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1 Introduction
This paper discusses the Bayesian treatment of a class of regression models involving latent vari-
ables with a possible dynamic specification. These models would be rather simple to analyze if the
latent variables were observed. However, the structural equations are completed by an observation
rule implying that only a censoring function of the latent variables is observable. Typical exam-
ples are Probit and Tobit regression models, and various formulations of disequilibrium models.
Classical inference in these models is traditionally a difficult task because the likelihood function
involves the computation of an integral. In the static case, the integral is of dimension one for each
observation so that the maximum likelihood approach is not difficult to implement. We can quote
Tobin (1958) for the static Tobit model and Maddala and Nelson (1974) for static disequilibrium
models. However, the dynamic case increases tremendously the dimension of the integral so that
the problem becomes rapidly untractable as shown in Dagenais (1982) for the Tobit model with
autocorrelated errors at the order one. One has to resort to simulated maximum likelihood. Lee
(1999) solves the case of the dynamic Tobit model and Laroque and Salanie (1993) and Lee (1997)
tackle the case of dynamic disequilibrium models. However, these methods, based on simula-
tions, are relatively computer intensive and involve non-trivial algorithms. Moreover, Laroque and
Salanie (1993) report that it may be difficult to compute accurate standard errors of the estimates.

The data augmentation principle of Tanner and Wong (1987) was introduced to deal with miss-
ing value problems. First seen as a stochastic EM algorithm, it was soon reinterpreted as a Gibbs
sampler and used as such for Bayesian inference in the static Tobit model by Chib (1992) and by
Zangari and Tsurumi (1996) and Wei (1999) for the dynamic Tobit model. Manrique and Shephard
(1998) investigate the use of simulation methods for likelihood and Bayesian inference in dynamic
latent variable models and favour the use of the scan sampler algorithm of de Jong (1997) based
on the Kalman filter. They make suggestions for Bayesian inference in dynamic disequilibrium
models.

The purpose of this paper is first to review the data augmentation principle when applied to
latent variable models. We then detail the difficulties raised by the dynamic case on three examples
and especially for the dynamic disequilibrium model. This is the object of Section 2. We propose
to use an alternative dynamic specification for the disequilibrium model which is originally due to
Ginsburgh, Tishler, and Zang (1980). Bayesian inference becomes quite simple (Section 3) and
opens the way to model comparison and model checking (Section 4). We show the applicability of
these methods on the rationed credit market in Poland (Section 5). Conclusions are drawn in the
last section.

2 Data augmentation for latent variable models
Let us consider a multivariate latent variable ỹt of IRp generated by the linear multivariate regres-
sion model

A(L)ỹt = B(L)xt + ut, (1)

where ut is a Gaussian white noise of IRp with zero mean and variance-covariance matrix Σ, and
xt a set of observed exogenous variables of IRk. A(L) and B(L) are matrices of lag polynomials
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defined as

A(L) = Ip − A1L− A2L− · · ·ArL
r B(L) = B0 + B1L + · · ·+ BsL

s. (2)

where the Ai and Bi are square matrices of parameters of dimension p. We denote by θ the vector
containing all the unrestricted parameters contained in A(L), B(L) and Σ. If ỹt were observed,
this model would be a classical multivariate dynamic regression model. The difficulty comes from
the fact that the latent variable ỹt is only partially observed by means of a deterministic censoring
rule g(.) which relates the observed variable yt to the unobserved ỹt. Being a censoring rule, this
is not a one-to-one function. We start by briefly discussing three examples to clear up ideas.

Example 1: Tobit models. The dynamic univariate Tobit model is obtained with p = 1 in (1)
together with the following observation rule:

yt = max(0, ỹt). (3)

The latent variable is observed only when it is positive, otherwise zero is observed. The
censoring rule is thus perfectly deterministic and we know exactly which observations are
censored.

Example 2: Disequilibrium models. A dynamic version of the disequilibrium model of
Maddala and Nelson (1974) is a two equation model describing notional demand dt and
notional supply st. It is obtained for p = 2 in (1) while noting ỹ1t = dt and ỹ2t = st. As
prices are supposed to be sticky, adjustment has to be made by quantities. The observed
exchanged quantity qt = yt is given by the minimum of demand and supply:

qt = min(dt, st). (4)

This censoring rule is still deterministic, but this time a new difficulty is introduced because
we do not know which of demand or supply is observed. We can only compute a probability
that an observation is allocated to the demand or supply regime.

Example 3: Stochastic volatility. This model does not fall in the class of censoring models,
but it gives an interesting illustration of the problems raised by a dynamic latent variable.
A univariate latent variable, noted in this particular example ht, follows the autoregressive
process of order one, without exogenous variables,

ht = (1− ρ)µ + ρht−1 + ut (5)

where ut ∼ N(0, σ2). There is no observation rule for ht like in the previous examples, but
ht is related to an observed variable yt through its variance by assuming that

yt|ht ∼ N(0, exp(ht)). (6)

Thus, this assumption can be interpreted as an indirect observation rule for ht. This type of
model is used for financial returns.
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The latent variable model (1) can be treated in a unified framework for Bayesian inference by
data augmentation. The basic idea is quite simple. If ỹ were observed, (1) would be a Gaussian
regression model. The posterior density of θ would belong to the natural conjugate class under a
suitable prior distribution, providing thus analytical results, even for the stochastic volatility model
(see e.g. Robert and Casella (1999), page 435). The idea of data augmentation initiated by Tanner
and Wong (1987) consists in simulating the latent variable conditionally on a given value of θ and
on the observations, and then iterating using a Gibbs sampler. Under relatively mild conditions,
the chain converges to draws of the joint posterior density of both ỹ and θ. Conditionally on y and
ỹ, it is relatively easy to get draws of θ from its conditional posterior density. The simulation of the
distribution of ỹ conditionally on θ and y is however more demanding because one has to take into
account firstly the censoring rule (but this can be simple) and secondly the dynamic behaviour of ỹ
which raises special difficulties. It is thus useful to distinguish between the static and the dynamic
cases for expository purposes.

2.1 A Gibbs sampler for the static case
Likelihood inference can be difficult in latent variable models because the likelihood function
involves an integral. In general, we can write

L(θ; y) =
∫

L(θ; ỹ, y)dỹ, (7)

where ỹ = [ỹ1, . . . , ỹT ] and y = [y1, . . . , yT ]. In static models, the above integral of dimension T
factorizes into a product of T integrals of dimension one, but this is not the case in dynamic models.
The data augmentation principle introduced in Tanner and Wong (1987) avoids to compute such
an integral by considering the conditional posterior density of θ, conditional on both the observed
sample and the latent process, so that

ϕ(θ|ỹ, y) ∝ L(θ; ỹ, y) ϕ(θ), (8)

where ϕ(θ) is the prior density. The problem contained in (8) is of course that ỹ is not observed.
The data augmentation principle consists in simulating ỹ within a Gibbs sampler to finally simulate
sequentially (in the static case)

ỹj+1 ∼ f(ỹ|θj, y),

θj+1 ∼ ϕ(θ|ỹj+1, y),
(9)

where the superscript j indicates the iteration number of the Gibbs sampler. In general, the condi-
tional posterior density ϕ(θ|ỹ, y) does not depend on y because y is a deterministic function of ỹ
due to the deterministic observation rule. Given the assumptions on the latent model, ϕ(θ|ỹ) easily
belongs to a well known class of density functions such as the normal inverted gamma density if
the prior is chosen in an appropriate conjugate class.
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Example 1: (continued) Static Tobit models. This is the most simple case and its solution is
due to Chib (1992). Let us write the model as

ỹt = x′tβ + ut

yt = max(0, ỹt)
(10)

with ut ∼ N(0, σ2). The conditional posterior density of β and σ2 is a Normal inverted-
gamma-2 if, for instance, the diffuse prior ϕ(β, σ2) ∝ 1/σ2 is used. It is convenient to
reorder the observations so as to define a T1-vector yu of unobserved components corre-
sponding to the censored observations and a T2-vector yo of uncensored observations in
order to build y∗ = [y′u, y

′
o]
′. Let us call X the T × k matrix of corresponding exogenous

variables. The conditional posterior densities of β and σ2 are then

ϕ(β|σ2, y∗) = fN(β|β̂, σ2(X ′X)−1)

ϕ(σ2|y∗) = fIγ2(σ
2|s, T ),

(11)

where fN and fIγ2 denote respectively the normal and the inverted-gamma2 densities, β̂ =
(X ′X)−1X ′y∗, and s = y∗

′
y∗ − y∗

′
X(X ′X)−1X ′y∗.

Since positive draws must be avoided, the conditional distribution of yu is the truncated
normal (more precisely a product of univariate truncated normal densities) denoted by

f(yu|β, σ2) = fTN(yu|Xuβ, σ2IT1) (12)

where Xu is the T1×k matrix of exogenous variables corresponding to the censored observa-
tions. A draw of yu serves to build the vector y∗ which becomes the vector of the endogenous
variables where the zeros are replaced by the simulated values.

The Gibbs sampler is thus fully defined by three steps:

1. Simulate yj+1
u according to (12) and construct y∗j+1.

2. Simulate θj+1 according to (11) using y∗j+1 to compute conditional posterior moments.

3. Go to step 1.

Example 2: (continued) Static disequilibrium models. The Tobit model is simple because we
know which are the censored observations. In a disequilibrium model, we can only compute
the probability that an observation belongs to the demand or supply regime. Let us consider
the following simple model:

dt = x′1tβ1 + u1t,

st = x′2tβ2 + u2t,

qt = min(dt, st),

(13)
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where x1t and x2t are exogenous variables of dimensions k1 and k2. The error terms u1t and
u2t are assumed IID, jointly N(0, Σ) with Σ being diagonal. We have to simulate dt when
the supply regime is operating and st when the demand regime is operating. The probability
of being in the demand regime is given by

λt = Pr(dt − st < 0|θ) = Φ


x′1tβ1 − x′2tβ2√

σ2
1 + σ2

2


 , (14)

where Φ is the standard normal cdf. Given a draw θj , we evaluate (14) for each observation t
and draw a uniform random number v. We have to construct two vectors of dimension T , yd
and ys which contain alternatively observations and simulations of the demand and supply.
We allocate an observation qt to the demand vector yd if v < Pr(dt−st < 0|θj) and generate
st as a truncated normal

st ∼ TNst>dt(x
′
2tβ

j
2, σ

2
2
j
) (15)

which is then allocated to the supply vector ys. If v > Pr(dt − st < 0|θj), we allocate qt to
the supply regime and generate dt for the demand regime as

dt ∼ TNdt>st(x
′
1tβ

j
1, σ

2
1
j
) (16)

Given yd and ys, it is then straightforward to find the conditional posterior density of β1, σ2
1

and of β2, σ2
2 to obtain the desired Gibbs sampler whose iteration j is defined by six steps:

1. Set θ = θj−1 (the draw of the previous iteration).

2. Compute the regime probability λt using (14) and draw a uniform random number v.

3. If v < λt, allocate qt to yd, draw sj
t using (15) and allocate it to ys.

4. If v > λt, allocate qt to ys, draw dj
t using (16) and allocate it to yd.

5. Repeat steps 2 to 4 for all observations.

6. Draw θj from its conditional posterior distribution.

2.2 The pitfalls of the dynamic case
The difficulties entailed by the dynamic case come solely from the simulation of the latent vari-
able. When the process of the latent variable is dynamic, it is not correct to sample this vari-
able from its conditional distribution (given the past) defined directly by the model. There ex-
ists a complex dynamic interaction between the latent and observed variables. In the static case,
f(ỹt|yt, θ) = f(ỹt|θ), but the dynamics of the latent process influences the censoring mechanism
and consequently we have to simulate the latent variable from

f(ỹt|ỹ\t, y, θ),

where ỹ\t denotes all the past and future of ỹt.
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Example 1: (continued) Dynamic Tobit models. The dynamic case was treated by Wei
(1999). Supposed that we are in an AR(1) process for simplicity. Wei (1999) draws the
latent variables by groups of consecutive occurrences which are preceded and followed by
one uncensored observation. The conditional distribution of such a group is a truncated
multivariate normal. Its mean and variance have to be built recursively.

Example 2: (continued) Dynamic disequilibrium models. The procedure advocated by Man-
rique and Shephard (1998) is exactly the same as in the static case in the sense that the con-
ditional density of st|s\t, θ is still a truncated normal. But this time its mean and variance
have to be determined by the scan sampler of de Jong (1997).

Example 3: (continued) Stochastic volatility. Bayesian inference was first treated by Jacquier,
Polson, and Rossi (1994). The distribution of ht given its past and the past of yt is Gaussian
while we need in fact the distribution of ht conditional to yt and h\t. It can be shown that
this distribution is given by

f(ht|h\t, y, θ) ∝ f(ht|h\t, θ) f(yt|ht, θ) (17)

where
f(ht|h\t, θ) = f(ht|ht−1, ht+1, θ) = fN(ht|µt, σ

2/(1 + ρ2)), (18)

the conditional mean µt being given by

µt = µ +
ρ(ht−1 + ht+1 − 2µ)

1 + ρ2
. (19)

It is relatively difficult to sample from (17). Several algorithms have been proposed in the
literature and are reviewed in Kim, Shephard, and Chib (1998). Some of them are based on
rejection techniques, other on the Metropolis algorithm with a gamma candidate function.

Our goal is to provide a simple, quick and feasible algorithm for Bayesian inference in dynamic
disequilibrium models. Empirical work usually involves a specification search that requires to
estimate several versions of a model. We have the feeling that this goal cannot be easily reached
with the above dynamic version of the Maddala-Nelson specification. Consequently, we propose
in the next section to use an alternative specification for which Bayesian inference proves to be
much simpler and which has received a great attention in the classical empirical literature.

3 The GTZ specification of disequilibrium models
Ginsburgh, Tishler, and Zang (1980) propose a formulation of the canonical disequilibrium model
which led to important empirical work, see for instance the papers collected in Drèze et al. (1991).
Agents make plans which are modelled by x′1tβ1 and x′2tβ2. They realize that theirs plans are
incompatible, so that the exchanged quantity is the minimum of their plans plus an error term
which is interpreted as an error of observation. In the dynamic case, agents incorporate the past

6



state of the market qt−1 to form theirs plans. Using the same notations as before, we can express
the model as

dt = E(ρ1qt−1 + x′1tβ1),

st = E(ρ2qt−1 + x′2tβ2),

qt = min(dt, st) + εt,

(20)

where εt is a normal error term of zero mean and variance σ2. Classical inference for this model
is much more simple than for the Maddala-Nelson model, since the likelihood function does not
involve an integral for latent variables despite of the censoring rule:

L(q; θ) ∝ σ−T exp

(
− 1

2σ2

∑

t

(qt −min[ρ1qt−1 + x′1tβ1, ρ2qt−1 + x′2tβ2])
2

)
. (21)

This function can be maximized using an appropriate algorithm that smooths its local discontinu-
ities. As the dynamics relies solely on past observations and not on past latent variables, there are
no differences either for inference or for simulation between the static and the dynamic cases.1

Richard (1980) and Sneessens (1985) argue that this formulation should be preferred to the
more traditional one of Maddala and Nelson (1974), because it displays nicer statistical and em-
pirical properties.

3.1 A more general specification
The above model, especially when considering its likelihood function (21), can be considered as
a non-linear regression without latent variables. We can show that it may fully enter the class of
censored latent variable models and that the data augmentation principle can be used for Bayesian
inference.

Let us introduce the extra latent variable δt which can take only two values 0 or 1 depending
on the operating regime at time t, and two independent Gaussian error terms u1t ∼ N(0, σ2

1) and
u2t ∼ N(0, σ2

2). We write the model as

qt = δt(ρ1qt−1 + x′1tβ1 + u1t) + (1− δt)(ρ2qt−1 + x′2tβ2 + u2t)

δt =





1 if ρ1qt−1 + x′1tβ1 < ρ2qt−1 + x′2tβ2

0 otherwise.

(22)

The variable variable δt is introduced only for notational convenience. It is fully determined once
we know the regression parameters. Consequently, it is a redundant parametrisation. Formulation
(22) becomes observationally equivalent to the original GTZ specification when σ2

1 = σ2
2 = σ2 as

we can define εt = δtu1t + (1 − δt)u2t. It is convenient to allow for a different variance between
the two regimes.

1Maddala (1987) proposes a similar alternative formulation for the dynamic Tobit model where the lagged variable
is observed and not latent. Inference is then as simple as in the static case.
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Let us redefine the demand (dt) and supply (st) variables of (22), so that they become fully
latent variables that can be decomposed between a systematic and a random part:

dt = ρ1qt−1 + x′1tβ1 + u1t = µdt + u1t

st = ρ2qt−1 + x′2tβ2 + u2t = µst + u2t.
(23)

We can rewrite the censoring rule as

qt = min(µdt, µst) + δtu1t + (1− δt)u2t. (24)

The two latent variables dt and st have a well defined conditional distribution which is a truncated
normal with

dt ∼ TNµdt>µst(dt|µdt, σ
2
1)

st ∼ TNµdt<µst(st|µst, σ
2
2)

(25)

to be compared with formulae (15) and (16) of the static Maddala-Nelson specification. In both
cases, we have truncated normals. But as the switching rule operates here, not on random vari-
ables as in the Maddala-Nelson specification, but on the non-stochastic quantities µst and µdt,
the truncation is automatically verified once θ is known. Conditionally on θ, we know perfectly
to which regime each observation belongs. This has two consequences. Firstly, the conditional
regime probability at t is given by a Dirac function 1I(.)

Pr(µdt < µst|θ) = 1I(µdt < µst|θ). (26)

and no longer by the Gaussian cdf. It is either zero or one. However, in the Bayesian framework,
where parameters are random, the unconditional regime probabilities take values in the whole
range [0, 1] and are defined by

Pr(µdt < µst) =
∫

1I(µdt < µst|θ)ϕ(θ|y)dθ. (27)

In a Monte Carlo setting they can be approximated by

Pr(µdt < µst) '
1

N

∑

j

1I(µdt < µst|θj),

where θj denotes a draw of ϕ(θ|y).
Secondly, as the regime selection is made on expectations and not on realisations, we observe

the demand or supply plans plus an error term. If the error is large and the difference between the
plans small, the observed quantity may be larger than or equal to the maximum of the two plans
and not to their minimum.
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3.2 Bayesian inference
Let us denote by θ the parameters of the model. If we suppose that the covariance between u1t and
u2t is zero, we can split θ in two parts θ1 and θ2 corresponding to the parameters of each regime.
The prior density can be defined independently on θ1 and θ2, for example a diffuse prior given by

ϕ(θ1) ∝ σ−2
1 ϕ(θ2) ∝ σ−2

2 . (28)

An informative natural conjugate prior would be a conditional normal density on ρj, βj|σ2
j and an

inverted-gamma-2 on σ2
j , for j = 1, 2.

Despite the fact that the likelihood function (21) does not involve an integral, it is useful and
computationally efficient to devise a Gibbs sampler similar to (9). Let us define two matrices
Z1 and Z2 corresponding to the T − 1 observations of both the predetermined variables qt−1 and
the exogenous variables xjt in the two regime equations and let us denote by γj (j = 1, 2) the
corresponding regression coefficients, each of dimension kj .

For a given value of γ1 and γ2, we know perfectly which regime is operating. The allocation
step designed for the static Maddala Nelson specification of example 2 is much simplified. For
each t, if µdt < µst, we allocate qt to ydt, draw st according to

st ∼ N(st|µst, σ
2
2) (29)

and allocate it to yst. Otherwise, we allocate qt to yst, draw dt according to

dt ∼ N(dt|µdt, σ
2
1) (30)

and allocate it to ydt. We have thus two sets of endogenous variables mixing observed and simu-
lated values. Using the noninformative prior (28), we find that the conditional posterior density of
the parameters is

ϕ(γ1|σ2
1, yd) = fN(γ1|(Z ′

1Z1)
−1Z ′

1yd, σ2
1)

ϕ(σ2
1|yd) = fIγ2(σ

2
1|, yd′yd− yd′Z1(Z

′
1Z1)

−1Z ′
1yd, T − 1)

(31)

for the demand regime, and similarly for the supply regime:

ϕ(γ2|σ2
2, ys) = fN(γ2|(Z ′

2Z2)
−1Z ′

2ys, σ2
2)

ϕ(σ2
2|ys) = fIγ2(σ

2
2|, ys′ys− ys′Z2(Z

′
2Z2)

−1Z ′
2ys, T − 1).

(32)

Starting values for the Gibbs sampler can be easily chosen. We can suppose that the market is
in equilibrium and thus impose yd = ys = q where q is the (T − 1)-dimensional vector of
observed quantities qt. We then compute the OLS estimators γ̂i = (Z ′

iZi)
−1Z ′

iq and σ̂2
i = q′q −

q′Zi(Z
′
iZi)

−1Z ′
iq, i = 1, 2, and use these estimates as starting values. Even if these estimates are

not the best possible starting values, they have the advantage of being feasible as they assume the
model is near equilibrium.
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3.3 Identification issues
The Gibbs algorithm hides a potential identification problem which is quite apparent when we
consider the direct likelihood function. Let us write it using formulation (22) of the model. As δt

can be only either 0 or 1, its role is just to select observations. Consequently, we have the following
equivalence:

L(q; θ) =
∏

t [δtfN(qt|µdt, σ
2
1) + (1− δt)fN(qt|µst, σ

2
2)]

=
∏

t|δt=1 fN(qt|µdt, σ
2
1)

∏
t|δt=0 fN(qt|µst, σ

2
2).

(33)

For identification, the information matrix associated to this likelihood function must be invertible.
We write the identification conditions in the following theorem.

Theorem 1 A necessary and sufficient identification condition for model (22) is that there are at
least as many observations as parameters in each regime, provided the regressors are not collinear.

Proof: For a given vector δ = [δ2, . . . , δT ], (33) is the likelihood function of a Gaussian regression
model with unequal variances. The information matrix for the regression parameters is given by

I(γ1, γ2)) =

(
σ−2

1

∑
t|δt=1 z1tz

′
1t 0

0 σ−2
2

∑
t|δt=0 z2tz

′
2t

)
.

In the absence of collinearity, this matrix is regular whenever
∑

δt ≥ k1 or
∑

δt ≤ T − k2, where
ki the number of regressors in each regime.

2

The integrability of the posterior density requires the model to be identified over the whole feasible
domain of integration. Obviously we need an informative prior to reach integrability. We propose
to modify (28) into

ϕ(θ) ∝ σ−2
1 σ−2

2 1I(k1 ≤
∑

δt ≤ T − k2) (34)

This prior modifies the Gibbs sampler by just introducing a supplementary rejection step.

3.4 Computational efficiency of the Gibbs sampler
Lubrano (1985) has analyzed the static GTZ model using importance sampling to integrate directly
the posterior density. Do we gain computational efficiency by using a Gibbs sampler with data
augmentation? We performed a small experiment on simulated data to compare our algorithm
with a a Metropolis algorithm applied directly to the likelihood function (21). The data generating
process is

dt = ρ1qt−1 + β10 + x1tβ11

st = ρ2qt−1 + β20 + x2tβ21

qt = Min(st, dt) + εt.

(35)

The variable x1t is generated by the autoregressive process x1t = 0.85x1t−1 + ut where ut ∼
N(0, 1) and x0 = 3.5, and x2t is generated by the same process, but independently of x1t. The
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error term εt is generated as a N(0, σ2) with σ2 = 0.05. We generated 250 observations using the
parameter values indicated in Table 1; 128 are in the first regime and 122 in the second regime.
The value of the parameters imply a R2 of 0.95 in each regime.

Table 1: Gibbs sampler with data augmentation
versus direct integration using Metropolis

ρ1 β10 β11 ρ2 β20 β21 σ2
1 σ2

2

True values 0.60 -2.00 1.00 0.40 7.00 -1.50 0.050 0.050

Starting values 0.81 -0.67 0.35 0.82 1.75 -0.38 0.18 0.17

Gibbs 0.63 -2.08 1.02 0.45 6.46 -1.39 0.045 0.052

0.025 0.15 0.059 0.032 0.33 0.071 0.0061 0.0065

Metropolis 0.63 -2.02 1.00 0.44 6.58 -1.42 0.045 0.053

0.0099 0.065 0.025 0.013 0.15 0.033 0.0028 0.00030

In the Gibbs and Metropolis blocks, the first row contains the posterior means and the second the
posterior standard deviations.

Let us first analyse this simulated sample using the a Gibbs sampler with data augmentation.
As starting values, we used the OLS estimator assuming equilibrium. Table 1 indicates that this
procedure gives starting values which are rather far from the true generating values, with however
a correct sign. They induce a feasible sample separation. We used 10 000 draws plus 1 000 for
warming up the chain. Convergence was checked using CUMSUM graphs. The Gibbs sampler
took 1.92 seconds to get the results presented in the first part of Table 1. The total variance of this
Monte Carlo experiment,2 computed using a parametric estimate of the spectral density at zero to
take into account the correlation among the draws, is 4.898E-8. If we raise the number of draws to
40 000, the total Monte Carlo variance goes down to 1.262E-8 for a total computing time of 7.03
seconds.

It was much more difficult to achieve a comparable result with the direct approach using a
Metropolis algorithm to integrate the posterior density. The candidate function is a Student with 4
degrees of freedom. A first round of 10 000 draws and a random walk algorithm, with the same
starting values as for the Gibbs sampler plus a diagonal covariance matrix determined so as to get
t-statistics equal to one, took 2.09 seconds with a Metropolis rejection rate of 99.5%. A second
round of the random walk algorithm, using the results of the previous round for re-calibrating
the candidate density, took 2.00 seconds with a rejection rate of 46%. The total variance of this
experiment is 6.111E-7. We needed a third iteration, with this time an independent Metropolis
(2.14 seconds and a rejection rate of 71%) to get the smaller Monte Carlo variance of 2.78E-8.

2The variance of a MCMC experiment is defined by formula (3.50) of Bauwens, Lubrano, and Richard (1999) for
one parameter. The values reported in the text are obtained by adding the variances computed for each parameter.

11



However, the graphs of the marginal densities were not very smooth, which is a clear sign of a lack
of convergence. A fourth iteration with the independent Metropolis had a rejection rate of 42%
and a Monte Carlo total variance of 7.074E-9.

On this particular simulated sample, the Metropolis algorithm applied to the likelihood func-
tion needed four iterations to achieve convergence. The Gibbs sampler converged with only 10 000
draws and 1.92 seconds, compared to the 40 000 of the Metropolis procedure and a total computer
time of 8.37 seconds. However, once convergence is reached, the direct approach has of course
a smaller Monte Carlo variance, 7.074E-9 against 1.262E-8 for the Gibbs sampler with 40 000
draws, because the integration problem is smaller in the direct approach. Table 1 also indicates
that posterior standard deviations found with the direct approach and the Metropolis algorithm are
on average half of those found by data augmentation and the Gibbs sampler. We computed clas-
sical OLS estimates using the optimal sample separation found by the Metropolis algorithm as an
approximation for the MLE. The corresponding classical standard deviations were on average 6%
lower than the Bayesian standard deviations found by the Gibbs sampler and consequently much
larger than the posterior standard deviations found by the Metropolis algorithm. We can conclude
that the Metropolis algorithm has underestimated the posterior standard deviations because of its
large rejection rate.

4 Model comparison
In any empirical application, one must be able first to check a model against directions of mis-
specification and second to compare final alternative specifications. Both procedures are closely
related to predictive analysis in that they involve the computation of the marginal likelihood or
transformations of the marginal likelihood. This problem has received much attention in the
Bayesian literature, starting with the posterior odds ratio of Jeffreys (1961). However, posterior
odds became increasingly criticized as they are not well defined when using improper or diffuse
priors. The null hypothesis is never rejected when one is diffuse on the parameters of the alternative
hypothesis. The current approach (see e.g. Newton and Raftery (1994), Chib (1995), Gelman and
Meng (1996), Spiegelhalter, Best, Carlin, and van der Linde (2002)) tends to define criteria based
on the MCMC output. We adopt this approach for our specification search on the GTZ model in
the next section.

The BIC (Bayesian information criterion) is a large sample approximation of the Bayes factor.
It penalizes a measure of fit by a measure of complexity, the latter being defined simply by the
number of parameters. This measure of complexity is not very relevant for models with latent vari-
ables where the number of parameters is hard to define. This is also the case in non-linear models
because a non-linear model is intuitively more complex than a linear model with the same number
of parameters. Spiegelhalter, Best, Carlin, and van der Linde (2002) developed the deviance infor-
mation criterion (DIC) which penalizes a measure of fit by a measure of complexity. This criterion
is based on the classical deviance defined as

D(θ) = −2 log f(y|θ) + 2 log f(y), (36)

where f(y|θ) is the likelihood function and the last term plays the role of a normalising constant.
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It is a function of the data alone and therefore is irrelevant for model comparison. For an absolute
measure of fit, f(y) represents the saturated model and D(θ) is thus the saturated deviance.

A Bayesian measure of fit is given by the posterior expectation of the deviance:

D = Eθ|yD(θ). (37)

As the deviance is minus twice the log-likelihood function, a smaller posterior deviance implies a
better fit.

Spiegelhalter et al (2002) use a decision theory argument to define a measure of complexity p∗

as the difference between the posterior expectation of the deviance and the deviance computed at
the posterior expectation of the parameters (denoted by θ̄), i.e.

p∗ = D −D(θ̄). (38)

This equation can be rearranged so as to redefine D = D(θ̄) + p∗, which shows that the posterior
deviance can be seen as a classical plug-in measure of fit plus a penalty term. This qualifies it more
as a measure of adequacy than a pure measure of fit. One can also relate this measure of complexity
to the total number of parameters p of the model. If we approximate the posterior density by a
normal density centered on the MLE estimator θ̂ and suppose that the prior is dominated by the
sample, then D(θ) ' D(θ̂)+χ2(p) (formula (18) in Spiegelhalter et al. 2002). One can then show
that Eθ|y[D(θ)−D(θ̂)] ' p.

The deviance information criterion (DIC) is defined as the sum of the posterior deviance plus
the above measure of complexity:

DIC = D + p∗. (39)

However, using the fact that D = D(θ̄) + p∗, we can give another expression for the DIC which
immediately relates it to the classical AIC criterion:

DIC = D(θ̄) + 2p∗. (40)

We summarize in Table 2 three criteria to compare models, and their asymptotic approximations.
They are the Bayes factor, which receives the BIC as an approximation, the deviance information

Table 2: Bayesian information criterion
and large sample approximations

Bayesian criteria Large sample approximations

Bayes Factor BIC = D(θ̂) + p log T

DIC AIC = D(θ̂) + 2p

D D(θ̂) + p

θ̂ represents the maximum likelihood estimate of θ.

criterion DIC that can be approximated by the AIC, and finally the posterior deviance D, which
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is the less penalized criterion. We use this last criterion for selecting models in the empirical
application.

These three criteria can be easily computed from the draws of a MCMC algorithm.3 In the case
of the GTZ model, we have a direct expression of the likelihood function, so the computation of
the DIC is simple. In a pure latent variable model, the situation is more complex because the latent
variables have to be replaced by their simulations, see for instance Berg, Meyer, and Yu (2004) for
stochastic volatility models.

5 Credit rationing in Poland
Stiglitz and Weiss (1981) were the first to show that credit rationing can occur even at equilibrium
because the credit market is a market where the expected quality of the product is a function of
its price. At a given interest rate, some borrowers will receive a loan and others not. Those not
receiving a loan would be ready to pay more, but they are thought of being too risky. On the other
side, banks are not tempted by lowering rates when they have an excess of liquidity because they
may attract risky borrowers from other banks. Consequently, the short side of the market will
prevail.

Since the pioneering work of Laffont and Garcia (1977), many disequilibrium models have
been estimated for credit markets. They however mainly concern emerging or countries in transi-
tion. Some of the most recent references are Kim (1999) for Korea, Barajas and Steiner (2001) for
Latin America, Ikhide (2003) for Namibia, Shen (2002) for Taiwan, and Hurlin and Kierzenkowski
(2002, 2003) for Poland. We have chosen this last case for illustrating our estimation procedures.

The Polish credit market is interesting because it represents something like a textbook case
as underlined by Hurlin and Kierzenkowski (2003). Poland experienced large foreign liquidity
inflows between 1995 and 1998 which induced a boom in credit supply. The situation changed
suddenly in 1999 because of the instability of the real activity. Banks profitability fell down, they
contracted their credit supply and tried to invest more in riskless assets. This suggests an excess
credit supply before 1999 and an excess demand after that date.

Previous studies of the Polish credit market are based on monthly data covering the period
1994:02-2002:02. There has been a major change in data definition and construction in 2002
so as to harmonize the definition of money and its counterparts with the standards binding upon
the member states of the European System of Central Banks. Thus, as of end-March 2002 the
consolidated balance sheets of the banking system are presented in a new format. An effort has
been made by the National Bank of Poland to retropolate the data so as to obtain homogenous time
series in the new format from 1996:12. The National Bank of Poland gave us a monthly data set
of monetary series covering the period 1996:12-2003:11, representing 84 observations, completed
by monthly macroeconomic series covering a longer period.

3One way of approximating the Bayes factor is to use the harmonic mean of the posterior draws from the MCMC
output.

14



5.1 Data description
Our dependent variable represents the loans up to one year extended to the Polish corporate sector.
We have observations both on zloty loans and on loans in foreign currencies. The latter represent
on average 18.50% of total loans on the period, with large fluctuations. Figure 1 displays the series
of zlotys loans and of total loans (zloty+foreign currency), denominated in millions of zlotys. We
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Figure 1: Short term loans to the corporate sector in Poland (in million of zlotys)

can notice the important increases of the loan series until 2000, followed by a stabilization which
is more pronounced for zlotys loans than for total loans.
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Figure 2: Zloty and foreign deposits in Polish banks (in million of zlotys)
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Figure 2 displays the evolution of foreign and domestic deposits in Polish banks. The inflow
of foreign deposits increased until 2002 and remained stable afterwards. The increase in zloty
deposits is much more pronounced before 2002 and stopped afterwards.
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Figure 3: Short term lending ratio for foreign deposits

The evolution of the profitability of banks is well depicted in Figure 3 which displays the short
term lending ratio4 using foreign deposits: a large increase till 1999 and a stabilization followed by
a decrease. This graph is well in accordance with the above description of the Polish credit market.
However, if we take the total deposits to compute the short term lending ratio, we find a high and
stable ratio till 2000 followed by a large and regular decrease after that date.

5.2 Model specification
The supply equation in usual credit models is determined mainly by resources and interest rate
variables. There are essentially two interest rates: the lending rate (LR) and the intervention rate
of the central bank (IR). Loan supply should depend positively on the lending rate and on the
deposits (DEP ) and negatively on the intervention rate. However, the excess of liquidity present
at least at the beginning of the period may have reduced greatly the effect of interest rates on credit
supply. We model short term credit supply. We suppose that banks had to make two types of
arbitrages between different allocations. Firstly, instead of supplying short term credit, they may
prefer to supply longer term credits. Secondly, if they judge that the market is too risky, they may
prefer to invest in riskless assets like treasury bills. The variable OLT is equal to the ratio of total
loans longer than one year to total extended loans. The variable OTB represents the ratio between
treasury bills bought by the banking system and the total banking assets. Both variables should
have a negative impact on credit supply. Consequently, the supply plan µst of banks is specified by

µst = a1 + a2LQt−1 + a3OLTt + a4DEPt + a5LRt + a6IRt + a7OTBt (41)

4The lending ratio is defined as the ratio between loans and deposits. It is a traditional quantitative measure of
profitability for banks because is relates extended loans to the bank resources.
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where all variables are taken in logarithms. For the interest rate variables, we took log(100 + R).
As one can suppose that banks have a short term horizon in term of lending plans, we have chosen
a lag of 1 for LQ, the amount of loans (the dependent variable).

Loan demand by firms is usually said to depend more on profit anticipations than on interest
rates. The lagged industrial production IP is usually taken as a proxy for future activity. Fi-
nally firms operate an arbitrage between short term and long term loans which may depend on the
structure of interest rates. Consequently we specify the demand plan µdt made by firms by

µdt = b1 + b2LQt−12 + b3OLTt + b4IPt−12. (42)

As we can suppose that firms make plan at a longer horizon than banks, we have chosen a lag of
12 for both LQ and IP .

Market clearing is specified by the GTZ rule

LQt = Min(µst, µdt) + εt, (43)

where εt may have a different variance in each regime. We have decided to model the credit market
for total short term loans. Thus, LQ represents loans in zlotys and loans in foreign currencies up
to one year extended to the Polish corporate sector. We have made specific hypotheses concerning
the lag structure of the two equations. This is of course a debatable question that needs a clear
evaluation.

5.3 Specification search and inference results
We made a specification search, trying various formulations for the supply equation. The demand
equation (42) seems to be rather robust and was kept the same during the search. We started with
a supply equation based on (41), with the amount of foreign deposits (DEPFt) instead of the total
deposits (DEPt). We obtained the following results together with a posterior deviance equal to
211.3:

LSt = 7.07
[2.27]

+ 0.33
[0.17]

LQt−1 − 0.64
[0.25]

OLTt + 0.018
[0.076]

DEPFt

+ 0.32
[0.64]

LRt − 0.37
[0.62]

IRt + 0.012
[0.0094]

OTBt

LDt = 0.95
[0.40]

+ 0.67
[0.023]

LQt−12 − 1.57
[0.28]

OLTt + 0.17
[0.055]

IPt−12.

Posterior standard deviations are indicated between brackets below the posterior means. The co-
efficients of the demand equation have all the correct sign and the posterior p−value of zero is
always lower than 1%. The coefficients of the supply equation have also the correct sign, but most
of them have a very large posterior standard deviation. Despite a large number of draws5, CUM-
SUM graphs indicated that convergence for this equation is not well established. We eliminated
successively the interest rate variables to get a model with a posterior deviance of 209.4. In this

5100 000 draws for this first specification, and only 20 000 for the final model.
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reduced specification, the treasury bill variable (OTB) has the wrong sign, but for this coefficient
zero has a posterior p−value of 20%. After eliminating this variable, we get our final specification:

LSt = 3.43
[1.00]

+ 0.59
[0.11]

LQt−1 − 0.26
[0.14]

OLTt + 0.086
[0.054]

DEPFt

LDt = 0.64
[0.41]

+ 0.67
[0.026]

LQt−12 − 1.60
[0.33]

OLTt + 0.20
[0.061]

IPt−12

with a posterior deviance of 208.1 to be compared to 211.3 for the starting specification. The
posterior expectations of the variance of the error term in the two regimes are almost equal:
E(σ2

s |y) = 0.00022 and E(σ2
d|y) = 0.00023.

The short term loan supply depends positively on foreign deposits, but with a long run elasticity
of 0.21. The decision of supplying long term loans as an alternative has a stronger and negative
influence on short term loan supply, with an elasticity of -0.63. The mean lag of reaction is one
month and a half.

The short term loan demand is mainly determined by an arbitrage decision between short term
and long term loans with a strong elasticity of -4.85, but a mean lag of two years. The other
decision variable is the prediction made on economic activity with an elasticity of 0.61 and a mean
lag of three years.

10.20

10.30

10.40

10.50

10.60

10.70

10.80

10.90

11.00

1998 1999 2000 2001 2002 2003 2004

Supply
Demand

Observed

Figure 4: Estimated loan supply and loan demand with the final GTZ model

At the posterior expectation of the final model, there are 43 observations in the demand regime
and 29 in the supply regime, see Figure 5. The obtained regime separation is in accordance with
the stylized facts described in the introduction of this section. We have a large excess supply till
the mid of 1999 (see Figure 4), corresponding to a slightly later date than that indicated in the
introduction. There is a period of large excess demand after the beginning of 2001. Between these
two dates, we have a transition period with an alternation of excess demand and excess supply.

Our final model gives a clear picture of the Polish credit market. Short term credit supply
and demand are both governed by an arbitrage decision between short term and longer term cred-
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Figure 5: Probabilities of excess demand with the final GTZ model

its. Supply additionally depends on deposit resources and demand on anticipated activity. The
main difference between demand and supply is in term of speed of reaction to variation of these
variables: a rather quick reaction for suppliers and a much slower reaction of demanders.

These final results were obtained with 20 000 draws of the Gibbs sampler (5 000 draws were
discarded for warming up the chain). Starting values are the OLS estimates on the entire sample
for both equations (ignoring thus sample separation). CUMSUM graphs revealed no problem
of convergence. We used the partially diffuse prior (34). However the identification restriction
implied by this prior was never activated by the Gibbs sampler.

5.4 Alternative specifications
There is a big difference in the dynamics of the two equations. This is mainly due to the fact that we
impose a lag of one in the supply equation and a lag of twelve in the demand equation. Otherwise,
the two autoregressive coefficients are comparable (0.59 and 0.67 in the final model). The regime
separation appears to be very sensitive to this choice. Choosing a lag of one in both equations
leads to a counterintuitive sample separation. This choice can be easily discarded because it gives
a posterior deviance of 239.5, much higher than the value 208.1 of the final model. We note
that Hurlin and Kierzenkowski (2003) also experienced difficulties in getting a correct sample
separation with their totally static model.

The specification search we presented was simple because p−values indicated clearly which
variables to delete. This simplicity comes from that fact that the sample separation was fairly
stable during the search. When we start the specification search including also zloty deposits in
the supply equation, the obtained sample separation is very different and there is no immediate
direction for simplification despite the fact that the posterior deviance of 211.2 is greater than that
of our final model.

Finally, let us report some variants of our final model, by replacing the foreign deposit variable
in the supply equation either by zloty deposits or by total deposits. This gives equivalent results in
term of posterior deviance. Using zloty deposits (DEPZt) instead of foreign deposits (DEPFt)
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in the supply equation, we get

LSt = 3.47
[0.91]

+ 0.45
[0.12]

LQt−1 − 0.48
[0.16]

OLTt + 0.18
[0.078]

DEPZt

LDt = 0.60
[0.42]

+ 0.68
[0.029]

LQt−12 − 1.55
[0.32]

OLTt + 0.20
[0.062]

IPt−12

with a posterior deviance of 208.4. If we use total deposits (DEPt) in the supply equation, we
have

LSt = 3.28
[0.75]

+ 0.46
[0.11]

LQt−1 − 0.46
[0.15]

OLTt + 0.19
[0.073]

DEPt

LDt = 0.56
[0.42]

+ 0.68
[0.030]

LQt−12 − 1.50
[0.33]

OLTt + 0.21
[0.063]

IPt−12

with a posterior deviance of 208.0. It appears thus that the results are rather robust with respect to
the choice of the deposit variable in the supply equation. This last specification can be in fact the
preferred one since it has the smallest posterior deviance. It is also the most coherent because the
supply equation relates total short term credits to total deposits.

6 Conclusion
The data augmentation principle is a nice and simple solution for Bayesian inference in latent
variable models as long as there is no dynamics. We have reviewed in Section 2 the treatment
of the static Tobit model and of the static disequilibrium model of Maddala and Nelson (1974).
The dynamic case causes special problems due to the fact that it is not correct to simulate the latent
variables conditionally on the observations. Special algorithms have to be implemented, such as the
scan sampler of de Jong (1997). Instead of considering a dynamic version of the model of Maddala
and Nelson (1974), we propose to use the alternative specification suggested by Ginsburgh, Tishler,
and Zang (1980). We have shown that the implementation of the data augmentation principle for
this model is both simple and efficient. We use the the posterior deviance criterion of Spiegelhalter,
Best, Carlin, and van der Linde (2002) to compare models.

In our application to the Polish credit market, we recover some stylized facts of the Polish
economy. We also underline that a correct dynamic starting specification is essential for conducting
a valuable specification search. An incorrect dynamic model or the inclusion of too many variables
may lead to a model which generates a counterintuitive sample separation. This issue is at the heart
of disequilibrium models which are in this respect very different from the usual linear equilibrium
models.
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