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PARTICLE FILTERS FOR MARKOV SWITCHING STOCHASTIC

VOLATILITY MODELS

YUN BAO? , CARL CHIARELLA] AND BODA KANG†

Abstract. This paper proposes an auxiliary particle filter algorithm for inference in

regime switching stochastic volatility models in which the regime state is governed by

a first-order Markov chain. We proposes an ongoing updated Dirichlet distribution to

estimate the transition probabilities of the Markov chain in the auxiliary particle filter.

A simulation-based algorithm is presented for the method which demonstrated that

we are able to estimate a class of models in which the probability that the system state

transits from one regime to a different regime is relatively high. The methodology is

implemented to analyze a real time series: the foreign exchange rate of Australian

dollars vs South Korean won.

JEL Classification: C61, D11.

Keywords: Particle filters, Markov switching stochastic volatility models, Sequential

Monte Carlo simulation.

1. Introduction

Time-varying volatilities are broadly recognized as the nature of most financial time

series data. Stochastic volatility (SV) models have been considered as a practical means

to capture the time-varying variance, in particular the mean and log volatility have

separate error terms.

Both autoregressive conditional heteroscedasticity (ARCH) models and stochastic

volatility models are formulated under the belief of persistence of volatility to some
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extent. Examples of empirical studies, which documented the evidence of volatility per-

sistence, include Chou (1988), French, Schwert and Stambaugh (1987), Poon and Taylor

(1992) and So, Lam and Li (1998). However as the economic environment changes, the

magnitude of the volatility may shifts accordingly. Lamoureux and Lastrapes (1990)

apply the generalized autoregressive conditional heteroscedasticity (GARCH) model to

examining the persistence in volatility, while Kalimipalli and Susmel (2004) show that

regime-switching SV model performs better than single-state SV model and GARCH

family of models for short-term interest rates. So, Lam and Li (1998) advocate a Markov

switching stochastic volatility (MSSV) model to measure the fluctuations in volatility

according to economic forces.

Many methods have been developed to estimate Markov switching models. Examples

of expectation maximization methods include Chib (1996), James et al. (1996), Elliott et

al. (1998) and Elliott and Malcolm (2008). Examples of Bayesian Markov Chain Monte

Carlo (MCMC) methods include Fruhwirth-Schnatter (2001), Hahn et al. (2010), and

Kalimipalli and Susmel (2004) among others. More recently, Fearnhead and Clifford

(2003) as well as Carvalho and Lopes (2006) utilize particle filters to estimate Markov

switching models.

The transition probabilities associated with MSSV model are the crucial parameters

to estimate. They do not only determine the ergodic probability, but also determine how

long the regime stays. Carvalho and Lopes (2006) combine a kernel smoothing, which

is proposed by Liu and West (2001), and auxiliary particle filters (Pitt and Shephard

(1999)) to estimate the parameters of the MSSV model. However this method is quite

sensitive to the knowledge of prior distributions.

The modification that we made for the method in Carvalho and Lopes (2006) is to

use an updated Dirichlet distribution to search reliable transition probabilities rather

than applying a multi-normal kernel smoothing. The Dirichlet distribution has been

used with MCMC in Chib (1996) and Frühwirth-Schnatter (2006). The combination of

auxiliary particle filters and Dirichlet distribution of transition probabilities allows for

an updating path of transition probabilities over time.

The rest of this paper is organized as follows. Section 2 presents a MSSV model.

In section 3, the proposed method of auxiliary particle filter is described in detail.



PARTICLE FILTERS FOR MARKOV SWITCHING STOCHASTIC VOLATILITY MODELS 3

Successively, the simulation results have been shown in Section 4, while the methodology

is applied to the real data, namely the exchange rate of Australian dollars vs South

Korean won, in Section 5. Conclusions are given in Section 6.

2. The Markov switching stochastic volatility model

Let yt be a financial time series with a time-varying log volatility xt. The observations

y1, · · · , yt are conditionally independent with the latent variable xt, and are normally

distributed,

yt = exp
(xt

2

)
Vt,

and the log-volatility is assumed to be a linear autoregressive process

xt = αst + φxt−1 + σWt,

where Vt and Wt are independent and identically distributed random variables of stan-

dard normal distribution. The drift parameter, α = (α1, · · · , αk), indicates the regime

shifting effect. The elements in the set of regime switching are the labels for states,

i.e., st = {1, 2, · · · , k}, where k is the number of states. The transition probabilities are

defined as

pij = Pr(st = j|st−1 = i) for i, j = 1, 2, · · · , k,

where
∑k

j=1 pij = 1. In order to avoid the problem of identification, we assume

αst = γ1 +

k∑
j=2

γjIjt,

where γ1 ∈ R, γi > 0 for i > 1, and Ijt is the indicator function

Ijt =

 1 if st ≥ j,

0 otherwise.

In the MSSV model, the conditional probability distributions for observations yt,

and state variables xt are given by

p(yt|xt) = (2πext)−1/2 exp

(
− y2t

2ext

)
,

p(xt|xt−1, θ, st) =
(
2πσ2

)−1/2
exp

(
−(xt − αst − φxt−1)

2

2σ2

)
,

where Θ is the parameter vector, i.e., Θ =
{
α1, α2, σ

2, φ.
}

.
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In this paper, we start with a simple MSSV model where there exit only two states,

namely high- and low-volatility states, i.e., k = 2. We also assume that only the mean

of volatility shifts depending on the state, i.e., α1 = γ1 and α2 = γ1 + γ2.

3. Auxiliary particle filter

Let Dt denote a set of observations, i.e., Dt = {y1, y2, · · · , yt}. According to Bayes

rule, the conditional probability density function of xt+1 is given by

(1) p (xt+1|Dt+1) =
p(yt+1|xt+1)p(xt+1|Dt)

p (yt+1|Dt)
.

As shown in Eq.(1), the posterior density p (xt+1|Dt+1) consists of three components.

They are the likelihood function p(yt+1|xt+1), the prior p(xt+1|Dt), and the denominator

p (yt+1|Dt). The prior distribution for xt+1 is given by

p(xt+1|Dt) =

∫
p (xt+1|xt) p (xt|Dt) dxt,

and the denominator is an integral

p (yt+1|Dt) =

∫
p (yt+1|xt) p (xt|Dt) dxt.

Thus, the posterior distribution for xt+1 is a proportion of numerator of the right hand

side of Eq.(1), i.e.,

p (xt+1|Dt+1) ∝ p(yt+1|xt+1)

∫
p (xt+1|xt) p (xt|Dt) dxt.

Suppose there is a set of particles
{
x1t , · · · , xNt

}
with discrete probabilities

{
ω1
t , · · · , ωNt

}
,

and
{
xjt , ω

j
t

}N
j=1
∼ p (xt|Dt). Therefore the posterior expectation is given by

(2) p̂(xt+1|Dt) =

N∑
j=1

p
(
xt+1|xjt

)
ωjt .

Then at the time t+ 1 the posterior distribution is approximated by

(3) p̂(xt+1|Dt+1) = p(yt+1|xt+1)

N∑
j=1

p
(
xt+1|xjt

)
ωjt .

Following Pitt and Shephard (1999), Eqs.(2) and (3) are called as empirical prediction

density and the empirical filtering density, respectively. The auxiliary particle filter,

which is also known as auxiliary sequential importance resampling (ASIR), adds an

indicator in Eq.(3) to do the resampling. The indicator can be mean or mode, which
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depends upon researchers’ favor. As Pitt and Shephard (1999) claimed that if the

measure of state variable does not vary over the particles, the ASIR is more efficient

than general SIR. Since p (xt+1|xt) is more condense than p (xt+1|Dt) compared to their

conditional likelihood, using ASIR for MSSV is an good alternative to SIR.

In addition to tracking the unobserved state variables, we adopt a kernel smoothing

in Liu and West (2001) to estimate the parameters, except for transition probabilities.

The parameters using the kernel smoothing estimation are the volatility levels α1 and

α2, the volatility variance σ2, and the volatility persistence φ.

For the case of the kernel smoothing, the smooth kernel density form from West

(1993) is given by

p(Θ|Dt) ≈
N∑
j=1

ωjtN(Θ|mj
t , h

2Vt),

where Θ is the parameter vector, h > 0 is the smoothing parameter, m and h2V are

the mean and variance of the multivariate normal density. Based on it, Liu and West

(2001) proposed the conditional evolution density for Θ

p (Θt+1|Θt) ∼ N
(
Θt+1|aΘt + (1− a) Θt, h

2Vt

)
,

where a = 3δ−1
2δ , and h2 = 1 − a. The discount factor δ is in (0, 1], Θt and Vt are the

mean and variance of the Monte Carlo approximation to p (Θ|Dt). Straightforwardly,

Θt =
∑N

j=1 ω
j
tΘ

j
t and Vt =

∑N
j=1 ω

j
t

(
Θj
t −Θt

)(
Θj
t −Θt

)′
.

For the case of the transition probabilities, the parameters are updated by the Dirich-

let distribution. Suppose the matrix of transition probabilities P is k × k, and sum of

each row is equal to 1. Then the ith row of P is denoted by pi. = {pi1, · · · , pik}, and let

pi. be the random variables of a Dirichlet distribution

pi. ∼ D (λi1 , · · ·λik) .

Each prior distribution of pi. is independent upon pj., i 6= j. According to Chib

(1996), the updated distribution of P |St is also a Dirichlet distribution, where St =

{s1, s2, · · · , st}

pi.|St ∼ D (λi1 + ni1, · · ·λik + nik) ,

where nik is the number of one-step transition from state i to state k in sample St. In

this case, we assume a two-state problem, i.e., k = 2.
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Initially, the starting-point parameters for each particle are draw from their prior

distributions. Afterwards, in the case of Markov switching stochastic volatility, the

starting-point state variable sj0 is determined by ergodic probability. The ergodic prob-

ability for two states is Pr
(
sj0 = 1

)
=

1−pj22
2−pj11−p

j
22

, and Pr
(
sj0 = 2

)
= 1 − Pr

(
sj0 = 1

)
.

If a random number from uniform distribution (0,1) is less than Pr
(
sj0 = 1

)
, sj0 = 1;

otherwise sj0 = 2. Then given the state, the starting-point log-volatility is able to be

drawn from a normal distribution, xj0 ∼ N

(
αjs0
1−φj0

,
(
σj0

)2)
. Below is the algorithm for

the ASIR with updated Dirichlet distribution afterwards.

While t ≤ T

Step 1: Determine the mean (our guessing)

For j = 1 to N ,

sµ
j

t+1 = arg max
i=1,2

Pr
(
st+1 = i|sjt

)
µjt+1 = α

sµ
j

t+1

+ φjtx
j
t

ωµ
j

t+1 ∝ p
(
yt+1|µjt+1

)
ω̃jt

End for

Normalized importance weights ω̃µ
j

t+1 =
ωµ

j

t+1∑N
j=1 ω

µj

t+1

.

Step 2: Resampling

For j = 1 to N ,{
Θjl

t , µ
jl

t+1, x
jl

t , s
jl

t

}
=resample

{
Θj
t , µ

j
t+1, x

j
t , s

j
t , ω̃

µj

t+1

}
,1

Θj
t+1 ∼ N(aΘjl

t + (1− a) Θt, h
2Vl

t),

updating nt+1,ij , and pt+1,i. ∼ D (λi1 + nt+1,i1, λi2 + nt+1,i2) , i = 1, 2.

End for

Step 3: Sample the hidden variables
{
sjt+1, x

j
t+1

}
For j = 1 to N ,

Filtering the conditional probability Pr(sjt+1 = k|yt+1,Θj
t+1), k = 1 or 2.

(a) One-step ahead prediction probabilities

Pr(sjt+1 = k|yt,Θj
t ) =

K∑
i=1

Pr
(
sjt+1 = k|sjt = i

)
Pr
(
sjt = k|yt,Θj

t

)
.

1Please refer to the Appendix for more details.
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(b) Filtering for st

Pr(sjt+1 = k|yt+1,Θj
t+1) =

p(yt+1|sjt+1 = k,yt,Θj
t+1) Pr(sjt+1 = k|yt,Θj

t )∑K
i=1 p(yt+1|sjt+1 = i,yt,Θj

t+1) Pr(sjt+1 = i|yt,Θj
t )
.

(c) Draw p̃jt+1 ∼ uniform(0, 1)

if p̃jt+1 ≤ Pr(sjt+1 = k|yt+1,Θj
t+1), then sjt+1 = k

otherwise, st would be another state.

Sample xjt+1 ∼ p
(
xjt+1|x

j
t , s

j
t+1,Θ

j
t+1

)
,

ωjt+1 ∝
p(yt+1|xjt+1)

p
(
yt+1|µj

l

t+1

)
End for

Normalized importance weights ω̃jt+1 =
ωjt+1∑N
j=1 ω

j
t+1

Step 4: Summarize Θt+1 = ω̃jt+1Θ
j
t+1, xt+1 = ω̃jt+1

(
xjt+1

)′
.

Step 5: Redo from Step 1 (t = t+ 1).

End while

4. Simulation study

In this section, we use four datasets to illustrate this method. Four datasets have

been generated from the MSSV model with two states. The parameters of these four

datasets are shown in Table 1, and the log-volatility of these datasets are shown in

Figure 1. Parameter Θ would be updated by a multinormal distribution, so we transfer

some parameters as log (γ2), log
(
σ2
)
, and log

(
φ

1−φ

)
. The first and the fourth sample

let the transition probability matrix concentrate in the diagonal, but the persistence

parameter varies. Thus, the unconditional mean for the volatility are different. The

second and third samples have relative lower diagonal transition probabilities, which

means the volatility regime changes frequently.

The starting-point values of the estimation are determined by their prior distribu-

tion with the central tendency close to their true values. Since k = 2, the transition

probability matrix is

 p11 1− p11
1− p22 p22

, where p11 is the probability of state of one

given the previous state is one, and p11 is the probability state of two given the previous

state is two. The discount rate δ is set at 0.75 which implies a = 0.8333 and h = 0.4082.



8 YUN BAO, CARL CHIARELLA AND BODA KANG

Figure 1. Log volatility for four dataset

Table 1. Parameter values for the simulated dataset

Parameter Test 1 Test 2 Test 3 Test 4

γ1 -5.0 -5.0 -5.0 -5.0

γ2 3.0 3.0 3.0 3.0

σ2 0.1 0.1 0.1 0.1

φ 0.5 0.5 0.5 0.9

p11 0.99 0.85 0.5 0.99

p22 0.985 0.25 0.5 0.985

Figures 2-5 shows the simulation results of four datasets, and each figure has four

graphs. The first/top graph shows the simulated time series data, and the second graph

contains the simulated Markov Chain (the shifting states). The third graph compares

the simulated log-volatility and estimated log-volatility. The last/bottom graph shows
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the estimated probability that state is in high volatility regime given by the previous

information.

0 100 200 300 400 500 600 700 800 900 1000
-0.4

-0.2

0

0.2

0.4
Observations

0 100 200 300 400 500 600 700 800 900 1000

1

1.5

2

True state

0 100 200 300 400 500 600 700 800 900 1000
-12

-10

-8

-6

-4

-2
ASIR estimates for MSSV model

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Pr(St=2|yt)

Figure 2. Simulated data 1: top graph—simulated time series yt, sec-

ond graph—true regime variables st, third graph—true (blank line) and

estimated log-volatilities (red line), and bottom graph—estimated prob-

ability Pr(st = 2|Dt).

The sequential estimation of the parameters of these four simulated datasets are

shown in Figures 6-9, separately. The black lines denote the modes of the parameters,

the green lines represent the 10% and 90% quantiles, and the red lines represent the

true values of the parameters. In addition, the modes of the parameters are summarized

in Table 2.
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0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Pr(St=2|yt)

Figure 3. Simulated data 2: top graph—simulated time series yt, sec-

ond graph—true regime variables st, third graph—true (blank line) and

estimated log-volatilities (red line), and bottom graph—estimated prob-

ability Pr(st = 2|Dt).

Table 2. Posterior modes of the parameters

Test 1 Test 2 Test 3 Test 4

mode mode mode mode

γ1 −5.0604 −4.9303 −4.9163 −5.0800

γ2 3.2833 2.9811 3.0863 3.1540

σ2 0.0880 0.1292 0.1332 0.1149

φ 0.5335 0.5170 0.4874 0.9012

p11 0.9712 0.7841 0.5816 0.9782

p22 0.9669 0.3690 0.5529 0.9747
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Figure 4. Simulated data 3: top graph—simulated time series yt, sec-

ond graph—true regime variables st, third graph—true (blank line) and

estimated log-volatilities (red line), and bottom graph—estimated prob-

ability Pr(st = 2|Dt).

5. Application to real data

In this section, the proposed algorithms is applied to South Korea Won/AU Dollar

exchange rate from 02/01/1995 to 31/12/1999 (1014 observations). This period includes

the Asian financial crisis in 1997, where South Korea suffers a lot.

Figure 10 shows the log difference of the exchange rete, the estimated log volatility

and the estimated probability that state is equal to 2. According to Figure 10, the

volatility of the exchange rate becomes big during the Asian financial crisis, and switches

regimes frequently afterwards. In other words, the stable movement of the exchange

rate does not last for longer than that before the crisis.

The sequential estimation of the exchange rate is shown in Figure 11, and the up-

dated values of mode and quantiles are shown in Table 3. The estimate of the persistence
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ASIR estimates for the MSSV model
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Figure 5. Simulated data 4: top graph—simulated time series yt, sec-

ond graph—true regime variables st, third graph—true (blank line) and

estimated log-volatilities (red line), and bottom graph—estimated prob-

ability Pr(st = 2|Dt).

parameter φ is 0.5, which is not overestimated, according to So et al.’s (1998) and Car-

valho and Lopes’ (2006) findings. The diagonal elements of the transition probability

descends over time, in particular after the Asian financial crisis. In other words, the

exchange rate of Australian dollar vs South Korean won becomes more volatile after

this crisis.

Table 3. The updated posterior modes, 10% and 90% quantiles of the parameters

γ1 γ2 σ2 φ p11 p22

Mode −5.4294 2.2087 0.2533 0.5216 0.9629 0.9504

10% −5.4885 2.1534 0.2428 0.5159 0.9548 0.9396

90% −5.3708 2.2668 0.2648 0.5272 0.9699 0.9599
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Figure 6. Posterior mode, 10 and 90 percent quantiles of Θ for the first

simulated data: θ1 = γ1, θ2 = γ2, θ3 = σ2, θ4 = φ, θ5 = p11, θ6 = p22.

6. Diagnostic for sampling improvement

Following Carpenter, Clifford and Fearnhead (1999), we implement effective sample

size to assess the performance of the particle filtering. The comparison of the effective

sample size of the ASIR with multi-normal kernel smoothing and the (proposed) ASIR

with updated Dirichlet distribution is presented to show whether the proposed ASIR is

robust rather than previous one.
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Figure 7. Posterior mode, 10 and 90 percent quantiles of Θ for the

second simulated data: θ1 = γ1, θ2 = γ2, θ3 = σ2, θ4 = φ, θ5 = p11,

θ6 = p22.

The algorithm of calculating the effective sample size is show below. Suppose g(xt)

is a measure of xt, and its expectation is

θ =

∫
g(xt)p (xt|yt) dxt.
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Figure 8. Posterior mode, 10 and 90 percent quantiles of Θ for the

third simulated data: θ1 = γ1, θ2 = γ2, θ3 = σ2, θ4 = φ, θ5 = p11,

θ6 = p22.

The discrete approximation of the θ is given by

zt =

N∑
i=1

ωitg(xit),

and the variance of mature g(xt) is given by

υt =
N∑
i=1

ωjt g
2(xjt )− z2k.
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Figure 9. Posterior mode, 10 and 90 percent quantiles of Θ for the

fourth simulated data: θ1 = γ1, θ2 = γ2, θ3 = σ2, θ4 = φ, θ5 = p11,

θ6 = p22.

Suppose the independent filter has been run for M times, and the value of zt and υt

can be calculated. Then the effective sample size is given by

N∗t =
vt

1
M

∑M
j=1(z

j
t − zt)

.

The greater the value of the effective sample size, the more likely the filter is reliable. The

comparison of the proposed model and the model with kernel smoothing for transition
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Figure 10. The exchange rate: top graph—the observed time series

yt, second graph—the estimated log-volatilities, and bottom graph—

estimated probability Pr(st = 2|Dt).

probability is shown in Table 4. According to the results, as time goes by, the use of

Dirichlet updating is more reliable than the use of Kernel smoothing method.

Table 4. Comparison of effective sample sizes

Time horizon 100 200 300 400 500 600 700 800 900 1000

Dirichlet updating 32 33 37 2 3 27 15 18 21 8

Kernel smoothing 70 27 62 1 2 20 8 2 11 1

7. Conclusion

In this article we developed and implemented an auxiliary particle filter algorithm to

estimate a univariate regime switching stochastic volatility model. The use of simulated

examples was intended to show the performance of the proposed method.



18 YUN BAO, CARL CHIARELLA AND BODA KANG

In particular, in terms of estimating the transition probabilities of the Markov Chain,

we modified the method in Carvalho and Lopes (2006) to use an updated Dirichlet

distribution to search reliable transition probabilities rather than applying a multi-

normal kernel smoothing which is only able to have a good estimate when the probability

that the system state transits from one regime to a different regime is rather low.

The combination of auxiliary particle filters and Dirichlet distribution of transition
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Figure 11. Posterior mode, 10% and 90% quantiles of Θ for the ex-

change rate from 02/01/1995 to 31/12/1999: θ1 = γ1, θ2 = γ2, θ3 = σ2,

θ4 = φ, θ5 = p11, θ6 = p22.



PARTICLE FILTERS FOR MARKOV SWITCHING STOCHASTIC VOLATILITY MODELS 19

probabilities allows for an updating path of transition probabilities over time and also

will accommodate the cases that the probability that the system state transits from

one regime to a different regime is relatively high. This feature is often observed in the

Energy, Commodity or FX market.

8. Appendix: Resampling

We adopt the systematic resampling method, which is metioned in Ristic, Arulam-

palam and Gordon (2004). The algorithm of
{

Θjl

t , µ
jl

t+1, x
jl

t , s
jl

t

}
=resample

{
Θj
t , µ

j
t+1, x

j
t , s

j
t , ω̃

µj

t+1

}
can be shown below.

Step 1: Draw u0 ∼ uniform(0, 1),

construct a cdf of importance weights, i.e., cj =
∑N

j=1 ω̃
µj

t+1,

i = 1.

Step 2: For j = 1 to N

uj = uj−1 + 1/nparts,

If uj > cj ,

i = i+ 1,

else i = i,

End if.

Θjl

t = Θi
t, µj

l

t+1 = µit+1, xj
l

t = xit, sj
l

t = sit,

End for.
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