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 Efficacité des structures de réseaux:  

L’aiguille dans la botte de foin 

 

Résumé 

La modélisation des réseaux fait l’objet d’un intérêt croissant en économie. Un des aspects 
importants soulevés dans la littérature concerne l’efficacité des réseaux. Quand les 
fonctions de gain ne sont pas purement triviales, la recherche des réseaux efficaces est 
pourtant à la fois analytiquement difficile et coûteux en temps de calcul numérique, même 
pour un nombre limité d’agents. Nous étudions dans cet article la possibilité d’utiliser les 
algorithmes génétiques pour déterminer les structures efficaces de réseaux. En effet, ces 
algorithmes ont déjà prouvé leur capacité à résoudre des problèmes d’optimisation 
difficiles. Nous étudions la robustesse de cette approche dans la prédiction des réseaux 
optimaux en confrontant ses résultats avec les résultats analytiques bien connus de deux 
modèles introduits par Jackson et Wolinski (1996).  
Mots-clé : Réseaux, Structures optimales de réseaux, Efficacité, Algorithmes génétiques 
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networks efficiency. Nevertheless, for non trivial payoff functions, searching for efficient 
network structures turns out to be a very difficult analytical problem as well as a huge 
computational task, even for a relatively small number of agents. In this paper, we explore 
the possibility of using genetic algorithms (GA) techniques for identifying efficient 
network structures, because the GA have proved their power as a tool for solving complex 
optimization problems. The robustness of this method in predicting optimal network 
structures is tested on two simple stylized models introduced by Jackson and Wolinski 
(1996), for which the efficient networks are known over the whole state space of parameter 
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µ E3i, IFReDE-GRES, Université Montesquieu Bordeaux IV
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Abstract

The modelling of networks formation has recently became the object of an increasing interest in

economics. One of the important issues raised in this literature is the one of networks efficiency.

Nevertheless, for non trivial payoff functions, searching for efficient network structures turns out to

be a very difficult analytical problem as well as a huge computational task, even for a relatively

small number of agents. In this paper, we explore the possibility of using genetic algorithms (GA)

techniques for identifying efficient network structures, because the GA have proved their power as a

tool for solving complex optimization problems. The robustness of this method in predicting optimal

network structures is tested on two simple stylized models introduced by Jackson and Wolinski (1996),

for which the efficient networks are known over the whole state space of parameter values.
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1 Introduction

Modelling networks has recently became the object of an increasing interest in economics and other

social sciences. Indeed, in many situations, not only local interactions but the whole network struc-

ture matter for determining individual and collective outcomes of various activities. A large set of

examples includes, among others, networks of firms’ board members, scientific collaboration net-

works, friendship networks for information exchange on job opportunities, buyers sellers networks, or

coinvention networks. Two main questions are central in this literature (Jackson, 2004). Which net-

works are likely to form when agents choose their connections in order to maximize given individual

payoffs structures? How efficient are networks that emerge from self-interested agents’ choices, that

is, how individual incentives for links formation affect social welfare?

The first stylized economic model that tackles those two questions is the so-called “Connections

model” introduced by Jackson and Wolinski (1996). In this model, links represent relationships (for

example, friendships) between individuals. The latter benefit from their direct and costly connections

and also from indirect connections, through the relational network of their partners. Thus, agents

try to maximize the value generated from direct and indirect connections taking into account the

cost of direct connections, and avoiding superfluous links. In the second stylized model, called

the “Coauthor model”, Jackson and Wolinski (1996) consider the simple strategies of researchers

in accepting (or refusing) to spend time in bilateral collaborations with peers for writing papers.

Agents aim to efficiently allocate their time on bilateral research projects. The simple specification

of the individual payoffs in these models allows the authors to obtain systematic analytical results

on graphs’ efficiency and partial results on networks’ stability. Nevertheless, the efficient and stable

network structures they obtained in these two models are very simple (complete network, empty

network, complete star, disconnected pairs) and have little in common with real social or economic

networks.

Very recently, Johnson and Gilles (2000) and Carayol and Roux (2003, 2004) propose variations

of the connections model by giving different forms of geographic locations to individuals and intro-

ducing complexities in individual payoff functions through spatial costs for direct link formation.

Such models generate emerging networks that are much richer and which tend to correspond to the

empirically observed social networks. In particular, Carayol and Roux (2003) obtain, in a dynamic

setting and for a wide set of parameters, networks that exhibit the Small World properties (i.e. highly

clustered connection structures and short average path length). Nevertheless, it becomes then diffi-

cult to compute both analytically and numerically the efficient network structures1. Therefore, one

can not appreciate to what extent emerging networks are efficient and whether they are structurally

different from the optimal networks.

In this paper, we propose a technique intended to solve this problem. As a matter of fact, the

connection structure of any network can be expressed as an ordered sequence of binary elements (a

vector of bits). The value function maps each of such sequences onto the value space. The search for

efficient networks can hence be seen as an optimization problem on the space of such sequences i.e.

1Even for a relatively small numbers of players, the number of possible networks becomes very large. Johnson and

Gilles (2000) observe that the number of possible networks for n agents is
�c(n,2)

k=1 c(c(n, 2), k) + 1 where, for every

k 5 n, c(n, k) := n!/ (k!(n − k)!) . For example, when n = 8, the number of possible networks exceeds 250 million.
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the space of all possible networks. We explore here a tool for such optimization: Genetic Algorithms.

The very aim of the present study is to introduce and to test this method on the two stylized models

introduced by Jackson and Wolinski (1996), for which analytical results on network efficiency are

simple, and cover the whole state space of parameters values. Companion papers are to use such a

method to explore the efficient network structures for models with enriched payoffs functions.

The paper is structured as follows. The next section begins with some basic definitions on

graphs and efficiency. Section 3 presents the two stylized models developed in Jackson and Wolinski

(1996) and their analytical results regarding network efficiency. Section 4 introduces the Genetic

Algorithms. The performances of the GA in determining network efficiency in these two stylized

models are presented and discussed in Section 5. The last section briefly concludes.

2 Background notions and definitions

In this section, we introduce the notation and the basic notions for studying networks’ efficiency.

We limit our attention to the case of non-directed graphs, where bonds are symmetric and built on

mutual consent, as it occurs in many real social networks. We begin with some basic notations for

networks in this context. Then, we present the notions of network value and efficiency.

2.1 Basic notions on graphs

We consider a fixed and finite set of n agents, N = {1, 2, ..., n} with n ≥ 3. Let i and j be two

members of this set. Agents are represented by the nodes of a non-directed graph, which’s edges

represent the links between them. The graph constitutes the relational network between the agents.

A link between two distinct agents i and j ∈ N is denoted ij. A graph g is a list of unordered

pairs of connected and distinct agents. Formally, {ij} ∈ g means that the link ij exists in g. We

define the complete graph gN = {ij | i, j ∈ N} as the set of all subsets of N of size 2, where all

players are connected to all others. Let g ⊆ gN be an arbitrary collection of links on N . We define

G =
{
g ⊆ gN

}
as the finite set of all possible graphs between the n agents.

Then for any g, we define N(g) = {i | ∃j : ij ∈ g}, the set of agents who have at least one link in

the network g. We also define Ni(g) as the set of neighbors agent i has, that is: Ni(g) = {j | ij ∈ g} .

The cardinal of that set ηi(g) = #Ni(g) is called the degree of node i. The total number of links

in the graph g is η(g) = #g = 1
2

∑
i∈N ηi(g), while the average number of neighbors is given by

η(g) = 2η(g)/n.

A path connecting i to j in a non empty graph g ∈ G, is a sequence of edges between distinct

agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. The length of a path is the number

of edges it contains. Let i←→g j be the set of paths connecting i and j on the graph g. The set of

shortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, we have k ∈ i←→g j and

#k = minh∈i←→gj #h. We define the geodesic distance between two agents i and j as the number of

links of the shortest path between them: d(i, j) = dg(i, j) = #k, with k ∈ i←̃→gj. When there is no

path between i and j, their geodesic distance is conventionally infinite: d(i, j) =∞. A graph g ⊆ gN

is said to be connected if there exists a path between any two vertices of g.
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Two other typical graphs can be introduced here. The empty graph, denoted g∅, is such that it

does not contain any links. A non empty graph g ∈ G is a (complete) star, denoted g?, if there exists

i ∈ N such that if jk ∈ g?, then either j = i or k = i. Agent i is called the center of the star. Notice

that there are n possible stars, since every node can be the star center.

2.2 Networks value and efficiency

Network’s structure critically affects individual payoffs and social outcomes of many activities. The

payoffs that individuals naturally obtain from their position in the network result from the difference

between the benefits derived from this position and the costs borne to maintain it. Let πi (g) be the

net individual payoff that the agent i receives from maintaining his position in the network g, with

πi :
{
g | g ⊆ gN

}
→ <.

We now consider the economic notion of network efficiency. Traditionally, efficiency refers to a

state from which any agent’s payoffs can be improved without deteriorating the payoff of at least one

other agent. In the context of network efficiency, this property means that a network is inefficient

when it does not exist another network that leads to a higher payoff for at least one individual,

without deteriorating the payoff of other agents. This property corresponds to the Pareto efficiency,

and can formally be expressed as follows.

Definition 1 A network g ⊆ gN is Pareto efficient if there does not exist any g′ ∈ G such that

πi(g
′) ≥ πi(g) for all i with a strict inequality for at least one i.

In fact, a strongest notion of efficiency is preferred in the economics of networks literature since

the pioneering work of Jackson and Wolinski (1996). Let the network social value π (·) be computed

by simply summing individual payoffs2. The total value of a graph g, with π(∅) = 0 is given by:

π (g) =
∑

i∈Nπi (g) (1)

A network is then said to be efficient since it maximizes this sum. The formal definition follows.

Definition 2 A network g ⊆ gN is said to be efficient if it maximizes the value function π(g) on the

set of all possible graphs
{
g | g ⊆ gN

}
i.e. π(g) ≥ π(g′) for all g′ ⊆ gN .

It should be noticed that several networks can lead to the same maximal total value. For example,

if we consider strictly homogenous agents, any isomorphic graph of an efficient network is also efficient.

We will use this definition of efficiency (Definition 2) in this paper.

2One can also consider that the social value of a network could be reallocated among the individuals of the network,

for example, through taxes or subsidies, in order to take into account their investment in this network (for example,

in the case of a star, the center of this network supports important costs for direct connections and thus could be

compensated for this). For much more details on the question of allocation rules, see Jackson (2003).
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3 Networks efficiency in two stylized economic models

In this section, we present the two stylized models introduced by Jackson and Wolinski (1996) and

their results regarding network efficiency.

3.1 The “Connections Model”

In the connections model, links represent individuals’ relationships, for example, between friends or

colleagues. One can think of those links as the support of communications that produce informa-

tional benefits in terms of job opportunities or innovative ideas. In such a context, agents benefit

also from indirect connections, through the relational network of their partners. Nevertheless, the

communication is not perfect: the positive externality deteriorates with the relational distance of

the connection. Formally, there is a decay parameter which represents the quality of links used for

information flows. Moreover, individuals’ direct connections involve also some costs in this model.

As a consequence, agents try to maximize the value generated from direct and indirect connections,

avoiding superfluous connections. In that model nobody wants to be the center of a star because it

is too costly, but everybody wants to be connected to a star.

The net profit received by any agent i, is given by the following simple expression:

πi (g) =
∑

j∈N\i

δd(i,j) − cηi(g) (2)

where d(i, j) is the geodesic distance between i and j. δ ∈ ]0; 1[ is the decay parameter and δd(i,j)

gives the payoffs resulting from the (direct or indirect) connection between i and j. It is a decreasing

function of the geodesic distance because δ is less than unity. If there is no path between i and j,

then d(i, j) = ∞ and thus δd(i,j) = 0. Finally, c ∈ ]0; 1[ is a parameter which gives the costs that

agents have to bear for each direct connection in their neighborhood.

The predictions of this model regarding the unique efficient network are summarized in the

following proposition and in Figure 1.

Proposition 1 (Jackson and Wolinski, 1996). The unique efficient network in the connections

model is:

(i) the empty network g∅ if c > δ + n−2
2 δ2, (border C1 in Figure 1);

(ii) the star g? if δ − δ2 < c < δ + n−2
2 δ2;

(iii) the complete graph gN if c < δ − δ2, (border C2 in Figure 1).

Proofs can be found in Jackson and Wolinski (1996).

3.2 The “Coauthor Model”

The coauthor model intends to represent the simple strategies of researchers in accepting (or refusing)

to spend time in bilateral collaborations, with peers, for writing articles. Agents aim to efficiently

allocate their time on bilateral research projects. The amount of time that an agent can spend
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Figure 1: Efficient graphs in the connections model depending on c and δ

on a project is inversely related to the number of projects he is involved in. Therefore, indirect

connections produce negative effects on agents’ productivity: an additional collaboration generates

a negative externality on actual coauthors. In the initial model there is no explicit cost for direct

connections. In the version presented here we introduce such costs as in Carayol and Roux (2004).

Formally, the net profit received by any agent i at period t, is given by the following equation:

πi (g) =
∑

j∈Ni(g)

(
1

ηi(g)
+

1

ηj(g)
+

1

ηi(g)ηj(g)
− c

)
(3)

when ηi(g) 6= 0, and it is assumed that πi (g) = 0 otherwise.

Recall that ηi(g) is the number of agents directly connected to i because they are his coauthors.

As a consequence, each agent i benefits from any of his coauthors j by the fraction of his time (or

efforts) he spends working with him 1/ηi(g), and of the fraction of time j spends to write a paper

with him 1/ηj(g). The term 1/ηi(g)ηj(g) accounts for some increased productivity for agents who

spend a high share of their time working together. The intuition for this assumption is that the

‘synergy’ between two coauthors increases with the time they spend together. We consider here that

the agent also bears a unitary cost c to sustain each of his direct connections3.

The predictions regarding network efficiency in this model are the following.

Proposition 2 (extension of Jackson and Wolinski, 1996). Assume that n is even.

(i) If c < 3, the unique efficient network in the coauthor model is a graph consisting of n/2

separate pairs .

3Carayol and Roux (2004) has introduced this cost function as an extension of Jackson and Wolinski (1996) who do

not originally consider such a cost.
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(ii) If c > 3, the unique efficient network is the empty network g∅.

The proofs when c = 0 are given by Jackson and Wolinski (1996). When 0 < c < 3, it can be

easily shown that n(3− c) is the maximal total value obtained in this model ( n(3− c) is the value

of n/2 separate pairs corresponding to: ∀i, j ∈ N, ηi(g) = ηj(g) = ηi(g)ηj(g) = 1). When c > 3, any

connected pair of such network generates a negative value, and any non empty network (including

any network composed of a given number of separate pairs) has a negative value. Therefore, the

empty network which generates a null value becomes the only efficient network.

4 Searching for efficient networks: an approach using Genetic Al-

gorithm

Searching for efficient network structures is in general a difficult analytical task. But, once the pay-

off structure is well defined in relation with the connection structure, one is tempted to explore this

question using more heuristic strategies. As a matter of fact, the connection structure of the network

can be expressed as a matrix of bits (1 for connection or 0 for absence of connection) and the pay-off

structure can assign a value to each of such matrices. The search for efficient networks can hence

be seen as an optimization problem in the connection-matrix space, i.e. the space of all possible

networks. This optimization problem yields analytical solutions only for simple pay-off structures.

We examine here a numerical tool for optimization: genetic algorithms (GA) that have proved their

efficacy in optimization problems where the potential solutions can be represented as binary strings.

Our networks can effectively be quite easily represented as binary strings.

4.1 Representing networks as binary strings

Our problem is to find the network g which maximizes social value π as given by the equation 1 over

the set of all possible networks G. In order to use the GA for this optimization problem, we need to

represent our networks as binary strings (sequences of bits – 1 or 0).

Consider first that any network with n agents (whether directed or not, eventually with self-

connections) can, without loss of generality, be represented by a connection matrix of size n × n

of binary elements. Given that all networks we consider are undirected (i is connected to j iff j

is also connected to i) and that self-connections are excluded, the upper triangular part of this

connection matrix, excluding the diagonal, provides complete information on the network structure.

As a consequence, the vector composed by all the connection bits of this upper triangular part in

some conventionally chosen order sums up the network structure. Thus for a network of n agents,

this vector is a binary string of length l =
(
n2 − n

)
/2.

From the point of view of a genetic algorithm, undirected networks can hence be formally

represented as chromosomes defined as sequences of binary elements: A = (a1, a2, ..., al) with

ai ∈ {0, 1} ,∀i ∈ {1, 2, ..., l}.

In the example below with n = 3 agents, the undirected network g = {13, 23} is fully characterized

by the chromosome A = (0, 1, 1) , which’s length is l =
(
32 − 3

)
/2 = 3.
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g = {13, 23} →

1

2

3

1 2 3


0 0 1

0 0 1

1 1 0


→ A = (0, 1, 1)

Once we represent it, we can compute the value of a connection matrix (its fitness) using the

equation 1 and utilize the Genetic Algorithms to search for matrices with the highest value.

4.2 Genetic Algorithms: How do they work?

Genetic algorithms (GA) are numerical optimization techniques developed by John Holland (see

for example Holland (2001), which has initially been published in 1975). GA transpose to other

problems the strategies that the biological evolution has successfully used for exploring complex

fitness landscapes. The search for an optimum by a GA corresponds to the evolution of a population of

candidate solutions through selection, crossover (combination) and mutation (random experiments).

The GA have been used for solving a very large set of problems directly, or indirectly as a component

of a classifier system. Goldberg (1991) gives quite an exhaustive account of the characteristics of the

GA and of their applications (for a more recent survey in French, see Vallée and Yıldızoğlu (2004)).

For applications of the GA as a learning algorithm, see Yıldızoğlu (2002).

procedure evolution program

begin

t← 0

(1) initialize P (t)

(2) evaluate P (t)

while (not termination–condition) do

begin

t← t + 1

(3) select P (t)from P (t− 1)

(4) alter P (t)

(5) evaluate P (t)

end

end

Figure 2: The structure of an evolutionary program (Michalewicz, 1996)

The canonical genetic algorithm makes evolve a population of binary strings (chromosomes com-

posed of 1 and 0). The size of the population m is given. It is the source of one of the strengths of the
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GA: implicit parallelism (the exploration of the solution space using several candidates in parallel).

The population of chromosomes at step t (a generation) is denoted P (t) = {Aj}t with #P (t) = m,

and ∀t = 1, 2...T with T the given total number of generations. Notice that T is the other source of

the strengths of the GA. The algorithm (randomly) generates an initial population P (0) of candidate

chromosomes which are evaluated at each period using the fitness (value) function. They are used

for composing a new population at the next period P (t + 1). Figure 2 gives the general structure of

an evolutionary algorithm and the GA are part of this family. Each chromosome has a probability

of being selected that is increasing in its fitness. The members included in the new population

are recombined using a crossover mechanism (see Figure 3). The crossover operation introduces

controlled innovations in the population since it combines the candidates already selected in order to

invent new candidates with a potentially better fitness. Moreover, the mutation operator randomly

modifies the candidates and introduces some random experimenting in order to more extensively

explore the state space and escape local optima. Typically, the probability of mutation is rather

low in comparison with the probability of crossover because otherwise the disruption introduced by

excessive mutations can destruct the hill-climbing capacity of the population. Finally, an elitism

operator can be used which ensures that the best individual of a population will be carried to the

next generation. The Figure 4 gives a deliberately trivial example of optimization for illustrative

purposes.

( )
( )

( )
( )

12 15

23 20

��������� 11
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= =
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= =

011| 00 011 |
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Figure 3: A simple example of crossover operation
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uÛ Zkv[]sYwxxxxyzy{ yyyyyz|y p}cYYfZVWXYdbYbẐ Û U\UZXXvkẐ s]VW]WdXZ\U]̂ ]_nVYVuYkbẐ s\cY à[]̂ b\kd[\bZ
ŶtW]WdXZ\U]̂ \ck]drcbYXY[\UjYkYWk]sd[\U]̂ ~ []VuÛ Z\U]̂ e[k]bb]jYkg Ẑ skẐ s]VYfWYkUVŶ \beVd\Z\U]̂ gp q̂ \cUb

b[cYVZ\U[YfZVWXY~ \cY àZ\\ZÛ b\cY]W\UVdVenog Û ]̂ YWYkU]sp �]kYZ[cb\kÛ r~\cY[k]bb]jYk~ U\bW]bU\U]̂ Ẑ s\cY
WZk\̂ Yk~ZbtYXXZbVd\Z\U]̂ W]bU\U]̂ ZkY[c]bŶ kẐ s]VXvp }cYVd\Z\U]̂ uU\ bUVWXvbtU\[cYbU\bjZXdYwlm�o]k om�lp�������������������������������������������������������������������������������������������������������

Figure 4: A simple example of genetic algorithm
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4.3 Genetic Algorithms: Why do they work?

The apparent simplicity of the GA should not lead us to underestimate their power. Even if their

mechanisms are mainly heuristic, analytical results concerning this power have been established in

the literature, under the heading of the schemata theorem that shows that the strength of the GA

comes from its capacity to make evolve schemata in a direction that increases the average fitness of

the population (Chapter 6, Holland, 2001).

A schemata is a general template that can correspond to a large class of different chromosomes.

The schemata is constructed using an alphabet slightly different from the one used for coding specific

chromosomes: the initial alphabet {0, 1} is completed by a third letter {∗} that is also called the don’t

care symbol and that can replace indifferently the other two letters. Hence the schemata 0∗0 can cover

both the chromosomes 000 and 010. The schemata is a tool for representing the general structure

of the chromosome classes (depending on the positions covered by the don’t care symbol). We can

for example distinguish between abstract schemata with many ∗ letters (like ∗ ∗ 1 ∗ ∗) and specific

ones (like 00100 or 11111 that are both covered by the preceding schemata). As a consequence,

the schemata corresponds to the tool that should be used for characterizing the structure of the

population because a schemata can correspond to several chromosomes in the population. The

schemata theorem is based on the observation that the real object of the evolutionary operators

(selection, crossover and mutation) is the schemata.

The selection operator implies that each schemata in the population will diffuse with a speed that

is equal to the ratio of the average fitness of the schemata to the average fitness in the population

(Holland, 2001). Moreover this diffusion takes place in parallel for all schemata in the population (if

the length of the chromosomes is l and the size of the population is m, there is m2l schemata in the

population) and this establishes the implicit parallelism of the GA. As a consequence, the selection

operator gives an exponentially increasing space to the schemata with a fitness that is higher than

the average fitness in the population and, symmetrically, an exponentially decreasing space to the

schemata below the average. Without any novelty, the first kind of schemata end up by dominating

the population and the latter becomes homogenous quite quickly. But, nothing assures that this

population contains optimal solutions. Novelty is necessary for exploring the state space and the

genetic operators (crossover and mutation) are necessary for introducing novelty. If we define the

order of the schemata as the number of specific bits and the defining length of the schemata as the

distance between the two outmost specific bits4, the schemata theorem establishes that schemata

of low order with a small defining length and above the average fitness will diffuse quickly in the

population. The schemata theorem is the major results behind the GA but, complementary spe-

cific results have been more recently established using approaches based on quantitative genetics or

Markov chains (see Mitchell (1996), chapter 4, for a presentation of the theoretical foundations of

GA and Dawid (1999)).

4For the schemata 1 ∗ 0 ∗ 1, the order is 3 and the defining distance is 5 − 1 = 4.
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5 Testing the robustness of the GA

We test whether the GA is a robust tool for finding out the optimal social network structures. To

this end, we use the GA to determine the optimal network structures in configurations for which

analytical results do exist.

The Java JGAP5 library is used to implement the GA based on binary chromosomes. The GA

that we use is elitist and it’s probability of crossover and mutation are both computed by JGAP6.

The relevance of the GA as a search algorithm for efficient networks is tested in the two stylized

models presented in Section 3: the connections model and the coauthor model. For each model

we execute a fixed number of simulations (NSIM) in order to reasonably cover the parameter

space (possible configurations are explored using Monte Carlo procedures for randomly drawing all

significant parameters). For each of the NSIM configurations, the GA is run a given number of

generations in order to obtain the final candidate network (the efficient networks predicted by the

GA). We confront this network structure with the one that is analytically determined.

5.1 Performance of the GA in the connections model

As we have seen in Section 3, this model admits three different types of efficient networks: the empty

graph
(
g∅

)
, the complete graph

(
gN

)
and the star (g?), depending on the parameters values (c, δ

and n).

As a first step, we compute 1, 000 uniform independent random draws of the model parameters

(the number of agents n and the payoffs parameters c and δ), in predefined value spaces (n ∈

]5, 20[ ; c, δ ∈ ]0, 1[). For each combination, we compute the efficient network according to the

Proposition 1 and using a GA where the parameters of the GA (m the number of chromosomes in

the population and T the number of generations) are also drawn randomly between 50 and 500. We

then compare the prediction of the GA with the theoretical efficient network in order to check the

robustness of the GA method.

Table 1 provides the share of correct predictions of the GA for different values of n and for the

different optimal network structures (that should be predicted). The results show that when g∅ or

gN is the efficient structure, the GA remarkably finds them whatever is n. It is only when g? is the

efficient network and when n becomes large that the GA might provide incorrect estimations of the

efficient networks. For example, when n = 12, the GA is deceived in 3% of the cases corresponding

to a star as the optimal network. We observe that the probability that the GA provides a correct

prediction is globally decreasing with the number of agents n, the number of chromosomes m and

the number of generations T . Indeed, errors are partly due to an inefficient GA characterized by too

few chromosomes or too few generations. Nevertheless, we cannot establish a monotonic relationship

between these two dimensions of the GA and its effectiveness. We just empirically observe a region

of best effectiveness around 300 for the number of chromosomes and the number of generations. We

hence use this value in the next point that we explore.

5http://jgap.sourceforge.net/
6Probability of crossover is 0.5 and the probability of mutation is 1/15.
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Efficient network g? g∅ gN

# of agents

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 0.98 1 1

10 1 1 1

11 1 1 1

12 0.97 1 1

13 0.87 1 1

14 0.97 1 1

15 0.87 1 1

16 0.76 1 1

17 0.67 1 1

18 0.76 1 1

19 0.71 1 1

Average 0.90 1 1

Table 1: Proportion of correctly predicted efficient networks depending on the number of agents and

the efficient network

In order to explore more in detail these deceiving cases, we run 500 simulation experiments

exclusively dedicated to the randomly drawn cases for which the star (g?) is the optimal network.

As explained above, the GA is used from this point on with m = T = 300. These experiments are

reported in Table 2. We observe therein that when n < 12, the GA offers only correct predictions.

When n ≥ 12 the GA is not always able to find the correct graph shape (g∗). The probability of

error, conditional to 20 > n ≥ 12, is 0.126.

The non linearity of the network value state space leads the GA to stabilize on local maxima.

When we further explore the characteristics of such deceptive configurations, we find that the pre-

dicted network has on average a value which is 98.66% of the optimal network value. Therefore, even

when deceived, the GA finds networks that have an average value which is very close to the maximal

one.

In order to better understand the nature of the deceptive configuration, we address the following

question: are mistaken predictions uniformly distributed over the state space (c, δ) for which stars

are optimal networks ? The Figure 5 represents all experiments performed for which the star is

the optimal network in the (c, δ) space, in accordance with the analytical predictions summed up

in Figure 1. The black dots on this figure represent the experiments for which the GA fails. If we

compare the position of these dots on the graph with the borders in Figure 5, it clearly appears

that the mistakes are not uniformly distributed, but located close to the borders (C1 and C2) of

the regions where optimal networks are different. Given that the crossover and mutation operators

explore the state-space in a discontinuous manner, they make the GA jump from one side of the
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Share of good # of

# of agents predictions observations

5 1 25

6 1 29

7 1 31

8 1 31

9 1 30

10 1 36

11 1 32

12 0.94 35

13 0.93 27

14 0.95 39

15 0.90 41

16 0.82 33

17 0.69 39

18 0.92 37

19 0.86 35

Average 0.90 500

Table 2: Proportion of correctly predicted g∗ configurations with m = T = 300

border to the other, making very difficult the finding of the optimal graph. Everywhere else, the GA

is efficient in finding the efficient star network.

One may finally wonder about the structure of the inefficient networks that are found by the

GA. A systematic analysis of the structural properties of inefficient networks leads to the following

threefold conclusion. First, all inefficient networks which correspond to points in the space (c, δ) close

to the frontier between the two regions where the empty graph and the star networks are efficient7,

are empty networks. Secondly, when δ is close to one and c is also very high, the GA finds networks

that are structurally very similar to the star network, with one or two agents being connected to

an agent who is not the center of the network. Such typical network is reproduced in left graph

of Figure 6. The social value generated by such a typical network is very close to the one of the

star network since, when δ is close to 1, direct and indirect connections generate nearly the same

value. Finally, when the experiment corresponds to a couple (c, δ) which is close to the frontier with

the region where the complete network is efficient8, two types of inefficient networks appear to be

selected. Two typical networks are reproduced in the central and the right graphs of Figure 6. The

first one is composed of two main (non complete) stars connected with nearly all other agents who

are never directly connected the one to the other (there are eventually some other smaller stars in

the network). The second one appears to be a structural mix between the former network and a

random graph.

7Given by c = δ + n−2
2

δ2.
8Given by c = δ − δ2.
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Figure 5: Experiments when the g∗ network is efficient.
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Figure 6: Some typical inefficient networks found by the GA at the internal frontiers of the region

where g∗ is the efficient network
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5.2 The GA performance in the coauthor model

We use a GA with 500 chromosomes and 500 generations for computing the optimal network type

in the coauthor model of Jackson and Wolinski (1996), extended in Carayol and Roux (2004), as

presented in Section 3. We run 500 simulations using these specifications and with even n ∈ [6, 20] ,

and c ∈ [0, 4]. The results of the simulations are given in Figure 7. These results are perfectly in

accordance with the Proposition 2 (page 5). We consequently get a rate of success of 100% with the

GA. This again confirms the power of this algorithm in the exploration of efficient network structures.

Figure 8 gives some examples of the optimal networks found by the GA.

Optimal network type in the coauthors model: 
0 = empty network

2 = pair-wise connections

0

2

0.000 1.000 2.000 3.000 4.000

COST

Figure 7: Optimal networks in the co-authors model
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Figure 8: Typical efficient networks obtained for the co-author model: the empty network when c > 3

and dissociated pairs when c < 3.

6 Conclusions

We explore in this first paper the relevance and the performances of genetic algorithms (GA) for

computing efficient network structures. In order to assess their efficacy, we compute efficient networks

in two simple models for which analytical results on efficient network structures have been obtained

for the whole state space of parameters values. Our results show that the GA are a powerful tool for
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network optimization. In the Coauthor model of Jackson & Wolinski (1996), extended by Carayol

and Roux (2004), the GA is able to find the optimal structures in 100% of the simulations. In the

Connections model of Jackson & Wolinski (1996), the GA finds again the efficient network structures

but it can be deceived on the borders between the areas corresponding to two distinct optimal

structure (between empty network and the star, as well as between the complete network and the

star). In the interior of these areas, the GA perfectly determines the relevant optimal network

structure.

It is now our objective to rely on the GA for exploring the optimal network structures in models

for which analytical or even computational results on efficient structures can’t be provided. Two

companion papers will be dedicated to such explorations.
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