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Abstract 

Modern energy sources are important input factors for human development. Although official 

estimates indicate that 85% of Indian villages are electrified, fewer than 60% of Indian 

households actually consume electricity. Therefore, one observes a considerable spatial 

heterogeneity in electrification rate.  

This paper examines the factors that influence household and village electrification, with 

particular attention given to the influence of geographic factors. The analysis shows that village 

electrification is constrained by state area and village structure. In addition, a high share of 

agricultural areas seems to have a positive effect. Household electrification depends on 

household characteristics, the degree of community electrification, and the quality of electricity 

supply, and it is independent of geographic factors. Surprisingly, household expenditure and, in 

particular, the electricity tariff show only a relatively small effect on a household‘s choice for 

electricity. 
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1. Introduction 

Access to modern energy sources is important for human development. According to Sen’s 

capability framework (e.g. Sen, 1993, 1997), energy carriers can be understood as commodities 

or input factors that frame an individual’s capability set and thus enable his functioning in 

society. In particular, electricity expands one’s set of capabilities as it provides lighting, motive 

power and access to mass media and telecommunications, and permits cooling of rooms and the 

preservation of edibles. In this way, effective access is probably more important than consumed 

electricity quantity. Generally, indicators of wellbeing such as income, education or access to 

clean water increase with access to electricity, whereas the absence of any electricity use is often 

associated with poverty (IEA, 2002; Pachauri et al., 2004). Consequently, the relationship 

between household electricity consumption and poverty is bi-directional. On the one hand, access 

to electricity can contribute to poverty alleviation; on the other hand, lack of access is a sign of 

poverty. 

Although electrification is an important development goal, a large share of the rural population in 

developing countries still lacks access to electricity. One observes remarkable regional 

differences in electrification, with areas in which the rate of electrified households is lower than 

in others. The aim of this paper is to investigate the causes of the spatial disparities in 

electrification rates in India. To this end, factors that affect household access to electricity are 

analysed, and particular attention is given to the effects of geographic factors upon the village 

electrification process. If geographic factors indeed influence the village electrification process, 

then there would be a causal relationship between the geographic endowment of a region and its 

level of electrification. This could explain why certain states have more difficulty completing 

village electrification, and a determination of the barriers to electricity use may lead to improved 

household access and more reasonable tariffs.  

The rest of the paper is organised as follows: Section 2 provides some background on the current 

state of electrification in India, theoretical considerations about poor areas and a presentation of 

the applied analysis framework. In sections 3 and 4 two separate models for village and 

household electrification are introduced and discussed. Section 5 concludes with a summary of 

major findings and some general lessons that emerge from this work.  

 

2. Background and analysis framework  

2.1. Electrification of India  

In developing countries there are still about 1.5 - 2 billion people who lack access to electricity, 

and 450 million of these individuals are in India alone. Despite the striking increase in power 
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generation capabilities, India has been unable to keep up with its domestic demand for electricity. 

Besides the shortfall in power generation capability, India's transmission and distribution (T&D) 

infrastructure is inadequate to meet future demand. Moreover, due to high T&D losses, non-

rational tariffs, and the fact that farmers are commonly provided with free electricity for 

irrigation pump-sets, the financial situation of state-owned utilities, the State Electricity Boards 

(SEB), dramatically worsened from the late 1980s to the 1990s. The importance that the utilities 

attribute to turning themselves around financially leads to their focusing on paying customers, 

who essentially are urban and industrial, while neglecting rural supply and electrification 

(Balasubramaniam and Shukla, 2003). In light of these disparities, new policies were introduced 

to restructure and reform the electricity sector: These include the Electricity Regulatory 

Commissions Act (1998), designed to promote investment friendliness and provide transparency 

in tariff-setting, and the Electricity Act (2003), which serves as a basis for a liberalised electricity 

market. By implementing these measures, the government aims to complete village electrification 

by 2007 and household electrification by 2012.  

Figure 1 shows the village electrification rate in the 16 big states from 1970 – 2000. The states 

Kerala, Tamil Nadu, Haryana and Punjab already had a high level of electrified villages in the 

early 1970s and completed all village electrification before 1980. The other states seem to have a 

similar rate of electrification and differ merely in their initial levels. However, in the states 

Orissa, Uttar Pradesh, West Bengal, Bihar and Assam, the village electrification process began to 

stagnate in the 1990s before being completed. 
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Figure 1. The electrification rate, or share of electrified villages, in the 16 big states from 1970 – 2000. 

Data taken from CMIE (1995, 1999, 2002). 
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Today, 85% of Indian villages are electrified (Srivastava and Rehman, 2006). However, fewer 

than 60% of households actually consume electricity. In this way, one observes large spatial 

differences in electrification rate. This difference in village electrification rates among the states 

is illustrated in Figure 1. Moreover, there is a large difference between rural and urban areas. 

Calculations based on NSS data show that about 81.5% of urban households are electrified, 

whereas in rural areas this rate is only 46.2% (NSS data for 2000). Even within rural households 

there is a remarkable spatial heterogeneity in electrification rates, with some areas having a 

higher share of households without access to electricity than others (Figure 2). Electrification 

rates are particularly low in the eastern and north-eastern regions.  

 

 

Figure 2. Percentage of electrified rural households per district. Calculations based on NSS data, round 

55 (year 1999-2000).  
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2.2. Poor areas, geography, and electrification  

Lack of access to electricity is generally related to energy poverty. Consequently, a spatial 

heterogeneity in access to electricity leads to spatial differences in energy poverty. In economic 

theory, two lines of explanations for regional differences in income poverty and poor areas are 

discussed (Crump, 1997). Researchers who employ an individualistic model assume that people 

are highly mobile and attribute no causal significance to spatial inequalities in resource 

endowments (geographic capital), although differences in geographic endowment may function 

as a sorting mechanism that leads to spatial poverty concentration (Henninger, 1998). Causes of 

poverty are identified at the individual level, and poor areas are described as consequences of 

personal decisions. On the other hand, researchers who use structural explanations suggest a 

causal link between the geographic endowment of a region and the general level of wellbeing of 

the people living in that area. It is assumed that local factors like land-use type, climate, 

infrastructure and access to services influence the marginal returns on investments. Because of 

limited mobility, structural differences in terms of natural resource endowment tend to persist and 

intensify between regions (Ravaillon, 1996). Each of the two theoretical models has 

shortcomings in explaining the spatial clustering of the poor, with a combination of individual 

and structural factors often identified as the cause of poverty and its spatial concentration1 

(Miller, 1996). The degree to which individual or structural factors cause poverty has 

implications for developing a strategy to improve the situation of the poor. 

Are individual or infrastructural and geographic factors causing the regional differences in 

household electrification illustrated in Figure 2? Unlike income, the use of electricity 

traditionally requires a grid infrastructure. If a village is not electrified (that is, the village is not 

connected to a regional power grid), then no household within that village is able to consume 

electricity, irrespective of its income or status2. Even though the accessibility of electricity 

generally does not depend upon the availability of local resources, geographic factors are likely 

to influence the construction of the grid infrastructure and thus are relevant for explaining 

regional differences in village electrification rate. For instance, Chaurey reports that, within a 

given district, the electrification of a village may take place solely on account of its physical 

location (Chaurey et al., 2004). Also, certain land-use types may complicate the erection of the 

grid infrastructure, thus increasing costs and making the village’s connection financially 

unattractive. In this way, geographic endowment acts as a sorting mechanism by influencing the 

decision process as to which villages get electrified before others. 

                                                      

1 Structural factors include geographic endowment and infrastructure. 
2 Of course, this is only true disregarding stand-alone systems, which up to now have not been very 
widespread. 
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Although village electrification is traditionally a prerequisite for household access, there is a 

large gap between the share of electrified villages per state and the share of electrified households 

(Figure 3). The rate of village and household electrification is particularly low in the states of 

Assam, Bihar, Orissa, Uttar Pradesh and West Bengal. But even in states in which all the villages 

are officially connected to the power grid, large shares of the rural households do not use 

electricity. Moreover, in electrified villages, the proportion of households that actually consume 

electricity often varies considerably. Obviously, village electrification is an essential prerequisite 

for household electricity access, but it is not enough to guarantee it (Srivastava and Rehman, 

2006). For there to be the possibility of electricity access, a grid not only has to reach a village, 

but it must also reach the neighbourhood and the street where the household resides. According 

to the literature on fuel switching, households climb up the rungs of the energy ladder by 

switching to or adding more convenient and more efficient energy sources in relation to their 

rising household income, assuming that the possibility of access is presented (Hosier and Dowd, 

1987; Masera et al., 2000). Accordingly, income (expenditure), education, household size and 

fuel price are commonly the most significant factors for explaining the energy source choice of 

households, c.f. UNDP/WB, 2003; Heltberg, 2004. Generally, it is assumed that natural 

endowment has no effect on the utility of electricity use and thus does not influence the 

household’s decision whether to use electricity. 
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Figure 3. Comparison of village and household electrification rates per state. Both correlate well with per 

capita expenditure. Calculations based on NSS data, round 55 (year 1999-2000). 
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2.3. Analysis framework 

Having observed the significance of household characteristics for household fuel choice, the 

dependence on grid infrastructure and the influence of geographic endowment on infrastructure 

erection, we see that a mix of individual, infrastructural, and geographical factors seems to cause 

the observed spatial disparities in electrification. We drew a distinction between the 

electrification of villages and the electrification of households, as the former is a prerequisite for 

the latter. Our hypothesis is that the electrification of villages is influenced by geographic 

endowment, whereas the use of electricity in electrified villages depends on household 

characteristics, the attributes of the electricity supply, and community electrification, but not on 

geographic factors themselves. The degree to which these factors cause the low electrification 

rates in certain regions has implications for developing a strategy to improve the situation of the 

people who lack access to electricity. 

In order to take into account both village and household electrification, our analysis is based on a 

village electrification model as well as a household electrification model. Herein, village 

electrification is defined as the connection of a village to a regional power grid and is the 

traditional prerequisite for household electrification. Household electrification is defined as the 

connection of a household to its local community grid. In our study, the availability of data had a 

strong influence on the choice and the specification of the models. When setting out to do this 

research, we hoped to make use of the Census of India data, which is an immense household-

level data set containing information on each and every household including its precise 

geographic location (village name). This would have afforded the construction of geographic 

variables that refer to single villages and their inhabitants and identify the decisive factors for 

village and household electrification. Unfortunately, the Census of India data seems to be 

inaccessible to researchers3.  

For this reason it was decided to make use of the NSS data set for the household electrification 

model. These data contain a large amount of information on households’ characteristics and their 

energy consumption. However, this does not permit the localisation of the villages in which the 

households exist, and thus it is not possible for us to link the households with precise geographic 

variables. The NSS data only allow for the identification of the district containing a household. 

Therefore, the household data are combined with aggregated geographic district-level variables. 

Then, to estimate the factors affecting the household’s choice for using electricity, a discrete 

choice model is employed. Because the NSS data do not contain information on villages, they are 

not appropriate for the analysis of village electrification. Instead, we decided to use state level 

panel data that contain information on the share of electrified villages. The employed village 

                                                      
3 Aggregated Census of India data is available, but not at the household level.  
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electrification model is a panel data model that allows for the analysis of the effect of geographic 

endowment of the states on the process of village electrification, and is expressed in the rate of 

electrified villages. This approach is not without drawbacks, however, as it does not permit the 

identification of the factors that are relevant for the connection of single villages, and the high 

level of aggregation may blur effects of geographical variations within states.  

Despite village electrification being a prerequisite for household electrification, no physical 

linkage between the two models was made. However, the NSS data allow for the construction of 

a proxy measure of community electrification, which is used in the household access model. This 

measure indicates whether the village in which a household resides is electrified as well as how 

comprehensively the village is electrified. Despite the drawbacks outlined above, the household 

and the village model together allow for an assessment of the factors influencing access to 

electricity and an explanation of the regional disparities in the electrification rate.  

 

3. Village electrification 

3.1. Model specification 

The village electrification model is outlined first. What primarily concerns us is whether 

geographic endowment influences the process of village electrification. The principal actors in 

this process are the State Electricity Boards. They are responsible for power generation, 

transmission and distribution, and they own the intrastate lines. In the proposed model, it is 

assumed that the rate of electrified villages of a state (ER) – that is, the rate of electrified villages 

to the total number of villages in the state – depends mainly on the SEB’s built grid infrastructure 

(SEB), and, to a lesser extent, on the state’s general development and structure (S), and 

geographic endowment (Geo): 

  ( ,  ,  ) ER f SEB S Geo=  

The SEB built infrastructure is represented by the variables length of installed T&D lines per 

state area and the T&D losses. Every connection of a village to the regional power grid requires 

the erection of additional grid infrastructure. Generally, the easily-accessible villages (those close 

to the power plants) are connected first, while the remote villages are connected later4. T&D 

losses are an indicator of the condition of grid infrastructure and show how well an SEB can 

                                                      
4 The connection of remote villages may require a proportionately greater number of additional 
transmission lines and thus the effect of new build transmission lines on village electrification might 
decline. To capture this effect, we tried to include the variable squared length of transmission lines per 
area in the model. However, due to multi-collinearity, this was not feasible. 
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maintain its grid5. The T&D losses cause a loss of earnings and lessen the available electricity 

quantity, thus potentially resulting in fewer households being supplied. Initially, the variables per 

capita available electricity, installed capacity and length of the railway net were also considered 

in the model but were dropped later due to high correlation with other variables in the model or 

because they were insignificant (in the case of the railway).  

The state development and structure vector (S) considers the per capita state domestic product 

(SDP) and the shares of the three main economic sectors at the SDP. Rural village electrification 

might have a higher priority in states that depend on the agriculture sector, and it is assumed that 

wealthier states can more easily afford to connect remote and less financially-attractive villages. 

In addition, the per capita SDP correlates highly with per capita available electricity (p=0.92) and 

thus corresponds well with electricity supply.  

The geographic endowment (Geo) of the states is described by the variables state area, the 

number of villages per state area, the share of agriculture area and the difference in altitude 

within the state. Larger areas with a higher number of villages require longer transmission lines 

for the interconnection and thus cause higher costs. Therefore, it is assumed that these variables 

have a negative effect on the village electrification process. On the other hand, a high share of 

agricultural area might have a positive effect on electrification process when the modernisation of 

the agriculture sector (irrigation and crop processing) goes along with rural electrification. Some 

argue that agriculture electrification as opposed to village electrification was the main driver for 

rural electrification. For instance, according to Bhattacharyya, the energisation of the irrigation 

pump sets was for a long time a principal aim of rural electrification. Consequently, the level of 

electrification was not measured as a percentage of electrified households but in the extension of 

electricity lines to a particular area expressed by the percentage of electrified villages 

(Bhattacharyya, 2006). Mountains may form physical barriers and hamper the erection of power 

grids. The variable share of mountain area itself was not applicable, because in most of the states 

this land-use type exists only to a marginal extent. Therefore, the variable altitude difference 

within a state is used as a proxy variable. This measure correlates well with share of mountain 

area but is distributed more evenly among the states.  

Within this paper it is assumed that the considered land-use types do not change over the 

observed time span. Thus, the geographic variables are treated as constants. To capture any 

common tendency of growing over time, a linear time trend is included in the model. It is likely 

that a region has a higher electrification rate if its adjacent regions have high a rate of 

electrification. A variogram analysis, which measures the difference of a characteristic between 

                                                      
5 The poor condition of grid infrastructure is not the only reason for high T&D losses in India: theft is very 
common, but there were not adequate data available to consider it in the model. However, electricity theft 
seems to be more prevalent in urban than rural areas. 
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two locations in relation to their distance, shows some spatial correlation at the district level, and 

it is likely that such a correlation also exists on the state level. While the neighbourhood 

relationships between the states are not modelled explicitly, we will nevertheless allow for 

mutual correlation between the states, as described below. 

 

3.2. Econometric method  

The problem of village electrification shows some kind of censoring, since additional built power 

lines do not lead to a higher rate of electrified villages once all the villages are electrified. One 

way to deal with a censoring problem is to employ Tobit or Logit models. These approaches were 

not chosen here for two reasons. First, although there are a couple of observations with an 

electrification rate of around 0.99, there are only a few observations where all villages are 

electrified (~7%). Second, the data show high serial correlation, which cannot be dealt with 

straightforward using Tobit and Logit models. Instead, an arcos-sinus-root transformation 

( arcsin( )ER ) was applied to improve the normality of the dependent variable (Mosteller and 

Tukey, 1977; Stahel, 2002). For the same reason, the logarithmic value of the variable length of 

the T&D lines per state area was employed. The model to estimate is therefore of the form:  

TERit = α0 +β1 lntrit + β2lit +β3 pcsdpit +β4 sait + β5 ssit +  

β6 areait + β7 vpait +β8aait + β9alti + β10tt + εit  

where TERit is the arcos-sinus-root transformed rate of village electrification, subscripts i and t 

denote the state and year, and εit is an iid error term.  

 

variable definition 

TER arcos-sinus-root transformed rate of village electrification 

lntr natural logarithmic transformed length of the transmission lines per state area 

l T&D losses in percentage of production 

pcsdp per capita state domestic product (SDP) 

sa share of SDP generated in the agriculture sector 

ss share of SDP generated in the service sector 

area area of the state 

vpa number of villages per state area (village density) 

aa share of agriculture area 

alti difference in altitude within a state 

t linear time trend 

Table 1. Variable definitions  
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The above statistical model is estimated for a balanced panel data set consisting of 16 states over 

29 years (464 observations). The repeated observations of a same state allow the use of panel 

data models that can account for unobserved heterogeneity across states. However, the number of 

states is considerably smaller than the number of periods (N<T). Such a data set, sometimes 

called time-series-cross-section data (TSCS), is an unusual case for widely used panel data 

specifications such as fixed effects and random effects models, in which T, the number of 

periods, is small relative to N, the number of units (Greene, 2003; Wooldridge, 2003). When the 

sample period is relatively short, one can assume that the individual effects remain constant. 

However, in long panel data these effects might change over time, resulting in the serial 

correlation of errors. The significant test statistics from an autocorrelation test in panel data 

indicate the presence of serial correlation in the data (Wooldridge, 2002). 

For the above reasons, it was decided to pool the data across different states and use a 

heteroscedastic model with autoregressive errors that considers contemporaneous correlation 

between the cross-sections, as was proposed first by Parks (1967) and then discussed by Kmenta 

(1986). The Parks-Kmenta approach is attractive when N < T, or when the within-variation of 

many explanatory variables is very low (Farsi et al., 2006). Both conditions hold here as T is 

significantly larger than N and the employed geographic variables are assumed to be time- 

constant. In the Parks-Kmenta model the cross-sectional heteroscedasticity captures the 

unobserved heterogeneity across states, while the serial correlation is modelled through an 

autoregressive error structure. Geographic entities like regions or states are generally not 

mutually independent of each other but show contemporaneous correlation6. When this 

correlation is taken into account, the model may be termed a cross-sectionally-correlated and 

first-order autoregressive model. The particular characterization of this model is: 

2( )it iiE ε σ=   (heteroscedasticity) 

( )it jt ijE ε ε σ=   (contemporaneous correlation) 

, 1it i i t ituε ρ ε −= +  (autoregressive errors) 

A likelihood ratio test indicates the use of state-specific first-order autocorrelation parameters 

iρ . The Parks-Kmenta method consists of two sequential feasible generalized least squares 

(FGLS) transformations. First, autocorrelation is removed and then the contemporaneous 

correlation of errors is eliminated. In this way, the correction for the contemporaneous correlation 

automatically corrects for any cross-sectional heteroscedasticity. 

 

                                                      
6 A likelihood ratio test provides evidence for a correlation between the states (cross-sections). 
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3.3. Data 

The employed state level panel data covers yearly data for the 16 big Indian states over the years 

1970 –1999. The yearly data on electrified villages and the SEB indicators are taken from the 

Energy statistic books from the Centre for Monitoring Indian Economy (CMIE, 1995, 1999, 

2002). The data on the state domestic product relies on work of the Economic and Political 

Weekly Research Foundation (EPWRF, 2003) and the information on the number of villages per 

state is taken from the Census 1991 (Census of India, 2006). Although these numbers seem to 

change slightly over time when compared with the results of other surveys, we decided to 

consider them constant over time7. The state level geographic variables were generated in a GIS.  

 

variable     mean std. dev. minimum maximum n 

rate of electrified villages 0.692 0.299 0.025 1 464 

T&D lines per area [km/1000km2] 1999.08 1562.73 90.28 6757.04 464 

losses [% of production] 0.210 0.063 0.047 0.58 464 

pc SDP in 1000 Rs. 0.182 0.082 0.060 0.487 464 

share of agricultural sector 0.425 0.109 0.161 0.656 464 

share of service sector  0.347 0.071 0.200 0.521 464 

share of industry sector 0.228 0.062 0.067 0.397 464 

area [Mio. km2] 0.157 0.105 0.032 0.391 16 

villages per km2  0.241 0.134 0.043 0.507 16 

share agriculture area 0.608 0.180 0.229 0.903 16 

difference altitude [1000m] 1.956 1.179 0.875 5.675 16 

Table 2. Descriptive statistics of the parameters used in the village electrification analysis. (SDP in 

constant prices, base year 1981) 

 

3.4. Results  

The estimation results for the two village electrification models are given in Table 38. The 

coefficients of both SEB variables are significant and show the expected direction signs: 

electrification increases with additional installed power lines but is constrained by T&D losses. 

The per capita SDP coefficient also has the expected positive sign and is significant.  

                                                      
7 This restriction allows avoiding decreasing electrification rates when the number of villages is 
“increasing,” particularly with regard to the possibility that the actual number of villages is not increasing, 
but merely the number noted in the official statistic. 
8 Beck and Katz argue that the estimated standard errors in the Parks-Kmenta model may be 
underestimated (Beck and Katz, 1995). Therefore, the model has also been estimated using an OLS model 
with panel- specific first-order autoregressive errors and panel-corrected standard errors as proposed by 
Beck and Katz for TSCS data. The standard errors become larger and the variables T&D losses and per 
capita SDP are no longer significant. However, all other variables, including the geographic variables, stay 
significant. 
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parameter estimate se
ln trans.lines/area 0.103 0.008 ***
losses -0.022 0.012 *
pc. SDP 0.166 0.066 **
share agriculture -0.145 0.029 ***
share service -0.025 0.045 -
area -0.567 0.091 ***
village density -1.032 0.058 ***
share agriculture area 0.394 0.078 ***
difference altitude 0.058 0.010 ***
time trend 0.018 0.001 ***
intercept 0.012 0.055 -  

Table 3. Regression results of the village electrification model. ***, ** and * refer to 1%, 5% and 10% 

levels of significance, respectively.  

 

Economic structure also shows a significant effect on village electrification, but the nature of the 

effect is somewhat different than expected. First, there seems to be no difference between the 

service and industrial sectors. Although the coefficient share service sector is slightly negative, 

this is not significant. The share of agriculture, however, shows a significant and negative effect. 

Consequently, village electrification seems to be lower in states with an SDP depending heavily 

on agriculture. On the other hand, the model shows a significant and positive effect for the share 

of agricultural area, demonstrating that agriculture electrification is an important driver for rural 

electrification. This means that the level of village electrification is higher in regions with large 

agricultural areas where electricity is used for irrigation and crop processing. Therefore, village 

electrification is higher in states that, despite having large agricultural areas, have modern 

economies that do not depend on agriculture.  

The variable difference in altitude was employed as a proxy variable for mountainous areas, as it 

was assumed that mountains form physical barriers that hamper village electrification. The 

coefficient difference in altitude is significant but, in contrast to expectations, has a positive sign. 

Perhaps difference in altitude is a bad proxy variable for mountainous areas, or the unexpected 

direction sign is due to the high level of regional aggregation9.  

The coefficients of the variables state area and number of villages per area are both highly 

significant and show the expected negative sign, indicating a constraining effect on the 

electrification process. An additional descriptive analysis reveals that those five states that have 

the lowest electrification rates by far (Bihar, Orissa, Assam, West Bengal and Uttar Pradesh) 

show the highest number of villages per area. Moreover, a look at the village composition of 

                                                      
9 The direction signs and significance levels do not change if the model is estimated without this variable 
but, because the coefficient was significant, the variable was not removed from the model.  
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these states indicates that these states also have a high proportion of small villages (Figure 4). 

Two of the other states with a high proportion of small villages, Madhya Pradesh and Rajasthan, 

could not electrify all their villages yet either. Obviously, it is more difficult and less 

economically attractive to connect many small villages with few paying customers than to 

connect only a few larger villages with lots of potential customers. In addition, the unfavourable 

village structure may have aggravated the financial misery of these SEBs. The constraining effect 

of state area is smaller and thus less relevant than village structure for explaining the regional 

differences in village electrification. 
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Figure 4. Share of villages with population below 500 in the larger Indian states, based on data from 

Census of India. 

 

4. Household electrification  

4.1 Model specification  

In the second model the focus is on the electrification of households. As the focus here is on 

access, the factors that determine a rural household’s choice whether to use electricity are 

analysed without taking the consumed electricity quantity into account. In the proposed binary 

choice model it is assumed that the choice of the households is based on the utility of the 

alternatives of using or not using electricity. The restricted utility (U) can be represented by the 

function:  

 ( , , , )U f H E C L=  

where H is a vector of household characteristics, E refers to a vector describing the attributes of 

the electricity supply, C refers to a vector of the community electrification and L refers to a 
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vector of geographic location variables. The vector of household characteristics (H) considers the 

variables of per capita expenditure, household size, education levels of husband and wife, age 

and sex of the head of the household, access to liquefied petroleum gas (LPG), and information 

on employment type category and social group affiliation. The attributes of electricity supply (E) 

are described using the electricity tariff, the percentage of forced outages as a measure of the 

supply quality, and the supply of the alternative fuel kerosene. Low supply quality may be an 

important factor for not using electricity. For instance, Alam reports that, despite the growing 

importance of electricity, its supply is the most erratic among all major energy sources (Alam et 

al., 1998). Because the variable percentage of forced outages refers only to outages of fossil 

power plants, the variable share of fossil production was considered in the model to control for 

the relevance of the fossil production. Unfortunately, information on costs of connection and 

internal wiring was not available and could therefore not be included. To facilitate electricity 

access for the poor, the SEBs offer initial electricity units at a reduced tariff. This subsidised, 

non-cost-effective electricity tariff is the tariff considered in the model10. Other policies including 

the “Bright Home Programme,” the national policy scheme to facilitate household electricity 

access (Kutir Jyoty)11, are not taken into account.  

As access to electricity requires the availability of grid infrastructure, it is necessary to control for 

whether or not a household can effectively choose to use electricity. Because this information is 

not directly recorded in the NSS data set, a proxy was created. As a grid has not only to reach a 

village but the neighbourhood and the street where the household exists as well, it follows that 

the likelihood that access possibility is given is higher the better the electrification is within the 

village. For this reason, the vector community electrification (C) is employed to control for the 

potential access possibility. This vector considers two variables: the availability of other 

infrastructure, expressed by the length of the railroad and highway net per district area, and the 

share of neighbouring households from the same sample village  that are using electricity12. For 

instance, if none of the neighbouring households is using electricity, then the village is probably 

not electrified and it is unlikely that the household has potential access. On the other hand, the 

                                                      
10 Average tariff for 1 kW rural (50kWh/mth) in Paises/kWh. 
11 Households below the poverty line are eligible for a single point connection. The central government 
bears the entire cost of service connection and internal wiring. Only about 550,000 households have 
participated in the programme (REC, 2006).  
12 The employed NSS data is structured into first sample units (FSU), usually a village or a city block each 
containing 12 household observations. Although the NSS data does not permit the identification of the 
exact localisation of the FSU, it is possible to identify which households belong to the same FSU and to 
calculate for every household observation the share of electrified neighbouring households in the FSU. In 
other studies, e.g. Heltberg (2004), a community is considered to be electrified if one of the households in 
the sample unit is electrified and not electrified otherwise. We think it is more appropriate to describe the 
community electrification as something continuous rather than with a dummy variable, particularly when 
the proxy variable is based on a small sample of 12 observations.  
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greater the number of neighbouring households using electricity, the more comprehensively the 

community is electrified and the higher the likelihood that access possibility is given. 

In order to test whether the geographic endowment indeed has no direct effect on household 

choice, some geographical variables were included in the analysis as well; they include average 

yearly rainfall, temperature, altitude and shares of land-use types, all variables aggregated at the 

district level13. Additionally, state dummies were considered in the model to capture other 

regional effects that are not caused by geographic factors (L). To avoid multi-collinearity 

between the explanatory variables, some states had to be grouped into mini-regions. 

Following the model, a household i does choose to use electricity if the utility of using it (U1) is 

larger than the utility of not using it (U0). In random utility models, the net utility for individual i 

is described by a latent variable yi*: 

{*
1 0

> 0 choose 1 0 choose 0i i iy U U →= − ≤ →  

   i iX uβ= +  with 1 0i i iu ε ε= −  

where X is the vector of all the explanatory variables of the vectors H, E, C and L; β is the 

corresponding vector of coefficients; and ui the stochastic part, capturing the uncertainty. In order 

to estimate the vector of coefficients, a Probit model is employed. As an alternative, a Logit 

model is estimated and the results compared. To avoid heteroscedasticity, robust standard errors 

are employed.  

 

4.2. Data  

The analysis of household electrification depends mainly on unit-level budget survey data from 

the National Sample Survey Organisation (NSSO) of India’s household consumer expenditure 

survey (round 55, year 1999/2000). Data from this survey include information on monetary 

expenditures and physical quantities of consumption of a number of household items, including 

electricity. The data also include information on a host of socio-economic and demographic 

characteristics of households. The survey collects information from a cross-section of households 

covering the entire area of the country over a period of one year. The employed rural sub-sample 

of the 16 big Indian states contains almost 60,000 household observations and, being this large, is 

representative of the rural population as a whole14.  

                                                      
13 As mentioned in section 2.3., the NSS data do not allow a further spatial disaggregation. 
14 Some states created after 1999 are included within these 16 big states; Uttar Pradesh includes 
Uttaranchal, Madhya Pradesh includes Chattisgarh and Bihar includes Jharkhand, respectively. 
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The state-level information on electricity tariffs, forced outages, energy mix and number of 

kerosene dealers is taken out of the Energy statistic book by the Centre for Monitoring Indian 

Economy (CMIE, 2002). The data are complemented by geographic district-level variables 

generated in a GIS. The employed geographic variables describe average values for each of the 

428 districts of the 16 states considered. Table 4 and 5 show the descriptive statistics. The 

estimates are unweighted and thus do not describe the rural population but the applied sample.  

 

variable     mean std. dev. minimum maximum n 

user electricity 0.49 0.50 0 1 59543 

per capita expenditure [Rs./month]* 331.94 249.93 25.8 16376.4 59543 

household size 5.34 2.78 1 36 59543 

share of electrified neighbours  48.73 36.14 0 100 59543 

transport infrastructure length /area 
[km/100km2]  

4.57 2.88 0 15.41 428 

electricity tariff [Paise/kWh] 135.60 56.02 59.2 246.14 16 

kerosene dealers / population in Mio.  6.83 2.64 2.58 13.39 16 

forced outages (%) 16.76 12.68 4.56 44.92 16 

share of thermal production 60.69 29.68 4.64 99.7 16 

share forest area 21.63 21.29 0 92.19 428 

share mountain area 1.16 6.76 0 92.32 428 

share irrigated crop area 14.45 24.82 0 99.31 428 

share of non-irrigated crop area 51.05 25.01 0 99.57 428 

share grazing area 5.48 8.02 0 68.45 428 

share unproductive area 1.38 6.23 0 93.37 428 

share water area 1.66 2.84 0 19.28 428 

share other area 3.19 7.23 0 62.09 428 

Table 4) Descriptive statistics for variables. *monthly expenditure, real values with base year 1993/94. 

 

dummy variables     1 if, 0 otherwise frequency n 

household variables   59543 

husband illiterate  0.41  

husband primary education    0.26  

husband secondary or higher education   0.26  

wife illiterate   0.65  

wife primary education   0.17  

wife secondary or higher education   0.11  

no wife in household    0.07  

no husband in household   0.07  

age head < 30 years   0.11  

age head > 50 years   0.39  

household with Access to LPG   0.08  
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social group code is tribe   0.11  

social group code is caste   0.19  

self-employed    0.15  

self-employed in agriculture sector    0.37  

wage labourer   0.07  

wage agriculture labourer    0.29  

other employment type   0.11  

district level variables    428 

average temperature < 25°C   0.10  

average temperature > 27.5°C   0.09  

average yearly rainfall < 650mm   0.23  

average yearly rainfall > 1650mm   0.12  

average altitude < 75m   0.13  

average altitude > 400m   0.25  

Table 5. Descriptives for dummy variables.  

 

4.3. Results 

The estimation results of the household choice model are given in Table 615. The R2 proves 

satisfying for such a large and heterogeneous cross-section sample, and the coefficients show the 

expected direction signs. All household variables are highly significant, apart from the 

employment type self-employed. The marginal probability effects at the mean (MPE) are shown 

in the last row of Table 616. A comparison of the MPE reveals a high correlation between 

household educational level and household electricity decisions. The probability of electricity use 

increases considerably as the education levels of the husband and wife in a household rise. On the 

other hand, the probability is lower in households in which the head is widowed, single or young, 

and in smaller households. Generally, a close relationship between access to electricity and 

access to LPG is observed. Only about 6-7% of LPG users have no access to electricity (year 

2000). This relationship is reproduced in the high MPE of the variable access to LPG. Although 

this close relationship is observed, the reason for its existence is not quite clear17. Some possible 

explanations for the electricity – LPG nexus are given in the UN/WB study (2003) and in Barnes 

et al. (2005). For instance, in the UN/WB study it is stated that “areas that are in some sense 

more “modern” (for example large as opposed to small towns and places with better 

                                                      
15 Estimations based on a Logit model show very similar results. 
16 The MPE measures the marginal change in the probability of observing electricity use in the household 
given a marginal change in the explaining variable. For the logarithmic variables of expenditure and 
household size, reported numbers can be interpreted directly as a change in percentage points. For instance, 
an increase in expenditure by one percent corresponds to an increase in logarithmic expenditure by 0.01.  
17 Because the effect is not clear, the model has also been estimated without this variable. The estimated 
coefficients hardly changed.  



 19

infrastructure) get connected first to the electricity grid”, whereby the availability of an LPG 

market can be considered a sign of better infrastructure.  

 

variables 
dy/dx

ln pc expenditure 0.734 0.021 *** 0.292
ln household size 0.572 0.016 *** 0.228
husband illiterate -0.215 0.018 *** -0.085
husband education sec./ higher 0.190 0.021 *** 0.076
no husband -0.106 0.031 *** -0.042
wife illiterate -0.152 0.021 *** -0.060
wife education sec./ higher 0.089 0.029 *** 0.036
no wife -0.165 0.032 *** -0.065
age group young -0.065 0.025 *** -0.026
age group old 0.148 0.015 *** 0.059
user LPG 0.528 0.042 *** 0.206
tribe -0.157 0.025 *** -0.062
caste -0.145 0.019 *** -0.057
self employed -0.023 0.022 - -0.009
labour -0.239 0.029 *** -0.093
labour in agriculture sector -0.396 0.020 *** -0.155
other employment type 0.111 0.026 *** 0.044
neighbourhood electrification 0.026 0.0003 *** 0.010
transport infrastructure 0.012 0.003 *** 0.005
minimum electricity tariff -0.001 0.0003 *** -0.0005
kerosene dealers/pop 0.051 0.007 *** 0.020
% outages -0.033 0.001 *** -0.013
share fossil production 0.011 0.001 *** 0.004
average temperature < 25°C 0.035 0.033 - 0.014
average temperature > 27.5°C 0.044 0.036 - 0.017
average yearly rainfall < 650mm 0.021 0.025 - 0.008
average yearly rainfall > 1650mm -0.026 0.040 - -0.010
average altitude < 75m -0.036 0.028 - -0.014
average altitude > 400m -0.005 0.022 - -0.002
share forest area 0.0001 0.001 - 0.00004
share mountain area -0.001 0.002 - -0.0005
share irrigated crop area -0.0005 0.0004 - -0.0002
share grazing area 0.001 0.001 - 0.0003
share unproductive area -0.001 0.002 - -0.001
share water area -0.001 0.003 -0.0003
share other area -0.005 0.001 *** -0.002
state dummies
const. -6.480 0.158 ***

n=59543 R2: 0.4787
Log pseudolikelihood = -21504.657 

coefficient
MPE at 

mean
robust 
std.err.

sign. 
level

 

Table 6. Results of the Probit model for household electrification. Omitted categories include education: 

primary education of man and woman; employment type: self-employed agriculture; land- use type: non-

irrigated crop area. *** refers to a 1% level of significance 
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Although economically poor areas largely coincide with those with low household electrification 

rates, the causal relationship between the two appears to be weak. That is, per capita expenditure 

shows only a relatively small effect on a household’s decision to have electricity. A rise in 

expenditure of 1% increases the probability of electricity use by only 0.29%. The effect would 

possibly be larger if the access cost for connection and internal wiring were included in the 

model, or if electricity consumption were less subsidised. Furthermore, the effect could be quite 

different for households far away from the population mean which include, for instance, the 

poorest segment. However, this seems not to be the case in that an estimation of the MPE for 

lower income groups does not show larger effects. Moreover, the subsidised electricity tariff 

shows only a small effect (MPE: -0.0005)18. This means that a reduction in the mean tariff by 

10Rs. (-7.5%) would result in an increase in probability by 0.5%. The quality of the supply seems 

to be more relevant than the electricity price; a decrease of 1% in outages increases the 

probability by about 1.3%. The availability of kerosene does not show a negative effect on 

electricity use. This demonstrates the fact that kerosene is often used as a complementary fuel to 

compensate for the erratic electricity supply rather than as an alternative energy source. 

Furthermore, kerosene is also used for cooking, a use for which electricity is not available as a 

substitute.  

The social groups’ scheduled castes and tribes, and in particular the employment type groups’ 

labour and labour in agriculture, use significantly less electricity. For instance, the probability of 

electricity use is 15.5% lower in households in which the head is working in agricultural labour 

as opposed to being self-employed in agriculture. It is unclear whether these people value the 

benefit of electricity less or if they suffer some sort of access discrimination. These lower social 

groups generally live in poorer and thus potentially less-electrified neighbourhoods. Therefore, it 

might be more difficult for them to obtain a household connection even if they were able to 

afford it. On the other hand, if farm land were made accessible to electricity for irrigation, then 

the farm of the land-owning, self-employed agricultural worker most probably would have access 

as well. In any case, community electrification proves to be a crucial factor for household access. 

It was assumed that a higher share of electrified neighbours signifies a better access situation and 

a higher likelihood that the household gets connected itself. The estimations confirm this 

hypothesis: the coefficient share of electrified neighbours is clearly positive and highly 

significant. Density of highway and railroad infrastructure, the other applied proxy variable for 

community electrification, is less relevant despite being highly significant. On the other hand, as 

                                                      
18 In the model, all households within one state pay the same electricity tariff and enjoy the same supply 
quality. Therefore, for the state level variables, only 16 different values were available for the statistical 
analysis. In an additional estimation, the option robust cluster was applied, which allows for correcting the 
standard errors for intragroup correlation in STATA. The significance level of the coefficients, however, 
did not change.  
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expected, none of the geographic variables is significant except for share of other area. This 

variable stands for a mix of different minor land-use types which are found only in certain states, 

and thus the effect is difficult to interpret. Nevertheless, the hypothesis that the coefficients of 

geographic factors are zero cannot be rejected, and we therefore conclude that geographic factors 

have no direct effect on the utility of electricity. 

 

5. Conclusion 

This research set out to combine conventional household- and village-level data with a GIS in 

order to identify geographic factors which could potentially effect electrification rates and cause 

regional disparities in access. While this approach offers great potential for gaining new insights, 

the necessary conditions were not yet fully available to exploit its entire potential. The Census of 

India is not made accessible for public research and therefore more highly aggregated data had to 

be used. The NSS and SEB data employed as an alternative permit linking geographic data only 

to the district and state levels respectively. Despite these limitations, the presented analysis 

allows for an explanation of the observed regional disparities in electrification according to a 

combination of factors influencing household electrification and grid availability. Areas 

experiencing the lowest electrification rates are such as a result of poor household characteristics 

and low local grid availability. In this way, some geographic variables are relevant for grid 

availability but not for household access. A region’s having a high proportion of agricultural area 

correlates positively with village electrification, which demonstrates the importance of 

agriculture electrification as a driver for rural electrification. On the other hand, an unfavourable 

village structure and a large state area constrain the village electrification process. In particular, 

areas with small but numerous villages seem to have lower village electrification rates. Thus, this 

analysis provides some evidence for a causal relationship between the man-made geographic 

endowment of a state and its level of village electrification. However, geographic factors 

influence only the speed of the erection of regional infrastructure and act temporally as a sorting 

mechanism; they seem not to affect electrification inside the villages, as they do not change the 

utility of electricity use.  

Even though economically poor areas largely coincide with areas with low household 

electrification, an analysis of household choice has shown that expenditure has an attenuated 

effect. Indeed, an increase in expenditure alone would hardly improve low household access 

rates, although a higher household expenditure in a region might increase the incentive for the 

utilities to expand grid infrastructure to that area. In any case, the village electrification model 

provided some evidence for a positive effect of income (pc SDP) on village electrification at the 

state level. Other factors besides expenditure, in particular community electrification and 
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education of household members, are probably more relevant for household electrification. 

Furthermore, the model suggests that electrification is better extended by improving supply 

quality rather than subsidising consumption by a non-cost-effective tariff. The influence of the 

present electricity tariffs on the household decision to use electricity is small, and the 

undifferentiated subsidies benefit those who are already connected to the grid rather than those 

who are still seeking a connection. The high negative MPE of the social groups’ tribe and caste, 

as well as the employment type groups’ labour and labour in agriculture, could be a sign of large 

intra-village differences in community electrification. As these social groups probably live in 

poorer and therefore less-electrified neighbourhoods, they might suffer from some sort of access 

discrimination. Unfortunately, access to electricity still seems hardly a given in the hamlets 

surrounding the outskirts of villages, even those in regions noted for their high village 

electrification rates. 
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