is met, since W is continuous and differentiable
on [0, µ) a candidate maximum for the welfare function is characterized by
Wx (x̌, ρ) = 0 where x̌ ∈ (0, µ) is such that W (x̌, ρ) > 0. From (26) one
has Gx (x̌, ρ) = −G (x̌, ρ) /x̌ which is strictly negative since G (x̌, ρ) > 0. It
follows that x̌ is indeed a local maximum since Wx,x (x̌, ρ) < 0 by the strict
concavity of the function G (·) (see Step 2). For the same reason, there can-
not be any local minima. Thus there cannot be several local maxima and x̌
is the unique global maximum. ¥
Proof (Proposition 5). Consider the agency’s optimization problem as
given in (23) and let x̂ ∈ (0, µ) be the unique maximum. By the Envelope
Theorem

dW (x̂, ρ)

dρ
=Wρ (x̂, ρ) =

x̂

σ2
[G (x̂, ρ) + ρGρ (x̂, ρ)]

From eq. (22) one has Gρ (x̂, ρ) = −γAx̂
2 , while (26) yields G (x̂, ρ) =

−x̂Gx (x̂, ρ) so that

Wρ (x̂, ρ) = −
x̂2

σ2

h
Gx (x̂, ρ) +

ργA
2

i
Using the expression for Gx (·) (see eq. (24)) and rearranging gives

sgn (Wρ (x̂, ρ)) = sgn

Ã
D

(1− α) (µ− x̂)
1

1−α
− 1
!

Now note that the condition for the global maximum, i.e. G (x̂, ρ)+x̂Gx (x̂, ρ) =
0, yields

(1− α)µ+ 2 (α− C (ρ)) x̂ =
D ((1− α)µ− (1− 2α) x̂)

(1− α) (µ− x̂)
1

1−α
(27)

such that

sgn (Wρ (x̂, ρ)) = sgn ((1− 2α)x+ 2 (α− C (ρ))x) =

= sgn (1− γAρ)

which gives the result in Proposition 5.
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Proof (Proposition 6). Consider the agency’s optimization problem
given by (23). By the Envelope Theorem:

dW (x̂, δ)

dδ
=Wδ (x̂, δ) = −

ρ

σ2
x

µ
A

(1− α) (µ− x̂)

¶ α
1−α

< 0
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