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Abstract

Some macroeconomic models exhibit a type of global indeterminacy known as Euler
equation branching (e.g., the one-sector growth model with a production externality).
The dynamics in such models are governed by a differential inclusion ẋ ∈ F (x), where
F is a set-valued function. In this paper, we show that in models with Euler equa-
tion branching there are multiple equilibria and that the dynamics are chaotic. In
particular, we provide sufficient conditions for a dynamical system on the plane with
Euler equation branching to be chaotic and show analytically that in a neighborhood
of a steady state, these sufficient conditions will typically be satisfied. We also extend
the results of Christiano and Harrison (1999) for the one-sector growth model with a
production externality. In a more general setting, we provide necessary and sufficient
conditions for Euler equation branching in this model. We show that chaotic and cyclic
equilibria are possible and that this behavior is not dependent on the steady state being
“locally” a saddle, sink or source.
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1 Introduction

Some macroeconomic models exhibit a type of global indeterminacy known as Euler equation

branching. In typical dynamic models, the dynamics are described by a differential equation

ẋ = f(x). However, in models with Euler equation branching the dynamics are governed

by a differential inclusion ẋ ∈ F (x), where F is a set-valued function. Models that exhibit

Euler equation branching include the one-sector growth model with a production externality

of Christiano and Harrison (1999). One also finds Euler equation branching in the two-sector

model of Benhabib and Farmer (1996) and the RBC model with a balanced-budget rule of

Schmitt-Grohé and Uribe (1997).1 Two fundamental questions for such models are

• Does Euler equation branching imply the existence of multiple equilibria?

• If there are multiple equilibria, are the dynamics simple or chaotic?

In this paper, we show that in models with Euler equation branching there are multiple

equilibria and that the dynamics are chaotic. Given that a dynamical system generated by a

differential inclusion is non-standard, there is not a set of readily available results for defining

chaos and establishing the (non)existence of chaos. In this paper, we use a definition of chaos

for a dynamical system generated by a differential inclusion that is in the spirit of one of the

more commonly used definitions of chaos, Devaney (2003). We provide sufficient conditions

for a dynamical system on the plane with Euler equation branching to be chaotic and show

analytically that in a neighborhood of a steady state, these sufficient conditions will typically

be satisfied. These results hold even if there is a unique steady state equilibrium and this

unique steady state is locally determinate.

We also extend the results of Christiano and Harrison (1999) for the one-sector growth

model with a production externality. By using a particular parameterization, they obtain

a clean, closed-form expression for the global set of competitive equilibria illustrating the

existence of Euler equation branching. They illustrate the possibility of deterministic and

stochastic regime switching equilibria along with equilibria that appear chaotic. We consider

a more general setting and provide necessary and sufficient conditions for Euler equation

branching. Moreover, we show that chaotic and cyclic equilibria are possible in the model

and that this behavior is not dependent on the steady state being locally determinate or

indeterminate.

1See Stockman (2007a,b).

2



This paper joins the literature that has stressed the importance of global analysis in

exploring possible equilibria in dynamic general equilibrium models.2 Benhabib and Perli

(1994) analyze the endogenous growth model of Lucas and illustrate the possibility of global

indeterminacy with multiple balanced-growth paths. They extend the model to include a

labor-leisure choice and illustrate that there are two balanced-growth paths for a given a

level of physical and human capital, and the choice of labor can put the economy on either

of these two paths. Boldrin et al. (2002) develop a method for characterizing the global

dynamics in the two-sector growth model. They find that global indeterminacy can arise

and that the growth rate along an equilibrium trajectory can fluctuate chaotically. Stockman

(2007a) extends the work of Schmitt-Grohé and Uribe (1997) and illustrates that a balanced-

budget rule induces aggregate instability regardless of the determinacy of the steady state.

In particular, he provides sufficient conditions for Euler equation branching to be a generic

quality under a balanced-budget rule. Consequently, regime switching equilibria involving

cycles and chaotic behavior are possible.

In the next section we briefly describe the one-sector model. In section 3, we provide

necessary and sufficient conditions under which Euler equation branching will exist in this

model. In addition, we provide sufficient conditions for a more general one-sector model.

Our main methodological contribution for establishing the existence of chaos for a model on

the plane with Euler equation branching is in section 4 along with our application to the

one-sector model. We conclude in section 5.

2 Model

The model of Christiano and Harrison (1999, 1996) is a standard real business cycle model

with a production externality. We briefly describe a continuous-time version of the model

here. Preferences are given by
∫

∞

0

e−ρt[log(ct) + σ log(1 − nt)]dt, (1)

with ρ < 0 and σ > 0. Output is produced at many locations using capital K and labor N ,

but also depends on the average level of production across these location y:

Y = f(y,K,N) := yγKαN1−α,

2In addition to the papers discussed here, see also Hommes and de Vilder (1995), Michener and Ravikumar
(1998), Benhabib et al. (2001), Guo and Lansing (2002), Coury and Wen (2002), Medio and Raines (2007)
and Stockman (2007b).
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with 0 < α < 1 and 0 ≤ γ < 1. Solving for the economy-wide average one gets

y = kαknαn , (2)

where αk := α/(1− γ) and αn := (1−α)/(1− γ). The equilibrium rental rate of capital and

wage are given by

rt = α
yt

kt

and wt = (1 − α)
yt

nt

.

The household’s optimality conditions are

1/ct = λt, (3)

σ/(1 − nt) = λtwt, (4)

λ̇t = λt(ρ+ δ − rt), (5)

k̇t = wtnt + rtkt − ct − δkt, (6)

0 = lim
t→∞

e−ρtλtkt. (7)

Substituting for the input factor prices, an equilibrium in the model must satisfy

σ/(1 − nt) = λt(1 − α)kαk

t nαn−1
t , (8)

λ̇t = λt(ρ+ δ − αkαk−1
t nαn

t ), (9)

k̇t = kαk

t nαn

t − ct − δkt, (10)

along with (3) and (7). With kt as the state and λt as the co-state, the equilibria in the

model must satisfy the following

k̇t = kαk

t nαn

t − 1/λt − δkt, (11)

λ̇t = λt(ρ+ δ − αkαk−1
t nαn

t ), (12)

σ/(1 − nt) = λt(1 − α)kαk

t nαn−1
t , (13)

along with (7). Benchmark parameter values are reported in Table 1.

3 Euler Equation Branching

Given kt and λt, one uses equation (13) to solve for nt. If there is more than one solution

for nt, the model exhibits Euler equation branching. The next proposition gives necessary

and sufficient conditions for there to be either 2 or 0 solutions for n.
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Table 1: Benchmark parameter values.

α = 0.30 (capital’s share)
δ = 0.10 (depreciation)
ρ = 0.05 (discount factor)
σ = 2.00 (leisure preference parameter)

Proposition 1. In this model with preferences given by (1) and technology given by (2),

there is Euler equation branching if and only if αn := (1 − α)/(1 − γ) > 1.

Proof. Suppose αn > 1. Equilibrium in the labor market implies

σ

1 − n
= λ(1 − α)kαknαn−1.

Rearranging one gets

(

1 − α

σ

)

λkαk = B(n) :=
1

(1 − n)nαn−1
.

Note that limn→0B(n) = limn→1B(n) = +∞ and B(n) > 0 for all n ∈ (0, 1). The derivative

is given by

B′(n) = (1 − n)−2n1−αn + (1 − αn)(1 − n)−1n−αn = B(n)

[

1

1 − n
+

1 − αn

n

]

.

This implies B′(n) = 0 for n ∈ (0, 1) iff n∗ = (αn − 1)/αn. Moreover, for n ∈ (0, n∗) one has

B′(n) < 0 and for n ∈ (n∗, 1) one has B′(n) > 0. Therefore the minimum value taken on by

B occurs at n = n∗ and this value is B∗ := B(n∗). Any equilibrium requires

(

1 − α

σ

)

λkαk ≥ B∗.

In general, for a given k and λ there are either 2 or 0 solutions for n implying the existence

of Euler equation branching. Note that for αn ≤ 1, B′(n) > 0 implying that there exists at

most one equilibrium in the labor market.

We see the required size of the externality γ is such that the equilibrium labor de-

mand curve is upward sloping. By the equilibrium labor demand we mean the relationship

w = (1 − α)kαknαn−1. Though each individual firm’s technology exhibits a diminishing

marginal product of labor, the equilibrium or aggregate marginal product of labor need not
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Figure 1: Labor Market with Euler Equation Branching.
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be diminishing if the externality is sufficiently large. It is important to note that the exis-

tence of Euler equation branching does not depend on the “local” determinacy properties

of the (unique) steady state in the model. Note that in Christiano and Harrison (1999),

γ = 1 − α and α = 1/3 so αn = 2 > 1, which confirms their finding of Euler equation

branching.

The intuition for Euler equation branching is simple. In the labor market, the externality

causes the equilibrium labor demand curve to be upward sloping. The marginal product of

labor goes to zero as labor goes to zero, as opposed to infinity in the standard neoclassical

model. This curve starts out below the Frisch labor supply curve (this curve gives the amount

of labor the household would like to supply for a given wage level holding the marginal utility

of income fixed). It also ends up below the Frisch labor supply curve as labor approaches

the time endowment. Hence, if the two curves cross at all, they will typically cross multiple

times. See Figure 1 for an illustration of the labor market with Euler equation branching.

The existence of Euler equation branching can be established for a broader set of prefer-

ences and technology. The next proposition provides sufficient conditions for Euler equation

branching to be a generic property.

Proposition 2. Consider the model described in section 2. Let H̄ be the time endowment.
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Let preferences over consumption and work U(C,H) be represented by a C2 function U :

R++ × [0, H̄) → R satisfying

(i) UC > 0, UH < 0 and negative definite Hessian,

(ii) limH→H̄ UH(C,H) = −∞ for all C > 0,

(iii) UH(C, 0) := limH→0 UH(C,H) < 0 for all C > 0,

(iv) UC(C, 0) := limH→0 UC(C,H) > 0 for all C > 0.,

Let the production function F : R
2
+ → R be C2 with FK > 0, FH > 0 and FH(K, 0) :=

limH→0 FH(K,H) = 0 for all K > 0. If the labor supply and demand curves intersect

(transversally), there will be an even number of such intersections, i.e., generically, transver-

sal crossings come in pairs.

Proof. These conditions are sufficient for the Frisch labor supply curve to be upward sloping

and the labor demand curve to be initially beneath and ultimately below the labor supply

curve. In this proposition, we are considering only transversal intersections (the generic case)

and do not consider non-transversal intersections.

The Frisch labor supply curve H(w, λ) and demand for consumption C(w, λ) are defined

implicitly from the following first-order conditions:

UC(C,H) = λ,

−UH(C,H) = λw.

By use of the implicit function theorem, we have

∂H(w, λ)

∂w
=

−UCCλ

UCCUHH − U2
CH

.

The numerator is positive and the denominator is positive since U has a negative definite

Hessian. Thus this partial derivative is positive and hence the Frisch labor supply curve is

upward sloping (and continuous since U is C2). Note that at H = 0 with C > 0, the implied

w is strictly positive since UC(C, 0) > 0 and −UH(C, 0) > 0. This means the w-intercept

for the labor supply curve is strictly positive. Moreover, as H → H̄ the implied w from the

labor supply curve is +∞.

Since FH(K, 0) = 0, for low H the labor supply curve is above the labor demand curve

(the first transversal crossing of the labor supply curve by the labor demand curve is from
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below). We have FH(K, H̄) < ∞ for all K, so the labor demand curve is eventually below

the labor supply curve. Consequently, given a crossing of the labor supply curve by the labor

demand curve from below, it must be that (1) there is at least one more crossing and (2) the

last transversal crossing of the labor supply curve by the labor demand curve is from above.

4 Chaos and Cycles

Given the existence of Euler equation branching, the dynamics in this model when
(

1−α
σ

)

λkαk >

B(n∗) are given by a differential inclusion or multi-valued dynamical system (MVDS):

[

k̇

λ̇

]

∈ {G(k, λ, n1), G(k, λ, n2)},

where 0 < n1 < n∗ < n2 < 1 are the two equilibrium values in the labor market and

G(k, λ, n) :=

[

kαknαn − 1/λ− δk
λ(ρ+ δ − αkαk−1nαn)

]

.

The existence of Euler equation branching will typically imply the existence of cycles and

chaotic behavior. Here, we follow Stockman (2007a) closely. First, we give some definitions

for a MVDS. Let the state space X be a metric space with metric d and T := [0,∞) our

time index. The space of all possible orbits on X is denoted by W := {γ | γ : T → X}. Let

F : X → 2X be a set-valued function. A dynamical system on X generated by F is a subset

of W given by

D := {γ ∈ W | γ̇(t) ∈ F (γ(t))}.

Definition 1. D has a periodic orbit of length m > 0 if there exists an orbit γ ∈ D with

γ(t) = γ(t+m) for all t ∈ T and there does not exist an n ∈ (0, m) with γ(t) = γ(t+ n) for

all t ∈ T . D has a periodic orbit of length m = 0 if there exists an orbit γ ∈ D with γ(t) = γ̄

for all t ∈ T .

Definition 2. D has sensitive dependence on initial conditions if there exists a sensitivity

constant δ > 0 such that for any given x ∈ X and neighborhood N(x), there exists orbits

γ, σ ∈ D and m ≥ 0 such that γ(0) = x, σ(0) ∈ N(x) and d(γ(m), σ(m)) > δ.

Definition 3. D has a dense set of periodic points if for any given x ∈ X and neighborhood

N(x), there exists a periodic orbit γ ∈ D with γ(0) ∈ N(x).
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Definition 4. D is topologically transitive if for any (non-empty) open sets U, V ⊂ X, there

exists an orbit γ ∈ D and N ∈ T with γ(0) ∈ U and γ(N) ∈ V .

Definition 5. D is chaotic in the sense of Devaney (2003) if D is topologically transitive,

has a dense set of periodic points and has sensitive dependence on initial conditions.

4.1 Linear MVDSs

Stockman (2007a,b) considers the following example of a MVDS generated by a linear func-

tion and a constant function. He shows that such simple building blocks for a multi-valued

dynamical system can generate rich dynamical behavior.

Example 1. Let X := R
2 and H(x) := {Ax, b}, where A is a 2 × 2 matrix with no purely

imaginary eigenvalues and b ∈ X.

He considers three cases for x∗ = 0 ∈ X under A: (1) sink, (2) source and (3) saddle. In

all of these cases, there will typically exist an invariant closed set with a non-empty interior

on which H will be chaotic.

Theorem 1 (sink or source – real root). Let X := R
2 and H(x) := {Ax, b} where

b ∈ X and A is a 2 × 2 matrix with real eigenvalues λ1 < λ2 < 0 or 0 < λ1 < λ2 and

eigenvectors e1 and e2. Without loss of generality, assume that A is diagonal and e1 and e2

are the canonical basis vectors. Then provided b 6= αe1 and b 6= βe2, the dynamical system

generated by H restricted to a cone in R
2 is chaotic. If b = αe1 or b = βe2 or λ1 = λ2 6= 0,

then the dynamical will be chaotic on a ray emanating from the origin.

Proof. See Stockman (2007b).

Theorem 2 (sink or source – complex root). Let X := R
2 and H(x) := {Ax, b} where

b(6= ~0) ∈ X and A is a 2×2 matrix with complex eigenvalues λ1 and λ2 satisfying Re (λi) 6= 0.

Then the dynamical system generated by H is chaotic on R
2.

Proof. See Stockman (2007b).

Theorem 3 (saddle). Let X := R
2 and H(x) := {Ax, b} where b ∈ X and A is a 2 × 2

matrix with real eigenvalues λ2 < 0 < λ1 and eigenvectors e1 and e2. Without loss of

generality, assume that A is diagonal and e1 and e2 are the canonical basis vectors. Then

provided b 6= αe1 and b 6= βe2, the dynamical system generated by H restricted to one of the

orthants of R
2 is chaotic.
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Proof. See Stockman (2007a).

For the intuition on the saddle result, see Figure 2. Assume that the vertical axis and

the horizontal axis are the unstable and stable manifolds of A (respectively) and the flow

from b is running from “northwest” to “southeast.” The importance of the vector b not

being a scalar multiple of either eigenvector is so that an integral curve generated by b will

intersect those generated by A typically twice (or not at all). This system is chaotic on the

“northeast” quadrant. Sensitive dependence of initial conditions is easy to see since every

open set in this quadrant has a point with an orbit that diverges to (0,+∞) along with an

orbit that converges to (0, 0). To get to (0,+∞) simply follow the integral curves generated

by A. To get to (0, 0) simply follow the integral curve generated by b to the stable manifold

of A and then follow the stable manifold to (0, 0). A dense set of periodic points follows since

every point in the interior of this quadrant is part of a cyclic orbit. To see this, note that

one can construct cyclic orbits that look like “half moons” using integral curves of A and

the integral curves of b. In fact, there is an orbit connecting any two points in the interior

of this quadrant. From this, topological transitivity follows.

Figure 2: Saddle: integral curves from the MVDS given by ẋ ∈ {Ax, b}.
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Stockman (2007a) conjectures that this simple family of MVDSs is useful as a way of

understanding the behavior of non-linear MVDSs. To see this, suppose one has a non-linear

system ẋ ∈ {M(x), N(x)} with M(x∗) = 0 and N(x∗) 6= 0. Suppose further that x∗ is
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a hyperbolic point of M , i.e., DM(x∗) has no purely imaginary eigenvalues. Then in a

neighborhood of x∗, M(x) behaves like Ax where A = DM(x∗) and N(x) behaves like b

where b = N(x∗). For this reason, one can expect that most non-linear MVDSs near a

steady state will be chaotic as well. We prove this conjecture in the next subsection. Note

this is not a trivial result that follows directly from the Hartman-Grobman theorem. Even

though Ax is conjugate to M(x) and b is conjugate to N(x) in a neighborhood of x∗, we

cannot conclude that {Ax, b} is conjugate to {M(x), N(x)} in a neighborhood of x∗ since in

all likelihood the two single conjugacies would require two different coordinate changes.

4.2 Nonlinear MVDSs

We now turn to analyzing non-linear MVDSs on the plane generated by two functions. Our

approach is two-fold: (1) we establish sufficient conditions for chaos and (2) we show that

these sufficient conditions will typically be satisfied near a steady state equilibrium.

Let ẋ ∈ {f(x), g(x)} and φ and ψ be the flows generated by continuous functions f and

g (mapping R
2 → R

2). Let T := [0,∞) and define

Γ := {γ : T → R
2 | γ̇(t) ∈ {f(γ(t)), g(γ(t))}.

Definition 6. Let a, b ∈ R
2. We say there is a path from a to b provided there exists γ ∈ Γ

and t0, t1 ∈ T such that t0 < t1 with γ(t0) = a and γ(t1) = b. The path is P := {γ(t) : t0 ≤

t ≤ t1}.

Definition 7. Let a, b ∈ R
2. We say there is a simple path from a to b provided there exists

a path γ from a to b such that γ̇ has finitely many discontinuities on [t0, t1] and a 6= γ(s) 6= b

for all t0 < s < t1. The simple path is P := {γ(s) : t0 ≤ s ≤ t1}.

Next, we define a chaotic set and provide sufficient conditions for establishing its exis-

tence. Then we show that the existence of a chaotic set will imply chaos for the MVDS as

we have defined it above.

Definition 8. A set R ⊂ R
2 is a chaotic set provided

1. for all a, b ∈ R, there exists a path from a to b in R,

2. there exists nonempty U ⊂ R open (relative to R) and a γ ∈ D such that γ(t) ∈ R \U

for all t ∈ T .
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Let K ⊂ R
2 be (nonempty) closed such that g has no bounded solutions in K, i.e., there

are no trajectories (forward or backward) generated by g that stay in K forever. Let a ∈ R
2

and P a simple path from a to a such that P ⊂ K. In general, P is compact and is a finite

union of arcs. We will need the following lemma which involves the topological concept of

a component which we define now. Let A ⊂ R
2 (nonempty). If x ∈ A, then the largest

connected subset Cx of A containing x is called the component of x. The components of A

form a partition of A where each component is a “maximal” connected piece. For example,

let P ⊂ R
2 be the unit circle and A = R

2 \P , then A has 2 components – the interior of the

unit disc and the complement of the unit disc.

Lemma 1. R
2 \ P has only one unbounded component.

Proof. Note that since P is a compact subset of R
2, P is closed and bounded. Thus there is

some q ∈ R
2 and r > 0 such that P ⊆ Br(q). Thus R

2 \ Br(q) ⊆ R
2 \ P , and R

2 \ Br(q) is

one unbounded component. This implies that R
2 \P has only one unbounded component. If

not then let C1 and C2 be the two unbounded components. Both C1 and C2 must intersect

R
2 \Br(q), in fact R

2 \Br(q) ⊆ C1 ∪C2, a contradiction to C1 ∪C2 being disconnected.

Since R
2 \ P only has one unbounded component, we can write R

2 \ P as
(

⋃

α∈A

Cα

)

∪ C0

where each Cα and C0 are components of R
2\P and C0 is the unique unbounded component.

Let R :=
⋃

α∈A Cα ∪ P . Note that this is the same as R
2 \ C0. Since C0 is open, we know

that R is closed. See Figure 3 for a possible configuration of these sets. Next, we show that

R is a chaotic closed set.

Lemma 2. R is a chaotic closed set.

Proof. Let x, y ∈ R. Then there exists a simple path from x to some point z ∈ P and simple

path from some w ∈ P to y. Thus there is a simple path from x to z, from z to a, from a to

w and from w to y.

Suppose R◦ 6= ∅. Since P is a finite union of arcs, P ◦ = ∅. Thus there exists U ⊂ R

open in R
2 such that P ∩ U = ∅. In this case we take P to be our orbit to satisfy part (b)

of the definition of chaotic set.
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Figure 3:
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Suppose R◦ = ∅. Then P contains no simple closed curves. Then there exists < 0 < t1, t2

such that ψt(a) ∈ P for all 0 ≤ t ≤ t1 and φt(ψt1(a)) ∈ P for 0 ≤ t ≤ t2 with φt2(ψt1(a)) = a

and P2 := {φt(ψt1(a)) : 0 ≤ t ≤ t2} = {ψs(a)) : 0 ≤ s ≤ t1} =: P1. Let b ∈ P1 such that

b 6= a and b 6= ψt1(a). Let t3 ∈ (0, t1) such that ψt3(a) = b and t4 ∈ (0, t2) such that that

φt4ψt1(a) = b. Let λ ∈ Γ be the periodic trajectory (with period t3 + t2 − t4) such that

λ(0) = a, λ(s) = ψs(a) for 0 ≤ s ≤ t3 and λ(s) = φt4+(s−t3)ψt3(a) for t3 ≤ s ≤ t3 + (t2 − t4).

This shorter trajectory then satisfies part (b) of the definition of chaotic set.

Lemma 3. Let R be a chaotic set. Then Γ|R has a dense set of periodic points.

Proof. Let x ∈ R. Then there exists a periodic orbit in R from x to x.

Lemma 4. Let R be a chaotic set. Then Γ|R is topologically transitive.

Proof. Let U, V ⊂ R be nonempty and open in the relative topology on R. Let x ∈ U and

y ∈ V . Then there exists a path from x to y so there exists an orbit that starts in U and

passes through V .

Lemma 5. Let R be a chaotic set. Then Γ|R has sensitive dependence on initial conditions.
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Proof. Let U ⊂ R be open and γ a trajectory such that γ(t) ∈ R\U for all t ∈ T . Let z ∈ U

and δ > 0 such that Bδ(z) ⊂ U . Let x ∈ R. We establish sensitive dependence on initial

conditions by showing that there are two different trajectories in our system that each start

at x but end up being more than δ apart.

Let w ∈ R such that γ(t) = w for some t ∈ T . Then there exists a trajectory λ from x

to w that then follows γ. There is also another trajectory λ′ from x to w to z reaching w at

the same time λ reaches w. Then when λ′ reaches z, λ is on γ so d(λ(t), λ′(t)) > δ.

The next theorem follows from Lemmas 3–5.

Theorem 4. If R is a chaotic set, then Γ|R is chaotic.

We now turn to establishing that our non-linear MVDS will typically be chaotic on a

region near a steady state. Let x∗ ∈ R
2 with f(x∗) = 0 and g(x∗) 6= 0. Let A = Df(x∗) with

eigenvalues λ1, λ2 and corresponding eigenvectors e1, e2. Choose δ > 0 such that g(x) 6= 0

for all x ∈ Bδ(x
∗).

Theorem 5 (sink or source). Suppose there exists ε > 0 such that x∗ is a sink (asymp-

totically stable) or a source (asymptotically unstable) for f on Bε(x
∗). Then Γ has a chaotic

set.

Proof. Figure 4 contains a schematic for this proof. Suppose x∗ is a sink. One can pick

ε < δ/2. Let δ′ > 0 such that if z ∈ Bδ′(x
∗) then φt(z) ∈ Bε(x

∗) for all t ∈ T and φt(z) → x∗.

We can pick t0 < 0 (maximal) and 0 < t1 (minimal) such that y := ψt0(x∗) ∈ ∂B′

δ(x
∗) and

x := ψt1(x∗) ∈ ∂B′

δ(x
∗), i.e., t0 is the first time (going forward in time) that the flow ψt(x∗)

intersects ∂B′

δ(x
∗) and t1 is the first time (going backward in time) that the flow ψt(x∗)

intersects ∂B′

δ(x
∗). Since x∗ is asymptotically stable under f , then as t → ∞, φt(x) → x∗

and φt(x) ∈ Bε(x
∗) for all t ∈ T . Let L := {ψs(x∗) : t0 ≤ s ≤ t1}. If there exists t > 0 such

that φt(x) ∈ L, then we have a simple path from x to x. If not φt(x) /∈ L for all t > 0. Let

ε′ := supt>0 infw∈L{d(φ
t(x), w)} ≤ ε. Let T0 < 0 be minimal and 0 < T1 be maximal such

that ψT0(x∗), ψT1(x∗) ∈ ∂Bδ(x
∗). So choose t′0 < 0 < t′1 such that Bε′/2(ψ

t′
0(x∗))∩Bε(x

∗) = ∅

and Bε′/2(ψ
t′
1(x∗)) ∩ Bε(x

∗) = ∅. Let 0 < λ < ε′/2 such that if z ∈ Bλ(ψ
t′
0(x∗)) then

d(ψs(z), ψt′
0
+s(x∗)) < ε′/2 for all 0 ≤ s ≤ t′1 − t′0. Then there exists z and 0 < t3 < t4 such

that φt3(x), φt4(x) ∈ {ψs(z) : 0 ≤ s ≤ t′1 − t′0. Thus there is a simple path from φt3(x) to

φt3(x).
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Figure 4: Integral curves ψ and φ from Theorem 5.
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The proof for a source is essentially the same with the direction of time reversed.

Theorem 6 (saddle). Suppose λ1 < 0 and λ2 > 0 with g(x∗) 6= αe1 and g(x∗) 6= βe2. Then

Γ has a chaotic set.

Proof. Figure 5 contains a schematic for this part of the proof. Let ε < δ/2 be such that (1)

W s and W u divide Bε(x
∗) into four quadrants which we number moving counterclockwise

from 1 to 4 and (2) without loss of generality, φt(x∗) is in quadrant 4 for sufficiently small

t > 0 and in quadrant 2 for sufficiently small t < 0 (in Figure 5, quadrant 1 is the top-right

quadrant). The restriction on g(x∗) implies that in a sufficiently small neighborhood of x∗,

we will have ψt(x∗) in quadrant j for t < 0 sufficiently close to 0 and ψt(x∗) in quadrant j+2

mod 4 for t > 0 sufficiently close to 0. Let T0 < 0 be minimal and 0 < T1 be maximal such

that ψT0(x∗), ψT1(x∗) ∈ ∂Bε(x
∗). Let ε′ < ε/2 and t0 < 0 (maximal) and 0 < t1 (minimal)

such that Bε′/2(ψ
t0(x∗))∩Bε′(x

∗) = ∅ and Bε′/2(ψ
t1(x∗))∩Bε′(x

∗) = ∅. Let λ > 0 such that
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Figure 5: Schematic for first part of proof for Theorem 6.
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if z ∈ Bλ(ψ
t0(x∗)) then d(ψs(z), ψt0+s(x∗)) < ε/2 for all 0 ≤ s ≤ t1 − t0. Thus there exists

z ∈ Bλ(ψ
t0(x∗)) and 0 < s0 < s1 such that ψs0(z) ∈ W u and ψs1(z) ∈ W s.

Figure 6 (a blown-up version of Figure 5) contains a schematic for this part of the proof.

Choose r0, λ0 > 0 such that Bλ0
(φr0(ψs1(z))) ∩ {ψm(z) : s0 ≤ m ≤ s1} = ∅. Choose λ1 > 0

such that if w ∈ Bλ1
(ψs1(z)) then d(φm(w), φm(ψs1(z))) < λ0 for all 0 ≤ m ≤ r0. Let

w ∈ {ψm(z) : s0 ≤ m < s1} ∩Bλ1
(ψs1(z)). Then w /∈ W s ∪W u so φm(w) /∈ W u ∪W s for all

m ≥ 0. Hence there exists M such that φM(w) /∈ Bε(x
∗). So there exists M0 > 0 such that

φM0(w) ∈ {ψm(z) : s0 ≤ m ≤ s1}. Thus there exists a simple path from w to w.

4.3 One-Sector Model

We now turn to the non-linear MVDS from the model and consider two cases for the steady

state: local determinacy and local indeterminacy. We will see that in both cases the model

can exhibit chaotic behavior.
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Figure 6: Schematic for second part of proof for Theorem 6. The simple path from w to w
first follows φ to φM0(w), then follows ψ back to w.
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Figure 7: The steady state is locally a sink. Plotted are integral curves from both the
low-employment and high-employment branches. The plotted integral curves from the high-
employment branch flow from the top left to the bottom right. The plotted integral curves
for the low-employment branch are flowing counter clockwise.
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Example 2 (Local Indeterminacy). Let parameter values be set at baseline values (see

Table 1) with γ = 0.6. The steady state and eigenvalues from the linearization around the

steady state are given by K = 0.0039, λ = 645.9942, N = 0.3043, C = 0.0015, Y = 0.0019,

eigenvalues µ1 = −0.9091, µ2 = −0.0759. We see the steady state is locally a sink.

The integral curves from the non-linear system are plotted in Figure 7. From this figure

it is clear that on a significant region near the steady state the dynamics are chaotic.

Example 3 (Local Determinacy). Let parameter values be set at baseline values (see

Table 1) with γ = 0.4. The steady state and eigenvalues from the linearization around the

steady state are given by K = 0.2492, λ = 10.0311, N = 0.3043, C = 0.0997, Y = 0.1246,

eigenvalues µ1 = 0.7839 , µ2 = −0.2031. We see the steady state is locally a saddle.

The integral curves from the non-linear system are plotted in Figure 8. We see a similarity
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Figure 8: The steady state is locally a saddle. Plotted are integral curves from both the low-S
and high-S branches. The plotted integral curves from the high-S branch (those associated
with the local saddle) flow from the top left to the bottom right. The plotted integral curves
for the low-S branch are flowing from the bottom right to the top left.
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to the integral curves depicted in Figure 2 generated by a linear function and a constant

function. From this figure it is clear that on a significant region near the steady state

the dynamics are chaotic. Figure 9 contains the stable/unstable manifold of the linear

approximation around the saddle steady state along with the direction of the vector field of

the low-S branch at the steady state. The stable/unstable manifold divides the state space

into four quadrants (Q1–Q4). From the linear approximation, chaos is expected in Q1 and

this is exactly what one sees for the non-linear system in Figure 8.

5 Conclusion

In this paper, we make two contributions. First, we provide necessary and sufficient condi-

tions for Euler equation branching in the one-sector model with a production externality of
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Figure 9: Stable/unstable manifold from the linear approximation around the steady state.
Included is the direction of the flow on the low-employment branch. The stable/unstable
manifold divides the state space into four quadrants labeled Q1–Q4. Given the direction of
the flow on the low-employment branch and the position of the stable/unstable manifolds,
chaos is expected in Q1.
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Christiano and Harrison (1999), though for a wider range of parameter values. We also pro-

vide sufficient conditions for Euler equation branching for a more general class of preferences

and technologies. Second, in two-dimensional models with Euler equation branching, we

provide sufficient conditions for establishing chaos and show analytically that these condi-

tions are typically satisfied near a steady state equilibrium. Moreover, this chaotic behavior

will occur if the steady state is “locally” a saddle, sink or source.
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