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THE INDECOMPOSABILITY OF A CERTAIN KIND OF SEMI-NORMS

DIMITER G SKORDEV

To the memory 
o f my teacher Y. Tagamlitzki

1 . Introduction. About thirty years ago, the author of this paper (who 
was a student at that time) participated in the famous Student Scientific Circle 
at the Chair of Differential and Integral Calculus in Sofia University. The 
head of the chair and of the circle, Professor Y. Tagamlitzki, had posed a 
number of problems of the following sort: a certain cone is given and its 
indecomposable elements have to be found. In one of thes£ problems, the 
cone under consideration consisted of all semi-norms on a given linear
space. In 1955, this problem was solved in the case when the space is two-
dimensional. Namely, the late Dimiter M. Dobrev, who also was a member of 
the circle at the time, proved that in this case each indecomposable semi-norm 
is the absolute value of some fixed linear functional (the result is reflec
ted implicitly in [1]). Dobrev’s result gave rise to the hypothesis that 
tthe same is true also in the general case. But in 1957 Dobrev showed that 
his hypothesis fails even in the three-dimensional case. His proof was by 

reductio ad absurdum and it yielded no explicit counter-example. Such ex
amples were found a little later by the present author (in the corresponding proof 
was used the fact that certain compact convex sets of linear functionals have 
sufficiently many apohedral elements in the sense of [2 ] ; instead of apohedral 
elements, exposed elements in the sense of [3] can be used in the same proof). 
Dobrev’s and our disproofs of the hypothesis were reported at a session of 
the circle in November 1957. The aiithor’s result was presented also at a stu
dent scientific conference in Sofia University, held in April' 1958. Two years 
later, when the author was already an assistant professor at Professor Tagam-
litzki’s chair, a generalization of this result was presented also at an All-Bul
garian Conference of the Scientific Circles (in the proof of this generalization 
extreme elements were used, instead of apohedral ones). However, no publica
tion of the mentioned results of the author appeared because it was clear to 
us that the specified classes of counter-examples do not exhaust the class of 
all possible counter-examples and, on the other hand, it would be not quite in 
the style of Tagamlitzki’s scientific group such not final results to be pub
lished.

What is the state of the considered problem now, in 1986 ? As far as we know, no 
satisficatory characterization of the indecomposable semi-norms is found yet 
even in the three-dimensional case. The author has no information about 
somebody trying to solve the problem in the three- or more dimensional case. 
Hence, the not final character of author’s results seems not to be such a de
cisive factor now, if the question about publication is concerned. Having this 
in mind, the author decided after some hesitation to publish his  ̂results from 
1960. Maybe this publication could stimulate the interest in the history of
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Tagamlitzki’s Student Scientific Circle and, as an effect, some other unpub 
lished results from that time may become accessible.

2. F o r m u l a t i o n  o f  t h e  m a i n  r e s u l t .  We shall consider linear spaces 
over the field of the real numbers. As usual, a semi-norm on such a space Z  
is a non-negative real-valued function P  defined on Z  and satisfying the con
ditions that P(az) =  \a\P(z) and P (z1-\-Zi)≤P(z1)-bP (z9) for all real numbers a 
and all z\ zl9 z2 in Z. A semi-norm P  on the linear space Z  is called inde
composable, if the following holds: P  is not identically equal to 0 and, when
ever P x and P2 are semi-norms on Z  such that

(1) P { * ) ≈P i { z )  +  P %(z)

for all z in Z, then there are (non-negative) real numbers ax and a2 such that 
P 1(z) =  a1P(z )i P 2(z) =  a2P(z) for all z  in Z.

It is not difficult to prove that for each linear functional ∕  on Z, if ∕  is 
not identically equal to 0  then the function

(2) P(z) — j f ( z )  I
is an indecomposable semi-norm on Z. Dobrev’s result from 1955 was that in 
the case when Z  is two-dimensional, the semi-norms of this form are the only 
indecomposable semi-norms on Z, and his result from 1957 was that it is not 
so when Z  has more than two dimensions.

The main result in this paper is expressed by the following 
T h e o r e m .  Let Q and R be semknorms on the linear spaces X  and Y

respectively, and let the following conditions be satisfied: (i) neither Q nor
R  is identically equal to 0 ;  (ii) at least one of the semi-norms Q and R  
is not the absolute value of some fixed linear functional on the correspond
ing linear space. Then the function

(3) P(x, y) =  max{Q(x), R(y)}

is an indecomposable semi-norm on the linear space X x Y .
The proof of this theorem will be given in Section 4, after some pre

paratory work in Section 3.
R e m a r k  1 . The result stated in the above theorem is the author’s re∙ 

suit of I960. His result of 1957 differs from it in the presence of the addi
tional assumption that X  and Y are finite-dimensional.

R e m a r k  2. The formulated theorem will be no longer true, if we omit 
some of the assumptions (i) and (ii). For example, if Q is identically equal 
to 0, then P  can be indecomposable only in the case when R  is indecompo
sable. If condition (ii) is not satisfied, then P  can be indecomposable only in 
the case when condition (i) is also violated. Indeed, if Q(*)== | g ( * )  | for all x  
in X  and R(y )  =  | h(y) | for all у in Y, g and h being linear functionals on X  and
on Y respectively, then the identity P  (x,y) =  1 g (x )  -j- h(y) | +  — ■ |g(x) — h(y)\
holds; assuming that P  is indecomposable and using this identity, we 
easily conclude that some of the semi-norms g  and h is identically equal to 0 .

3. O n  the l i n e a r  f u n c t i o n a l s  m a j o r i z e d  by a  s e m i - n o r m .  If Z  is a 
linear space, then Z" will be the linear space consisting of all linear functionals 
on Z  and supplied with the topology of pointwise convergence (i. e. with the 
topology which is induced by the Tychonoff product topology in Rz, where R 
is the real line). If P  is a semi-rorm on Z, then we shall denote by P '  the 
set of all elements ∕  of Z* such that f ( z ) ≤ P ( z )  for all z in Z. It is well 
known that P '  is a compact convex subset of Z*. L et  P  be th e  s e t  of the
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extreme points of P ' .  By the Krein-Milman Theorem, P  is non-empty. By the 
Hahn-Banach and Krein-Milman Theorems, for all z in Z  the equality

(4) /> (z )=su p {/ (z )|/eP :}

holds (as a matter of fact, the “sup” may be replaced here by “ max” , but 
this will be not essential for what follows).

If the semi-norm P  is not identically equal to 0, then there are non-zero 
e/ements of P '  and this, together with the symmetry of P ', implies that the 
zero of Z* does not belong to P :. Due to the symmetry of P :, there will be 
at least two different elements of P  in this case, which will be opposite each 
other. If every two elements of P ; turn out to be linearly dependent, then 
the equality *(4) and the symmetry of P  imply that P  has the form (2), where 
/£Z*. Consequently, if P  has not this form, then there are some two elements 
of P  which are linearly independent. On the other hand, if P  has the above 
form, then P = { / ,  —/}. '

For each ∕  in P f let P  (/) =  sup{/(z) | P (z )≤  1}. Then 0 ≤ P * ( / ) ≤ 1  and 
f ( z )≤ P * ( f )P (z )  for all ∕  in P '  and all z in Z.  It is clear that P*(kf) =  X P*(f )  
and P * ( ^ + ( l — X )h )≤ iP * (g )-\ - ( i—X)P*(h) for each real number X with 0 ≤ A ,≤1  
and all /, g , h in P\ For each non-zero element ∕  of P f the inequality 
P * ( f )> Q  holds and the element .///-*(/) also belongs to P\ Using this fact, it 
is easy to see that in the case when P  is not identically equal to 0, for all 
elements ∕  of P : the equality P* ( f ) =  1 holds.

From now on, we shall assume that a linear space Z  is given, together 
with three semi-norms P, P 1 and P 2 on it such that the equality (1) holds 
for all z in Z.

The following proposition and its proof are known to the author from a 
lecture of Professor Y. Tagamlitzki delivered at the mentioned Student Scien
tific Circle in 1957 :

L e m m a  1 . The equality P ’ — { f x -f- / 2 | f x £ PJ, / 2 £ P 2} holds.
P r o o f .  Let be the set on the right-hand side of the above equality. 

This set is obviously a convex subset of P f. Since P [  and P'2 are compact 
and the addition in Z* is a continuous operation, the set Sf is also compact 
and, hence, it is closed. Consider now an arbitrary element / 0 of P\ We have 
to prove that /0 6 «^∙ Suppose /0^ ^ ∙  Then, by the separation theorem and the 
duality between Z* and Z, there are an element z0 of Z  and a real number у 
such that fo(z0)> y  and /(2r0) ≤ y  for all ∕  in . By the Hahn-Banach Theorem, 
there are f x f P [  anУ /2 ( P 2 such that f i (z 0) =  P 1(z0) and f 2{z0) ≈  P 2(z0). Then 

a∏d we get a contradiction in the following way:

/0 (2 ∙0) ≤  P(z0) =  Px(z0) +  P 2 (Z0) —fi (z 0) +fa(z0) =  ( Л  +/„ )(z0) ≤  Y-

For each two (not necessarily different) elements g  and h of Z*, let [g, h\ 
denote the closed segment with endpoints g  and h, i.e. [g, h\ = {a g -b ( l  — o)h\ 
O ≤ a ≤ l } .  The following lemma gives some additional information connected 
with Lemma 1 :

L e m m a  2. Let g  and h be such elements o f  Z * that [g, h] is an ex
treme subset o f  P \  Let g = g i  +  g 2 ' h =  hi -Jr,h2y where gLi h ^ P v g2, h2iP 'T 
Then there Is a real number a with O ≤ a ≤ l  such that g i—hx≈a(g~rh) (and* 
consequently, g2—h2 =  ( 1  — a) (g—h)).

P r o o f .  Obviously, -T [-g+  -5 - h h2) ( g ^ h ^  and the ele

ments g x +  h2, g2 ~\~hi belong to P '. Since -^− g 4 - - y  h 6 [g, h], this implies that



The indecomposability of a certain kind of semi-norms 8 9

gi +  hz also belongs to [g , h\. Hence, there is a real number a with 0 < a ≤ l  
such that h2 — o.g-\-(\— a)h. From here we get

g l —  h l =  (g1 +  /i2)— ( h 1 +  h 2) =  a g + ( l — a ) h — k  =  a ( g — h).

C o r o l l a r y .  Each element of P  has a unique representation in the 
form f { -b/ 2 with /x 6 P v / 2 6 P'v

P r o o f .  If / £ P :, then [/, f\ is an extreme subset of P ', and we can 
apply Lemma 2 for g = h = f .

Using the above corollary, we define a mapping С of P  into P [  by the 
condition that f —C (f )£ P '2 for all ∕  in Я :. Then an essential part of the con
tent of Leinma 2 can be formulated as

L e m m a  3. I f  g  and h are such elements of P  that [g, h] is an ex
treme subset of P f, then C(g)— C (h )≈a (g—h) f o r  some real number a with 
O ≤ a ≤ 1.

We need some more properties of the mapping C. We note two of them.
L e m m a  4. For each f  in P  the element — ∕  also belongs to P  and 

the equality C (—/ ) = —C(/) holds.
P r o o f .  We use the symmetry of each of the sets P\  Pj and P'Y
L e m m a  5. For all z in Z , the equality Pj(^) =  sup {C (f )  (z) |/£ P )  

holds.
P r o o f .  Let Set C i (/ )≈C (/ ) ,  C2 ( / ) = / - C ( / )  for all ∕  i n P :. It is

clear that for i== 1 , 2  the number P £(z) is an upper bound of the set 
{Cj(f)(z) 1/6 P  }  (since C, (/) 6 P\ for all ∕  in P :). On the other hand, for each 
∕  in P  the equality

P(z )—∕  (z) =  (P^z) -  Cx{ f) (z ) )  +' (P 2(z) -  C2(f ) (z ))
holds, which implies the inequality P 1(z)—C1( f ) ( z )< P (z )—f(z). This inequality 
together with the equality (4) shows that there are elements of the set 
{ £ 1  (f ) (z )  1/6 P  } which are arbitrarily close to P\(z).

4. The proof o f  the main result. From now on, in addition to the 
assumptions from Section 3, we shall suppose the assumptions of the theorem from 
Section 2 to be fulfilled,Zto be the space X x Y  and the function P  to be defined 
by means of (3). It is clear that P  is a semi-norm on Z  and P  is not identi
cally equal to 0 .

For each и from A* let u(l) be the element of Z*  defined by the equa
lity u(l) (x, y) =  u(x). Similarly, for each v  from У* let v (2) be the element of 
Z*  defined by v (2) (x, y) =  v(y). The mappings u ~ u (l) and — v{2) are injec
tive linear mappings of X * and Y * into Z*. Obviously, each element ∕  of Z *  
has a unique representation in the form f=≈u(l ) -\-v{2\ where u^X*  and 
namely that one where и and v  are defined by

(5) u (x )= f (x ,  0 ), v ( y ) ≈ f ( 0 , y).

L e m m a  6 . Let / 6  P' ∙  Then f  can be represented in the form f = u (l)~\-v{2)' 
where u^Q\ v^ R ' and Q*(u)-\-R*(v) =  P * ( f ) .

P r o o f .  Let и and v  be defined by means of (5). Then obviously u^Q\ 
v£R '. Consider an arbitrary element z =  (x, y) of Z  with P (z )≤\ .  Then Q (x )≤  1, 
R ( y ) ≤ 1 and, consequently,

f(z) =  u(x)-\-v(y)≤Q*(u) +  R*(v).
Hence, the real number Q*(u)-\- R*(v) is an upper bound of the set {f(z)\ 
P (z )≤  1}. Since u(x) and v(y )  can be arbitrarily close to Q"(u) and R (v) 
respectively, it is clear that f\z) can be arbitrarily close to Q*(u) +  R*(v). Thus



(? ; ( « )>/?• (* )= sup { f ( z ) \ p ( z ) ≤ \ } ≈ p  *(/).

C o r o l l a r y .  element of P  - has the form uSx К where u^Q\ or the
form  v {2\ where v £ R :.

P r o o f .  Let / £ P :. Represent ∕  as in Lemma 6 . We shall prove first that
u ≈ 0 or Vr≈O. Suppose it is not so. Then we have

Q *(u )>0, R*(v) >0, /= .Q ∙(a) . ^ ^ + / ?∙(v ) . :̂ L e

Q ' W + R 'W ≈  и

ы(1) v {2) ^
and from here we get the impossible equality "q* ^  ~  f?*(vj"' Consider now
the case when u =  0 . Then f —v (2> and we easily conclude that v^R'∙. In the 
case when v — 0, the situation is similar.

L e m m a  7. I f  u $ Q : and v i R \  then [/г(1), v (2)] Is an extreme subset 
of P f-.

P r o o f .  Let и £ Q :, v£ R Then #(1) and z>(2> belong to P '  and, therefore,
[ t t ^ V ^ J c P ' .  Since Q and R  are not identically equal to 0 , we have
Q*(u) =  R * (v )=  1. Assume that /£ [ « (1), ̂ (2>],/='X^-+-(l — X) h, where 0 <  X< 1, P ',
h ^ P r. We shall prove that g  and h also belong to [/г(1), ^ (2)]. The assumption 
that /€[tf(1), *̂ (2)] means that

(6 ) / =  шг(1 > +  (1  — а)г/(2> ≈  (сш)(1) -Ь ( ( 1  — а)^)(2) 

for some real number а with O ≤ a ≤ l .  By Lemma j5, we have

p ∙ ( / ) = Q ∙ ( « « )  +  / ? ∙ ( ( l - a ) v )  =  aQ ∙(a) +  ( l — а)/?*(^) =  а +  ( 1 - а ) = Ь  

W e have also ;

P \ f ) ≤ \ P \ g )  +  {\ -\ )P \ h \  X P* (g )≤K  ( i _ X ) P * ( A ) ≤ l - X ,

hence, \P* (g )≈X t (\—X )P* (h )≈\—Xt and consequently, P*(g) =  P * (h )≈  1. Again 
by Lemma 6 , there are q , s from Q' and r, t from R ' such that

(7) g ≈ q V )  -f- r (2\  h  =  s w  +  t v \  V '

P ' ( g ) ≈ Q ' ( 9 )  +  R*(r), P*(h) =  Q*(s) -f R*(t).
Then

(8) +
(9) / =  ( X ? ) +  (1  — \)s<1)) -j- (Xr(2) +■ (1 — X)/<2>) =  ( ^  -f ( 1  -  Х)5)<1) +  (Xr-h (1 - X)*)(2>. 

After comparing both obtained decompositions (6 ) and (9) of /, we get 

au =  Xq-\-( 1 — X)s> ( 1  — a)v==Xr-\-(I—X)t.

From fiere, we have

a ≈ Q \ m )^ X Q * (q ) j - (\ - -X )Q '{s ) ,  1 — « = '  / ? * ( ( 1  -a )tF )≤W ? ∙ (r )  +  (I - W W ∙
But

(XQ*(?) +  ( 1 — X) Q*($)) +  (X/?*(r) +  (1 -  X)tf∙(*)) 

≈ 4 Q m(9 )+ R \ r ) )+ ( l - k ) (Q \ s )  +  R * ( t ) )≈ b  +  ( l - X J ≈ b j a + f l - a ) .

9 0  D. Skordev



Hence,
(10) a =  \Q*(q) +  ( l -X )Q * (s ) ,  1 -a=*M ?*(r )  +  ( l  — X)/?-(*)∙
If none of q and s is identically equal to 0 , then Q*(q) >0, Q *(s )>0 and a > 0 ;  
so we have

,._>£>*(?) q , (1 -X.)<?*(s) д
a  O∙to) +  a  -  Q * ( S )

and using (10) and the fact that u £ Q :, we conclude that

n ≈ -Jf-∙-.:____ 5___

Consequently,
q≈Q *(q )u , s=Q*(s)u.

These equalities are easily seen to be true also in the case when <7 or 5  is
identically equal to 0. In a similar way, we prove that

r ≈ R ∙ ( r )v , '  t≈R * (t )v .
Then the equalities (7) give

g== Q*(q)uW +  R*(r)v<2\ /i≈Q*(s)uM +  R*(t)vW
and using (8 ), we conclude that g , h £ z*2>].

C o r o l l a r y .  Л// elements ,o f  the form u<l\ where u^Q  and all ele
ments o f the form  z'(2>, where v ^ R 1, belong to P :.

P r o o f .  From the fact that [#(1), г>(2>] is an extreme subset of P\  it fol
lows that u(1) and v {2> are extreme elements of P\

From the above corollary and Lemmas 3 and 7, we obtain immediately
L e m m a  8 . For each и in Q and each v  in R  there is a {uniquely

determined) real number auv with 0 <;а и г , < 1  such that
C(a<‘ >)— C(vW) =  auv («(<>—г/2>).

In the following lemmas, we shall use the denotation aUtV without fur
ther explanations.

L e m m a  9. If ulf u2 are linearly independent elements of Q and v is
an arbitrary element o f  R\ then aaitt, =  aU2>t, =  aai,— г/ ≈ a « , . ∙ Similarly, if и
is an arbitrary element of Q : and v x> v2 are linearly independent elements 
of R \  then

V-U,Vi ~  Ûtv9 ≈  — &—u,vt ∙
P r o o f .  We shall give the proof only of the first statement of the lemma.

Let ux, u2 be linearly independent elements of Q : and v  be an arbitrary element 
o f/?:. We have (by Lemmas 8  and 4):

С «> ) -С (г / < 2>) =  aUuV *

C(u<")~ C(v™) =  а„г.п ( « < » - ü<2>),

C («y  >) +  C(v{2)) =  a„„ ( « { • ) + г>( 2>).

C(u^) +  C(vi2>) a„2, (4»> +  v {2)).

From here we get

0 ≈  au„t, (т>(,1> —г><2>)—a«,.!, ( u ^ — v ,3t)— a„„ («<,*)+ г»(2>) +  а а „ (ay> +  ®(2>)
* ∙ ‘

≈  (a«i.v— a«i. — v) 4“ (a«8, —о— a«8»v) (<*иа. аиа. —t» —1>)

The indecomposability of я certain kind of semi-norms 91
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Now, it is sufficient to notice that u^\ u%\ v (2) are linearly indepsndent ele
ments of Z*.

L e m m a  10. The number aUtV does not depend on the choice of the 
functionals и and v.

P r o o f .  Since at least one of the semi-norms Q and R  is not the abso
lute value of some linear functional, at least one of the sets Q and R  con
tains two linearly independent elements. Let, for example, Q '■ contain such two 
elements. Then each element of Q ’■ will be linearly independent with 
some of these two elements, and, using the first statement of Lemma 9, 
it is easy to see that the number aû  does not depend on //, when v  is fixed, 
and this number is an even function of v , when и is fixed. To prove Lemma 10, 
it is sufficient to show also that aUfV does not depend on v, when и is fixed. 
This kind of independence follows immediately from what was just said, if 
each two elements of R  are linearly dependent, since then R ∙  consists of 
two elements which are opposite to each other. On the other hand, if R '  con
tains some two linearly independent elements, then we can prove the needed 
independence of aUtV by applying the second statement of Lemma 9 (in such 
a way as we applied its f̂irst statement above).

Now we are ready to prove the theorem formulated in Section 2. Let a be the 
value of aUtV for arbitrary и in Q and arbitrary v in R \ Consider such и 
and ^  We have

C (u ^ )-C (vW ) =  a (u^—vW), C(uW) +  C(vW) =  a(uM+vM).

From here we get C(#(1)) =  au^\ C(^(2)) =  av(2). Thus, C(/) =  a/ for all ∕  in P ’ 
(by the corollary of Lemma 6 ). Then (4) and Lemma 5 give that

(11) P ^ ≈ a P i z )
for all г  in Z. Of course, this equality, together with (1), implies

(12) P 2(z) =  ( l - a ) P ( z ) .

5. The existence o f other indecomposable semi-norms. We shall 
briefly describe how the existence of other indecomposable semi-norms can 
be proven, which are essentially different from the semi-norms of the form (2 ) 
and the semi-norms of the form (3). We shall restrict ourselves to the case 
of semi-norms on a three-dimensional linear spase Z. If P  is a semi-norm on Z  
having the form (2) or the form (3), then it is easy to see the existence of a 
straight line and of a plane in Z*, which contain the zero element of Z*  and 
all elements of P  (in the case when P  has the form (3), we have to use the 
corollary of Lemma 6 ). Now we shall show how to construct an indecompos
able semi-norm P  such that the elements of P : cannot be distributed in 
such a way. Consider an arbitrary symmetric convex polyhedron whose faces 
are triangles and whose vertices cannot be distributed in the considered way 
(for example, consider a regular icosahedron). It is not difficult to see the 
existence of a semi-norm P  on Z  such that P '  is isomorphic to the consi
dered polyhedron (provided this polyhedron is considered as a closed set). 
For proving the indecomposability of P, suppose the equality (1) holds identi
cally for some semi-norms P, and P a on Z. If f lt /2, / 3 are the vertices of 
an arbitrary face of P ', then Lemma 3 shows that C (fx)t C(/2), C(fs) are the 
vertices of some (possibly degenerated) triangle homothetic to the given face. 
By considering chains, whose consecutivev members are neighbouring faces 
of P', we prove that the scale factor Jof the mentioned homothetic transfor
mation does not depend on the choice of the face whose vertices are /x, /a,/3.
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From here, the equalities (11) and ( 1 2 ) can be obtained in a way quite simi
lar to what has been done at the end of Section 4.
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