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a b s t r a c t

We determine a lower bound for the spectral radius of a graph in
terms of the number of vertices and the diameter of the graph.
For the specific case of graphs with diameter three we give a
slightly better bound. We also construct families of graphs with
small spectral radius, thus obtaining asymptotic results showing
that the bound is of the right order. We also relate these results to
the extremal degree/diameter problem.
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1. Introduction

In [7], the problem was raised to determine the minimal spectral radius among graphs with given
number of vertices and diameter. In [5], we obtained asymptotic results for some cases where the
diameter D grows with the number of vertices n. Here we consider the case when D is fixed, and n
grows.We first obtain a general lower bound for the spectral radius of a graph in terms of its number of
vertices and its diameter. For the diameter three case, we give a slightly better bound. In the literature
we could not find any comparable bounds. Besides the folklore result that the spectral radius is at least
the average vertex degree in the graph, the first non-trivial lower bound on the spectral radius of a
graphwas obtained by Hofmeister [12], who showed that the spectral radius is at least the square root
of the average squared vertex degrees, i.e., for a graph with vertex degrees dv and spectral radius ρ,
the bound ρ2 ≥ 1

n

∑
v d
2
v holds. Nikiforov [14] generalized this, and obtained a lower bound in terms

of the number of certain walks in the graph. An upper bound for the spectral radius in terms of the
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diameter was recently obtained in [4]: if the graph is not regular, with maximum vertex degree ∆,
then ρ < ∆− 1

nD .
In Section 3, we construct graphs with small spectral radius, showing that the obtained lower

bound is asymptotically of the right order. In Section 4we relate our problem to the so-called extremal
degree/diameter problem (see [13] for a recent survey on this problem).
Before obtaining the lower bound (in Section 2), we first introduce some terminology as follows.

We let ρ(M) denote the spectral radius of a matrixM . The spectral radius of a graph is defined as the
spectral radius ρ(A) of its adjacencymatrix A. Unless otherwise indicated, for a given graphwe let n,D,
ρ, and e denote the number of vertices, diameter, spectral radius, and number of edges. Furthermore,
we let (du) denote the sequence of vertex degrees and∆ the maximum vertex degree.
An `-walk in a graph is a sequence of `+1 consecutively adjacent vertices (this represents a ‘‘walk’’

of length ` along the edges of the graph). By N`(u)we denote the number of `-walks starting in vertex
u. Finally, we let Γi(u) := {v | d(u, v) = i} be the set of vertices at distance i from u.

2. Lower bounds for the spectral radius

In this section, we shall derive a lower bound for the spectral radius of a graphwith given diameter
and number of vertices. Then, for the case of diameter three, we shall give a slightly better bound.

2.1. A general lower bound for the spectral radius

Weshall show that the spectral radius of a graphwithn vertices anddiameterD is at least (n−1)1/D.
This generalizes the following result of Van Dam and Kooij [7] which concerns the case D = 2.

Theorem 2.1. For the spectral radius ρ of a graph with n vertices and diameter two we have that ρ ≥√
n− 1 with equality only for the stars K1,n−1, the pentagon, the Petersen graph, the Hoffman–Singleton
graph, and putative 57-regular graphs on 3250 vertices.

In order to prove the general result, we use the following lemma on the number ND(u) of D-walks
starting at an arbitrary vertex u.

Lemma 2.2. Let Γ be a graph with n vertices and diameter D, and let u be an arbitrary vertex. Then
ND(u) ≥ n− 1. Moreover, ND(u) ≥ n− 1− du + d2u if D ≥ 3.

Proof. Let u be a vertex of Γ and v be a different vertex. Let u = u0 ∼ u1 ∼ u2 ∼ · · · ∼
u` = v be a shortest path between u and v. If ` < D, then there exists a D-walk starting with
u0, u1, . . . , u`−1, u`, u`−1. If ` = D, then the walk u = u0 ∼ · · · ∼ u` = v is a D-walk. Clearly,
each v 6= u gives a different D-walk, which shows that ND(u) ≥ n − 1. If D ≥ 3, then the above du
walks for ` = 1 can be replaced by the (at least) d2u walks starting with u, v, u, v

′, which shows the
second part of the statement. �

Now we can derive the general lower bound for the spectral radius.

Theorem 2.3. Let Γ be a graph with n vertices, diameter D, and spectral radius ρ . Then

ρ ≥ (n− 1)1/D

with equality if and only if D = 1 and Γ is the complete graph Kn, or D = 2 and Γ is the star
K1,n−1, the pentagon, the Petersen graph, the Hoffman–Singleton graph, or a putative 57-regular graph
on 3250 vertices.

Proof. Let A be the adjacency matrix of Γ . By Lemma 2.2, the number of D-walks starting in a vertex
u is at least n−1. Since (AD)uv equals the number of D-walks from u to v, the total number of D-walks
starting at u is (AD1)u, where 1 is the all-one vector. Thus, n(n − 1) ≤ 1>AD1. From the Rayleigh
quotient, cf. [11, p. 202], we then obtain that

n− 1 ≤
1>AD1
n
=

1>AD1
1>1

≤ ρ(AD) = ρ(A)D.
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We thus have ρ = ρ(A) ≥ (n − 1)1/D. From Lemma 2.2 it follows that equality can only hold for
D ≤ 2. Equality indeed holds trivially for D = 1, and then the result follows from Theorem 2.1. �

Note that in the proof of Lemma 2.2 we only counted very specific D-walks. For D > 3, it seems to be
difficult to count the exact number of D-walks, but for D = 3 we are able to do so under some extra
conditions. This leads to a better bound for the spectral radius for D = 3.

2.2. An improved bound for diameter three

For graphs with diameter D ≥ 3, the bound ρ ≥ (n− 1)1/D is not sharp. In this section we derive
a slightly better bound for diameter three.

Theorem 2.4. Let Γ be a graph with n vertices, e edges, diameter three, and spectral radius ρ . Then

ρ3 − ρ2 ≥ n− 1−
2e
n
, (1)

with equality if and only if Γ is the heptagon.

Proof. Let A be the adjacency matrix of Γ , then ρ = ρ(A). Lemma 2.2 states that (A31)u = N3(u) ≥
n − 1 − du + d2u. Moreover, equality holds if and only if u is not contained in any m-cycle for
m = 3, 4, 5, 6. This follows for example by careful counting and observing that the right hand side of
the inequality is equal to |Γ3(u)| + |Γ2(u)| + |Γ1(u)|2. So it follows that

1>A31 ≥
∑
u

(n− 1− du + du2) = n(n− 1)−
∑
u

du +
∑
u

du2.

Because
∑
u du = 2e and

∑
u du

2
= (A1)>(A1) = 1>A21, dividing each side by n gives

ρ(A3 − A2) ≥
1>(A3 − A2)1

1>1
=

1>A31− 1>A21
1>1

≥ n− 1−
2e
n
.

Note that each eigenvector of A with eigenvalue θ is an eigenvector of A3 − A2 with eigenvalue
θ3 − θ2, and hence also that all eigenvalues A3 − A2 are obtained in this way. This implies that
ρ(A3 − A2) = ρ3 − ρ2 because θ3 − θ2 < ρ3 − ρ2 for θ < ρ (since ρ > 1). Thus we obtain
the required inequality ρ3 − ρ2 ≥ n− 1− 2e

n .
Next, we are going to classify the graphs Γ with n− 1− 2e

n = ρ
3
− ρ2. Then all above inequalities

must be equalities, fromwhich it follows thatΓ has nom-cycles form ≤ 6, and that the all-one vector
1 is an eigenvector of A3 − A2. The above observations then imply that 1 is also an eigenvector of A,
i.e., that Γ is a regular graph.
Because Γ is regular with diameter 3 without m-cycles for m ≤ 6, it is a Moore graph. However,

Bannai and Ito [1] and Damerell [8] showed that a Moore graph with diameter D > 1 and valency
k > 2 must have diameter D = 2 (and valency k ∈ {3, 7, 57}), hence the valency k of Γ should be 2.
Therefore Γ is a heptagon, which finishes the proof. �

The bound of Theorem 2.4 is slightly better than the bound ρ > 3√n− 1 of Theorem 2.3 as ρ2 ≥ ρ ≥
2e
n . Using the latter inequality ρ ≥

2e
n , for which equality holds if and only if Γ is

2e
n -regular, we also

obtain the following.

Corollary 2.5. Let Γ be a graph with n vertices, diameter three, and spectral radius ρ . Then

ρ3 − ρ2 + ρ ≥ n− 1,

with equality if and only if Γ is the heptagon.
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We note that improved bounds can be obtained by considering more detailed information about the
graph. For example, if the graph has t triangles, then one easily obtains that

ρ3 − ρ2 ≥ n− 1−
2e
n
+
6t
n
.

We finally remark that in a graph with edge set E, the number of 3-walks can also be expressed as
2
∑
{u,v}∈E dudv . However, we do not know how to use this expression in our approach.

3. Constructions of graphs with small spectral radius

Next, we shall consider graphs with small spectral radius. First, we define

ρD(n) := min{ ρ(Γ ) | Γ is a graph with n vertices and diameter D}.

In particular wewould like to consider the quotient ρD(n)/ D
√
n− 1, for which Theorem 2.3 states that

ρD(n)
D√n− 1

≥ 1.

By constructing graphs with small spectral radius, we would like to find a good upper bound for the
quotient as well.
We first define some terminology. We say that a partition π of the vertex set V (Γ ) with cells

π1, . . . , πr is equitable if the number of neighbours in πj of a vertex u in πi is a constant bij,
independent of u. The directed graph with the r cells of π as vertices and bij arcs from the ith to
the jth cells of π is called the quotient of Γ over π , and denoted by Γ /π . The adjacency matrix
A(Γ /π) =: Q (Γ ) of this quotient is called the quotient matrix, and it has the same spectral radius as
Γ (cf. [10, p. 79]).
Now, let a ≥ 0, b ≥ 2, and t ≥ 1 be integers. We define Xt(a, b) as the graph with an equitable

partition π = {π0, π1, . . . , πt}, where |π0| = a+ 1, with corresponding quotient matrix

A(Xt(a, b)/π) =


a b
1 0 b

. . .
. . .

. . .

1 0 b
1 0

 .
Note that the graph is completely determined by this information, and has diameter D = 2t if a = 0,
and D = 2t + 1 otherwise.
Nowwe shall consider some sequences of graphs forwhich ρD(n)/ D

√
n− 1 < 2, for n large enough.

For even diameter we take the trees Xt(0, b), b ≥ 2 with diameter D = 2t , and for odd diameter we
take the graphs Xt(a, a2), a ≥ 2with diameterD = 2t+1.We shall first determine the spectral radius
of these graphs.

Lemma 3.1. Let t ≥ 1, a ≥ 2, and b ≥ 2. Then ρ(Xt(0, b)) = 2
√
b cos

(
π
t+2

)
and ρ(Xt(a, a2)) =

2a cos
(

π
2t+3

)
.

Proof. It is easy to see that the quotient matrix Q (Xt(a, b)) is similar to
√
bQ (Xt( a√b , 1)), hence

ρ(Xt(a, b)) =
√
bρ(Xt( a√b , 1)), at least when

a
√
b
is integer.

Now consider the graph Xt(0, b). From the fact that Xt(0, 1) is the path Pt+1, which has spectral
radius 2 cos

(
π
t+2

)
, cf. [6, p. 73], we obtain that ρ(Xt(0, b)) =

√
bρ(Xt(0, 1)) =

√
bρ(Pt+1) =

2
√
b cos

(
π
t+2

)
.

Because the graph Xt(1, 1) is the path P2t+2, it follows that ρ(Xt(a, a2)) = aρ(Xt(1, 1)) =
aρ(P2t+2) = 2a cos

(
π
2t+3

)
. �
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Using this, we determine the limits of the quotients under consideration. Let nb and na be the numbers
of vertices of the graphs Xt(0, b) and Xt(a, a2), respectively.

Proposition 3.2. Let t ≥ 1. Then

lim
b→∞

ρ(Xt(0, b))
2t
√
nb − 1

= 2 cos
(

π

t + 2

)
and lim

a→∞

ρ(Xt(a, a2))
2t+1
√
na − 1

= 2 cos
(

π

2t + 3

)
.

Proof. Because nb = 1+ b+ b2 + · · · + bt , it follows that

ρ(Xt(0, b))
2t
√
nb − 1

=
2
√
b cos

(
π
t+2

)
2t√b+ b2 + · · · + bt

=
2 cos

(
π
t+2

)
2t√1+ b−1 + · · · + b1−t

→ 2 cos
(

π

t + 2

)
(b→∞).

The other result follows similarly from the fact that na = (a+ 1)(1+ a2 + a4 + · · · + a2t). �

Proposition 3.2 immediately implies that lim infn→∞
ρD(n)
D√n−1

< 2. We shall now show that

lim supn→∞
ρD(n)
D√n−1

< 2 as well. First consider the even diameter case. Let T2t(n) be a tree with n
vertices and diameter 2t which is an induced subgraph of Xt(0, b) containing a subgraph Xt(0, b− 1).
It follows that

ρ(T2t(n))
2t√n− 1

≤
ρ(Xt(0, b))
2t√n− 1

=
2
√
b cos

(
π
t+2

)
2t√n− 1

≤
2
√
b cos

(
π
t+2

)
2t
√
nb−1 − 1

.

Letting b→∞, we obtain

lim sup
n→∞

ρ(T2t(n))
2t√n− 1

≤ 2 cos
(

π

t + 2

)
.

The odd diameter case can be handled similarly. Therefore we obtain the following.

Theorem 3.3. Let D ≥ 1. Then

lim sup
n→∞

ρD(n)
D√n− 1

≤


2 cos

(
π

2+ D/2

)
if D is even;

2 cos
(

π

2+ D

)
if D is odd.

In particular,

lim sup
n→∞

ρD(n)
D√n− 1

< 2.

For sufficiently large diameter, an improved upper bound, i.e., 1.59, for the above limit superior can be
obtained from results of Canale and Gómez [3, Thm. 7]. We conjecture however that the lower bound
of the previous section is closer to the truth than these upper bounds.

Conjecture 3.4. Let D ≥ 1. Then

lim
n→∞

ρD(n)
D√n− 1

= 1.

4. The degree/diameter problem

Our problem is related to thewell-known degree/diameter problem, i.e., the problem to determine
graphs with maximum degree ∆ and diameter D and with as many vertices as possible, for given ∆
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and D, cf. [13]. The (maximum) number of vertices of such a graph Γ is denoted by n∆,D. An obvious
and well-known bound is the so-called Moore bound:

n∆,D =
D∑
i=0

|Γi(v)| ≤ 1+∆+∆(∆− 1)+ · · · +∆(∆− 1)D−1

= 1+∆
(∆− 1)D − 1

∆− 2
,

where we have assumed that∆ ≥ 3 to avoid trivialities. Related to the number n∆,D is the parameter

µD := lim inf
∆→∞

n∆,D
∆D

,

which was introduced by Delorme [9]. From the Moore bound it follows thatµD ≤ 1. It is known that
µD = 1 for D = 1, 2, 3, and 5, and that µ4 ≥ 1

4 , cf. [13]. Moreover, Bollobás [2, p. 213] conjectured
that µD = 1 for D ≥ 3.
To relate the degree/diameter problem to ours, we introduce m∆,D as the maximum number of

vertices of a graph with diameter D and spectral radius ρ ≤ ∆, for given∆ and D. Similarly as for the
degree/diameter problem, we introduce the parameter

µ̃D := lim inf
∆→∞

m∆,D
∆D

.

Because ρ(Γ ) ≤ ∆(Γ ) for any graph Γ , it follows that n∆,D ≤ m∆,D, and hence that µD ≤ µ̃D. The
relation of the parameter µ̃D to the earlier results in this paper is the following.

Lemma 4.1. Let D ≥ 1. Then

µ̃D =

(
lim sup
n→∞

ρD(n)
D√n− 1

)−D
.

Proof. Because ρD(m∆,D) ≤ ∆, we obtain that
m∆,D
∆D
≤

m∆,D
ρD(m∆,D)D

. From this it follows that

µ̃D ≤ lim inf
n→∞

n
ρD(n)D

=

(
lim sup
n→∞

ρD(n)
D√n− 1

)−D
.

On the other hand, from the definition ofm∆,D it follows that ρD(m∆,D + 1) > ∆, so

lim sup
∆→∞

∆

D
√
m∆,D

≤ lim sup
∆→∞

ρD(m∆,D + 1)
D
√
m∆,D + 1− 1

≤ lim sup
n→∞

ρD(n)
D√n− 1

,

and hence µ̃D ≥
(
lim supn→∞

ρD(n)
D√n−1

)−D
. �

From the results in Section 3 it now follows that 2−D < µ̃D ≤ 1. The more specific bound for D = 4
implies that µ̃4 ≥ 1

4 , which also follows from the fact that µ4 ≥
1
4 .

Moreover, if µD = 1, then also µ̃D = 1, and hence limn→∞
ρD(n)
D√n−1

= 1. Thus Conjecture 3.4 is true
for D = 1, 2, 3, 5, and it is true in general if Bollobás’ conjecture is true.
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