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ABSTRACT. This paper proposes and analyses a term structure model that allows

for both stochastic correlation between underlying factors and an extended market

price of risk specification. The issues of invariant transformation and different nor-

malization are then considered so that a comparison between different restrictions

can be made. We show that significant improvement in bond fitting is obtained by

both allowing the market price of risk to have an extended affine form, and allow-

ing the correlation between underlying factors to be stochastic as well as of variable

sign. The overall model fit is more negatively impacted by the restriction on the mar-

ket price of risk than the restriction of correlated factors. However, the stochastic

correlation is priced significantly by market participants, though its impact on the

risk premia reduces gradually as time to maturity increases. In addition, stochastic

correlation is vital in obtaining good hedged portfolio positions. Certainly, the best

hedged portfolio is the one that is built based on the model that takes into account

both stochastic correlation and extended market price of risk.

Key words: Term structure; Stochastic correlation, Risk premium; Wishart; Affine;

Extended affine; Multidimensional CIR.
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1. INTRODUCTION

Much effort has been exerted on term structure modelling to deliver models that can

capture both time series and cross-sectional features of yield curves, and at the same

time offer some analytical tractability. The affine term structure models (ATSMs) of-

fer a tractable family of models that can deliver economically meaningful behaviour of

bond yields. The completely affine models have long been of interest, from the early

models of Vasicek (1977) and Cox, Ingersoll & Ross (1985b), to the reduced-form

model of Duffie & Kan (1996) and then systematically characterized by Dai & Sin-

gleton (2000). Although the reduced-form models do not rely on specific modelling

of investor behaviour, they do give much more scope to better match real data. It has

been proved that a richer specification of the market price of risk is needed to cap-

ture behaviour of bond returns and the premium, such as the switching sign of both

the market price of risk and unconditional correlations of (some) underlying factors.

Developments in this direction include the essentially affine model of Duffee (2002),

the semi-affine squared root model of Duarte (2004), and the extended affine model

of Cheridito et al. (2007). The latter authors show that the extended affine model pro-

vides a much better fit, especially in terms of time-series fit, and has strong statistical

significance.

The developments in market price of risk modelling have delivered a much better

model fit. However, a draw-back of these models is the restriction they impose on

the correlation structure of the state variables. Take the two fundamental factors long

term yield and yield spread as an example. These two factors are usually found to be

the important factors influencing the term structure of interest rate (eg. Duffee (1999),

Duan & Simonato (1999)). Figure 1 illustrates the realized correlations between a 30-

year yield and the spread of 3-month and 30-year yields, and shows that they are in the

negative range most of the observation period and are highly volatile. However, the

Duffie & Kan (1996) framework only allows for positive correlation between positive

factors, and consequently ignores this stochastic nature of the correlation. In addition,
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it is expected that correlation risk is priced. Though we are not aware of empirical

research in the interest rate market to test this hypothesis, evidence has been found in

the equity option market by Driessen et al. (2009). It is therefore of special importance

to model the stochastic correlation between the underlying factors of the term structure

of interest.

Recently, financial market researchers have explored the use of the Wishart distri-

bution to model dynamic correlation structure of the state variables. The risk factors

are assumed to follow a continuous time affine process of positive definite matrices,

whose transition probability is a Wishart distribution. Some of the Wishart term struc-

ture analysis work can be found in Gourieroux & Sufana (2003), Gourieroux (2006),

Gourieroux et al. (2009), Da Fonseca et al. (2007), Da Fonseca et al. (2008), Buraschi

et al. (2008) and Cuchiero et al. (2009). In their comprehensive paper, Buraschi et al.

(2008) show that the Wishart model also enhances model flexibility to capture various

empirical regularities of yield curves, such as the predictability of excess bond returns,

the persistence of conditional volatilities and correlations of yields, and the hump in

term structure of forward volatilities.

Similar to the Cox, Ingersoll & Ross (1985b) (hereafter CIR) model, the Wishart

model of Buraschi et al. (2008) is an equilibrium model. It is argued that though

the market price of risk specification is simple under the equilibrium setting (square

root function without a constant term), the model is still capable of matching various

features of the yield curve. The theoretical advantage of Wishart term structure models

over the affine term structure class is that they simultaneously allow for stochastically

and negatively correlated factors, as well as allow for a variable sign of the market

price of risk and excess bond returns. Buraschi et al. (2008) compare a simple 3x3

Wishart model with various 3-factor (completely and essentially) affine models and

find that it has better performance.

In this paper we propose and analyse a term structure model that allows for both sto-

chastic correlation between underlying factors and a sophisticated market price of risk
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specification for each factor. This allows us to compare the significance of each com-

ponent in matching the features of the yield curve. It also allows us to examine how

investors value each component of risk, whether they give a higher price for the factor

risk, or for the correlation risk. Finally, we believe that modelling both risk premia and

correlation structure dynamically will result in a better portfolio performance.

It is noted again that financial market researchers have provided one-dimensional

empirical evidence of the significance of the above two components, namely stochas-

tic correlation and market price of risk. Buraschi et al. (2008) has provided extended

analysis of the Wishart versus completely affine model, and similarly Cheridito et al.

(2007) have made the case for the extended affine market price of risk versus com-

pletely and essentially affine. However, direct comparison between the two set-ups is

not possible. Our model (hereafter our WTSMmodel) allows this comparison, though

not directly. We will characterize the invariant transformation for our WTSM model,

and provide three different sets of normalization conditions, so that under appropri-

ate normalization, our WTSM model will either nest the Wishart model proposed by

Buraschi et al. (2008) (hereafter BCT model), or nest the multidimensional CIR model

with extended affine market price of risk (hereafter MCIR model). The tradeoff and

relative advantages/disadvantages of each approach can therefore be analyzed.

The Wishart risk factors are not directly observed but need to be inferred from

observed bond yields. Buraschi et al. (2008) and Cheridito et al. (2007) assume that

there are as many bond yields as the factors observed without measurement errors

so that the factors can be obtained by an exact yield-factor correspondence. Based

on this Buraschi et al. (2008) uses the GMM and Cheridito et al. (2007) employ an

approximate likelihood method to estimate the parameters. Different from them but

in line with Duffie & Singleton (1997), we adopt the extended Kalman filter to filter

out underlying factors from the observations with measurement/observation errors.

Filtering techniques are advantageous for estimating Wishart factors because we can

control positive definiteness easily for each time step. This is technically an important

point because a Wishart process is not defined if it is not positive definite. As far as
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we are aware, this issue has not been considered, or considered but not discussed, in

the current literature. Using methods without the control of positive definiteness, the

parameters can be still obtained but there is no guarantee that the obtained Wishart

process is well-defined.

Confirming the findings of Duffee (1999) and Duan & Simonato (1999), we also

find that the underlying risk factors in our MCIR model can be interpreted as the long-

term yield and the term spread. Moreover in our framework we can estimate the time-

varying correlation of these two factors. The correlations need not be constrained to

be positive as in Dai & Singleton (2000) but are allowed to change signs.

The estimation results show that the extension of the WTSM is statistically signif-

icant against the BCT and the MCIR model. The WTSM provides a better overall

match to the data as well as better short-term and long-term forecasts. Even though

Wishart risk factors have resulted in much flexibility for modelling yield curves, there

are still essential constraints for fitting empirical data when adopting a simple market

price of risk. Here we still find that a simple market price of risk forces a sacrifice of

time series fitting in order to adjust cross-sectional fitting, consistent with the findings

of Duffee & Stanton (2004) and Cheridito et al. (2007).

In addition, we find that the risk factors are priced very differently under different

models. If we do not allow for stochastic correlation, the level-factor risk totally dom-

inates the spread-factor risk in the risk premia. On the other hand, if we only allow

a simple market price of risk specification and stochastic correlation, the correlation

risk is priced significantly, and is even more significant than the level-factor risk at the

long end of the curve. If we allow for both flexible market price of risk and stochas-

tic correlation, we find that all risk factors play an important role in determining the

risk premia. However, the correlation risk and the spread-factor risk are priced more

significantly at the shorter end of the curve, then the significance reduces gradually as

the time to maturity increases. The level-factor risk, on the other hand, has a more

permanent presence.
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We further analyze the performance of different models based on the ability to ob-

tain the best hedged position. WTSM, which takes into account both stochastic corre-

lation and flexible market price of risk, indeed delivers the best outcome. However, in

contrast to the fitting performance, the restrictions on the market price of risk impact

less negatively on the portfolio hedging performance than the restriction on correlated

factors.

The remainder of the paper is organized as follows. Section 2 outlines the model

as well as its properties in terms of conditional moments and stochastic correlation.

It also discusses the model invariant transformation and normalization issues. Esti-

mation procedures are given in Section 3. Empirical evidence and analyses of bond

fitting and forecasting are presented in Section 4, whereas risk premia and portfolio

hedging performance under stochastic correlation are analysed in Section 5. Section 6

concludes the paper and all technical details are placed in the Appendices.

2. WISHART TERM STRUCTURE MODELS

If the instantaneous interest rate rt at time t follows a Wishart process, the term

structure model based upon it is called a Wishart term structure model (WTSM). In

this section we will set up a new (WTSM). The model is different from the set-up

in Buraschi et al. (2008) by adopting a more general market price of risk specifica-

tion. Our model is in a continuous time setting, and therefore quite different from the

discrete-time set-up in Gourieroux et al. (2009).

2.1. AWishart Term Structure Model (WTSM).

Definition 1. (The Wishart Process) Let Xt be a full-rank symmetric positive-definite

n × n-matrix diffusion process defined as

dXt =
(

kQQ! + MXt + XtM
!
)

dt + QdWt

√

Xt +
√

XtdW!
t Q! , (1)

where " denotes the transpose, Q andM are n×nmatrices, k is a constant satisfying
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k ≥ n + 1, (2)

and Wt is an n × n standard Wiener process. The square root
√
· is in the matrix

sense1. The matrix Xt is called a Wishart process with degree of freedom k. The

matrixM is usually negative definite so that the process Xt is stationary.

The condition k ≥ n + 1 guarantees that the Wishart process is strictly positive

definite, see Theorem 2′′ (p.745) in Bru (1991). We need to have the stronger require-

ment of positive definiteness than that of Buraschi et al. (2008) because later we will

consider
√

Xt
−1 in our market price of risk specification.

Assumption 1. The instantaneous rate rt is a linear combination of the Wishart pro-

cess Xt given by

rt = α+ tr(ΨXt) = α+
n

∑

i,j=1

ΨijXij,t , (3)

where Ψ is an n × n matrix, and tr is the trace operator. Without loss of generality Ψ

is a symmetric matrix2. In order to guarantee the positivity of rt Ψ is required to be

positive definite.

There are market prices of risk, denoted by an n× n matrix Λt, associated with the

n × n risk process Wt. The probability transformation from the empirical measure to

a risk-neutral measure is characterized by the transformed Wiener process

dW̃t = dWt + Λtdt , (5)

where W̃t is an n × n standard Wiener process under the risk-neutral measure.

1For a positive definite matrix X which can be diagonalized in X = P!diag(λ1, · · · , λn)P with P

unitary. Then
√

X := P!diag(
√

λ1, · · · ,
√

λn)P .
2This is because

tr(ΨXt) = tr
(1

2
(Ψ + Ψ!)Xt

)

(4)

and the matrix 1
2
(Ψ + Ψ!) is symmetric.
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Assumption 2. The market price of risk in the Wishart process is assumed to be of the

form

Λt = Λ0

√

Xt
−1

+Λ1

√

Xt , (6)

where Λ0 and Λ1 are n × n matrices and the inverse operator is the matrix inverse.

The form of the market prices of risk is in line with the extended affine term structure

in Cheridito et al. (2007). Under this assumption, the factor process under the risk-

neutral measure is given by

dXt = (Γ̃ + M̃X + XM̃!)dt + QdW̃t

√
X +

√

XtdW̃!
t Q! , (7)

where

Γ̃ := kQQ! − QΛ0 − Λ!
0 Q! , (8)

M̃ := M − QΛ1 . (9)

We observe that Γ̃ is a symmetric n × n matrix.

Remark 2.1. We require

Γ̃ ≥M (n + 1)QQ! (10)

(meaning that Γ̃− (n + 1)QQ! is a positive semi-definite matrix), so that the Wishart

processXt is strictly positive under the risk-neutral measure; see Cuchiero et al. (2009)

Remark 2.2. Under the parameter restrictions (2) and (10) the boundary non-attainment

conditions in Cheridito et al. (2007) are satisfied, so there exists an equivalent martin-

gale measure and risk-neutral pricing is free of arbitrage. Without these restriction the

change of measure cannot be guaranteed to be equivalent3.

Remark 2.3. Our specification contrasts with that of Buraschi et al. (2008), whose

market price of risk is of the simpler form Λt =
√

Xt , which can be derived in an

3For example, the probability of the process hitting a boundary is nonzero under one measure but zero
under the other.
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elegant way from a general equilibrium argument. However, to derive it one must

make the assumption of a log-utility function, which is restrictive.

In this paper we extend the model in Buraschi et al. (2008) by adopting a more

general form of market price of risk (6) and also adding other parameters (for more

detail see Section 3). Although the extension is quite“cheap” as far as solving the

no-arbitrage bond price is concerned, later in Section 4 we will see that this extension

does greatly increase model flexibility for fitting empirical data.

Let P (t, T ) be the price at t of a bond maturing at T with payout of one unit of

money. According to no-arbitrage pricing theory the bond price is equal to the ex-

pected value of the discounted future payoff with respect to the risk-neutral measure.

Thus,

P (t, T ) = Ẽt[exp
(

−
∫ T

t

rsds
)

] , (11)

where Ẽt is the expectation operator under the risk-neutral measure conditioning on the

information up to t. Based on the linear spot rate relation (3) and the factor dynamics

(7), the bond price depends on the current state Xt in the form

P (t, T ;Xt) = exp
(

a(τ) + tr[C(τ)Xt]
)

, (12)

where τ = T − t, a(τ) is a scalar function and C(τ) is a symmetric4 n × n function,

see Cuchiero et al. (2009).

Proposition 1. For the given well-defined factor dynamics (7) under the risk neutral

measure and the instantaneous rate relation (3) the bond price given by (11) can be

solved in the form (12) where the coefficients a(τ) and C(τ) solve the ordinary equa-

tions

d

dτ
C(τ) = C(τ)M̃ + M̃!C(τ) + 2C(τ)QQ!C(τ) −Ψ , (13)

4This is for the same reason as given in footnote 2.
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d

dτ
a(τ) = tr[Γ̃C(τ)] − α (14)

with Γ̃ and M̃ defined in (8) and (9) and subject to the initial conditions a(0) = 0,

C(0) = 0.

Proposition 2. The solution of the n × n matrix valued function C(τ) satisfying the

ODE (13) and the initial condition C(0) = 0 is given by

C(τ) = Φ22(τ)
−1Φ21(τ) , (15)

where Φ12(τ) and Φ22(τ) are n × n blocks of the matrix exponential




Φ11(τ) Φ12(τ)

Φ21(τ) Φ22(τ)



 := exp
[

τ





M̃ −2QQ!

−Ψ −M̃!





]

.

The solution of a(τ) in (14) is given by

a(τ) = −tr
[((Q!Q)−1Γ̃

2

)(

lnΦ22(τ) + τM̃!
)]

− ατ . (16)

Proof. Solution for general solvable affine term structure models can be found in

Grasselli & Tebaldi (2008).

Example 2.4. It is easy to see that a one-dimensional CIR process is an 1 × 1Wishart

process. In this case (1) becomes

dXt = (kQ2 + 2MXt)dt + 2Q
√

XtdWt .

Note that M is required to be negative in order that Xt be stationary.

Example 2.5. Consider an n×n process Xt in (1) with diagonal parameters Q,M and

a diagonal Wiener process

dWt =











dW1t 0 0

0
. . . 0

0 0 dWnt











.
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Then it is easy to see thatXt is a diagonal process and each component on the diagonal

follows a CIR process

dXit = (kq2
i + 2miXit)dt + 2qi

√

XidWit , i = 1, · · · , n, (17)

and the Xi processes are independent of each other. The termsmi and qi are the items

on the diagonals of M and Q respectively, and mi are negative in order to ensure

stationary of xit for all i.

We note that the multi-variate diagonal process (17) is more restrictive than a system

of multiple independent one-dimensional CIR processes. The constant term kq2
i in the

drift coefficient in (17) has a fixed linear relation to its variance q2
i . While in a system

of multiple independent one-dimensional CIR processes, eachXit can have a different

ki. We found that this kind of a proportional restriction for the risk-neutral dynamics

(7) largely reduces the model capability for fitting empirical data. Therefore we adopt

the parametrization Γ̃ in order to relax this proportional restriction. In the model of

Buraschi et al. (2008) Γ̃ = kQQ so it does not cover a system of multiple independent

one-dimensional CIR processes.

2.2. Properties of the Wishart Process.

2.2.1. Conditional Moments.

Proposition 3. The conditional first moment of the Wishart process (1) is given by

E[Xt+τ |Xt] = ΦτXtΦ
!
τ + kVτ , (18)

where Φτ := exp(Mτ)5 and

Vτ :=

∫ τ

0
ΦsQQ!Φ!

s ds . (19)

5RecallM is negative definite so Φτ converges to zero for large τ .
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The conditional second moment is given by

Var[vecXt+τ (vecXt+τ )!|Xt]

= (In2 + Kn,n)
(

ΦτXtΦ
!
τ ⊗ Vτ + k(Vτ ⊗ Vτ ) + Vτ ⊗ ΦτXtΦ

!
τ

)

, (20)

where vec(Xt) stacks all columns of Xt into an n2 × 1 vector, In2 is an n2 × n2 unit

matrix, Kn,n is the commutative matrix defined by

vec(H!) = Kn,nvec(H) , for any n × n matrix H . (21)

Proof see Buraschi et al (2008). !.

2.2.2. Stochastic Correlation.

Proposition 4. For the n×nWishart process Xt is as defined in (1), the instantaneous

correlation is given by

Cov[dXijdXuv] =
(

(QQ!)iuXjv+(QQ!)juXiv+(QQ!)ivXju+(QQ!)jvXiu

)

dt .

(22)

Proof see Appendix. !.

For the special case of the covariance of the variables on the diagonal, we have

Cov[dXii dXjj ] = 4(QQ!)jiXijdt . (23)

Now we calculate the correlation

Corr[dXii dXjj ] =
Cov(dXii dXjj)

√

Var(dXii)
√

Var(dXjj)
= η

Xij√
Xii

√

Xjj

, (24)

where η is a constant given by

η =

∑n
u=1 QiuQju

√

∑n
u=1 Q2

iu

√

∑n
u=1 Q2

ju

.
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The stochastic covariance given in the last proposition can be also summarized in

vector form:

Proposition 5.

Cov[vec(dX)vec(dX)!]

= (In2 + Kn,n)
(

X ⊗ QQ!
)

dt + (Kn,n + In2)
(

QQ! ⊗ X
)

dt (25)

= (X ⊗ 1n×n). ∗ (1n×n ⊗ QQ!)dt + (11×n ⊗ X ⊗ 1n×1). ∗ (1n×1 ⊗ QQ! ⊗ 11×n)dt

+(11×n ⊗ QQ! ⊗ 1n×1). ∗ (1n×1 ⊗ X ⊗ 11×n)dt + (QQ! ⊗ 1n×n). ∗ (1n×n ⊗ X)dt

=: S(X)dt , (26)

where In2 is the n2 × n2 identity matrix, Kn,n is defined in (21), 1n×n is an n × n

matrix with all elements equal to one and .∗ represents element-wise multiplication.

2.2.3. Risk Premia. The bond return under the risk neutral measure is given by

dP (t, T ;Xt)

P (t, T ;Xt)
= rtdt + tr

[

(QdW̃t

√

Xt +
√

XtdW̃!
t Q!)C(τ)

]

, (27)

with the risk neutral return rt. Using the change of measure (5) and the assumption of

the market price of risk (6) we obtain the risk premia under the real world measure, so

that

dP (t, T ;Xt)

P (t, T ;Xt)
= rtdt + tr

[(

Q(Λ0 + Λ1Xt)
√

Xt +
√

Xt(Λ
!
0 + X!

t Λ
!
1 )Q!

)

C(τ)
]

dt

+ tr
[

(QdWt

√

Xt +
√

XtdW!
t Q!)C(τ)

]

= rtdt + 2tr
[

Q(Λ0 + Λ1Xt)C(τ)
]

dt + tr
[

(QdWt

√

Xt +
√

XtdW!
t Q!)C(τ)

]

(28)

= rtdt + tr
[

(kQQ! − Γ̃)C(τ)
]

dt + 2tr
[

(M − M̃)XtC(τ)
]

dt (29)

+ tr
[

(QdWt

√

Xt +
√

XtdW!
t Q!)C(τ)

]

.
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The excess return above the instantaneous rate is called risk premia, so we write

Risk Premia = et = 2tr
[

Q(Λ0 + Λ1Xt)C(τ)
]

(30)

= tr
[

(kQQ! − Γ̃)C(τ)
]

+ 2tr
[

(M − M̃)XtC(τ)
]

.

2.3. Invariant Transformations and Normalization of Parameters. AWishart term

structure model is characterized by its model parameters Θ :=
(

k,M,Q, Γ̃, M̃ , α,Ψ
)

given in the factor dynamics (1) under the real world measure, the factor dynamics

(7) under the risk-neutral measure and the instantaneous rate (3). Dai and Singleton

(2000) pointed out that for the dynamic affine term structure model different parame-

ter specifications can generate exactly the same model bond price. A straightforward

example is to take any arbitrary n × n transformation L and apply it to

CL(τ) = (L!)−1C(τ)L−1, XL = LXL! ,

then the bond price (12) calculated from the pair
(

C(τ),Xt

)

is exactly the same as

that calculated from the transformed pair
(

CL(τ),XL
t

)

, in fact

P (t, T ;Xt) = exp
(

a(τ)+tr[C(τ)Xt]
)

= exp
(

a(τ)+tr[CL(τ)XL
t ]

)

, τ = T−t.

In the following discussion the parameter set Θ is added to the argument of the bond

price P (t, T ;Xt,Θ) in order to emphasize its role.

Definition 2. A transformation L is called an invariant transformation if

P (t, T ;Xt,Θ) = P (t, T ;XL
t ,ΘL)

for all t, T and the whole process of Xt.

The definition is the same as that in Dai and Singleton (2000). Here we stress that

the pricing invariance holds not only for any one point Xt = x but for the whole pro-

cess Xt, t ≥ 0.
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The Proposition 6 gives the exact relation of an invariant transformation for out Wishart

term structure model.

Proposition 6 (An Invariant Transformation). Consider the transformation

XL
t := LXtL! , and WO

t = OWt , (31)

where L is an n × n matrix and O is an orthogonal matrix with OO! = In. The

transformation is an invariant transformation if the parameters

ΘL :=
(

kL,ML, QLO, Γ̃L, M̃L, αL,ΨL
)

are transformed according to

kL = k , (32)

ML = LML−1 , (33)

QLO = LQO! , (34)

Γ̃L = LΓ̃L! , (35)

M̃L = LM̃L−1 , (36)

αL = α , (37)

ΨL = (L!)−1ΨL−1 . (38)

Technically, let aL(τ) and CL(τ) are the no-arbitrage bond pricing coefficients given

in (15) and (16) calculated with the transformed parameter ΘL. The transformation

(XL
t ,WO

t ,ΘL) is an invariant transformation if there hold relations

aL(τ) = a(τ) and CL(τ) = (L!)−1C(τ)L−1 . (39)

Proof see Appendix. !.

The sup-index LO in QLO indicates that the parameter Q is affected by the trans-

formation WO
t = OWt. The other parameters are not.

The invariant transformation above is characterized using the parametrization (Q, Γ̃, M̃)
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for the risk-neutral dynamics. Alternatively, we can use the parametrization (k,M,Q,Λ0,Λ1)

where Λ0 and Λ1 are given in equation (6). The market price of risk (5) is kept the

same under the transformation but we will have a different drift adjustment under the

measure change in the transformed system.

Proposition 7. If we adopt the parametrization Θ′ = (k,M,Q,Λ0,Λ1, α,Ψ), the

parameter relations (35) and (36) are replaced by

Γ̃L = kQLO(QLO)! − QLOOΛ0L! − (QLOOΛ0L!)! , (40)

M̃L = ML − QLOOΛ1L−1 . (41)

Proof see Appendix. !.

Arbitrarily many parameters values can map to the same term structure using the

invariant transformations, and Proposition 8 provides normalization conditions that

allow us to exclude such invariant transformations, so that under the normalization

conditions there is only one parameter specification mapping to one term structure.

In order words, under the normalization conditions the only transformation (L,O)

allowed is the identity transformation.

Proposition 8 (Normalization Conditions). We provide three sets of normalization

conditions to facilitate comparison between different models. Assume M can be diag-

onalized. The three sets of normalization conditions are given by

(S1) First set

(a1) M is diagonal.

(b1) Q is lower triangular and the elements on the diagonal are all positive.

(c) The elements on the diagonal ofΨ are equal to one. The elements in the first

row of Ψ are nonnegative.

(S2) Second set

(a2) M is lower triangular.

(b2) Q is diagonal and the elements on the diagonal are all positive.
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(c) The elements on the diagonal ofΨ are equal to one. The elements in the first

row of Ψ are nonnegative.

(S3) Third set

(a3) Λ1 ≡ In (In is an n-dimensional unit matrix).

(b3) Q is upper triangular.

(c3) The elements on the diagonal and in the first row of Ψ are positive.

Proof see Appendix. !.

Based on the model identification conditions provided by Proposition 8, the Wishart

model in Buraschi et al. (2008) is a restricted version of our Wishart term structure

model where the upper triangular part of M in (1), α in (3) and Λ0 in (6) are zero.

Within the framework we can test these parameter restrictions later in an empirical

investigation.

3. EMPIRICAL PROCEDURES

In this section we describe our empirical procedure for estimation of the Wishart

term structure model.

3.1. Summary of the Models. We consider four models, (1) our Wishart term struc-

ture model (WTSM), (2) the multiple CIR (MCIR) model, (3) an extended Wishart

encompassing Buraschi et al. (2008) model (hereafter BCTEW) and the the Buraschi

et al. (2008) (BCT) model. Figure 2 summarizes the relationships between the differ-

ent models. We note that

(i) The MCIR model is a restricted version of the WTSM.

(ii) The WTSM and the BCTEWmodel are equivalent term structure models as dis-

cussed in Proposition 6, and

(iii) The BCT model is a restricted version of the BCTEWmodel.

Due to the link of the model equivalence, the MCIR and the BCT models can now be

only compared with each other.
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We consider the Wishart model with n = 2. Now we describe the models in de-

tail. The first modelWTSM is a Wishart term structure model with the normalization

conditions S2 in Proposition 8. There are fifteen parameters to be estimated:

Θ =
(

k,m1,m2, q11, q21, q22, γ̃11, γ̃12, γ̃22, m̃11, m̃12, m̃21, m̃22, α, ψ
)

,

which are in the form of

M =





m11 0

0 m22



 , Q =





q11 0

q21 q22



 , Γ̃ =





γ̃11 γ̃12

γ̃12 γ̃22



 ,

M̃ =





m̃11 m̃12

m̃21 m̃22



 , Ψ =





1 ψ

ψ 1



 , k and α.

(42)

The second modelMCIR is based on a two-dimensional CIR process and it can be

considered as a restricted version of the first model (WTSM). There are ten parameters

to be estimated:

M =





m1 0

0 m2



 , Q =





q1 0

0 q2



 , Γ̃ =





γ̃1 0

0 γ̃2



 ,

M̃ =





m̃1 0

0 m̃2



 , Ψ =





1 0

0 1



 , k and α.

(43)

The initial value X0,21 = X0,12 are set to be zero.

The third model BCTEW is an extended version of the Buraschi et al. (2008)

Wishart model. The market price of risk is set to be Λt ≡
√

Xt therefore Λ1 = I

and M̃ = M − Q in (9). This restriction is compensated by the extra freedom in M

and Ψ compared with the WTSM (42). The BCTEW adopts normalization conditions

S3 given in Proposition 8 and is statistically equivalent to theWTSM. It also has fifteen
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parameters:

M =





m11 m12

m21 m22



 , Q =





q11 q12

0 q22



 , Γ̃ =





γ̃11 γ̃12

γ̃12 γ̃22



 ,

M̃ = M − Q, ,Ψ =





ψ11 ψ12

ψ12 ψ22



 , k and α.

(44)

The fourth model is the Buraschi, Cieslak & Trojani (2008) model (hereafter BCT

model). It has ten parameters:

M =





m11 0

m21 m22



 , Q =





q11 q12

0 q22



 , M̃ = M − Q, Ψ =





ψ11 ψ12

ψ12 ψ22



 , k .

(45)

This model is a restricted BCTEWmodel with the restrictions α ≡ 0 and Γ̃ ≡ kQQ!.

3.2. Maximum Likelihood Estimation based on the Extended Kalman Filter. In

order to carry out the estimation task we adopt maximum likelihood estimation (MLE).

The extended Kalman filter is imbedded in the likelihood function in order to filter the

unobservable factor Xt from the bond yield observations yτ
t . We do not adopt the

generalized method of moments (GMM) as in Buraschi et al. (2008) because we have

found that it is difficult to monitor whether the underlying Wishart factors remain

positive definite during the estimation procedure.

The Eular-Maruyama method is used to discretize the Wishart process (1) according

to

Xt+∆ = Xt +
(

kQQ! + MXt + XtM
!)∆+ Q∆Wt

√

Xt +
√

Xt∆WtQ
! . (46)

A positive control given later in Eq. (51) is imposed on Xt in order to retain the

positivity of the simulated Xt. It corresponds to a full truncation scheme which is the

best approximation among several schemes as shown in Lord et al. (2008). Let &Xt

denote the column obtained by staking the columns of the matrix Xt. The discretized



WISHART 20

dynamics can then be represented by

&Xt+∆ = f + F &Xt + Ut+∆ , (47)

where

f = vec(kQQ!)∆ , F = In2 +
(

In ⊗ M + M ⊗ In

)

∆

and

Cov[Ut+∆] = (In2 + Kn,n)
(

X ⊗ QQ! + QQ! ⊗ X
)

∆

according to Proposition 5.

The bond yields are modelled based on the bond price formula (12) but the obser-

vation of the bond yields is contaminated with measurement errors. Let a d× 1 vector

yt represent the bond yields of the d different times to maturity τ1, · · · , τd observed at

time t. The bond yield equation is given by εt so that the bond yield yτ
t is given by

yt :=











− 1
τ1

ln P (t, t + τ1;Xt)
...

− 1
τd

ln P (t, t + τd;Xt)











= j + J &Xt + εt , (48)

where

j = −











a(τ1)/τ1
...

a(τd)/τd











d×1

,

J = −











C11(τ1)/τ1 C21(τ1)/τ1 C12(τ1)/τ1 C22(τ1)/τ1
...

...
...

...

C11(τd)/τd C21(τd)/τd C12(τd)/τd C22(τd)/τd











d×4

,

&X = (X11,X21,X12,X22)!, and the measurement error εt is a d × 1 zero mean

random variable with the distribution N (0, σ2
ε Id), i.i.d. across all time points t.
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We summarize the algorithm of the extended Kalman filter as follows6. Let Yt de-

note all the bond yields observed until t. Let X̂t|s = E[ &Xt|Ys] and Pt|s = Cov[ &Xt|Ys] =

E[( &Xt − X̂t|s)( &Xt − X̂t|s)
!|Ys]. We start with the initial state X̂0|0 and the covariance

P0|0. The algorithm runs iteratively and every iteration consists of two steps.

The first step, the prediction step, predicts the states based on the last time t −∆:

X̂t|t−∆ = f + FX̂t−∆|t−∆ , (49)

Pt|t−∆ = FPt−∆|t−∆F! + Cov[Ut] .

The second step, the updating step, updates the states as new information yt comes in:

X̂t|t = X̂t|t−∆ + Kt

(

yt − JXt|t−∆ − j
)

, (50)

Pt|t = Pt|t−∆ − KtJPt|t−∆ ,

where the gain matrix Kt is given by

Kt := Pt|t−∆J!Σ−1
t|t−∆

and the observation covariance Σt|t−∆

Σt|t−∆ := JPt|t−∆J! + σ2
ε Id.

Let ŷt|t−∆ be the prediction of the observation ŷt = j + JX̂t|t−∆ and vt|t−∆ be

the prediction error vt = yt − ŷt|t−∆. Note the Cov[vt|t−∆|Yt−∆] = Σt|t−∆. The

likelihood function L(YT ,Θ) of the observations YT and the parameter Θ is given by

L(YT ,Θ) =
N
∏

i=1

l(yi∆|Y(i−1)∆ ,Θ) =
N
∏

i=1

1
√

2π
d√

detΣi

exp
(

− 1

2
v!i Σ

−1
i vi

)

,

where l represents the conditional likelihood function, Σi := Σi∆|(i−1)∆ and vi =

vi∆|(i−1)∆. The maximum likelihood estimator maximizes the likelihood function

6For details see Harvey (1989).
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based on the extended Kalman filter method, so that

Θ̂ml = max
Θ

L(YT ,Θ) .

We impose positivity control in the estimation of the Wishart model because by con-

struction the Wishart process (1) at each t is a positive definite matrix almost surely

so that the square root of Xt is well-defined. In the estimation the positivity cannot be

guaranteed due to errors caused by the discretization (46). Also the updating step (50)

in the extended Kalman filter cannot guarantee that the updated factor X̂t|t is positive

definite. The positive control for a 2 × 2Wishart model is given by

X11,t > 0 , X22,t > 0 , X11,tX22,t > X12,tX21,t , (51)

for all observation times t and all samples. All the inequalities are required to hold

strictly. The positive control is imposed for every prediction step (49) and every up-

dating step (50).

For the choice of the initial state level and state covariance we do not take the

unconditional expectation of the level and covariance as in Duan and Simonato (1999)

but rather we treat them as unknown parameters to be estimated. This is necessary for

two reasons: (1) the estimation results later show that the initial state level is not its

mean level, (2) the unconditional expectation is hard to pindown if the reversion speed

is very low as in our case.

We adopt an iterative maximization procedure: first we maximize the likelihood

function with respect to just the model parameters for a fixed initial state level and

covariance and then adjust the initial state and the covariance through the smoothing

algorithm. We keep iterating the process until it converges. We found that this is a

more efficient way to obtain the maximum because the sensitivity of the likelihood

function to the initial state level and covariance is much lower than to the parameters,

so it is difficult to attain the minimum for both simultaneously.
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4. EMPIRICAL RESULTS

4.1. Data. The observed variables are the US strip bond yields of fixed times to ma-

turity from Bloomberg, shown in Figure 3. Yields are calculated based on a linear

approximation method. There are 11 time series with times to maturity of 3 months, 6

months, 1, 2, 3, 4, 5, 7, 10, 20, 30 years. Bond yields are collected at the end of each

month. The observation period is from 04/1991 to 07/2008, giving 208 data points.

During the observation period the level of the 30 year long-term yield changes only

moderately and has a slow downward development. The three month yield, which

follows very closely the federal funds rate and is affected largely by the US monetary

policy, fluctuates more widely. This gives a volatile development of the yield spread

as illustrated in Figure 4. In the literature, the long-term yield and the yield spread

are often considered as important determining factors for the term structure of interest

rates; see for example, Duffee (1999).

[Figure 3 here]

[Figure 4 here]

4.2. Estimation. In order to obtain parameter estimates we utilize three optimiza-

tion methods: the simplex method fminsearch7, the gradient method fminunc8

and the simulated annealing method9 provided by Matlab. The simplex method is a

derivative-free method and is used for the initial search of parameters. It sometimes

has problems in converging so we use the other two methods to find the local mini-

mum after a global search. Note that the gradient method experiences the difficulty

that even though the method has converged according to the stopping criterion, the

minimum has not in fact been attained. The simulated annealing method is the most

reliable method among the three for attaining the local minimum.

7See http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/
fminsearch.html.
8fminunc uses the BFGS Quasi-Newton method with a cubic line search procedure to search
the minimum, see http://www.mathworks.com/access/helpdesk/help/toolbox/
optim/ug/fminunc.html.
9Obtained from Matlab Central.
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4.2.1. Estimation of MCIR. Table (1) gives estimation results of the MCIR andWTSM

models. The degree of freedom k is estimated to be 20.17 which is greater than

n+1 = 3 for the Wishart process Xt under the real-world measure so the Wishart pro-

cess is a strictly positive-valued process. Under the risk-neutral measure the dynamics

of Xt can be seen as the two independent CIR process

dXiit = (γ̃ii − 2m̃iiXit)dt + 2qii

√

XiitdWiit .

It is easy to see that the Feller condition γ̃ii >
4q2

ii

2 is satisfied for both i so the process

is also a strictly positive process under the risk-neutral measure. The boundary non-

attainment condition is satisfied and so the martingale pricing formula (11) is free of

arbitrage. The mean reversion parameters mii and m̃ii, i = 1, 2 are all negative so the

process is stationary under both the real-world and risk-neutral measures.

The parameter α in (3) has the role of shifting the level of the factor Xt. A negative

α helps to keep the Xt in the positive area. Duffee (1999) fixes a negative value for α

(on page 209), while here we are able to estimate it and find that the estimated value is

negative.

Figure 5(a) plots the estimated factors of the MCIR model. As we compare the

estimated factors with the long-term yield level and the yield spread, we find that the

estimated factors in the MCIR model are incredibly highly correlated with the two

economic factors. Figure 6 shows the comparison of these time series. The correlation

coefficients of both pairs are 98.74% and 97.87% respectively. Duffee (1999) has

also found a high correlation of 97% in his two-dimensional CIR model. This finding

suggests that the estimated factors in the MCIR model have a correspondence with

long-term yield and yield spread.

4.2.2. Estimation of WTSM. One novel feature of the WTSM is its capacity to model

time-varying correlation between positive factors. Here we intend to utilize this fact to

investigate the correlation between the two factors incorporated with economic mean-

ing such as yield spread and long term yield. We consider these two factors to be on
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Parameter Θ̂ml(MCIR) t-Stat Θ̂ml(WTSM) t-Stat
k 20.17700 4.95 7.16420 7.39

m11 -0.08463 -3.69 -0.36870 -4.76
m22 -0.04492 -3.31 -0.00743 -1.58
q11 0.02261 18.72 0.06153 204.65
q21 ≡0 − -0.00075 -103.55
q22 0.01838 185.47 0.00663 240.02
m̃11 -0.18655 -165.61 -0.58970 -364.05
m̃12 ≡0 − 0.43503 262.12
m̃21 ≡0 − 0.00732 155.11
m̃22 -0.00550 -73.12 -0.00802 -308.68
α -0.12332 -211.50 -0.11203 -129.94
ψ ≡0 − 0.00909 1.48
γ̃11 0.02779 129.62 0.03544 36.13
γ̃22 0.00270 187.41 0.00164 295.00
γ̃21 ≡0 − -0.03431 -161.97

σε (bp) 16.05 51.88 7.71 40.82
Loglik 10393 12079
LR stat 3372

χ2(5, 0.95) 11.07
av. Bias (bp) -0.00311 -0.00086
av. MSE (bp) 14.32 6.53

The column Θ̂ml(·) contains the estimates of the parameters in the corresponding models us-
ing maximum likelihood methods based on the extended Kalman filter. The columns ”t-Stat”
gives the t-statistics calculated by element-wise standard deviation. The likelihood ratio test
tests the restrictions q12 = m̃12 = m̃21 = ψ = γ̃12 = 0 whose statistic is given by
2
(

Loglik(Θ̂ml,WTSM ) − Loglik(Θ̂ml,MCIR). ”χ2(5, 0.95)” is the 95% cutoff value for χ2-
distribution of degree 5. The ”av. Bias” and ”av. MSE” indicate the average fitting bias and the average
mean square errors of the all eleven bond yields.

TABLE 1. Estimates for WTSM and MCIR models

the diagonal of the 2 × 2 Wishart process. As suggested by Eq. (23) X12t represents

the covariance of the two factors.

The degree of freedom parameter k is estimated to be 7.28 > 3 = n + 1. The

condition Γ̃ ≥M 3 ∗ Q ∗ Q! is satisfied. So the estimates of the WTSM satisfy

the boundary non-attainment condition. The parameters M and M̃ are both negative

definite so the Wishart process is positive stationary process for both the real-world

and risk-neutral measures. The “shift” parameter α is -11.25% similar with the α =

−12.33% estimated in the MCIR model.
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Statistically, the WTSM outperforms the MCIR model as is evident in Table 1. The

estimated standard deviation of the measurement errors σε is smaller. The likelihood

ratio test strictly rejects the restrictions of the MCIR model against the WTSM since

since the LR statistic (3372) is far higher than the 95% cutoff value of the asymptotic

distribution of χ2(5) = 11.07. The WTSM also has smaller fitting errors for the bond

yield data both in bias and in mean-square error (MSE).

Figure 5(b) plots the estimated factors of the WTSM and Figure 6(c-d) compares

the estimated factors X̂11t X̂22t with the long-term yield and the yield spread. The

factors are also highly correlated with the long-term yield (with correlation 97.31%)

and the yield spread (with correlation 98.26%).

4.2.3. Estimation of BCTEW and BCT models. In the column “BCTEW” in Table 2

we present the parameter values which form an equivalent model to the WTSM results

in Table 1. One can hardly recognize the equivalence from these numbers, nor from

their factors as depicted in Panels (b) and (c) in Figure 5. However, from that fact that

they generate the same the risk premia (calculated by equation (30) shown in Panels

(b) and (c) in Figure 9 we can still recognize their equivalence. The trajectories of the

BCTEW factors are totaly different from those of the WTSM and they have lost the

correspondence to the long-term yield and the yield spread.

In the BCT model the shift parameter α is set to zero. As a consequence one can

observe that the BCT factors in Figure 5(d) are closer to zero. In this situation the

positive definitiveness is more easily violated as can be seen from the fact that the

X11t factor crosses the zero line around the years 2000 and 2008.

The other parameter Γ̃ also accounts for flexibility for fitting bond yields data. The

restriction Γ̃ = kQQ! requires that the constant drift term under the real world dy-

namics is equal to that under the risk-neutral measure. This restriction reduces the

model flexibility to a large extent, as also pointed out in the extended affine term struc-

ture in Cheridito et al. (2007). The reduction of model capacity is evidenced by an

increase of measurement errors σε and yield fitting errors (av. Bias and av. MSE), and
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Parameters Θ̂ml(BCTEW) t-Stat Θ̂ml(BCT) t-Stat
k 7.28110 7.43 6.04530 102.49

m11 -0.34811 -380.00 -0.35497 -147.80
m12 1.24300 407.66 ≡0 −
m21 0.00543 503.09 -0.04805 -192.42
m22 -0.02701 -1034.60 -0.01919 -109.61
q11 0.23743 456.27 0.13318 151.90
q12 -0.00588 -20.62 -0.28087 -227.75
q22 -0.01285 -569.90 -0.03857 -386.69
ψ11 0.06508 474.46 0.06031 193.86
ψ12 -0.23320 -530.16 -0.22434 -268.67
ψ22 1.10970 310.99 0.84357 161.82
α -0.11248 -129.37 ≡0 −
γ̃11 2.33110 156.90 ≡0.58413 −
γ̃12 0.24304 148.53 ≡0.06549 −
γ̃22 -0.00162 -77.28 ≡0.00899 −

σε (bp) 7.71 40.83 12.36 49.09
Loglik 12079 11262
LR stat 1634

χ2(5, 0.95) 11.07
av. Bias (bp) -0.00086 2.5087
av. MSE (bp) 6.53 17.19

The column Θ̂ml(·) contains the estimates of the parameters in the corresponding models using maximum
likelihood methods based on the extended Kalman filter. The columns ”t-Stat” gives the t-statistics cal-
culated by element-wise standard deviation. The likelihood ratio test tests the restrictionsm12 = α = 0
and Γ̃ = kQQ! whose statistic is given by 2

(

Loglik(Θ̂ml,WTSM ) − Loglik(Θ̂ml,MCIR).
”χ2(5, 0.95)” is the 95% cutoff value for χ2-distribution of degree 5. The ”av. Bias” and ”av. MSE”
indicate the average fitting bias and the average mean square errors of the all eleven bond yields.

TABLE 2. Estimates for BCTEW and BCT models

a decrease of the likelihood. The likelihood ratio test strictly rejects the BCT model

against the BCTEWmodel.

4.3. Forecasting Power of the Models. This section investigates the cross-sectional

fitting and forecast performance. In Panel (a) in Figure 7 we give the average errors

(bias, the left-hand figures) and the mean-square errors (MSE, the right-hand figures)

of the bond yield fit. Fitting errors are the difference between the observed bond yields

and the model bond yields calculated using the updated factor levels. The three curves

correspond to the error measurements of the MCIR, the WTSM and the BCT models.

We do not have a curve of the BCTEW model since it is coincident with the WTSM
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due to their equivalence. Error scales in this MSE figure correspond to the scale of

the measurement errors σε in Tables 1 and 2 and the “av. Bias” and “av. MSE” which

are the averages over all bonds. It is obvious that the WTSM has the smallest MSE

amongst the three models.

Panel (b) in Figure 7 gives the bias and the MSE of one-month ahead forecast errors

of the all bonds. The WTSM has the best performance of the one-month ahead fore-

casts. Note that the one-month forecast errors are used for calculating the likelihood

function. Therefore the superiority of the WTSM against the MCIR and the BCTmod-

els for the one-month forecast performance can be seen together with the clear results

of the LR test in the pervious section.

The longer term predictions are given in Panel (c) in Figure 7 and all panels in Figure

8. Out-performance of the WTSM remains for the all cases though the difference

between the MCIR and the WTSM reduces as the time to maturity increases. Both

give clearly better forecasts than the BCT model. This provides a clear evidence that

the restrictions of the BCT model greatly reduce the flexibility of the model.

5. RISK PREMIA AND PORTFOLIO STRATEGIES UNDER STOCHASTIC

CORRELATION

In this section we investigate how the stochastic correlation affects the risk premia

and the portfolio strategies.

5.1. Risk Premia.

[Figure 9 here]

The risk premium of a bond is the excess return of the bond over the risk-less instan-

taneous return. The model risk premia are calculated based on Equation (30). Figure

9 compares the development of the risk premia of the different maturity bonds for all

the four models. Recall Panels (b) and (c) provide the same picture of the risk premia

since they are equivalent. The term structures of the risk premia of the four models
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share some similarity. All of them are positive most of the time. Furthermore the risk

premia of long-term bonds fluctuate more than those of short term bonds.

Consider the risk premia (30) more in detail. Figure 10 illustrates the contributions

of each factor in the risk premia. The patterns vary across the three models. For

the MCIR model, the factor X22, corresponding the 30-year yield level, dominates

the slope factor over the whole yield curve. Its contribution reaches almost 100% for

longer term bonds. The BCTmodel, on the other hand, shows a significant contribution

of the correlation factor at the 5-10 year segment of the curve. In the WTSM model,

which allows for both stochastic correlation and sophisticated market price of risk, all

risk factors play an important role in determining the risk premia. The correlation risk

and the spread-factor risk is priced more significantly at the shorter end of the curve,

then reduces gradually as the time to maturity increases, whereas the level-factor risk

has a more permanent presence.

[Figure 10 here]

5.2. Hedging performance. This section explores the hedging performance of the

three models under consideration. We adopt the minimal variance portfolio in Camp-

bell et al. (1996) as the hedging strategy. Given that the MCIR has 2 different risk

factors, whereas the WTSM and BCT models have 3 different risk factors, we are go-

ing to consider portfolios containing only 2 assets. This means WTSM will not have a

complete hedging, and therefore its performance will not be as optimal.

We consider monthly return of bonds with fixed time to maturity10. Based on the

model, the asset covariance can be calculated for each time point. Using Eq. (28) bond

return (with fixed time to maturity) is calculated by

dPi,t

Pi,t
=

(

rt + ei,t

)

dt + tr
[

dZtCi

]

, (52)

10Concretely, an investor holds a bond with a given time to maturity τi for one period [t, t+∆t] for some
i. Next period, the investor sells the bond and reinvest in a new bond with the same time to maturity τi.
For the calculation in each holding period [t, t + ∆t] the time to maturity is shorten from τi to τi − ∆t.
We calculate the bond price of the shorter time to maturity τi −∆t using the estimated results of WTSM
in Table 1 and then build the log return.
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where

ei,t = 2tr
[

Q(Λ0 + Λ1Xt)Ci,t

]

, Ci := C(τi) , dZt := QdWt

√

Xt +
√

XtdW!
t Q! .

The instantaneous covariance at time t of the two assets is then given by

σij,tdt = Cov
(

tr[dZtCi,t] tr[dZtCj,t]
)

, (53)

which changes over time and can be calculated based on the estimation results.

Heterogenous investors decide their hedging strategy based on their beliefs of the

models. In other words they calculate the instantaneous variance σij,t in (55) based

on the estimation results of the MCIR, the WTSM and the BCT models respectively.

Given the variance structure, hedged portfolio position can be obtained easily. The

investment horizon is taken to be the same as the observation (from April 1991 to July

2008), and portfolio position is normalized to one.

Table 3 summaries the performance of the hedged 2-asset portfolios based on the

three models for different hedging pairs. For example “3Y10Y” means the hedging

portfolio consisting of two bonds with time to maturity of three years and ten years,

whereas the equally weighted portfolio considers a simple portfolio consisting of 50%

of each bond.

From the table, it can be seen that hedged portfolios based on the estimates from

any of the three models have quite low volatility. Volatility of the hedged positions is

around 23%-50% of that of the equally weighted portfolio. Though WTSM is disad-

vantaged because we only use 2 assets to hedge 3 risk factors, it still delivers the lowest

portfolio volatility (our objective function), as well as lowest downturn risk. The risk-

adjusted return11 is also highest under the WTSMmodel, then BCT and finally MCIR.

11Risk adjusted returns are measured by the Sharpe ratio and the Sortino ratio. The Sortino Ratio is
defined by

Sortino Ratio =
R − T

DR
, (54)

where R is the asset return, T is the target return (usually take risk-free rate), and the downside risk (DR)
given by DR2 :=

∫ T

−∞
(T − x)2f(x)dx for f(x) is the probability density of the return.
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Figures 11 plot the asset correlation based on the three models. The posterior refer-

ence line is obtained using the realized sample correlation between the two assets used

to form the portfolio. It can be observed that MCIR (BCT) estimated stochastic corre-

lation is always higher (lower) than the empirical realized correlation, suggesting that

the model overestimates (underestimates) the true stochastic correlation between as-

sets. The WTSM estimated stochastic correlation, on the other hand, fluctuates around

the realized sample correlation. The trajectory of the correlation is stable in general.

[Figure 11 here]

6. CONCLUSION

In this paper we investigate the significance of allowing for a flexible specification

of the market price of risk and allowing flexible and stochastically correlated factors in

modelling the term structure of interest rates. We propose a Wishart model that that is

an extension of the Wishart model in Buraschi et al. (2008) (BCT) and incorporating

the more flexible market price of risk given in Cheridito et al. (2007). The advantage of

this approach is that by using appropriate invariant transformations between different

parametrizations we can nest models with different restrictions and therefore determine

the roles of each component.

The empirical analysis shows that relaxing both restrictions plays a crucial role in

improving the fit, as well as forecasting, of bond yields. Imposing a restricted market

price of risk worsens the average fitting error (forecast error) by 160% (42%) whereas

imposing a more restricted correlation structure on the factors only worsens the fitting

errors by 120% (6%). However, given that the underlying factors can be interpreted

as the long yields and yield spread (correlation between our statistical factors and the

economic factors is around 98%), modelling stochastic factor correlation explicitly

allows a better understanding of how changes in those factors affect the bond yields

over time. In addition, the explicit modelling of the stochastic correlation reveals that

market participants price correlation risk significantly. Its price is more important than
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the price of the underlying factors at the short end of the curve. The significance

gradually reduces as the time to maturity increases.

It should also be noted that though the restricted models are not as good as the gen-

eral model in fitting and forecasting bond yields, their absolute model performance

(in terms of fit and forecasting) is still good. The model restrictions have much larger

impact on the implied behaviour of the market price of risk, risk premia and therefore

bond portfolio construction. We find that hedged portfolios built under the more gen-

eral Wishart model which allows for extended affine market price of risk, outperforms

those built by more restricted models by a considerable margin. However, in con-

trast the fitting and forecasting performance, taking into account stochastic correlation

(with a simple market price of risk specification) improves the hedging performance

significantly compared to the model that only allows for flexible market price of risk.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

year

Realized Correlation

The monthly realized correlation is between a 30-year yield and the yield spread (3-

Month v.s. 30-Year yields) of US STRIPS fromMay 1991 to July 2008. It is a monthly

realized correlation calculated from daily data collected from Bloomberg.

FIGURE 1. Realized correlation
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FIGURE 5. Filtered factors from the four models
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FIGURE 6. Comparison of the estimated factors and the economic factors
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(b) One Month Ahead Forecast
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(c) Six Months ahead Forecast
The left hand panel in (a) gives average fitting errors of the bonds against the time to maturity

for all three models: MCIR, WTSM and BCT. The right hand panel in (a) depicts the mean

square errors (MSE) of the fitting errors. Panels in (b) illustrate these two error measures for

one month ahead forecast and Panels in (c) give for a six month ahead forecast. All forecasts

are in-sample forecast.

FIGURE 7. Fitting Errors and Short-Term Forecasts of all the Bonds
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(a) One Year Ahead Forecast
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(b) Two Year Ahead Forecast
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(c) Five Year Ahead Forecast
The left hand panels gives average forecast errors of the bonds against the time to maturity for

all three models: MCIR, WTSM and BCT. The right hand panels depict the mean square errors

(MSE) of the forecast errors. The forecast horizons are one year ahead, two year ahead and

five year ahead in the each panel respectively. All forecasts are in-sample forecast.

FIGURE 8. Medium-Term Forecast of all the Bonds
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FIGURE 9. Term Structures of Risk Premia of the four Models
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The figures illustrate the factor contributions in the risk premia in percentage, calcu-

lated at the average level of the factors.

FIGURE 10. Factor contributions in the Risk Premia
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FIGURE 11. Asset Correlation
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APPENDIX A. PROOFS OF ALL PROPOSITIONS

Proof of Proposition 1

Apply Itô’s Lemma to (12) we obtain the bond return process

dP

P
=

(

− d

dτ
a(τ) − tr[ d

dτ
C(τ)Xt]

)

dt + tr[C(τ)dXt] (55)

+
1

2

n
∑

i,j=1

n
∑

u,v=1

CijCuvdXij,tdXuv,t .

We replace the cross term in the last term by (22) so we obtain

n
∑

i,j=1

n
∑

u,v=1

CijCuvdXij,tdXuv,t (56)

=
n

∑

i,j=1

n
∑

u,v=1

CijCuv

(

(QQ!)iuXjv + (QQ!)juXiv + (QQ!)ivXju + (QQ!)jvXiu

)

dt

Now calculate each term in (58) we start with the first term

n
∑

i,j=1

n
∑

u,v=1

CijCuv(QQ!)iuXjv =
n

∑

j,u=1

(

∑

i

Cij(QQ!)iu
)(

∑

v

CuvXjv

)

=
n

∑

j,u=1

(CQQ!)ju(CX!)uj = tr[CQQ!CX!] = tr[CQQ!CX] .

For the second term in (58) we follow the same calculation but with interchange of i

and j. Similarly for the third and term we obtain the same result with interchange of

u and v. And the last term again runs with pair interchange i ↔ j and u ↔ v. These

calculations lead to rewrite the last term in (57) by

1

2

n
∑

i,j=1

n
∑

u,v=1

CijCuvdXij,tdXuv,t = 2tr[CQQ!CX] .

Use this and the dynamics (7) we then rewrite the bond return (57) into

dP

P
=

(

− a′ + tr[CX] + tr
[

(

− C ′ + CM̃ + M̃!C + 2CQQ!C
)

X
])

dt

+tr
[

C
(

QdW̃
√

X +
√

XdW̃!Q!
)

]

.
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According to the no-arbitrage principle, the instantaneous return under the risk neutral

measure is equal to the sport rate rt. The ODEs (13) and (14) are obtained by compar-

ing the coefficients with the rt given in (3).

!

Proof of Proposition 4

In order to prove this proposition we need the equation

E[tr(HdWt)tr(GdWt)] = tr(HG!)dt , (57)

where H and G are n × n constant matrices and Wt is an n × n standard Wiener

process. This is because

E[tr(HdWt)tr(GdWt)] = E[(
n

∑

i,j=1

HijdWij,t)(
n

∑

i,j=1

GijdWij,t)] = E[
n

∑

i,j=1

HijGij ]dt = tr(HG!)dt .

Calculating the covariance Cov[dXij dXuv ] using the definition (1) we have

Cov[dXij dXuv] = E
[

(

Qi·dW
√

X ·j + Qj·dW
√

X ·i
)(

Qu·dW
√

X ·v + Qv·dW
√

X ·u
)

]

, (58)

where Qi· is the i-th row of the Q-matrix and
√

X ·j is the j-th column.

Rewrite each single term as

Qi·dW
√

X ·j = Qi·











∑n
u=1 W1u

√
Xuj

...
∑n

u=1 Wnu

√
Xuj











= Qi1

n
∑

u=1

W1u

√
Xuj + · · · + Qin

n
∑

u=1

Wnu

√
Xuj

=
n

∑

v=1

n
∑

u=1

QivWvu

√
Xuj = tr[(Qi·)

!(
√

X ·j)
!dW ] .

Apply it to E[(Qi·dW
√

X ·j)(Qu·dW
√

X ·v)] then we have

E[(Qi·dW
√

X ·j)(Qu·dW
√

X ·v)] = E[tr
(

(Qi·)
!(

√
X ·j)

!dW
)

tr
(

(Qu·)
!(

√
X ·v)

!dW
)

]

= tr[(Qi·)
!(

√

X·j)
!
√

X ·vQu·]dt = tr(Qi·)
!XjvQu· = tr[XjvQu·(Qi·)

!]dt

= Xjv(QQ!)uidt = (QQ!)iuXjvdt .
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The second equality is according to the precalculation (59). Now calculate each cross

term in (60) we will obtain (22).

!

Proof of Proposition 5

Recall vec(dX) stack the columns of dX into an n2×1matrix so Cov[vec(dX)vec(dX)!]

contains the items Cov[dXijdXuv], i, j, v, v = 1, · · · , n locating in the matrix

Cov[vec(dX)vec(dX)!] =









































Cov[dXijdXuv] ,

j = 1, i = 1 · · · , n,

v = 1, u = 1 · · · , n

· · ·

Cov[dXijdXuv] ,

j = 1, i = 1 · · · , n,

v = n, u = 1 · · · , n

... . . . ...

Cov[dXijdXuv] ,

j = n, i = 1 · · · , n,

v = 1, u = 1 · · · , n

· · ·

Cov[dXijdXuv] ,

j = n, i = 1 · · · , n,

v = n, u = 1 · · · , n









































. (59)

Using this location plan we put the terms in (22) into the matrix form. We start with

the first term (QQ!)iuXjv and give its matrix expression by






























(QQ!)11X11 · · · (QQ!)1nX11

...
. . .

...

(QQ!)n1X11 · · · (QQ!)nnX11

· · ·
(QQ!)11X1n · · · (QQ!)1nX1n

...
. . .

...

(QQ!)n1X1n · · · (QQ!)nnX1n

... . . . ...
(QQ!)11Xn1 · · · (QQ!)1nXn1

...
. . .

...

(QQ!)n1Xn1 · · · (QQ!)nnXn1

· · ·
(QQ!)11Xnn · · · (QQ!)1nXnn

...
. . .

...

(QQ!)n1Xnn · · · (QQ!)nnXnn































= X ⊗ (QQ!) = (X ⊗ 1n×n). ∗
(

1n×n ⊗ (QQ!)
)

.

Put the other terms in (22) into the matrix expression then we can obtain (25).

!

Proof of Proposition 6

Step 1
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In order to prove (39) we prove first the factor dynamics (1) under the real world

measure, the factor dynamics (7) under the risk-neutral measure and the instantaneous

rate relation (3) are satisfied in the transformed system.

For (3) it is easy to check

rt = α+ tr(ΨX) = αL + tr(ΨLXL) .

For factor dynamics (1) we want to show dXL
t satisfies

dXL
t =

(

kQLO(QLO)!+MLXL
t +XL

t (ML)!
)

dt+QLdW̌t

√

XL
t +

√

XL
t (QLO)!d(W̌t)

! ,

(60)

for some W̌t standard independent n × nWiener process.

We first calculate

dXL
t = LdXtL!

(61)

=
(

kQLO(QLO)! + MLXL
t + XL

t (ML)!
)

dt + QLOdWO

t

√

XtL! + L
√

Xtd(WO

t )!QLO ,

(62)

withML and QLO specified in (33) and (34).

Comparing the last term in (64) with that in (62) we need the equality held in distri-

bution sense

L
√

Xd(WO)!
dist.*

√
XLdW̌! . (63)

First both of them are n × n normal distribution with mean zero. The variance of the

term for the left hand side is calculated as given

Var[vec(L
√

Xtd(WO

t )!)]
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=



















L
√

Xt 0 · · · 0

0 L
√

Xt · · · 0
...

...

0 0 · · · L
√

Xt



















(n2×n2)

E
[

vec(dWO

t
!
)

(n2×1)

vec(dWO

t
!
)!

(1×n2)

]



















√
XtL! 0 · · · 0

0
√

XtL! · · · 0
...

...

0 0 · · ·
√

XtL!



















(n2×n2)

=



















LXtL! 0 · · · 0

0 LXtL! · · · 0
...

...

0 0 · · · LXtL!



















dt .

And the variance of term on the right hand side is given by

Var[vec(
√

XL
t dW̌!

t )]

=



















√

XL
t 0 · · · 0

0
√

XL
t · · · 0

...
...

0 0 · · ·
√

XL
t



















(n2×n2)

E
[

vec(dW̌!
t )

(n2×1)
vec(dW̌!

t )!

(1×n2)

]



















√

XL
t 0 · · · 0

0
√

XL
t · · · 0

...
...

0 0 · · ·
√

XL
t



















(n2×n2)

=



















XL
t 0 · · · 0

0 XL
t · · · 0

...
...

0 0 · · · XL
t



















dt .

The variance of both sides are equal so the distribution equivalence (65) is proved.

Then apply the distribution equivalent (65) into (64) then we can get (62).

For the risk-neutral dynamics (7) we follow the same argument of the real world

dynamics to prove

dXt =
(

Γ̃L + M̃LXL + XL(M̃L)!
)

dt + QLdŴt

√
XL +

(

QLdŴt

√
XL

)!
, (64)
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Γ̃L and M̃L are given by (35) and (36), and Ŵt is an n × n standard Wiener process

under the risk neutral measure satisfying the distribution equality.

L
√

XtdW̃!
t

dist.*
√

XL
t dŴ!

t . (65)

Step 2

Based on Proposition 1, the no-arbitrage bond price is solved in form of

P (t, T ) = exp
(

aL(τ) + tr(CL(τ)X)
)

, (66)

where aL(τ) and CL(τ) solve the ODEs

d

dτ
CL(τ) = CL(τ)M̃L + (M̃L)!CL(τ) + 2CL(τ)QLO(QLO)!CL(τ) −ΨL ,(67)

d

dτ
aL(τ) = tr[QLO(QLO)!CL(τ)] , (68)

with initial conditions CL(0) = 0 and aL(0) = 0.

We can check easily that the solution CL(τ) = (L!)−1C(τ)L−1 satisfies (69) and

aL(τ) = a(τ) satisfies (70) respectively. Since the solution is unique for each equation

we prove (39).

!

Proof of Proposition 7

We replace dWO
t = OdWt = O

(

dW̃t − Λ0
√

Xt
−1 − Λ1

√
Xt

)

in (64) and obtain

dXL
t =

(

kQLO(QLO)! + MLXL
t + XL

t (ML)!
)

dt

+QLOO
(

dW̃t − Λ0

√

Xt
−1

− Λ1

√

Xt

)

√

XtL!

+L
√

Xt

(

dW̃t − Λ0

√

Xt
−1

− Λ1

√

Xt

)!O!QLO

=
(

kQLO(QLO)! − QLOOΛ0L! − (QLOOΛ0L!)!
)

dt

+
(

ML − QLOOΛ1L−1
)

XL
t dt + (XL

t )!
(

ML − QLOOΛ1L−1
)!

+ QLOdW̃t

√

XtL! + L
√

XtdW̃!
t (QLO)! .
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Comparing the equation above with (7) we obtain the relations (35) and (36).

!

Proof of Proposition 8

Two things need to be shown for a proof of normalization conditions. First we show

these the conditions do not restrict the WTSM so that for arbitrary given M,Q and

Ψ (M can be diagonalized) we can find a transformation L so that the transformed

parameters satisfy the conditions S1, S2 or S3. Then we show this transformation is

unique.

We start with the first set S1. To a square matrix M , which can be diagonalized in

(1) we apply eigen decomposition onM so thatM = LdDL−1
d where D is a diagonal

matrix and Ld consists of the eigenvectors as column vectors. Replace the M and

consider the transformed factor Xd
t := L−1

d Xt(L−1
d )!, the dynamics in (1) becomes

dXd
t =

(

kQdQ
!
d + DXd

t + Xd
t D

)

dt + QddWt

√

Xt(L−1
d )! + L−1

d

√

XtdW!
t Q!

d ,

(69)

with Qd = L−1
d Q.

Use the distribution equivalence (67) we have

L−1
d

√

XtdW!
t

dist.*
√

Xd
t dW̆!

t , dWt

√

Xt(L−1
d )!

dist.* dW̆t

√

Xd
t .

Now we apply the QR decomposition12 to Q!
d so that Qd = R!O! where R is an

upper triangular matrix and O is an orthogonal matrix. Use it to rewrite the term

QddWt

√

Xt(L−1
d )!

dist.* R!O!dW̆t

√

Xd
t

dist.* R!dW̌t

√

Xd
t ,

where W̌t := O!W̆t is a new n × n standard Wiener process. Summarize the trans-

formation above the dynamics (71) becomes

dXd
t =

(

kR!R + DXd
t + Xd

t D
)

dt + R!dW̌t

√

Xd
t +

√

Xd
t dW̌!

t R , (70)

12It means a matrix can be decomposed into an orthogonal matrix times a upper triangular matrix.
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where D is diagonal and R! is lower triangular. Note that the sign of the i-th element

on the diagonal of R can be changed by changing the sign of the i-th row in W̌t.

In order to fit (c) we preform a re-scaling. From Proposition 6 we know Ψ is

transformed to Ψd := L!
d ΨLd. Since Ψ is assumed to be strictly positive defi-

nite the diagonal elements in Ψ are positive So we can define the re-scaling C =

diag
(√

Ψd,11, · · · ,
√

Ψd,nn

)

where Ψd,ii is the i-th element on the diagonal of Ψd.

Consider the transformation

Xc
t := CXd

t C = CL−1
d Xt(L−1

d )!C.

We still have freedom for ”sign transformation” which is

S =



















1 0 0 0

0 δ2 0 0

0 0
. . .

0 0 0 δn



















.

This transformation (S!)−1ΨS−1 gives a new ΨS that

ΨS =
(

δiδjΨij

)

.

So this transformation keeps the sign of the diagonal of Ψ and the requirement that the

first row of Ψ has positive elements can fix S .

Through direct calculation we know the newM , Q and Ψ obtained from (33), (34)

and (38) satisfy the conditions (a1), (b1) and (c). The transformation is unique since

(Ld,R, C,S) are uniquely defined by (M,Q,Ψ).

The proof for the conditions S2 is similar with that above. To any given square

matrix M in (1) we apply Schur decomposition13 on M so that M = L!
b BLb where

Lb is a unitary matrix and B is a lower triangular matrix14 Consider the transformed

13Schur Decomposition is stated for a square complex matrix and the transpose operator # is actually
conjugate transpose.
14For a unitary matrix Lb, L!

b = L−1
b .
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factor Xb
t := LbXtL!

b and the distribution equivalence Lb

√
XtdWt =

√

Xb
t dW̆!

t

using (67) we can obtain

dXb
t =

(

kQbQ
!
b + BXb

t + Xb
tB!

)

dt + QbdW̆t

√

Xb
t +

√

Xb
t dW̆!

t Q!
b , (71)

with Qb := LbQ. Apply again the QR decomposition Q!
b so that Qb = R!O!

whereR is an upper triangular matrix and O is an orthogonal matrix. Replace Qb and

consider the dynamics of the transformed factor Xr
t := (R!)−1Xb

tR−1 we can have

dXr
t =

(

k + BrX
r
t + Xr

t B!
r

)

dt + O!dW̆t

√

Xb
tR−1 + (R!)−1

√

Xb
t dW̆!

t O ,

(72)

where Br := (R!)−1BR! is still lower triangular.

Define a new n×nWiener process W̌t := O!W̆t and note that dW̌t

√

Xb
tR−1 dist.*

dW̌t

√

Xr
t due to the distribution equivalence (67). The conditions (a2) and (b2) are

satisfied. Condition (c) is obtained again through re-scaling.

Regarding the normalization conditions S3, we observe first that Λ1Q is invariant

which means ΛL
1 = QL. Adopt the Schur decomposition that Λ1Q = O!UO where

O is unitary orthogonal and U is upper triangular.

Let L = OΛ1. Then based on (34) we obtain

QLO = LQO! = OΛQO! = U (upper triangular) ,

ΛLO
1 = OΛ1L−1 = OΛ1(OΛ1)

−1 = I .

!

APPENDIX B. NOTE FOR ψ = 0 IN (42)

In estimation WTSM we set ψ in (42) equal to zero. This intends to prevent a

“counteracting” of factors as explained in the following.
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In theWTSMwe introduce the off-diagonal factorX12,t in order to model stochastic

covariance between X11,t and X22,t. Filtering techniques determine the whole factor

trajectories of the unobserved factors Xt for fitting the observed bond yields in (48).

In the estimation the factors are allowed to move quite freely. In filtering multiple

factors in the maximum likelihood estimation, sometimes we can observe that a pair

of factors has exaggerated and similar trajectories. The factors counteract each other

for the most of time and this pattern can achieve high likelihood.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

year

ML−EKF estimated factors (updated)

X11
X12
X22

FIGURE 12. Estimated factors for ψ += 0

Figure 12 shows the filtered factors when ψ is freely estimated in the WTSM (42).

The trajectory of X12,t runs close to X11,t most of them. The estimated ψ is −0.5127

so that the short rate (3) is modelled by

rt = X11,t − 1.0254X12,t + X22,t .

The five year bond yield is estimated by

yt = j(5) + 0.1604X11,t − 0.2073X12,t + 1.0289X22,t .

We see that the off-diagonal factor X12,t counteracts X11,t for their coefficients being

close and of opposite signs.
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This “counteracting” effect deteriorates the estimates and gives rise to some unde-

sired results. Table 4 gives the estimates for setting ψ = 0 comparing with estimating

ψ freely. We see that for the freely estimation case (the second column) m22 > 0.

It indicates unstable real-world dynamics of Xt and it leads to large biases for longer

term forecast. Furthermore, the γ̃22 is negative which gives a negative definite Γ̃ in

the risk-neutral dynamics (7). In this case X22,t will hit zero under risk-neutral mea-

sure while it wont (means with probability zero) under the real world measure (because

k > n+1). So the measure transformation is not equivalent and the whole no-arbitrage

argument breaks down. We also note that the estimation for ψ ≡ 0 achieves higher

likelihood value. The estimation with free ψ encounters difficulty for converging.

If the our main intention of introducing the off-diagonal factor X12,t is to model the

stochastic covariance of X11,t and X22,t rather than to given extra freedom for fitting

the yields, we need to exclude this freedom so we set ψ = 0 in estimation.

In general setting ψ = 0 imposes restriction on model fitting capacity. In this paper

we focus first the role of X12,t in modelling the stochastic covariance and compare

with the MCIR model so we keep this restriction. It is our future work to maintain

model fitting capacity properly but avoid the counteracting effect.
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Panel 1. Assets: 3 year bonds and 10 years bond.
3Y10Y MCIR WTSM BCT Eq Weight
Gain 0.14734 0.16473 0.14811 0.67774

Volatility 0.0058739 0.0056947 0.0059831 0.017184
Sharpe Ratio 0.12117 0.13974 0.11959 0.19054
Downturn Risk 0.0034897 0.0034948 0.0036371 0.010491
Sortino Ratio 0.20396 0.22771 0.19673 0.31209

Panel 2. Assets: 3 year bonds and 20 years bond.
3Y20Y MCIR WTSM BCT Eq Weight
Gain 0.19696 0.24418 0.24185 0.88733

Volatility 0.0065955 0.0064595 0.0067319 0.025559
Sharpe Ratio 0.14427 0.18262 0.17356 0.16772
Downturn Risk 0.0038438 0.0037595 0.0039921 0.015954
Sortino Ratio 0.24755 0.31377 0.29267 0.26869

Panel 3. Assets: 5 year bonds and 10 years bond.
5Y10Y MCIR WTSM BCT Eq Weight
Gain 0.20598 0.25946 0.25944 0.77222

Volatility 0.0096978 0.0093802 0.0096029 0.020153
Sharpe Ratio 0.10261 0.13363 0.13052 0.18511
Downturn Risk 0.005825 0.0054615 0.0055394 0.012413
Sortino Ratio 0.17083 0.2295 0.22626 0.30055

Panel 4. Assets: 5 year bonds and 20 years bond.
5Y20Y MCIR WTSM BCT Eq Weight
Gain 0.27738 0.35218 0.35352 0.98181

Volatility 0.010471 0.010299 0.010601 0.028412
Sharpe Ratio 0.12797 0.16519 0.1611 0.16694
Downturn Risk 0.0062027 0.0058632 0.0061333 0.017721
Sortino Ratio 0.21604 0.29017 0.27846 0.26766

Panel 5. Assets: 10 year bonds and 20 years bond.
10Y20Y MCIR WTSM BCT Eq Weight
Gain 0.41967 0.5302 0.51288 1.1579

Volatility 0.018574 0.01737 0.01761 0.034245
Sharpe Ratio 0.10915 0.14746 0.1407 0.16335
Downturn Risk 0.013087 0.011334 0.011544 0.02179
Sortino Ratio 0.15491 0.226 0.21463 0.25672

The columns “CIR”, “WTSM”, and “BCT” report the statistics for minimum variance portfolio built
using each model estimates. The “Equally Weighted” column is based on a naive portfolio consisting
of 50% of each bonds. The “Portfolio Gain” is the excess return over the whole period from 1991.04 -
2008.07. The “Sharpe Ratio” is the mean of monthly excess return over its volatility. The“Sortino Ratio”
is a risk measure which is defined by the excess return over the downside risk (DR) given in Eq. (56).
The downturn risk is calculated by DR2 = 1

N−

∑

t,πt<0
π2

t , where πt is the empirical monthly excess
return over Rt the instantaneous rate Rt. Rt is obtained from the WTSM and treated as a known time
series. N− is the number of negative excess monthly returns.

TABLE 3. Minimum variance portfolios - 2 assets
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Parameter WTSM (ψ += 0) WTSM (ψ = 0)
k 15.89400 7.28110

m11 -0.46350 -0.36789
m22 0.00974 -0.00723
q11 0.06002 0.06144
q21 -0.00572 -0.00075
q22 0.00847 0.00663
m̃11 -0.57849 -0.59168
m̃12 -0.03012 0.44139
m̃21 0.05820 0.00731
m̃22 0.00112 -0.00802
α -0.10761 -0.11248
ψ -0.51267 ≡ 0
γ̃11 0.07021 0.03491
γ̃22 -0.00448 0.00164
γ̃21 0.02232 -0.03433

σε (bp) 7.65 7.71
Loglik 12038 12079

TABLE 4. Estimates Comparison for free ψ and setting ψ = 0 for WTSM.


