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Abstract We use Lagrange interpolation polynomials to obtain good gradient esti-
mations. This is e.g. important for nonlinear programming solvers. As an error crite-
rion, we take the mean squared error, which can be split up into a deterministic error
and a stochastic error. We analyze these errors using N-times replicated Lagrange

interpolation polynomials. We show that the mean squared error is of order N−1+ 1
2d

if we replicate the Lagrange estimation procedure N times and use 2d evaluations
in each replicate. As a result, the order of the mean squared error converges to N−1

if the number of evaluation points increases to infinity. Moreover, we show that our
approach is also useful for deterministic functions in which numerical errors are in-
volved. We provide also an optimal division between the number of gridpoints and
replicates in case the number of evaluations is fixed. Further, it is shown that the es-
timation of the derivatives is more robust when the number of evaluation points is
increased. Finally, test results show the practical use of the proposed method.
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1 Introduction

In this paper we estimate the gradient ∇f (x) of a function f : R
n → R. The function

f is not explicitly known and we cannot observe it exactly. All observations are the
result of an evaluation of the function, which is subject to certain perturbations. These
perturbations can be of stochastic nature (e.g. in discrete-event simulation) or numer-
ical nature (e.g. deterministic simulation models are often noisy due to numerical
errors).

Obviously, gradients play an important role in all kind of optimisation techniques.
In most non-linear programming (NLP) codes first-order and even second-order
derivatives are used. Sometimes these derivatives can be calculated symbolically: be-
coming more and more popular is automatic differentiation; (see Ref. [1]). Although
this is becoming more and more popular, there is still much research going on in es-
timating and approximating gradients, especially for stochastic environments, since
the stochastic gradient is often difficult or impossible to obtain in practice; (see Refs.
[2, 3]). In the relatively recent book of (Ref. [4], pp. 153–156), many reasons and
examples are given for which it is difficult or even inherently impossible to obtain the
gradient via symbolic or automatic differentiation. Example classes given by Spall
are generic parameter estimation for complex loss function, model-free feedback
control system, and simulation-based optimization. Moreover, there are still many
optimisation methods and solvers that use e.g. finite differencing to obtain a good
approximation of the gradient; (see Refs. [4] or [5]).

Finite differences schemes have also been applied and analyzed for problems
with stochastic functions. (Ref. [6]) were the first to describe the so-called stochas-
tic (quasi)gradients; (see Ref. [7]). Methods based on stochastic quasi gradients are
still subject of much research; for an overview see Ermoliev (Ref. [8]). It was shown

that the estimation error by using optimal stepsizes is O(N− 1
2 ) for forward finite

differencing and O(N− 2
3 ) for central finite differencing, in which N is the number

of replicates; (see Refs. [9–12]). Moreover, Glynn (Ref. [9]) developed a gradient
estimator based on m evaluations instead of 2. He showed that for m → ∞ the con-
vergence rate is LmN−1. However, this scheme appeared to be impractical since the
constant Lm is highly increasing in m.

In this paper we will extend the finite difference method. As in Glynn (Ref. [9]),
instead of using two evaluations for each dimension, we use more (2d) evaluations.
We use Lagrange interpolation polynomials to obtain a good point estimate of the
gradient of a function f : R

n → R. More precisely, each partial derivative is esti-
mated using an interpolating function h(x) = a0 + a1x + a2x

2 + · · · + a2d−1x
2d−1

that equals f in 2d evaluated points in one coordinate direction of f , with d a pos-
itive integer. Then h′(0) = a1 is an estimate for this partial derivative. We consider
the errors in the gradient estimation both due the deterministic approximation error
(‘lack of fit’) and the presence of noise. We provide bounds for both the determinis-

tic and the stochastic error. We show that the convergence rate is N−1+ 1
2d , where N

is the number of replicates of the Lagrange interpolation. This improves the above
mentioned convergence rates for finite differencing when d ≥ 2. Note that for d = 1,
the corresponding interpolation function h(x) boils down into a linear Lagrange in-
terpolation function, corresponds to the central finite difference method. Compared
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with Glynn (Ref. [9]), we observe that for d → ∞ the convergence rate approaches
KdN−1, however, contrary to Glynn’s method, our constants Kd are relatively small
and bounded from above. Moreover, we provide some results in case we have a de-
terministic function in which numerical errors are involved. Given a fixed budget of
evaluations, we provide an optimal division between the number of replicates (N )
and the number of evaluations in such a replicate (2d). We also show that the estima-
tion of the derivative is more robust against errors in the estimation of the parameters
(variance, upper bound for the (2d +1)-th derivative), when the number of evaluation
points is increased. The practical use of our method is shown by results on certain test
problems.

This paper is organized as follows. Section 2 discusses the estimate of the gradient
using Lagrange polynomials. The replicated Lagrange polynomials and the behavior
of the mean squared error are considered in Sect. 3. In Sect. 4 we consider the error of
the gradient estimation if the function is deterministic. The optimal division between
the number of replicates and the number of evaluations in such a replicate, if there
is a fixed budget of evaluations, is discussed in Sect. 5. In Sect. 6 we show that the
estimation is more robust when more evaluation points are used. Section 7 reports on
the results of several test problems.

2 Gradient Estimation of Stochastic Noisy Functions Using Lagrange
Polynomials

In this section we estimate the gradient of a 2d times continuously differentiable
function f : IR

n → R that is subject to stochastic noise using Lagrange interpolation
polynomials. We provide an upper bound for the mean squared error.

Let f : R
n → R be a function subjected to stochastic noise. Hence, for a fixed

y ∈ R
n, we observe

g(y) = f (y) + ε(y). (1)

The error term ε(y) represents a random component. In this paper we assume that the
error terms in (1) are i.i.d. random errors with E[ε(y)] = 0 and V [ε(y)] = σ 2. This
assumption implies that the error terms do not depend on y. Note that g can also be a
computer simulation model.

We will approximate ∂f (y)
∂yi

, (i = 1, . . . , n) in a point y ∈ R
n using the approxima-

tion function g, defined in (1). Without loss of generality we take y = (0, . . . ,0)T .
For convenience, let I = {−d, . . . ,−1,1, . . . , d}. Next, the function g is evaluated in
the gridpoints yi

v = vhei for all v ∈ I , where h > 0 and ei is the i-th unit vector of
dimension n. Observe that the gridpoints are equidistant on each side of zero and that
this distance is given by h (see Fig. 1).

Now, take the interpolating polynomial hi : R → R defined as

hi(x) = a0 + a1x + a2x
2 + · · · + a2d−1x

2d−1, (2)

that is exact in the evaluated points, i.e., according to (1) it holds that

hi(x
i
v) = g(yi

v), for all v ∈ I, (3)
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Fig. 1 Estimate of gradient
using interpolating polynomial

where xi
v = eT

i yi
v . Obviously, h′

i (0) = a1 is an estimate of ∂f (0)
∂yi

(see Fig. 1).
Using the Lagrange functions lv,i : R → R defined as

lv,i (x) =
∏

u∈I\{v}

x − xi
u

xi
v − xi

u

,

for any v ∈ I , (2) can be rewritten into

hi(x) =
∑

v∈I

lv,i(x)g(yi
v). (4)

Hence, the derivative of hi(x) equals

h′
i (x) =

∑

v∈I

⎡

⎣lv,i(x)g(yi
v)

∑

u∈I\{v}

1

x − xi
u

⎤

⎦ . (5)

From (5) it follows that the estimate of the partial derivative is a linear combination
of the evaluations. Observe that the corresponding coefficients only depend on the
2d evaluation points. Table 1 provides the coefficients for 2d = 2,4,6,8,10, respec-
tively. The example in Sect. 6 will illustrate the use of the coefficients in Table 1.

Obviously, we are interested in the quality of h′
i (0) as estimate of the partial deriv-

ative ∂f (0)
∂yi

. Therefore, we define

h′
i,1(x) =

∑

v∈I

⎡

⎣lv,i(x)f (yi
v)

∑

u∈I\{v}

1

x − xi
u

⎤

⎦ (6)

and

h′
i,2(x) =

∑

v∈I

⎡

⎣lv,i(x)ε(yi
v)

∑

u∈I\{v}

1

x − xi
u

⎤

⎦ . (7)
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Table 1 Coefficients to generate estimate partial derivative

2d = 2 2d = 4 2d = 6 2d = 8 2d = 10

v = ih coeff g(yi
v) v = ih coeff g(yi

v) v = ih coeff g(yi
v) v = ih coeff g(yi

v) v = ih coeff g(yi
v)

−1 −0.5 −2 0.0833 −3 −0.0167 −4 0.0036 −5 −0.0008

1 0.5 −1 −0.6667 −2 0.1500 −3 −0.0381 −4 0.0099

1 0.6667 −1 −0.7500 −2 0.2000 −3 −0.0595

2 −0.0833 1 0.7500 −1 −0.8000 −2 0.2381

2 −0.1500 1 0.8000 −1 −0.8333

3 0.0167 2 −0.2000 1 0.8333

3 0.0381 2 −0.2381

4 −0.0036 3 0.0595

4 −0.0099

5 0.0008

It follows that

h′
i (x) = h′

i,1(x) + h′
i,2(x). (8)

A well-known measure for the quality of the estimate of the partial derivative ∂f (0)
∂yi

by h′
i (0) is the mean squared error:

E

(
h′

i (0) − ∂f (0)

∂yi

)2

.

By defining the deterministic error

(
error

h′
i

d

)2
=

(
h′

i,1(0) − ∂f (0)

∂yi

)2

and the stochastic error
(

error
h′

i
s

)2
= E(h′

i,2(0))2,

we get, because E[ε(x)] = 0, that

E

(
h′

i (0) − ∂f (0)

∂yi

)2

=
(

error
h′

i

d

)2
+

(
error

h′
i

s

)2
. (9)

From (9), we learn that the mean squared error is the sum of the deterministic and the
stochastic error. The following lemma provides an upper bound for the deterministic
error.

Lemma 2.1 For the Lagrange estimate, we have

(
error

h′
i

d

)2
≤ M2

2dC2
1(d)h4d−2,
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where C1(d) = 2
(2d)!

∑d
q=1

[
q2d−1 ∏

r∈I\{q}
|r|

|r−q|
]

and M2d is an upper bound for the
2d order derivative of f .

Proof For an upper bound of the deterministic error, we use the Kowalewski exact
remainder for polynomial interpolation (cf. Ref. [13]):

fi(x) − hi,1(x) = 1

(2d − 1)!
∑

v∈I

lv,i(x)

∫ x

xi
v

(xi
v − t)2d−1f 2d(t)dt, (10)

where fi is the slice function of f taking the ith component as variable. Taking the
derivative to x on both sides of (10), substituting x = 0 and using |f 2d(y)| ≤ M2d ,
we obtain

error
h′

i

d ≤ M2d

(2d)!
∑

v∈I

[
| l′v,i(0) | (xi

v − 0)2d
]
,

where

l′v,i(0) =
∏

u∈I\{v}

[
0 − xi

u

xi
v − xi

u

]
·
[ ∑

u∈I\{v}

1

0 − xi
u

]
.

Because

| l′v,i(0) |=
∣∣∣∣∣∣

∏

u∈I\{v}

0 − xi
u

xi
v − xi

u

∣∣∣∣∣∣
1

| xi
v |

and because xi
u = hu, for all u ∈ I , we have

error
h′

i

d ≤ M2d

(2d)! 2
d∑

q=1

[
(qh)2d

∏

r∈I\{q}

| r | h
| r − q | h · 1

qh

]
= M2dC1(d)h2d−1,

which completes the proof. �

The next lemma shows, that C1(d) converges to zero. Hence, error
h′

i

d will also
converge to zero if M2d is bounded

Lemma 2.2 Let C1(d) = 2
(2d)!

∑d
q=1

[
q2d−1 ∏

r∈I\{q}
|r|

|r−q|
]
. Then, the following two

statements hold:

(i) C1(d) ≤ 2d
(

3
4−ε

)d

, with ε > 0 small;

(ii) C1(d) → 0 if d → ∞.

Proof It is sufficient to prove (i). First, observe that C1(d) can be rewritten into

C1(d) = 2(d!)2

(2d)!
2d−1∑

q=1

q2d−1

(d + q)!(d − q)! .
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Let ad = (2d)!
2(d!)2 . Then, ad+1 = (d+1)2

(2d+2)(2d+1)
ad . Hence, there exists a small ε > 0 such

that ad ≥ (4 − ε)ad+1 for large d . This implies that there is a constant c such that, for
large d , we have

ad ≥ c(4 − ε)d . (11)

Let bd = ∑d
q=1

q2d−1

(d+q)!(d−q)! . Then, for each q = 1, . . . , d , we have

q2d−1

(d + q)!(d − q)! ≤ q−1 q2d−1

(
d+q

3

)d+q (
d−q

3

)d−q

= 32d

[(
1 + x

x

)−1−x (
1 − x

x

)−1+x
]d

≤ 32d ·
(

1

3

)d

= 3d

where the first inequality follows from the Stirlings formula and q−1 ≤ 1. In
the second inequality, we use the fact that the continuous and concave function
z : (0,1] → R, defined by z(x) = ( 1+x

x

)−1−x( 1−x
x

)−1+x
, is upper bounded by 1

3 .
Hence, we can conclude that

bd ≤ d3d . (12)

From (11) and (12), it follows that, for large d , we have

C1(d) ≤ 2d

(
3

4 − ε

)d

. �

The following lemma provides an expression for the stochastic error.

Lemma 2.3 For the Lagrange estimate, we have

(
error

h′
i

s

)2
= C2(d)

σ 2

h2
,

with C2(d) = 4
∑d

q=1

(∏
r∈I\{q}

|r|
|r−q|

1
q

)2.

Proof We obtain

(
error

h′
i

s

)2
= E(h′

i,2(0))2

= E

⎛

⎝
∑

v∈I

∏

u∈I\{v}

0 − xi
u

xi
v − xi

u

ε(xi
v)

∑

u∈I\{v}

1

0 − xi
u

⎞

⎠
2
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= 4
σ 2

h2

d∑

q=1

⎛

⎝
∏

r∈I\{q}

| r |
| r − q |

1

q

⎞

⎠
2

.

�

The next lemma shows that C2(d) is upper bounded.

Lemma 2.4 Let C2(d) = 4
∑d

q=1

(∏
r∈I\{q}

|r|
|r−q|

1
q

)2. Then, C2(d) ≤ 2
3π2 for all d .

Proof Observe that C2(d) = 4
∑2d−1

q=1

(
(d!)2

(d+q)!(d−q)!)
1
q

)2. Because (d!)2

(d+q)!(d−q)!) ≤ 1

for all q , we have that C2(d) ≤ 4
∑2d−1

q=1
1
q2 ≤ 4 · 1

6π2 = 2
3π2, which completes the

proof. �

3 Stochastic Noisy Functions and Replicates

In this section we estimate the gradient of a 2d continuous differentiable function
f : R

n → R that is subject to stochastic noise by replicating the Lagrange estimation
of the previous sections. We investigate the mean squared error.

The following lemmata with respect to the deterministic and stochastic error fol-
low straightforward from Lemma 2.1 and Lemma 2.3, respectively. Obviously, the
upper bound for the deterministic error will not change in case of replicates.

Lemma 3.1 For the Lagrange estimation with N replicates, we have

(
error

h′
i

d

)2
≤ M2

2dC2
1(d)h4d−2.

Evidently, the stochastic error in case of replicates is decreased by a factor N , the
number of replicates.

Lemma 3.2 For the Lagrange estimation with N replicates, we have

(
error

h′
i

s

)2
= C2(d)

σ 2

Nh2
.

In the final part of this section we determine the step size h that minimizes the
mean squared error. From Lemma 3.1 and 3.2, it follows that the mean squared error,
as a function of h, is upper bounded by

UMSE(h) = M2
2dC2

1(d)h4d−2 + C2(d)
σ 2

Nh2
. (13)

The following theorem states the optimal step size for the upper bound and shows
that the minimum mean squared error converges to N−1 if d goes to infinity.
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Fig. 2 The behavior of C3(d)

Theorem 3.1 Let UMSE(h) be defined as in (13). Then:

(i) The optimal stepsize h∗ is h∗ = (PN)
−1
4d with P = (

C2(d)σ 2

M2
2dC2

1 (d)(2d−1)

)−1.

(ii) The minimum of UMSE is UMSE(h∗)−1
4d = M

1
d

2dσ 2− 1
d C3(d)N−1+ 1

2d with C3(d)

= (C1(d))
1
d (C2(d))1− 1

2d (2d − 1)
1

2d

( 2d
2d−1

)
.

(iii) C3(d) ≤ 0.9π2 for large d .
(iv) UMSE(h∗) →O(N−1) if d → ∞.

Proof The proof of (i) and (ii) is straightforward and (iv) results from (ii) and (iii).

We will prove (iii). From Lemma 2.2 (i), it follows that C1(d)
1
d = (2d)

1
d

( 3
4−ε

)
. Be-

cause (2d)
1
d converges to 1, we have that (2d)

1
d ≤ 1.1 for large d and

( 3
4−ε

) ≤ 1.
Hence,

C1(d)
1
d ≤ 1.1 (14)

if obviously it holds that

C2(d)1− 1
2d ≤ 2

3
π2. (15)

Because both (2d − 1)
1

2d and 2d
2d−1 converge to 1 we have that both terms are upper

bounded by 1.1 if d is large. Combining this observation with (14) and (15), we
obtain

C3(d) ≤ 1.1 · 2

3
π2 · 1.1 · 1.1 < 0.9π2. �

In Fig. 2, the behavior of C3(d) is illustrated.
Table 2 provides the UMSE for some specific values of d . Observe that, already

for small d , the best results in forward finite differencing (O(N− 1
2 )) and central finite
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Table 2 The UMSE for some
values of d d UMSE

1 1 · M2σN
− 1

2

2 1.10(M4)
1
2 σ

3
2 N

− 3
4

10 1.68(M20)
1
10 σ

19
10 N

− 19
20

20 1.94(M40)
1
20 σ

39
20 N

− 39
40

50 2.12(M100)
1
50 σ

99
50 N

− 99
100

differencing (O(N− 2
3 )) are improved. In fact, for d = 1, our result is identical to

forward finite differencing.
It is interesting to compare the results in this table with the Glynn results (Ref. [9]).

The order of convergence is the same, however, the constants explode for increasing
d for his method. The corresponding constants for his method are e.g.: 31 for d = 2,
1.5 × 109 for d = 10 and 3.8 × 1020 for d = 20.

4 Numerically Noisy Functions

In this section, we estimate the gradient of a 2d times continuously differentiable
function f : R

n → R that is subjected to numerical noise using Lagrange polynomi-
als.

Let f : R
n → R be a function that is subjected to numerical noise. Hence, for a

fixed y ∈ R
n, we observe that

g(y) = f (y) + ε(y),

where ε(y) is the fixed, unknown numerical error. To estimate the gradient of f , we
take the same approach as in Section 1.2. Let the functions h, h′

i,1 and h′
i,2 be defined

as in (4), (6) and (7), respectively.
Then, the total error of the estimate of the partial derivative is equal to

∣∣∣∣
∂f (0)

∂yi

− h′
i (0)

∣∣∣∣ . (16)

We define the deterministic model error by
∣∣∣∣
∂f (0)

∂yi

− h′
i,1(0)

∣∣∣∣

and the numerical error by
∣∣h′

i,2(0)
∣∣ .

We get, by using (8), the following upper bound for the total error:
∣∣∣∣
∂f (0)

∂yi

− h′
i (0)

∣∣∣∣ ≤
∣∣∣∣
∂f (0)

∂yi

− h′
i,1(0)

∣∣∣∣ + ∣∣h′
i,2(0)

∣∣ . (17)
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Similarly to Sect. 2.1, we can provide upper bounds for the deterministic model
and the numerical error. The proofs of the following two lemmas are omitted because
they are almost identical to the proofs of Lemma 2.1 and 2.3, respectively.

Lemma 4.1 For the Lagrange estimate, we have
∣∣∣∣
∂f (0)

∂yi

− h′
i,1(0)

∣∣∣∣ ≤ M2dC1(d)h2d−1.

Lemma 4.2 For the Lagrange estimate, we have

∣∣h′
i,2(0)

∣∣ ≤ C2(d)
1
2
K

h
,

where K is an upper bound of ε.

In the final part of this section we determine the step size h that minimizes the
total error. From Lemmas 4.1 and 4.2, it follows that the total error TE, as a function
of h, is upper bounded by

UTE(h) = M2dC1(d)h2d−1 + C2(d)
1
2
K

h
. (18)

The next theorem provides the stepsize that minimizes the total error.

Theorem 4.1

(i) The optimal step size h∗ is h∗ = (
C2(d)

1
2 K

(2d−1)2d−1M2dC1(d)

)− 1
2d ,

(ii) The minimum of UTE is

UTE(h∗) = M
1− 1

2d

2d C1(d)
1

2d C2(d)
1
2 − 1

4d K1− 1
2d (2d − 1)

1
2d

(
2d

2d − 1

)
.

The proof is straightforward and is therefore omitted.
Observe that, for the special case d = 1, that the result in Theorem 4.1 is similar

to the result obtained in Gill et al. (Ref. [14], p. 340) for the forward finite-difference
approximation.

5 Gridpoints versus Replicates

In this section we provide an optimal division between the number of gridpoints and
replicates in case the number of evaluations is fixed.

Let B be the total number of evaluations available, N the number of replicates and
2d the number of evaluations per replicate. The problem to solve is the following:

min UMSE(KN
−1
4d ) = C3(d)

(
M2d

σ

) 1
d

σ 2N−1+ 1
2d , (19)
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Table 3 The optimal division between d and N at a fixed number of evaluations B

σ = 1, M2d = 1 σ = 0.1, M2d = 1

B d error N B d error N

B ≤ 23 1 0.2879 6 B ≤ 3 1 0.0349 1

B ≤ 803 2 0.0207 134 B ≤ 12 2 0.0148 2

B ≤ 21984 3 0.0013 2748 B ≤ 240 3 0.0012 30

B ≤ 386720 4 0.0001 38672 B ≤ 3880 4 0.0001 388

B ≤ 5461476 5 9.85×10−6 455123 B ≤ 54660 5 9.85×10−6 4555

σ = 0.01, M2d = 1 σ = 0.001, M2d = 1

B d error N B d error N

B ≤ 3 1 0.0011 1 B ≤ 2376 1 0.2901 594

B ≤ 12 2 0.0003 2 B ≤ 79932 2 0.0208 13322

B ≤ 24 3 0.0001 3

B ≤ 40 4 0.0001 4

B ≤ 600 5 9.03×10−6 50

s.t. B = 2dN,

d,N positive integers.

In Table 3 we provide the optimal division between d and N for some values of B

and a specific ratio of M2d

σ
.

In the upper left cell of Table 3, we have chosen σ = 1 and M2d = 1. This cell
illustrates that for a fixed budget B = 24 till B = 803 it is optimal to evaluate 4
(d = 2), points in each replicate. Obviously, in this case the number of replicates is
determined by the quotient of the budget and 4. From B = 804 till B = 21983 it turns
out that it is optimal to evaluate 6 points in each replicate. For example, if B = 6000
then we take d = 3, which equals 6 evaluations, and 1000 replicates. The other three
cells of Table 3 present the results for different ratios of σ and M2d . Observe that the
error decreases if σ decreases. Moreover, the turning points to increase the number
of gridpoints also decreases if σ decreases. For example, if σ = 1, then we turn to
6 gridpoints if B = 804, whereas if σ = 0.01 we already increase to 6 gridpoints if
B = 12.

Observe that Table 3 suggests that d = O(log(B)) if B → ∞. Indeed, this obser-
vation can be made plausible using the following arguments. There are two possible
scenarios for the behavior of d if B becomes large. The first one is that d → ∞. Be-
cause in this situation C3(d) → c3. Then, a good approximation for (19) is obtained
if we solve the following relaxation:

min

(
M2d

σ

) 1
d

N−1+ 1
2d ,

s.t. B = 2dN.
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The minimum is found by determining the stationary points of

log

[(
B

2d

)−1+ 1
2d

(
M2d

σ

) 1
d

]
,

which boils down to

1

2d2

[
− log

(
B

2d

)
− 2 log

(
M2d

σ

)
+ 2d − 1

]
= 0,

which shows that d ≈ k log(B) for some constant k. Substituting this result in (19),
we obtain

C3(d)

(
M2d

σ

) 1
d

σ 2
(

B

2k log(B)

)−1+ 1
2k log(B)

. (20)

Let β(d) = C3(d)
(

M2d

σ

) 1
d σ 2. Then, (20) can be rewritten into

β(d)

(
B

2k log(B)

)−1+ 1
2k log(B)

. (21)

This would end the argumentation. However, it can be the case that d → d∗. Then,
there exists a d̂ ≤ d∗ such that the minimum of (19) is attained in d̂ and equals

C3(d̂)

(
M2d̂

σ

) 1
d̂

σ 2
(

B

2d̂

)−1+ 1
2d̂

. (22)

Let α(d̂) = C3(d̂)
(M2d̂

σ

) 1
d̂ σ 2. Then, (22) is equal to

α(d̂)

(
B

2d̂

)−1+ 1
2d̂

. (23)

Now, we can conclude that d = O(logB) if the minimum of (19) is attained in the
situation where d → ∞. Hence, we are finished if we can show that the expression
in (23) is larger than (21).

Observe that α(d̂) is a constant and β(d) is bounded under the assumption that
M2d ≤ a2d for some constant a > 1 and Theorem 3.3(iii). Hence, it is sufficient to
prove that

(
B

2k log(B)

)−1+ 1
2k log(B)

(
B

2d̂

)−1+ 1
2d̂

→ 0, if B → ∞. (24)

Straightforward calculations yield that (24) can be rewritten in v(B)w(B), where

v(B) =
(

B

2k log(B)

) 1
2k log(B)
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and

w(B) =
(

2k log(B)

2d̂

)(
2d̂

B

) 1
2d̂

.

Because v(B) → constant if B → ∞ and w(B) → 0 if B → ∞, we have that
v(B)w(B) → 0 if B → ∞. Hence, we can support the observation that if B → ∞
then d = O(log(B)).

6 Practical Aspects

To obtain the values for the optimal step size, one has to estimate the unknown con-
stants σ and M2d . In this section we first show that the estimated gradient is not very
sensitive with respect to these constants. This means that even poor estimates of these
quantities do not affect the quality of the gradient too much. We even show that the
estimation is less sensitive when more evaluation points are used.

To analyze the sensitivity of the estimated gradient with respect to the unknown
constants, let us assume that our estimates for σ (and M2d ) are σ̂ = κσ (and M̂2d =
κM2d ), with κ > 0, respectively. Moreover, let us define the relative error rUMSE as
the quotient of the UMSE when the above mentioned estimates are used for one of
the constants, and the UMSE when the optimal step size of h is used. For example,

rUMSEσ̂ (h∗) = UMSEσ̂ (h∗)
UMSEσ (h∗)

,

where the subindex σ̂ indicates that the estimated value σ̂ is used instead of σ . A
similar definition holds for the other estimated constant M2d . The following theorem
gives expressions for these relative errors.

Theorem 6.1 For the relative errors, we have

rUMSEσ̂ = κ2− 1
d + (2d − 1)κ− 1

d

2d
and rUMSE

M̂2d
= κ−2+ 1

d + (2d − 1)κ
1
d

2d
.

Proof We first show the results when σ̂ is used. UMSEσ̂ (h∗) is given in Theorem 3.3.
Moreover, to calculate UMSE(h∗)σ we substitute the estimated optimal step size, i.e.,
h∗ in which σ̂ is used instead of σ into the expression for the UMSE. After some
tedious calculations we obtain the first part of the theorem. The second part can be
obtained in a similar way. �

In Fig. 3 the relative errors with respect to M2d and σ , respectively, are shown for
several values of d .

From Fig. 3 it is clear that the estimated gradients are not very sensitive with re-
spect to the constants. For example an error of 20% for σ results into a 1.5% increase
of the UMSE for d = 2 and an error of 50% for σ results into an 7% increase. Another
important observation is that for 0 ≤ κ ≤ 2.5 the relative errors are even decreasing
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Fig. 3 The relative errors with respect to M2d and σ

in d . This means that the estimate for the derivative is more robust if we use more
points for the interpolation.

To estimate the constants M2d we can use the same techniques as proposed for
the classical finite difference schemes. For example in Gill et al. (Ref. [14], pp. 341–
345), an algorithm is described in which M2 is estimated by a second order finite
difference scheme. Of course, as described in Gill et al. (Ref. [14]), such an estimate
is not made in each iteration, since this will cost too many function evaluations, but
only a few times. To estimate σ we can carry out replicates in a single point and use
standard statistical methods. Again, such an estimate needs not to be made in each
iteration.

7 Preliminary Test Results

For a first comparison between our method (Lagrange) and traditional central finite
differencing (CFD), we defined a set of 7 one-dimensional test functions. We are in-
terested in estimating the derivative f ′

i (0). For each test function fi we observe the
function gi , gi(y) = fi(y) + ε(y), where ε(y) is normally distributed with expecta-
tion μ = 0 and standard deviation σ which is varied from 0.0001 to 0.1, increasing
with steps of a factor 10. All results are based on 1000 replications. The test functions
are listed in Table 4 below, together with their derivative in 0.

Both for Lagrange and for CFD expressions for the optimal step size h exist. To
calculate those optimal step sizes we would need to estimate an upper bound on
the higher order derivatives (order 3 for CFD and order 2d for Lagrange). In these
tests we deduced the optimal step size for both methods by experimental grid search:
we took the step size for which the average estimation error over 1000 experiments
was smallest. For Lagrange we considered combinations of simulation budget M =
{4,16,32,128,1024} and d = {1,2,4,8,16}.

Table 51 shows the results for test function 1. All calculations have been carried
out in double precision. The shown errors are absolute deviations from the real deriv-
ative. When errors become small, machine precision starts to play a role. Those cases

1Tables 5–11 can be found at: http://center.uvt.nl/staff/hamers/publications.html/tables5-11.pdf.
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Table 4 Test functions
i fi f ′

i
(0)

1 −1 + ey 1

2 −1 + e3y 3

3 ey−e−y

2 1

4 cos(4(y − π
8 )) 4

5 y4 − y3 + 100(1 − y)2 −200

6 (ey+1 − 1)2 + ( 1√
1+(y+1)2

− 1)2 2e2 − 2e − 1
2 + 1√

2

7
sin(24y− π

8 )

12 + y 2 cos(−π
8 ) + 1

have been marked with ‘< mp’. For σ = 0 we only included the results for B = 32,
and set the number of replications for both methods equal to 1. As there is no noise,
results for other budgets and replications are exactly the same. The results for La-
grange with d = 1 are exactly the same as for CFD, as the seed of the random gener-
ator has been set such that the same noise realizations occur for Lagrange and CFD.
Differences for CFD between lines with the same values for σ and B are the result of
different noise realizations. The error quotient for the best choice of d for the same σ

and B is printed in italics. These error are most frequent larger than 1, indicating that
Lagrange outperforms CFD. For higher noise levels the difference between Lagrange
and CFD is smaller and the best results for Lagrange occur for low values of d . This
is explained by the fact that for high noise levels the need for replication increases
and the Lagrange method moves towards the CFD method by choosing a low value
of d .

For the other 6 test functions, we only included the results for the best choice of d

for a given B . Tables 6 to 11 summarize our findings. Test function 5 draws attention,
as Lagrange outperforms CFD to a much greater extend here than in the other test
functions. This is not surprising because the fifth test function is polynomial. For test
function 7 for σ = 0.1 Lagrange almost always chooses d = 1 and boils down to
CFD.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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